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Article Title - Analysis of environmental effects on leaf
temperature under sunlight, High Pressure Sodium and Light
Emitting Diodes

Jacob A Nelson1, Bruce Bugbee*1

1 Crop Physiology Laboratory, Department of Plant Soils and Climate,
Utah State University, Logan, Utah, United States of America

* E-mail: bruce.bugbee@usu.edu

Abstract

The use of LED technology is commonly assumed to result in significantly cooler leaf 1

temperatures than high pressure sodium technology. To evaluate the magnitude of this 2

effect, we measured radiation incident to and absorbed by a leaf under four radiation 3

sources: clear sky sunlight in the field, sunlight in a glass greenhouse, and indoor plants 4

under either high pressure sodium or light emitting diodes. We then applied a common 5

mechanistic energy-balance model to compare leaf to air temperature difference among 6

the radiation sources and environments. At equal photosynthetic photon flux, our 7

results indicate that the effect of plant water status and leaf evaporative cooling is much 8

larger than the effect of radiation source. If plants are not water stressed, leaves in all 9

four radiation sources were typically within 2°C of air temperature. Under clear sky 10

conditions, cool sky temperatures mean that leaves in the field are always cooler than 11

greenhouse or indoor plants-when photosynthetic photon flux, stomatal conductance, 12

wind speed, vapor pressure deficit, and leaf size are equivalent. As water stress increases 13

and cooling via transpiration decreases, leaf temperatures can increase well above air 14

temperature. In a near-worst case scenario of water stress and low wind, our model 15

indicates that leaves would increase 6°, 8°, 10°, and 12°C above air temperature under 16

field, LED, greenhouse, and HPS scenarios, respectively. Because LED fixtures emit 17

much of their heat through convection rather than radiative cooling, they result in 18

slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures, but 19

the effect of LED technology on leaf temperature is smaller than is often assumed. 20

Introduction 21

The energy balance of leaves has long been studied in field conditions and a 22

well-developed family of models is used to determine transpiration and leaf temperature 23

over a wide range of environmental conditions, including controlled environments [1–4]. 24

These models are well developed, and are used to predict values that are hard to 25

measure directly, such as leaf temperature and evapotranspiration [5]. Models also 26

provide the opportunity to compare individual parameters while keeping all other 27

environmental conditions exactly the same. This facilitates comparison of radiation 28

sources. 29
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Although linearization of energy balance models, such as the Penman-Monteith equation, 30

has been widely used, modern computing allows for more precise numerical solutions of 31

leaf temperature. Widmoser [6] discusses the advantages of using numerical solutions. 32

A recent analysis showed that the conversion efficiency of electricity to photosynthetic 33

photons of the most efficient commercial scale LED fixtures was equal to the most 34

efficient HPS fixtures at 1.7 µmol photosynthetic photos per joule of electrical input [7]. 35

They thus generate the same amount of thermal energy per photosynthetic photon. 36

LED fixtures, however, dissipate much of their heat away from the plane they 37

illuminate, while HPS fixtures dissipate more heat toward the plane they illuminate. 38

Elevated temperature reduces the lifespan of LEDs, so they are thermally-bonded to 39

heat sinks where the thermal energy is removed by natural or fan-assisted convection 40

and directed away from the plants they illuminate. 41

Conversely, HPS lamps operate at higher temperatures and thus generate more longwave 42

radiation in the same direction as the photosynthetic radiation. This thermal radiation 43

can be reduced using a barrier such as glass, but this reduces the photosynthetic 44

radiation by about 10% (Fig. S1) and thus lowers the efficiency of the fixture. 45

The difference in how LED and HPS technologies dissipate thermal energy indicates 46

that use of HPS fixtures will result in higher leaf temperatures. It is easy to misjudge 47

the magnitude of this effect because HPS lamps are a far more concentrated light source 48

than LEDs. Comparisons need to be made on the basis of equal photosynthetic photon 49

flux (PPF). 50

Compared to sunlight and HPS lamps, LED fixtures emit almost no near infrared 51

radiation (NIR; 700-3000 nm), but this radiation is not well absorbed by plant leaves. 52

Photosynthetic (400 to 700 nm) and longwave (3,000 to 100,000 nm) radiation are about 53

95% absorbed, but non-photosynthetic solar NIR is only about 20% absorbed, and has a 54

smaller effect on leaf heating. Unabsorbed radiation is either transmitted or reflected. 55

Our objective was to use a well-established energy-balance model to compare the 56

leaf-to-air temperature difference in four radiation scenarios across multiple 57

environments. 58

. 59

Materials and Methods 60

Radiation sources 61

We measured the radiation from four sources: clear sky sun in the field, clear sky sun in 62

a greenhouse, and either HPS or LED fixtures in indoor environments (devoid of 63

sunlight). The most efficient commercially-available HPS and LED fixtures (1.7 64

µmol/J ; [7]) were used. The HPS fixture included a double-ended, 1000 W lamp 65

(MASTER GreenPower, Philips Lighting, The Netherlands) in an efficient (less then 66

10% losses) luminaire (ePapillon, Lights Interaction, The Netherlands). The LED 67

fixture was a 400 W, Red-Blue, passively cooled fixture (VividGro, Lighting Science 68

Group, FL, USA). Clear sky sun measurements were made near solar noon on a clear 69

summer day in Logan, UT, USA. Greenhouse sun measurements were made under clear 70

sky conditions in a typical glass greenhouse. 71
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Figure 1. Average absorption (red line) of leaves from tomato, pepper,
basil and broccoli. Variation among species is due to differences in leaf reflectance.
The broccoli leaf had slightly higher reflectance of PAR than the other species. All
plants were grown in a greenhouse.

Absorption of shortwave radiation 72

We measured shortwave absorption as the fraction of light that is neither transmitted 73

nor reflected by a leaf. 74

Leaf absorption was determined by measurement of reflection and transmission between 75

350-2500 nm using a spectroradiometer (FieldSpec Pro, ASD Inc., Boulder, CO, USA) 76

and a halogen light source. Transmission was measured through a single leaf at 90°from 77

the leaf surface. Reflectance was made over a large black cavity with a small hole to 78

mimic a black body, again at 90°from the leaf surface. Absorption was averaged among 79

four species: tomato (S. lycopersicum), pepper (C. annuum), basil (O. basilicum), and 80

broccoli (B. oleracea) (Fig. 1) to incorporate a range of leaf types. Three separate 81

leaves were measured on for each species. Average absorption was nearly identical to 82

previously published values from multiple species and a variety of environments [8, 9]. 83

Relative spectral radiance of each radiation source was measured using the same 84

spectroradiometer as above (Fig. 2). Incoming shortwave (350-2,500 nm) and longwave 85

(>3,000 nm) radiation measurements for each radiation scenario were made using a net 86

radiometer (CNR1, Kipp & Zonen, the Netherlands). Photosynthetic photon flux (PPF; 87

in moles per m2 per s) measurements were made using a recently calibrated quantum 88

sensor (LI-190, LI-COR, Lincoln, NE, USA), and converted to photosynthetically active 89

radiation (PAR; in watts per m2) using spectral data for each light source and Planck’s 90

equation (E = hc/λ). The absorbed radiation was normalized to equal incident PPF for 91

each radiation source. 92

Because, UV and photosynthetic radiation have much higher absorption than NIR, 93

shortwave radiation was divided into three bands: ultraviolet (UV, 350-400 nm), PAR 94

(400-700 nm), and near-infrared (NIR, 700-2500 nm). UV radiation below 350 nm is a 95

minimal component from all radiation sources, and was not included in the analysis. 96
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Figure 2. Radiance spectrum from four radiation sources (black line) and
average leaf absorbance (red line). Electric lights (HPS and LED) output most of
their radiation in the photosynthetic regions. Sunlight has significant NIR radiation,
but this is poorly absorbed by leaves.

PLOS 4/14



Incoming and outgoing longwave radiation 97

Longwave radiation was separated into three components: sky longwave, source 98

longwave, and emitted longwave. Sky longwave is the radiation emitted from either a 99

clear sky (typically 300 W/m2 or about -1°C), or the ceiling of the controlled 100

environment (assumed to be 452 W/m2 or about 28°C for all indoor cases). Source 101

longwave is defined as the incoming longwave radiation from either the LED or HPS 102

fixture, and was measured using a black body pyranometer (part of the net radiometer 103

above). Incoming longwave radiation with the fixture present was subtracted from 104

incoming longwave with the fixture absent. Source longwave was scaled with PPF. 105

Emitted longwave is calculated using the Stefan-Boltzman law as outlined below. We 106

assume the leaf is the same temperature as the surfaces below the leaf and thus there is 107

no net longwave transfer. 108

Energy balance model 109

We modeled a single top leaf because the uppermost leaves absorb about 75% of the 110

incident radiation and have the greatest temperature differences. 111

Leaf temperature was calculated using the energy balance model that has been 112

described, in detail, in both Campbell and Norman [10] and Monteith and 113

Unsworth [11], 114

Rabs = Remit + C + λE (1)

where, 115

Rabs = Absorbed radiation inW/m2

Remit = Emitted radiation via Stefan-Boltzmann law inW/m2

C = Transfer of sensible heat via convection inW/m2

λE = Latent heat transfer inW/m2

Assuming the system is at steady state, the absorbed radiation (Rabs) must equal the 116

sum of the emitted radiation (Remit), sensible (C) and latent (λE) heat transfer. 117

Absorbed radiation was measured as described in the previous subsections. Emitted 118

radiation is defined by the Stefan-Boltzmann law, 119

Remit = εsσT
4
L (2)

where, 120

εs = Emissivity of the leaf (assumed to be 0.97)

σ = The Stefan-Boltzmann constant or 5.67 ∗ 10−8 W/m2K4

T 4
L = Leaf temperature in Kelvin to the fourth power
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The transfer of sensible heat (C), through convection, is defined as a function of the 121

difference in leaf to air temperature and the boundary layer conductance such that, 122

C = cpgHa(TL − Ta) (3)

where, 123

cp = Specific heat of air at a constant pressure or 29.3 J/mol ◦C

TL = Leaf temperature in Celsius

Ta = Air temperature in Celsius

Boundary layer conductance (gHa in mol/m2s) is a semi-empirical function defined as, 124

gHa = 1.4 ∗ 0.135
√
u

d
(4)

where, 125

1.4 = An empirical constant accounting for turbulance

0.135 = An constant determined by the viscosity, density, and diffusivity of air

u = Wind speed in m/s

d = Characteristic dimension in meters or 0.72 times the maximum leaf width

Latent heat transfer (λE) is defined as a function of the vapor pressure deficit 126

( es(TL)−ea
pa

) and the vapor conductance (gv in mol/m2s) such that, 127

λE = λgv
es (TL)− ea

pa
(5)

where, 128

λ = Latent heat of evaporation or 44 kJ/mol

es (TL) = Saturation vapor pressure of water at leaf temperature in kPa

ea = Partial pressure of water vapor in air in kPa

pa = Atmospheric pressure or 101.3 kPa

Vapor conductance (gv) is a combination of both the vapor boundary (gva) and 129

stomatal (gvs) conductances (both in c) such that, 130

gv =
gvsgva
gvs + gva

(6)
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Stomatal conductance (gvs) typically varies between 0.1 mol/m2s for drought stressed 131

plants and 0.5 mol/m2s for high transpiring plants. Vapor boundary conductance is 132

defined similarly to equation 4 with slightly different constants, 133

gva = 1.4 ∗ 0.147
√
u

d
(7)

These components account for all significant energy paths. Other energy sources and 134

sinks include photosynthesis and respiration, which are negligible in these conditions. 135

Combining equations 1, 2, 3, and 5 gives a comprehensive overview of the model, 136

Rabs = εsσT
4
L + cpgHa (TL − Ta) + λgv

es (TL)− ea
pa

(8)

The equation was solved for leaf temperature (Tleaf ) using an iterative approximation. 137

Results are presented as the difference between leaf and air temperature (Tleaf − Tair), 138

as leaf temperature is only relevant in the context of it’s environment. 139

Some of the energy absorbed by leaves is used to fix CO2 into sucrose in the process of 140

photosynthesis. The photosynthetic energy use in field conditions is typically less than 141

4% of the total absorbed energy and has thus been ignored in energy balance models. 142

However, assuming optimal water and nitrogen, a moderate PPF and physiologically 143

optimum CO2 enrichment, it is possible to increase the quantum yield of photosynthesis 144

to 0.08 moles of CO2 fixed per mole of photons absorbed. Assuming respiration is 30% 145

of photosynthesis, net metabolism can use about 8% of the absorbed shortwave 146

energy [5]. This is still a small contribution to the total energy balance, and it would be 147

similar for all radiation sources. 148

Code for the execution of the model can be found in supplemental information (File S2). 149

Sensitivity analysis 150

Excluding the radiation inputs, equation 8 is ultimately a function of seven 151

environmental variables: air temperature, relative humidity/vapor pressure deficit, wind 152

speed, leaf size, sky temperature, stomatal conductance, and atmospheric pressure. 153

Default values for each parameter were chosen to reflect typical growing conditions (as 154

shown in figure captions). 155

Air temperature was held at 25°C, which is a common set point for greenhouses and 156

growth chambers. Convective heat transfer from the lighting fixture and surrounding air 157

is assumed to be controlled via the temperature control system before it would impact 158

leaf temperature. When other environmental conditions are constant, air temperature 159

between 15°and 35°C has a minimal effect on leaf to air difference (Fig. 3). 160

Environmental parameters were varied across a biologically significant range. 161

Results and discussion 162

The greatest variation among sources in incident radiation was in the near-infrared 163

(NIR) and longwave bands (Table 1). NIR is poorly absorbed by leaves, so absorbed 164

NIR was less than 30% of absorbed PAR energy for all sources. 165
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Figure 3. Leaf temperature response to air temperature. Vapor pressure
deficit was held constant.
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Figure 4. Calculated effects of environmental conditions on the difference
between leaf temperature and air temperature under four radiation
scenarios.
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Table 1. Incident radiation, fraction absorbed, and total absorbed radiation
for each source. The absorbed radiation was normalized to a PPF of 1000 µmoles per
m2 per s for each radiation source. This does not result in exactly equal PAR (in watts
per m2) because of spectral differences among radiation sources. The total absorbed
radiation for each source is shown in bold. Leaf temperature was held constant at 25°C.
Net longwave exchange with lower leaves or surfaces was assumed to be zero.

UV (350-
400 nm)

PAR (400-
700 nm)

NIR (700-
2500 nm)

Source
longwave

Sky
longwave

Emitted
longwave

Total

Incident radiation (W/m2)
HPS 0.58 203 128 131 452 -435 480
LED 0.15 195 10 44 452 -435 267

Sun, greenhouse 18 219 252 0 452 -435 508
Sun, clear sky 19 219 288 0 300 -435 392

Fraction absorbed
HPS 0.939 0.870 0.263 0.97 0.97 0.97 0.71
LED 0.934 0.943 0.923 0.97 0.97 0.97 0.90

Sun, greenhouse 0.938 0.894 0.214 0.97 0.97 0.97 0.53
Sun, clear sky 0.937 0.894 0.207 0.97 0.97 0.97 0.33

Total absorbed radiation (W/m2)
HPS 0.54 177 34 127 439 -422 342
LED 0.14 184 9 43 439 -422 240

Sun, greenhouse 17 196 54 0 439 -422 271
Sun, clear sky 18 196 60 0 291 -422 130

The indoor environments (LED, HPS, and greenhouse) had net positive longwave 166

radiation, and the HPS fixture was significantly higher than the other sources. The 167

effect of UV on absorbed radiation was less than 10% of absorbed PAR energy for all 168

source. 169

Effect of environment on leaf to air temperature difference 170

The leaf-to-air temperature difference, in all radiation scenarios, was less than 2°C 171

except where parameters approached their extremes (Fig. 4). The relative order did not 172

change, regardless of environmental conditions, with HPS > greenhouse sun > LED > 173

clear sky sunlight. 174

Near worst-case conditions (water stress, high PPF, and low wind; Fig. 5) increased the 175

differences between lighting sources. The results indicate that leaf temperatures in near 176

worst-case conditions can increase 6°to 12°C above air temperature depending on the 177

radiation scenario. 178

Differences in radiation absorption 179

There were significant differences among sources in the ratio of NIR to PPF, but NIR 180

wavelengths are poorly absorbed by leaves (Table 1), thus the effect of NIR on leaf 181

temperature is relatively small. Blanchard and Runkle [12] found leaf temperature to be 182

0.7°to 1.5°C lower under NIR reflective painted glass as opposed to neutral reflective 183

painted glass with similar PPF conditions (about 1100 µmole/m2s), though much of 184

this difference was likely due to differences in air temperature, which was on average 185
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Figure 5. Calculated effects of PPF on the difference between leaf
temperature and air temperature under four radiation scenarios in near
worst-case conditions of water stress and low wind.

0.8°C higher under neutral reflective paint. This further shows that though NIR is a 186

significant source of energy, it’s impact on individual leaves is small. 187

Longwave radiation varied significantly among radiation sources and had the biggest 188

effect on leaf temperature. Because incoming longwave radiation from clear sky 189

conditions is significantly less than that from the ceiling of controlled environments, 190

plants grown outdoors have lower absorbed net radiation. Even on overcast days, 191

incoming long wave radiation in the field is typically lower than in a controlled 192

environment. 193

Our analysis includes two of the most efficient fixtures available. Increases or decreases 194

in efficiency will likely cause small differences in source longwave radiation, but the 195

effect of changes in fixture efficiency would be relatively small compared to the effect of 196

differences between the two technologies. 197

Effect of light source on transpiration 198

Increased leaf temperature causes increased transpiration. When incoming radiation 199

and radiation capture by the crop are the same, the transpiration rate of crops in 200

protected environments are thus higher than the same crops the field. 201

In the field, however, water loss by evaporation from the soil surface can make the 202

combination of evaporation and transpiration higher than the combination of 203

evaporation and transpiration in a controlled environment. If the effect of surface 204

evaporation is removed and transpiration from only the leaves is considered, crops in a 205
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greenhouse would have a 35% higher transpiration rate than identical crops grown in 206

the field. 207

Based on our presented model and the default parameters (Fig 4), the reduced leaf 208

temperature under LED fixtures would decrease transpiration by 17% compared to HPS 209

fixtures. This is a potentially significant reduction in transpiration, but differences in 210

surface evaporation among cultural systems typically have a greater effect on crop water 211

requirement than lamp type. For example, drip irrigation can decrease evaporation from 212

surfaces and reduce the crop water requirement by 30 to 70%, in both greenhouses and 213

in the field [13]. 214

Effect of elevated CO2 215

Controlled environments often add supplemental CO2, which can decrease stomatal 216

conductance 10-40% [14,15], and increase leaf temperature. The presented model 217

indicates that a decrease in stomatal conductance of 30% in response to elevated CO2 218

would increase leaf temperature by 1°C in all radiation scenarios. 219

Effect of light source on shoot tip temperature 220

Shoot tip temperature is often used to predict time to flower and plant development 221

rates [16]. Our modeling approach is similar to that used by Shimizu et al. [4] and Faust 222

and Heins [17] to predict shoot tip temperature, both of which found greater than 83% 223

of their modeled values to be within 1°C of measured values. Because our models are 224

similar, choice of lighting technology will likely affect shoot tip temperature, time to 225

flower and plant development. 226

Effect of light source on fruit and flower temperature 227

Our near-worst case analysis would likely be representative of flowers, fruits, and thick, 228

dense plant parts that have low transpiration rates, including high value products such 229

as tomatoes, strawberries, and Cannabis flowers. These thicker structures would absorb 230

more radiation than a thin leaf. Our measurements show that while only 63% of HPS 231

shortwave radiation is absorbed by the first leaf, a structure ten times thinker would 232

absorb more than 80%. LED technology has the potential to reduce heating of these 233

thick, low transpiring plant structures. 234

Conclusions 235

The presented model indicates that the use of LED technology reduces leaf temperature 236

by about 1.3°C compared to HPS technology under typical, indoor growing conditions, 237

but a leaf in a controlled environment will be warmer than a leaf in the field under a 238

clear sky, assuming equal PPF and similar environmental conditions. In conditions 239

where leaves benefit from heating, such as a greenhouse in a cool climate, HPS 240

technology more effectively transfers heat to canopies. 241
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Supporting Information 242

S1 243

244

Transmission of radiation through a single pane of tempered glass. PAR was 245

89% transmitted. 246

S2 247

Overview of code used to run the associated model. 248
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