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Abstract

Lie symmetry reduction is typically viewed as an integration
method for differential systems of finite type, that is, systems of
ordinary differential equations.

In this talk I shall present two new, recent applications of Lie
symmetry reduction to the study of partial differential equations.

The first gives a remarkably simple method for constructing
Bäcklund transformations.

The second also gives a simple, very general method for
constructing Darboux integrable equations.

The combination of these result in a new method for constructing
Bäcklund transformations for Darboux integrable equations.

The utility of this group theoretic approach will be illustrated by
a variety of novel examples.
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1.4

Example

The Bäcklund transformation between zxy = 0 and the Liouville
equation uxy = exp(u) is the first order system of PDE:

zx + ux = −
√

2 exp
z − u

2
, zy − uy =

√
2 exp

z + u

2

If we treat u as given, then:

zx = −ux −
√

2 exp
z − u

2
, zy = uy +

√
2 exp

z + u

2

If we treat z as given, then:

ux = −zx −
√

2 exp
z − u

2
, uy = zy −

√
2 exp

z + u

2

To formalize the notion of a Bäcklund transformation within the
context of differential systems theory, we recall the definition of
an integrable extension.
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Integrable Extensions

Let I be an EDS on M.

An EDS E on N is an integral extension of I if:

p : N → M and a Pfaffian system J on N

with
E = �p∗(I) + S(J)�alg.

We also require that

rank J = dim N − dim M,

and that J is transverse:

ann(J) ∩ ker (p∗) = 0 ,

If I =< θ
i
>alg, then E =< p∗(θi ), ζa

>alg and

dζ
a ≡ 0 mod {p∗(θi ), ζa}
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Bäcklund Transformations

Differential systems I1 and I2 are related by a Bäcklund
transformation if there exists a system B which is
simultaneously an integrable extension for both I1 and I2

(B, N)

(I1,M1) (I2,M2) .

....................................................................................
...
............

π1

....................................................................................... .........
...

π2
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1.15

The Method of Darboux

The method of Darboux arose from the methods of:
– Laplace
– Lagrange-Charpit
– Jacobi-Mayer Method
– Ampere

It is a theory of compatibility –

Add more and more equations to a given system
until the result is Frobenius

Systems are Darboux integrable if the general solution can be
found in this way.
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Precise Definition in the Classical Setting

A hyperbolic PDE in the plane

F (x , y , u, p, q, r , s, t) = 0

determines a rank 3 Pfaffian system I = {θ0
, θ

1
, θ

2} on a 7
manifold.

The structure equations are ( mod I )

d θ
0 ≡ 0, dθ

1 ≡ π
1 ∧ π

2
, dθ

2 ≡ σ
1 ∧ σ

2
.

The {singular, Monge, characteristics} systems are

V1 = {θ0
, θ

1
, θ

2
, π

1
,π

2} V2 = {θ0
, θ

1
, θ

2
,σ

1
,σ

2}.

A PDE in the plane is Darboux integrable if there are
functions I1, I2, J1, J2 with

dI1, dI2 ∈ V1 dJ1, dJ2 ∈ V2.

I1, I2 – Darboux Invariants, Intermediate Integrals,
First Integrals of the Characteristic Systems
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Example Part 4

Liouville equation: uxy = e
u

I = {θ1 = du−p dx−q dy , θ
2 = dp−r dx−e

u
dy , θ

3 = dq−e
u
dx−q dy}

V1 = {θ1
, θ

2
, θ

3
, dx , dr − pe

u
dy}

V2 = {θ1
, θ

2
, θ

3
, dy , dt − qe

u
dx}.

First integrals for V1: I
1 = x , I

2 = r − p
2
/2.

First integrals for V2: J
1 = y , J

2 = t − q
2
/2.

The method of Darboux:

uxx =
1

2
u

2
x + f (x), uxy = e

u
, uyy =

1

2
u

2
y + g(y)

Question: What kind of ODE are these?
Answer: (Vessiot)
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Generalizations

The classical definition of Darboux integrability can be
generalized to a broad class of EDS
A Pfaffian system I = {θa

0, θ
b
1 , θ

c
2} is Darboux integrable if

The structure equations are, mod I

d θ
a
0 ≡ 0, dθ

b
1 ≡ P

b
ij π

i ∧ π
j
, dθ

c
2 ≡ Q

c
hkσ

h ∧ σ
k

and if the associated systems

V1 = {θa
0, θ

b
1 , θ

c
2 π

i} V2 = {θa
0, θ

c
, θ

c
2 ,σ

h}

have enough first integrals.

Theorem. An integrable extension of a Darboux integrable
system is Darboux integrable.
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Darboux Integrability and Symmetry Reduction

– LetK1 and K2 be EDS on manifolds M1 and M2, with
(K 1

a )∞ = { 0}.

– Let G a symmetry group of K1 and K2, acting transversally

– Let G act freely

– Let Gdiag be the diagonal action on M1 ×M2, acting regularly

Theorem A: – (K1 + K2)/Gdiag is Darboux integrable EDS

Theorem B: – If I is Darboux integrable then

IU
∼= (K1 + K2)/Gloc,diag

The structure constants for the Lie algebra of G are read-off
from the structure equations of I after a series of co-frame
adaptations.

These theorems give a new interpretation to the work of Vessiot.

This local canonical quotient representation of Darboux
integrable systems has been computed for many examples.
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The structure constants for the Lie algebra of G are read-off
from the structure equations of I after a series of co-frame
adaptations.

These theorems give a new interpretation to the work of Vessiot.

This local canonical quotient representation of Darboux
integrable systems has been computed for many examples.
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Bäcklund Transformations for Darboux Integrable Systems

– Let I be a Darboux integrable with quotient representation
(K1 ×K2)/Gdiag.
– Let L ⊂ G × G be a subgroup, let Hdiag = L ∩ Gdiag.

J always has more intermediate integrals than I
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– Let I be a Darboux integrable with quotient representation
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(K1 ×K2)
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Example 1

Some Classical Example’s from Goursat’s List:

Vy = −e
W

,Wx = −e
V

u
1
xy

= 0, u
2
xy

=
1

(u2 − x)
u

2
x
u

2
y u

3
xy

=
2u

3 − x− y

(u3 − x)(u3 − y)
u

3
x
u

3
y u

4
xy

= e
u

4

..................................................................................................................................................................................................................................................................................
.
............

p1

...........................................................................................................................................................................................................
...
............

p2

.................................................................................................................................................................................. .........
...

p3

......................................................................................................................................................................................................................................................................................... ...........
.

p4

Lots of Bäcklund Transformations
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Example 2

We calculate Bäcklund transformations from

u
� = F (v ��) y

� = G (z ��)

X1 = ∂v , X2 = s∂v + ∂v � , X3 = ∂u,

Y1 = ∂z , Y2 = t∂z + ∂z� Y3 = ∂y ,

Z1 = X1 − X2, Z2 = X2 + Y2, Z3 = X3 − Y3.

du− F (v2) ds, dv − v1 ds, dv1 − v2 ds

dy −G(z2) dt, dz − z1 dt, dz1 − z2 dt

β
1 = dx5 − x3 dx1 + x4 dx2

β
2 = dx6 − F dx2, β

3 = dx7 −G dx1

β
4 = dx8 − x5 dx1 + x4(x1 + x2) dx2

α
1 = dx5 − x3 dx1 + x4 dx2,

α
2 = dx6 − F dx2, α

3 = dx7 −G dx1

γ
1 = dx5 − x3dx1 + x4dx2

γ
2 = dx6 −G dx1 − F dx2

γ
3 = dx8 − x5dx1 + x4(x1 + x2)dx2

............................................................
...
.........
...
{Z1, Z2 }

............................................................................................................................................................................................................................................................................................................................

p1

............................................................................................................................................................................................................................................................................................... ............
p2

.........................................................................................................................................................................................................................................................................................................
...
............

{X1, Y1, Z2}

........................................................................................................................................................................................................................................................................................... .........
...

{Z1, Z2, Z2}
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For the Hilbert-Cartan equations

u
� = (v ��)2 y

� = (z ��)2

this yields

u
� = (v��)2, y

� = (z��)2

B

VXY = 0 3UXXU
3
Y Y

+ 1 = 0

...........................................................................................................................................................
...
.........
...

....................................................................................................................................................................................................

...................................................................................................................................................................... ............

..........................................................................................................................................................................................................................................................................................................................................
...
............

................................................................................................................................................................................................................................................................................................................................................................... .........
...

A
Non Monge-Ampere Example
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Example 3

The Goursat Equation:

A Bäcklund transformation between

Vxy =
2(n − 1)

�
VxVy

x + y
and Uxy =

2n
�

UxUy

x + y

is

(
�

Ux −
�

Vx)
2 +

(2n + 1)(U − V )

x + y
= 0

�
Uy +

�
Uy = −

�
Vx +

�
Ux .

(An example of an equation integrable at higher orders)
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Example 4

The A2 Toda Lattice

J
3,4 × J

3,4

W
1
xy

= −W
1
y
(W 2

x
+ e

W1)

W
2
xy

= −W
2
x
(eW

2
+ W

1
y
)

U
1
xy

= e
2U

1−U
2

U
2
xy

= e
−U

1+2U
2

V
1
xy

= e
V

1

V
2
xy

= 0

........................................................................................................................................................................................................................................................................................................................................
..
............

{Γ, Z3, Z4 }

............................................................................................
...
.........
...

Γ

...................................................................................................................................................................................................................................................................................................................... ..........
..

{Γ, Z1, Z2 }

................................................................................................................................................. ............p2
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p1

An Interesting Conjecture?
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Example 5

The equation

uxy =

�
1− u2

x

�
1− u2

y

sin u

has so(3) as its Vessiot algebra.

It cannot be real Bäcklund equivalent (with one-dimensional
fiber) to the wave equation.

Idea:

– The differential system B defining the Bäcklund transformation
is DI with 2 dim. Vessiot alg.

– By a uniqueness theorem, B must come from the
group-theoretical construction discussed here.

– The Vessiot algebra of B is a 2-dimensional sub-algebra of
so(3).

This is at odds with a result of Clelland-Ivey.
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Example 6

The sine-Gordon equation is not Darboux integrable at any order
of prolongation (a direct proof was given by Lie).

We are working on a new (shorter?) proof using the fact that the
sine-Gordon equation has an auto-Bäcklund transformation
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Summary

In the geometric theory of differential equations, one likes to
study

– symmetries (and generalized symmetries)

– conservation laws (and characteristic cohomology)

– transformation theory (for example, Bäcklund transformations)

– equivalence problems

– solution methods

In all these subjects Darboux integrable equations naturally arise
as very special equations.

Thank-you !
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I. Bäcklund
Transformations

– Example, Part 1

– Integrable Extensions

– Definition of BT

– Example, Part 2

II. Reduction of
Differential Systems

– Symmetry Reduction

– Theorem 1

III. AT by Reductions

–Theorem 2

– Example, Part 3

IV. Darboux Integrability

– Classical Definition

– Example, Part 4

– Generalizations

– Application to AT

V. Examples

VI. Summary

1.28

Summary

In the geometric theory of differential equations, one likes to
study

– symmetries (and generalized symmetries)

– conservation laws (and characteristic cohomology)

– transformation theory (for example, Bäcklund transformations)
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I. Bäcklund
Transformations

– Example, Part 1

– Integrable Extensions

– Definition of BT

– Example, Part 2

II. Reduction of
Differential Systems

– Symmetry Reduction

– Theorem 1

III. AT by Reductions

–Theorem 2

– Example, Part 3

IV. Darboux Integrability

– Classical Definition

– Example, Part 4

– Generalizations

– Application to AT

V. Examples

VI. Summary

1.28

Summary

In the geometric theory of differential equations, one likes to
study

– symmetries (and generalized symmetries)

– conservation laws (and characteristic cohomology)

– transformation theory (for example, Bäcklund transformations)
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