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Abstract
Background: Humic acid (HA) has been found to affect the solubility, mineralization, and bound
residue formation of polycyclic aromatic hydrocarbons (PAHs). However, most of the studies on
the interaction between HA and PAH concentrated on one or two of the three phases. Few studies
have provided a simple protocol to demonstrate the overall effects of HA on PAH distribution in
soil systems for all three phases.

Methods: In this study, three doses of standard Elliott soil HA (ESHA), 15, 187.5, and 1,875 μg
ESHA/g soil slurry, were amended to soil slurry systems. 14C-pyrene was added to the systems
along with non-radiolabeled pyrene; 14C and 14CO2 were monitored for each system for a period
of 120 days.

Results: The highest amendment dose significantly increased the 14C fraction in the aqueous phase
within 24 h, but not after that time. Pyrene mineralization was significantly inhibited by the highest
dose over the 120-day study. While organic solvent extractable 14C decreased with time in all
systems, non-extractable or bound 14C was significantly enhanced with the highest dose of ESHA
addition.

Conclusion: Amendment of the highest dose of ESHA to pyrene contaminated soil was observed
to have two major functions. The first was to mitigate CO2 production significantly by reducing
14CO2 from 14C pyrene mineralization. The second was to significantly increase stable bound 14C
formation, which may serve as a remediation end point. Overall, this study demonstrated a practical
approach for decontamination of PAH contaminated soil. This approach may be applicable to other
organic contaminated environments where active bioremediation is taking place.

Background
Bioremediation has been recognized as an effective
approach for polycyclic aromatic hydrocarbon (PAH)
contaminated sites. Major characteristics of PAHs are low

water solubility and high hydrophobicity, which limits
availability to microorganisms. In order to increase the
bioavailability of PAHs in soil or sediment, humic sub-
stance (HS) addition has been considered to be a better
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choice than chemical surfactant that may cause the load-
ing of soil with chemicals whose future behavior, toxicity,
and degradability cannot be predicted [1].

As the most abundant pool of nonliving organic matter in
the environment [2] and having a unique constellation of
reactive features [3], HS has been studied for its effect on
PAH bioremediation and the possibility of using it as a
natural attenuating agent for cost effective, in situ biore-
mediation [4]. Three major effects have been identified.
The first effect is on PAH solubility, with several studies
showing increased apparent aqueous solubility [5-12].
The second effect is the enhancement of PAH mineraliza-
tion and biodegradation [10,13-17]. However, some
other studies have shown that HS has no effects on PAH
biodegradation [18-24]. The third effect is that HS may
bind PAHs and form bound residues. Some characteristics
of bound residues are that they are not bioavailable for
further degradation, are nontoxic, and can be an environ-
mental bioremediation endpoint [25-28]. The humic acid
(HA) fraction of HS has been identified as the primary
sink for bound residues of pyrene [29]. Even though
pyrene is regarded as a recalcitrant contaminant, its degra-
dation products and metabolites have been isolated and
identified in laboratory cultures, soil microcosms, and
environmental samples [30-32]. Incorporation of metab-
olites into soil HA is also considered to be a major mech-
anism for bound residue formation [26,33].

The distribution of pyrene and its degradation products in
soil occurs among three major phases including: (1) air
(mineralized as CO2), (2) water, and (3) solid. Solid
phase pyrene can be separated into two components: (1)
organic solvent extractable pyrene, and (2) nonextractable
or bound pyrene [29]. While most of the studies on the
interaction between HA and PAH evaluated one or two of
the three phases, few studies provide a simple protocol to
determine the overall effects of HA on PAH distribution in
soil systems in all three phases.

A soil sample from the Champion International Super-
fund Site located in Libby, Montana, was used in this
study [34]. This site experienced extensive contamination
from wood-treating operations from 1946–1969. In a pre-
vious study, Nieman et al. [29] demonstrated that 11% of
the 14C added as radiolabeled pyrene was bound to the
native soil organic matter (soil organic carbon of 1.4%) in
biologically active soil microcosms compared to only 3%
in poisoned controls. In the present study, standard Elliott
soil humic acid (ESHA) and 14C pyrene mixed with non-
radiolabeled pyrene were added to the Libby soil to
increase bound residue formation and determine the for-
mation pattern and stability of bound residue formed
from newly added contaminants.

The objectives of this study were to: 1) present the distri-
bution and mass balance of pyrene in soil slurry systems
amended with ESHA, and 2) determine the short-term sta-
bility and degradability of bound residues formed.

Methods
Chemicals
Pyrene (99%) was purchased from Fluka (Buchs, Switzer-
land). Radio-labeled [4,5,9,10-14C] pyrene (95% purity,
specific activity = 56 mCi/mmol) was purchased from
Amersham International (Buckinghamshire, England).
Analytical reagent grade sodium hydroxide (NaOH pel-
lets) and potassium hydroxide (KOH pellets) were pur-
chased from Mallinckrodt Baker Inc. (Paris, KY).
Methanol and acetonitrile used were high-performance
liquid chromatography (HPLC) grade or the equivalent.
Ready Gel scintillation cocktail was bought from Beck-
man Coulter (Fullerton, CA). ESHA was purchased from
International Humic Substance Society (IHSS) with a car-
bon content of 58.1%.

Soil
The soil material used in this experiment was from the
prepared bed land treatment unit 2 (LTU2) at the Cham-
pion International Superfund Site in Libby, MT. The soil
had been contaminated by a mixture of creosote and pen-
tachlorophenol used as a wood preservative at the site
[34,35]. The soil sample was passed through a 2.0-mm
sieve and homogenized. The homogenized soil was classi-
fied as a loam (50% sand, 38% silt, 12% clay) with an
organic carbon content of 1.4%. Other physical and
chemical properties of the soil sample were: pH, 7.6;
potassium, 16 mg/l; NO3-N, <1.0 mg/kg; NaHCO3
extractable phosphorous, 13 mg/kg (analysis by Utah
State University Soil Testing Laboratory). The soil was
stored in the dark at 4°C until used. The moisture content
was 10.2% (dry weight basis) immediately before use.

ESHA effect on 14C mass balance
A previous publication has indicated that adding ESHA to
soil at doses of 20–200 μg ESHA/g soil consistently
increased pyrene mineralization by indigenous microor-
ganisms in soil microcosms, whereas the lowest dose of
10 and other doses from 400 to 3,360 μg ESHA/g soil pre-
sented no effect and 10,080 μg ESHA/g soil produced
inhibition [10]. Based on these dose effects, this study was
conducted to evaluate how ESHA amendment affects 14C
distribution among air, water, and solids. ESHA at doses
of 15, 187.5, and 1,875 μg ESHA/g soil slurry was evalu-
ated together with a control that had no ESHA addition.
Duplicates of each treatment were analyzed at each sam-
pling time of 1 h, 4 h, 16 h, 24 h, day 7, day 35, and day
120. A total of 56 microcosms were incubated.
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The ESHA (30,000 mg/l) was dissolved in 0.1 M NaOH
and the pH was adjusted to 7.0 using 4 M NaOH. Ten
gram LTU2 soil (dry weight) in a 125-ml flask was spiked
with 14C pyrene mixed with non-radiolabeled pyrene in
methanol to make the final pyrene concentration of 100
mg/kg and the total disintegrations per minute (DPM) of
312,723 ± 692. After the methanol was evaporated in a
fume hood, 30 ml of an aqueous solution consisting of
either deionized distilled water (DDW) or DDW with dif-
ferent amounts of ESHA were added to each control and
treatment, respectively. For the doses of 15, 187.5, and
1,875 μg ESHA/g soil slurry, the aqueous solutions con-
tained 0.02 ml ESHA solution with 30 ml DDW, 0.25 ml
ESHA solution with 29.75 ml DDW, and 2.5 ml ESHA
solution with 27.5 ml DDW, respectively. Flasks were
then transferred into clean, one-quart mason jars with
Teflon coated lids. Carbon dioxide traps consisting of 2.5
ml of 0.1 M KOH in 20 ml scintillation vials were also
included in each jar. All systems were incubated in the
dark at 30°C on a rotary shaker at 105 rpm.

At each sampling time, 14CO2 traps were analyzed by liq-
uid scintillation counting (LSC). The entire volume of the
slurry in each flask was transferred to a pre-weighed 50-ml
polypropylene centrifuge tube. After centrifuging at 2,000
× g for 30 min, the supernatant was transferred into
another pre-weighed centrifuge tube. One ml of superna-
tant from each treatment and control was pipetted into a
7-ml scintillation vial with the addition of 6 ml Ready Gel
scintillation cocktail and counted for aqueous phase 14C.
Due to the dark brown color of the aqueous phase of the
treatment with 1,875 μg ESHA/g soil slurry, 100 μl sample
was analyzed as described above to avoid color interfer-
ence with LSC counting.

The pellet was air-dried in a fume hood for three days. 14C
in the solids was extracted by sonication (Tekmar Sonic
Disruptor) twice with each extraction lasting 5 min on a
full power, pulsed sonication cycle with 20 ml ace-
tonitrile. The extraction efficiency was calculated as 90%
using standard 14C pyrene. The acetonitrile extract was
decanted and centrifuged for 40 min at 2,000 × g. The
supernatant was transferred to a pre-weighed centrifuge
tube and 200 μl of each solvent extract (SER) was placed
in a 7-ml scintillation vial with 6 ml Ready Gel scintilla-
tion cocktail and counted by LSC.

The remaining soil sample was air-dried for three days and
then ground in a mortar and pestle. A 0.5 g subsample was
taken for combustion to determine non-extractable or
bound residue (BR) 14C (Harvey Biological Oxidizer, RJ
Harvey Instrument Corp., NJ). 14CO2 was trapped in a
mixed solution of 50% ready gel, 40% methanol, and
10% monoethanolamine (MEA) and counted by LSC.
Instrument recovery analysis was performed every 20

samples using 14C pyrene added to sand as a standard. The
average standard recovery was 91%.

Statistical analysis
JMP IN 5.1 statistical analysis software (SAS institute, NC)
was used to analyze all experimental data. Experimental
results from mineralized, aqueous, SER, and BR 14C were
analyzed using a factorial design with time, treatments,
and time * treatments as factors with the Fit Least Squares
model. When the factors in the ANOVA and effect tests
were determined to be significant (α = 0.05), multiple
comparison analyses through LSMeans, Tukey's honest
significant difference (HSD) were reported. The HSD was
calculated and labeled on each graph, where needed.

Results
For the three treatments and the control, the overall recov-
ery of 14C added to the soil slurry systems was 100 ± 4%
for the first 24 h, which indicated that the procedures used
for analyzing the dissolved, bound, and extractable phases
were valid. Recoveries from day 7 to day 120 ranged
between 70% and 89%. The lower recovery at longer incu-
bation times are likely due to CO2 emissions from the
microcosms and/or low trapping efficiency for 14CO2 as
this was also demonstrated in Nieman's [29] study. How-
ever, since the focus of this study was to evaluate the dis-
tribution of 14C once it was added to the soil sample, this
low recovery would not be expected to effect soil BR for-
mation and measurement.

The 14C in the aqueous phase increased over the first 7
days of incubation with the highest aqueous concentra-
tion in the control and 15 μg/g ESHA treatment (Figure 1).
After 7 days, the aqueous concentration decreased for all

Change in 14C in aqueous phase with timeFigure 1
Change in 14C in aqueous phase with time. For the 
three treatments amended with standard Elliott soil humic 
acid (ESHA) and the control (no ESHA addition), aqueous 
phase 14C fraction increased with time to day 7 and then 
decreased with time.
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systems. During the first 24 h, the highest dose of 1,875
μg ESHA/g soil slurry amendment was associated with a
significant increase of 14C in the aqueous phase fraction
compared to those of the control and the other two lower
doses as shown in Figure 2. Mineralization was observed
in the four systems by 24 h (Figure 3). Initially, the min-
eralization of pyrene was inhibited with ESHA dosing of
187.5 and 1,875 μg/g compared with the control and low-
est ESHA dosing. By day 120, the mineralization at the
highest dosing of ESHA was still less than the control.

SER 14C decreased gradually from an average of 85%
measured at 1 h of incubation to 8–10% on day 120 for
the four systems (Figure 4). This experiment showed that
after 14C pyrene was added to the soil, most of 14C was
associated with the soil matrix and was apparently solvent
extractable. When mineralization began at day 1, SER 14C
underwent rapid mass transfer from the soil matrix to the
aqueous phase and was degraded. A decrease of approxi-
mately 40% of SER 14C was observed between day 1 and
day 7. By the end of the experiment, an average of 9% of
the added 14C remained solvent extractable. Statistical
analysis showed that there was no significant difference in
SER 14C recovery among the four systems.

BR formation was observed to be a very rapid process (Fig-
ure 5). After 14C pyrene was added to the soil, approxi-
mately 13% of the 14C became non-extractable within 1 h.
For the control and lowest ESHA dosing, the percentage of
14C BR remained constant at 14% over the first 16 h of
incubation, then increased by day 7, and remained con-
stant over the remaining time of the 120 day experiment.

For the two higher doses of ESHA amendment, percent-
ages of BR 14C during the first 16 h were similar to those
of the control and the lowest dose addition with an aver-
age of 15% 14C bound. The highest percentages of BR 14C
were observed by day 1 with 27% and 38% of 14C bound
for 187.5 and 1,875 μg ESHA/g soil slurry, respectively.

During the first 24 h, percentages of 14C in aqueous phase change with timeFigure 2
During the first 24 h, percentages of 14C in aqueous 
phase change with time. The largest dose of ESHA 
showed statistically significant enhancement of the aqueous 
phase 14C fraction compared to the other systems.
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Cumulative percentages of 14C pyrene as mineralized 14CO2 with timeFigure 3
Cumulative percentages of 14C pyrene as mineral-
ized 14CO2 with time. For all four systems, mineralization 
increased with time within the experimental period. Statisti-
cal analysis showed that the two higher doses of ESHA 
amendment significantly inhibited pyrene mineralization com-
pared to the lowest dose ESHA amendment and the control 
over time.
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Percentages of 14C as solvent extractable (SER) in the soil matrix change with timeFigure 4
Percentages of 14C as solvent extractable (SER) in 
the soil matrix change with time. For all four systems, 
SER fraction decreased with time rapidly during the first 35 
days and then slowly to day 120.
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The BR decreased by day 7 and remained constant there-
after. Statistical analysis indicated a significant difference
between the BR fraction at the highest dose of ESHA
amendment and the other three systems.

Discussion
The SER 14C is the fraction that is associated with the soil
matrix by reversible adsorption through a combination of
van der Waals forces, hydrogen bonds, hydrophobic inter-
actions, ionic bonds, ligand exchange, and charge transfer
complexes [25] and can be extracted by organic solvents
[36,37]. After 14C pyrene was added to the soil, it was
sorbed to the soil matrix with approximately 85% as SER
and 15% as BR for the four systems. When water and
ESHA solution were added to the soil matrix, 14C distribu-
tion among air as 14CO2, water, and solid phases started
to change differently for the different ESHA-dosed systems
with time. Biodegradation acted as a driving force to pull
SER 14C to the aqueous phase where the compound was
mineralized. This is supported by the observation that the
aqueous phase 14C fraction increased through day 7, then
decreased to account for only 5% of the added 14C; but
mineralization continued to increase for the rest of the
time. During the 120-day experimental period, the con-
trol without ESHA amendment and the lowest dosing of
15 μg ESHA/g soil slurry were always statistically the same
regarding 14C distribution among different physical
phases of the soil slurry systems.

During the first 24 h, the highest dose of ESHA amend-
ment significantly increased the aqueous phase pyrene
fraction by a factor of five compared to those of the other
systems. A similar phenomenon was observed in another
study with the same ESHA and soil [10]. The role of HA in
enhancing organic pollutant solubility has also been
reported in two other studies, which indicated that HA
could increase apparent solubility of trimethylnaphtha-
lene, methylnaphthalene, and dimethylnaphthalene in
aquifer systems [38], and natural organic matter could
facilitate transport and enhance desorption of PAHs in
aquifer sediments [8]. However, the time-dependent
effect of this enhancement has not been discussed before.
Moreover, even though the aqueous 14C fraction was
increased in this experiment during the first 24 h with the
highest dosing of ESHA, mineralization was not
enhanced. This may indicate that the ESHA solubilized
radiolabeled material was not bioavailable, possibly
through micellar encapsulation, and/or that a community
of microbes capable of appreciable mineralization of
pyrene in this environment had not yet developed.

During the experimental period, mineralization in the soil
slurry system with the highest dose of ESHA amendment
was significantly lower compared to the other three sys-
tems. Similar conclusions were also drawn from studies
by Lesage [9] and Spaccini [39]. These results indicate that
a high dose of ESHA may inhibit pyrene mineralization or
biodegradation by toxicity or by forming nonbioavailable
micelles, which may precipitate or be pushed to the soil
matrix by the hydrophobic effect. However, due to differ-
ent HAs, different soil or sediment or soil slurry systems
that have been tested by different researchers, it is difficult
to identifya generalized dose for mineralization inhibi-
tion for different systems. To our best knowledge, results
obtained in one system cannot be simply transferred to
other different environments.

In these soil slurry systems, all three doses of ESHA
amendment did not show enhancement of pyrene miner-
alization. In contrast, ESHA was reported to increase the
pyrene degradation rate by Mycobacterium sp. JLS [15].
However, that observation was made in a non-slurry static
system of ESHA and pyrene without the presence of soil
and where the dose of ESHA was not known.

In this study, the BR fraction had four phases of change.
First, the BR was formed immediately after pyrene was
added to the soil. This spontaneous occurrence of bound
residue formation was non-biologically derived as it was
also observed in poisoned or sterile samples [25,40-42].
Second, the BR fraction increased with time by 24 h for
the two higher doses of ESHA and by day 7 for the control
and the lowest dosing of ESHA. A similar trend was
reported when pyrene was added to municipal biowaste

Percentages of 14C as bound residue (BR) change with timeFigure 5
Percentages of 14C as bound residue (BR) change 
with time. BR fractions in the four systems increased with 
time during the first 24 h. For the two larger doses of ESHA 
amendment, 187.5 and 1,875 μg ESHA/g soil slurry, BR frac-
tions decreased from day 1 to day 7 rapidly and then 
remained constant throughout the experimental period. The 
highest dose of ESHA addition increased the BR fraction sig-
nificantly compared to other systems.
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[43]. These two phases of change can be explained by a
hydrophobic sorption mechanism proposed by Karick-
hoff [44] and Robinson et al. [45], which describes rapid
hydrophobic interactions between PAHs and soil hydro-
phobic surfaces at the first step and a slow migration of
PAHs to less accessible sites at the second step.

Third, the BR fraction decreased in the two higher doses of
ESHA addition from 24 h to day 7 when mineralization
was active. The decreased BR 14C fraction did not cause an
increase of SER 14C, but it correlated well with increased
aqueous phase 14C fraction and mineralization, which
indicated that 14C released from the BR fraction was bioa-
vailable and could be mineralized to 14CO2 as biodegra-
dation became more aggressive [26,28,43,46]. Fourth,
after day 7, the BR fraction in the four systems was con-
stant.

BR formation and PAH retention were significantly
increased by adding organic supplements to the soil in
other studies [47-49]. However, addition of other supple-
ments including mature compost, bark chips, or forest lit-
ter has not shown a positive effect on the BR formation
[25]. In this experiment, while the two lower doses of 15
and 187.5 μg ESHA/g soil slurry had no significant differ-
ence compared to the control during the 120 day period,
the largest dose of 1,875 μg ESHA/g soil slurry showed sta-
tistically significant enhancement of BR formation. By day
120, there was 10% more BR in the highest dose of ESHA
amendment compared to that of the control. This is in
agreement with the study of 13C labeled 2-decanol, where
increased binding through hydrophobic protection by
exogenous HA was reported [39].

BR formed during this experimental period was observed
to be stable even though biodegradation was active.
Therefore, amendment of HA-rich materials to soil slurry
systems to increase BR formation could be considered as
an effective treatment technology for the Libby Superfund
site.

Conclusion
The protocol developed in this study was effective to eval-
uate pyrene distribution among different physical phases
of soil slurry systems, including air, water, and solid
phases. Depending on the dose of EHSA, amending ESHA
to soil slurries had significant effects on pyrene apparent
solubility, mineralization, and BR formation. These
effects can be applied as engineering management alterna-
tives to achieve clean-up goals for PAH-contaminated
sites.
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