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Motivations
1. Develop a calibration plan (SI-traceable) for a satellite sensor

a) Calibration requirements 
b) Calibration approach
c) Use of on-board calibrators
d) Perform system-level end-to-end calibration (validation)

2. Elements of the plan should
a) Answer how the calibration requirements will meet the mission and 

instrument requirements
b) Develop a sensor design and radiometric model (measurement equation)
c) Characterize subsystems (uncertainty analysis)
d) Compare model predictions and validate system level calibrations
e) Establish pre-launch radiometric uncertainties

From: NISTIR 7637 (2009), “Best Practice Guideline…” R. Datla et al.
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Outline of the Tutorial

1. Basics of Radiometry
2. Detector-based Radiometry
3. Source-based Radiometry
4. Tools of Spectroradiometry

a) Detectors
b) Filter Radiometers
c) Spectroradiometers

5. Measurement Equation and Uncertainty Analysis
6. Applications from the NIST Short Course
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Possible Sources of Error

Max. Potential Error
1.Spectral scattering > 100 %
2.Spectral distortion > 100 %
3.Nonlinearity 20%
4.Directional and positional effects 20%
5.Polarization effects 5%
6.Size-of-source effect (radiance) 5%
7.Wavelength instability 100 % / nm
8.Detector instability 10%
9.Uncertainty of the standard 
10.Instability of the standard 
11.Instability of the quantity being-measured 
12.Noise in the measurement data  1 % to 5 %
(Reliable Radiometry , p. 422) 
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1.  Basics of Radiometry
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1.Definitions of radiometric terms
a) Flux, radiant intensity, irradiance, radiance
b) Property modifiers
c) The concept of solid angle

2.Radiometry basics
a) Point source
b) Extended source
c) Flux transfer and throughput

3.Applications
a) Calibration of radiometers
b) Some numerical examples

Basics of Spectroradiometry: Outline
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Electromagnetic Radiation
Name Wavelength 

ranges
UV-C 100 nm to 

280 nm
UV-B 280 nm to

315 nm
UV-A 315 nm to 

400 nm
VIS 360 nm to 

800 nm
NIR 800 nm to

1400 nm
SWIR 1.4 µm to

3 µm
MWIR 3 µm to

5 µm 

c = nλν

The wavelength is determined by 
the speed of light and measurements 
of the frequency by comparison to 

the atomic standards.  

For example: λ = 555 nm, 
then ν = 540 x 1012 Hz.

c = speed of light          
λ = wavelength             
n = index of refraction     
ν = frequency  

←λ→

Wavelength
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1. Spectral: having a dependence on wavelength; within a 
very narrow region of wavelength

2. Total: integrated or summed over all wavelengths
3. Exitent: leaving a surface
4. Incident: arriving at a surface
5. Directional : having a dependence on direction; within a very 

small solid angle
6. Hemispherical : averaged over all solid angles passing through a 

hemisphere centered over the surface element

Property modifiers
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Radiant quantities

2)  Radiant flux, Φ [ W ], [ J/s ] E.g. laser power meters, 
cryogenic radiometer (beam 
underfills the detector)

1)  Radiant energy, Q [ J ] E.g. deposited laser energy at 
650 nm 5.3 mJ (0.25 s)

3)  Radiant intensity, I [ W/sr ] E.g. point sources such as 
stars observed at great 
distances
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Radiant quantities, continued

6)  Radiance, L [W/(m2 sr)]

5)  Radiant exitance, M [W/m2] E.g. blackbody, the Stefan-
Boltzmann law

E.g. real sources (blackbodies, 
surface of the earth, moon, and 
other objects)

4)  Irradiance, E [ W/m2 ] E.g. solar terrestrial 
irradiance

point on source

L
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Comparison of Radiometric and Photometric Units
Radiometric Symbol Unit Unit Symbol Photometric

Radiant 
Energy

Q J lm s QV Luminous 
energy

Radiant flux 
(power)

Φ W lm ΦV Luminous 
flux

Irradiance E W/m2 lm/m2 = lx EV Illuminance

Radiance L W/(m2 sr) lm/(m2 sr) LV Luminance

Radiant 
exitance

M W/m2 lm/m2 MV Luminous 
exitance

Radiant 
intensity

I W/sr lm/sr=cd IV Luminous 
intensity

Radiance 
Temperature

T K K T Color 
Temperature

Thermodynamic (equivalence 
of heat and radiant flux)

Specialized (human visual response 
for detector model)
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Spectral modifier—“spectroradiometry”

Quantity Symbol Unit

Spectral Radiant 
Energy

Qλ J/nm

Spectral Radiant flux 
(power)

Φλ W/nm

Spectral Irradiance Eλ W/m2/nm

Spectral Radiance Lλ W/(m2 sr)/nm

Spectral Exitance Mλ W/m2/nm
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dα

dlr

r Radius of circle
dl Arc length along circumference
dα Plane angle subtended by arc at 

center

r Radius of sphere
dA Area of sphere segment
dω Solid angle subtended by area at 

center

(sr)steradian:Unitdd 2r
A

=ω(rad)radian:Unitdd
r
l

=α

r
dA

dω

Plane and solid angles
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A2 Area of the aperture
d Distance between the aperture and the source
ω Solid angle subtended by [A2] at the source

Note: Distance d is large compared to aperture dimensions so that d2 >> A2.

Solid angle:  perpendicular surface
Point Source and Circular Aperture

2
2

d
A

≈ω

Aperture Area A2, 
radius r

ω

d

Point source [1]
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A2 Area of the aperture
d Distance between the aperture and the source
ω Solid angle subtended by [A2] at the source

Note: Distance d is large compared to aperture dimensions so that d2 >> A2.

Solid angle:  tilted surface
Point Source and Circular Aperture

2
160coscos

2
2

2
2

2
2

d
A

d
A

d
A o

==≈
θω

ω

d
Aperture Area [A2]

Point source [1] 60o
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Radiometry of point sources (Irradiance, E)

Point 
Source

A2

d1

d2

A1

ω

Φ

I Irradiance at d1 for area A1:  E1 = Φ/A1

What about at d2?
E2 = Φ/A2 (flux is the same)

The solid angle is also constant 
(by geometry):

2
2

2
2
1

1

d
A

d
A

==ω

2
2

2
1

12 d
dEE =

Why is the flux is the same?
I = intensity = Φ/ω
For a point source, I is independent of direction 
(isotropic). The irradiance from an ideal point 

source falls off as 1/d2.  How well 
must the distance be measured?

E1

E2

2
1

1
1

2
1 or

d
IE

A
dI =Φ=

Φ
=

ω
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Irradiance distribution, point source on a plane
Irradiance at r1 for different locations 

on a plane:  what is E2/E1?

Point 1 is “on-axis”
At Point 2, the distance is 

greater by r2 = r1/cosθ and the 
area is tilted by θ.

[ ]θ
θ

2
12 cos

cos 










= A

AEE
The “off-axis” irradiance from an 

ideal point source in a plane falls off 
as cos3θ.  Keep angles small if 

uniformity is critical!

Point 
Source

A

d1

d2

1

θ

I

2

θ

θ3
12 cosEE =

E1

θ

at 2
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Radiometry of extended sources (Radiance, L)
Real Sources
1) have finite size and 2) the flux depends on
view direction, target size, location on source, 
and solid angle.

Ribbon 
filament 

lamp

ωθcosA
L Φ

=

point on 
source

θ = angle between view direction 
and surface normal, ω = solid 
angle, A = source area

Radiance:

θ

surface 
normal
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Lambert’s law

Trial model:  A collection of 
point sources, uniformly spaced 
across the source area

Source

∆A

Radiance from one of the point sources:

Viewed perpendicular

Viewed tilted

We conclude

But real sources don’t increase in brightness 
when viewed off-axis, most in fact remain 
constant or become dimmer

ωA
L

∆
Φ

=)0(

ωθ
θ

cos
)(

A
L

∆
Φ

=

θ
θ

cos
)0()( LL =

Model not a collection of ideal point 
sources (I = Φ/ω), but a collection of 
pseudo point sources (I = Φ cosθ/ω)

Lambert’s Law:  L(θ) = L(0)

Lambertian or “diffuse” source
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Irradiance from an extended source (on-axis)

ωL
d

AL
d

ALE ==
∆

= ∑
22

a d

L

Source

E

2d
A

=ω

Extended source as a 
collection of point 
sources

The intensity is I = L ∆A, 
where ∆A is the “area” of 
each point source.

Irradiance at the plane 
from each point source 
(for d >> a) is I/d2.  

Sum over all point sources

The irradiance depends only on L
and the solid angle of the source 

from the point on the plane.

A
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Irradiance from an extended source (off-axis)

2ω

[ ] θ
θ

θ 4
1

3
12 cos

cos
cos EA

AEE =











=

dL

Source
E1

21 d
A

=ω

L is the same, but the solid angle 
is smaller:

E = Lω

The irradiance distribution in a 
plane from an extended Lambertian 

source drops faster than from a 
point source (∝ cos3θ).  Known as 

the “cosine fourth law”

E2

θω

θ

θω 3
1

2
22 cos

cos

cos
==

d
A

As before, we have to remember 
the area on the plane is tilted by θ:

Plane
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Angular cos4 output of the NIST 308 mm 
diameter integrating sphere
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Spatial scan of the 308 mm sphere irradiance
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Irradiance ratio to center
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X  [ cm ]
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Invariance of radiance

121
1

2

11

ωω

ω

A
EL

AE
LE

Φ
==

=Φ
=

2
2

2 d
A

=ω

21
1 ωA

L Φ
=

d

L1

Flux in beam, Φ

E

2
1

1 d
A

=ω

From before,

21 LL =

Invariance of Radiance

A1 A2L2

It also must be true 
(from the definition 
of radiance)

Note we could 
also have said

1
12

2 L
A

L =
Φ

=
ω

Throughput
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Radiant flux transfer, arbitrary orientation

2
22

211221
costorespectwithbysubtendedangleSolid
d

AAA θωω ⋅
== −−

[ ] [ ]
[ ] [ ]

[ ] 



 ⋅

⋅⋅⋅=

⋅⋅⋅=

⋅⋅=
=

−

−

2
22

111

21111

211

coscos

cos

angle Solidarea ProjectedRadiance
beam in theflux Radiant 

d
AAL

AL

Φ

θθ

ωθ

Surface-1
Area A1 n1

n2

θ1 d

Surface-2
Area A2

ω1-2

L1

Φ

θ2

For real surfaces, divide the two areas into many sub-areas and carry out two 
dimensional integration.



2013 - Basics: Page 26Calcon Tutorial 2013:Spectroradiometry

A review so far
1. Irradiance from a source on a plane

a) Point source:  E(0) = I/d2 and E(θ) = E(0) cos3θ
b) Extended source: E(0) = Lω and E(θ) = E(0) cos4θ

2.Radiance and extended sources
a) Generally, L(θ) = L(0) [Lambertian]
b) Invariance of radiance:  L1= L2 (no absorption or scatter)
c) Throughput = A1cosθ1 [A2cosθ2]/d2 for large distances

3.Flux transfer (the detector responds to flux)
a) Φ = L ∗ throughput
b) Φ = E ∗ “detector” area

4.Look at the units
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Irradiance at a plane, radiance to the hemisphere

θθθφ
ππ

ddLE
dA

sincos
2/

0

2

0
∫∫==

Φ

( ) LLE πθπ
π

==
2/

0
2sin

2
12

The plane reflects in a “diffuse” manner—so the radiance is the 
same in all directions (Lambertian)

ϕ

θ

dA

dω

r sinθ

r
dA cosθ

L

E
Integrate over the hemisphere

2

2 sincos
r

ddrdALd φθθθ=Φ

Now we must divide into small areas and 
integrate.  For the spherical element,

Then, for each flux element,

φθθ ddrdAsp sin2=

LE π=

spdA
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“Lamp-Plaque Method”

Diffuse Reflectance Standard 
(plaque) with reflectance ρ

Irradiance 
Standard 

Lamp
Baffle

L
E

Classic example of 
irradiance to radiance 
transfer, for producing a 
source of known radiance 
for instrument calibration. 

d

π
ρEL =
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What matters?
1.Lamp-Plaque method

a) Distance:  E ∝ 1/d2.  The relative uncertainty is then 
∆E/E=2∆d/d.  Standard lamps (“FELs”) are calibrated at  
500 mm; so a 1 mm uncertainty is 0.4% in irradiance.

b) Correct lamp current and proper baffle placement.  

2.Calibration methods 
a) A irradiance detector must have its field of view 

“underfilled” by the source; distance matters
b) A radiance detector must have its field of view “overfilled” 

by the source; distance does not matter
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Irradiance mode (see E from extended source)

Blackbody source Radiometer

Field of view
A1 Window, filter, 

detector

A2

Θ⋅=Φ L 211  DDFA −=Θ π

( )
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See: Siegel 
and Howell
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Irradiance mode, continued

Incorrect calibration 
of irradiance 

detector (too close)

E = L ω
ω = As/d2

and signal S ∝Φ = E Ad

Note ω is less than the solid angle 
for the radiometer field of view

As

A
d

Proper calibration
(See Lab. 1)

L E

As

A
d

ω

The ω we would calculate from As would be 
greater than the limit of the radiometer



2013 - Basics: Page 32Calcon Tutorial 2013:Spectroradiometry

Radiance mode (see invariance of radiance)

Lens, f

2 f
1:1 
Imaging 
Radiometer

Ad

Object 
(target area)

As
Ray traces

Lens, f

Ad

f

Telescope 
focused at 

infinityfield of 
view

one-half 
the field of 

view
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Integrating sphere examples

An up-looking sphere source 
for nadir-viewing, aircraft-
deployed spectroradiometers 
(NASA Ames).

Calibration of sun 
photometers using an 
integrating sphere source 
(NASA GSFC).
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Radiance mode (see invariance of radiance)
1:1 imaging radiometer 

focused on the exit 
aperture

Integrating sphere source

Exit aperture:  Lambertian 

and uniform radiance

Lamp
Baffle

diffuse reflectance

1:1 imaging radiometer 
focused in front of the 

exit aperture

Either method is valid 
because of the 

invariance of radiance:  
LISS = Lobj

LISS Lobj
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Example:  Solar constant (irradiance at Earth’s surface)

Sun:
Blackbody at T = 5800 K; 
Lambertian;
diameter = 6.96 x 108 m; Earth-
sun distance d = 1.5 x 1011 m

Earth:
Total irradiance (all wavelengths) is of 
interest for Earth’s energy balance and 
solar physics research.
diameter = 6.38 x 106 m

As Aed
ωe-s
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Spectral aspects of radiometry
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=

T
L

λλλ
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The radiance drops very sharply 
below a particular wavelength.  As 
the temperature increases, the 
radiance increases for all 
wavelengths and the peak moves to 
shorter wavelength (λmax∝1/T).

A blackbody source obeys Planck’s law
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Total exitance, M

Integrate Planck’s 
radiance law over all 
wavelengths and the 
entire hemisphere above 
the exit aperture.

M (T) = σ · T4 [W/m2] Stefan-Boltzmann law 
(total exitance)

Lλ

σ = 5.67 x 10-8 W m-2 K-4

T

The Stefan-Boltzmann relationship is useful when the 
detector responds over a wide range of wavelength with a 

nearly constant responsivity.
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Example:  Solar constant (irradiance at Earth’s surface)

Sun:
Blackbody at T = 5800 K; 
Lambertian;
diameter = 6.96 x 108 m; Earth-
sun distance d = 1.5 x 1011 m

Earth:
Total irradiance (all wavelengths) is of 
interest for Earth’s energy balance and 
solar physics research.
diameter = 6.38 x 106 m

As Aed

2
s

4
sese

s

4

d
AT

LE

ML

TM

π
σ

ω
π

σ

=

=

=

=

−

We solved this problem using the point to hemisphere 
throughput derivation (Slide 22) and the irradiance on 
a plane from an extended source (Slide 16).  The 
answer is Ee = 1389 W m-2.  We must assume sun is 
Lambertian.

ωe-s
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Measurements of the solar constant

Exoatmospheric 
measurements 
using electrical 
substitution 
radiometers (ESRs)

Latest instrument:  TIM on SORCE http://lasp.colorado.edu/sorce/

Launched January 25, 2003

http://spot.colorado.edu/~koppg/TSI
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Measurement Equation Approach:
In general, we use the measurement equation approach for characterizing 
and calibrating sources and radiometers.  A simplified measurement 
equation is:

( ) ( ) ( ) λωθλλφθλλφθλλω λ
ω

φ
λ

dddcos,,,,,,,,,,,,, ⋅⋅⋅⋅⋅=∆ ∫∫∫
∆

AyxLyxSAI oo
A

o

( )

detector by the  viewedsource  theof angle solid  the- 
detector  theofarea  receiving - 

source  theof radiance spectral  the- 
 positiona at detector   theofty responsivi (power)flux  spectral  the- 

current measured  the-  ,,,

ω

λλω

λ

φ

A
L

x,yS
AI o∆

Linearity, polarization dependences not considered in this expression 
but can be added.



2013 - Basics: Page 41Calcon Tutorial 2013:Spectroradiometry

References:
Boyd, R.W., Radiometry and the Detection of Optical Radiation, 

John Wiley & Sons, New York, 1983.

Kostkowski, H. J., Reliable Spectroradiometry, Spectroradiometry 
Consulting, La Plata, MD 1997, Chapter 1.

McCluney, R., Introduction to Radiometry and Photometry, Artech 
House, Norwood, MA 1994. Chapter 1.

NBS Technical Note 910-1, Self-Study Manual on Optical 
Radiation Measurements, US Dept. of Commerce, 
Gaithersburg, MD 1976.  Chapters 1 – 3.

O’Shea, Elements of Modern Optical Design, John Wiley & Sons, 
New York, NY 1985. Chapter 3.

Parr, A. C., et al. Eds., Optical Radiometry, Elseveir Academic 
Press, Amsterdam, 2005. Chapter 1.

Wyatt, C.L., Radiometric Calibration: Theory and Methods, 
Academic Press, New York, 1978.



2013 - Basics: Page 42Calcon Tutorial 2013:Spectroradiometry

2.  Detector-based Radiometry
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1. What is Detector-based Radiometry

2. Detector-based Scale Realizations
a) Electrical Substitution Radiometers (ESR)

• Cryogenic Radiometers

b) Spectral Responsivity Measurement Facilities
• Power, irradiance, and radiance responsivity

c) Scale Transfer to Measurement Facilities

3. Application Example (SRSC Laboratory #2)
• Photometry

Illuminance [lux]

Outline
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• Radiometric measurements using detectors whose 
calibration is traceable to a detector (primary) standard

Comparison of source and detector-based scales

What Is Detector-based Radiometry?

Source-based Detector-based

L, radiance [W/(m2·sr)]
(Blackbody: Planck’s law)

E, irradiance [W/m2]

Φ, power [W]

E, irradiance [W/m2]

L, radiance [W/(m2·sr)]

Φ, power [W]
(ESR: Optical W = Electrical W)

Α, Aperture 
Area [m2]
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Fundamental Radiometric Scales

Electrical Substitution 
Radiometry [W]
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Definition of Traceability

"property of the result of a measurement or the value 
of a standard whereby it can be related to stated 
references, usually national or international 
standards, through an unbroken chain of 
comparisons all having stated uncertainties." 

http://ts.nist.gov/Traceability/supplmatls/suppl_matls_for_nist_policy_rev.cfm%23def05
http://ts.nist.gov/Traceability/supplmatls/suppl_matls_for_nist_policy_rev.cfm%23def06
http://ts.nist.gov/Traceability/supplmatls/suppl_matls_for_nist_policy_rev.cfm%23def07
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International System of Units (SI)

1. Established in 1960, SI is the modern metric system 
of measurement used throughout the world.

2. SI defines three classes of units: basic, derived and 
supplementary.  Examples

a) Basic: Thermodynamic temperature 
kelvin [K]

b) Derived: Area, square meter          [m2]
Steradian [sr]

c) Supplementary: Power, watt [W]

47
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Radiometric quantities with their symbols and SI units
W = watt, m = meter, sr = steradian

Radiometric Quantities (Review)

Radiometric quantity Symbol Unit

Radiant flux (power) P, Φ W

Irradiance E W/m2

Radiance L W/(m2·sr)

Radiant intensity I W/sr
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Electrical Substitution Radiometer (ESR)
The principle of electrical substitution radiometry is to 

balance the electrical and optical power [Watt] needed 
to create the same temperature rise in the ESR

Optical Power [W] = Electrical Power [W]

ESR Cavity
Laser

Resistive Heater

Shutter

Electrical 
Power [W]

Optical 
Power [W]
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NIST Cryogenic Radiometer
Cryogenic temperatures allow lower degree of non-equivalence:
1. Larger cavity due to increased heat capacity
2. Reduced lead heating due to

superconducting leads
3. Reduced temperature gradients between

electrical and optical heating
4. Reduced background radiation

Brewster Angled 
Window

Liquid Helium 
Reservoir

Germanium Resistance 
Thermometer

50 K Radiation Shield

77 K Radiation Shield

Radiation Trap (4.2 K)

Pumping Port

Laser Beam

Liquid Nitrogen 
Reservoir

5 K Reference Block

Thin Film Heater 10 K

Absorbing Cavity 
(specular black paint)

Alignment 
Photodiodes       

0     100 mm
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NIST Cryogenic Radiometer
Primary Optical Watt Radiometer (POWR) is the U.S. 

primary standard for optical power.

Cryogenic temperatures allow lower 
degree of non-equivalence:
• Larger cavity due to increased 

heat capacity
• Reduced lead heating due to 

superconducting leads
• Reduced temperature gradients 

between electrical and optical 
heating

• Reduced background radiation
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Primary Optical Watt Radiometer (POWR)
1. Shorter calibration chain
2. Greater power level dynamic 

range (µW to mW)
3. Continuous spectral coverage 

(200 nm to 20 µm)
4. Extend IR and UV coverage
5. Windowless transfer, 

decreasing transfer 
uncertainties

6. Explore irradiance 
measurements

7. Modular design allows for 
modifications to meet future 
requirements 

Liquid
He

at 2 K

Liquid 
Nitrogen

Gate 
Valve

Window

Cavity, Heat Sink, Cold Block

Scale in 
Meters

Linear 
Translation of 
Si Trap into 
Beam Path

0.25

0.50

0.00
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Transfer to Measurement Facilities
Block diagram of POWR to SCF and SIRCUS

POWR

Trap 
Detectors

SIRCUS
(Power, Irradiance 

and Radiance)

SCF
(Power)

Primary Standard

Transfer Standards

Working Standards

Uncertainty
(k=1)

0.01

0.03

0.050.1

Aperture 
Area
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Measurement Facilities for Spectral Responsivity
Two principal detector measurement facilities:
1. Spectral Comparator Facilities (SCF)

a) Monochromator based
b) UV SCF: 200 nm to 500 nm
c) Visible to Near IR SCF: 350 nm to 1800 nm

2. Spectral Irradiance and Radiance Calibrations using 
Uniform Sources Facility (SIRCUS)
a) Tunable laser based
b) 210 nm to 1800 nm (UV-Vis-NIR SIRCUS)
c) 1000 nm to 5000 nm (IR SIRCUS)
d) Various source configurations tailored to the measurement 

(typically an integrating sphere)
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When to Use Trap Detectors
Low uncertainty transfer standard from HACR
1. Advantages

a) Uniform responsivity
b) Polarization insensitive
c) Reflection measurements not needed

2. Drawbacks
a) Limited field-of-view (FOV)
b) “Impossible” to buy
c) Hard to make
d) Windowless diodes, potentially unstable
e) Lower shunt resistance (diodes in parallel) limits gain to 

less than with a single photodiode
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Spectral Power Responsivity
Visible to Near-Infrared Spectral 
Comparator Facility (Vis/NIR SCF)
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Current SCF uncertainty from 200 nm to 1800 nm
SCF (Spectral Power Responsivity) Uncertainty
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1. Radiant Flux (Power) Measurement Φ [W]

2. Irradiance Measurement E = flux/collector area = Φ/A1 [W/m2]

3. Radiance Measurement L = flux/projected source area/solid angle
= Φ/A2·dΩ [W/(m2·sr)]

Radiometric Measurement Configurations

Underfills Aperture

Overfills Aperture

dω < Aperture A2

Light flux Φ in beam

Detector
Aperture

Collimated

Convergent

Point Source
Detector

Aperture Area, A1

Uniform Irradiance
Collimated

Detector

Aperture Area, A1

Uniform Source

Aperture Area, A2

dω
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NIST Aperture Area Measurement Facility
1. Measures the geometric area of high-

quality circular apertures
2. Uncertainty (k=1) <0.01 % for aperture 

diameters ranging from 2 mm to 30 mm
3. Uses a precision microscope with stage 

position referenced to a laser 
interferometer
• Standard uncertainty in relative stage 

position < 50 nm
4. A separate, flux-transfer instrument is 

used for measurements relative to a 
standard

5. Currently participating in an international 
intercomparison
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Spectral Irradiance and Radiance Calibrations 
using Uniform Sources (SIRCUS) Facility

Computer

Intensity 
Stabilizer

Spectrum 
Analyzer Wavemeter

Monitor 
Photodiode

Integrating 
Sphere

Exit 
Port

Lens

Galvo-driven Oscillating Mirror
or Optical Fiber and Ultrasonic Bath

Transfer 
Standard

Translation 
Stages

Test 
Meter

Laser

Radiance and Irradiance Responsivity
SIRCUS uses
tunable lasers
from 210 nm
to 1800 nm
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Filter Radiometer Example

The signal i observed from such a radiometer is the 
aperture area A multiplied by the integral of the product of 
the spectral irradiance of the source at the aperture E(λ) 
and the meter’s spectral power responsivity s(λ).

∫=
λ

λλλ d)()( sEAi

Component Function
Aperture Defines measurement area
Diffuser Maintains cosine response (optional)
Filter Spectral selection
Detector Power measurement
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Example Photometer

Example photometer 
component layout d

v

CIE V(λ) function and 
NIST photometer spectral 
responsivity s(λ)
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Conversion to Photometric Units

The luminous flux is related to the radiant flux by:

∫=
nm 830

nm 360mv d)()( λλλΦΦ VK
Km maximum spectral luminous efficacy [683 lm/W]
V(λ) spectral luminous efficiency function

The luminous flux can also be written:

∫=
λ

λλλΦ d)()(mv VEAK

Note: for brevity the explicit notation of the photopic wavelength 
range is indicated by λ.
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Luminous Flux and Illuminance Responsivity

The luminous flux responsivity [A/lm] of a photometer:

λλλ

λλλ

Φ
λ

λ

d)()(

d)()(signal

mv

out
fv, VEK

sE
s

∫
∫==

The illuminance responsivity [A/lx] of a photometer is:

λλλ

λλλ

λ

λ

d)()(

d)()(

m
fv,iv, VEK

sE
AAss

∫
∫==

Given sv,f is uniform over the aperture A
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3.  Source-based Radiometry
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Radiance and Irradiance
1.Radiance Sources

a) Overfill the field-of-view of the radiometer
b) Extended source that is spatially uniform
c) Radiance is independent of view angle
d) Radiance is independent of distance to radiometer

2. Irradiance Sources
a) Underfill the field-of-view of the radiometer
b) Approximate a point source (follows 1/d2 law)
c) Uniform irradiance at the entrance pupil of the radiometer
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Planck’s Law

( )( ) 1/exp
1)(

2
52

1L
b −

=
Tncn

cL
λλ

λ

radiation of wavelength
constant radiation second

argon)for  1.00028 air,for  (1.00029
 medium of refraction ofindex )(

radiance spectralfor constant  radiationfirst 

2

1L

=
=

=
=

λ

λ

c

n
c

Ideal Blackbody

Non ideal Blackbody:  L(λ) = Lb(λ) ε(λ)

Note nonlinear relationship between Spectral Radiance 
and Blackbody Temperature

c1L = 1.191 042 722(93) x 108 [W µm4 m-2 sr-1]
c2 = 14 387.752 (25) [µm K]
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Spectral aspects of radiometry
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The radiance drops very sharply 
below a particular wavelength.  As 
the temperature increases, the 
radiance increases for all 
wavelengths and the peak moves to 
shorter wavelength (λmax∝1/T).

A blackbody source obeys Planck’s law

Blackbody sources are 
often used to calibrate 
spectroradiometers.
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Lamps vs. blackbodies
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If possible, match the temperature of 
the blackbody and the illumination 
geometries to result in similar signals.  
In this case, the goal is to assign 
irradiance values to FEL lamps.

For lamp-illuminated integrating sphere 
sources and reflecting plaques, the spectral 

radiance is modified by the surface 
reflectance and atmospheric absorption.
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Spectral Distribution, Lb(λ)
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Stefan-Boltzmann Law
• Total exitance M:  sum L(λ) over all directions 

(into the hemisphere above the opening) and sum 
L(λ) over all the electromagnetic spectrum (all 
wavelengths)

• For an ideal blackbody, the spectral radiance is 
lambertian

• With ε(λ) ≈ ε and n(λ) ≈ n, the sums                   
yield

• σ = Stefan-Boltzmann constant
σ = 5.670 400 x 10-8 [W m-2 K-4]

)1with (442 ≈≅= nTTnM σεσε
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Problems with Blackbodies
1.Temperatures above 3000 K are very difficult to 

achieve
2.Expensive to produce accurate systems (testing and 

modeling)
3.Not very transportable
4.Slow time constants
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Radiance Temperature vs. Bulk Temperature

Thermocouple
TTC

Blackbody Radiation Thermometer
Tλ

Question: What are the uncertainties associated with 
the comparison of TTC with Tλ?

1. Accuracy of contact thermometer
2. Cavity design
3. Temperature gradients
4. Spectral and directional effects
5. Heat transfer losses
6. Diffraction losses
7. Reflected radiance
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Aperture

Cavity

Spherical
cavity

AS

φ

When the aperture angle φ is small, the effective emittance εo is close 
to unity, even for small values of cavity surface emittance ε.
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Blackbody Alternatives
1.Lamps, arc sources (many types), heated refractories, 

light emitting diodes, lasers, synchrotron radiation
2.Examples:

a) tungsten filament strip lamps
b) tungsten quartz-halogen lamps
c) deuterium (D2) gas discharge lamps
d) xenon arc lamps
e) Nernst glower and Globar
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Tungsten strip lamp features

80

• Spectral Radiance or Radiance 
Temperature standards
• Vacuum or Gas-filled
• Quartz or glass windows

• Good stability (especially for the 
vacuum type)
• Small target area (0.6 mm wide 
by 0.8 mm tall)
• Careful alignment procedures 
required
• Calibrated by comparison to a 
blackbody or another strip lamp at 
0.654 µm
• Suited for Devices Under Test 
with small field-of-views
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Emittance of Tungsten
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Tungsten strip lamp output

Gas-filled Lamps (to 
suppress tungsten 
evaporation)
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Comparison of blackbodies and tungsten strip 
lamps and integrating sphere sources
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Integrating Spheres
1. Features:

a) Spherical geometry
b) Low absorbance
c) Diffuse reflectance

2. Result
a) Flux “averager”

3. Applications
a) Radiance source (add lamp, 

laser, LED, etc)
b) Irradiance collector
c) Internal or external sources and 

detectors
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Sphere Performance
1.Flux transfer equations yield

2.Baffles to shield direct view of lamps
3. Integrated monitor detectors to record performance
4.Stable power supplies and reflectance of interior wall
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Reflectance and Throughput
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Radiance of Integrating Spheres
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Temporal changes in the sphere output
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Sphere Source Protocols
1.Geometry for uniform illumination

a) Lamps baffle
2.Document operation

a) Lamp current, lamp voltage drop, monitor detector signals, 
Lamp operating hours

3.Keep coating clean
4.Recalibrate
5.Map spatial uniformity and dependence on view angle
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Halogen Filament Lamps

•Illumination, heating, & 
irradiance standards
•Wide commercial selection
•Select on features:

•lifetime
•color temperature
•lumen efficacy
•current or voltage
•built in lens
•base configuration

•Maximum wavelength 
range:   250 nm to 2.6 µm
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FEL Lamp Irradiance Standards

• 1000 W output
• Coiled-coil structure to increase   
emittance
• FEL type (a model number)
• Modified by addition of bipost 
base

• Calibrated by comparison to a 
high temperature blackbody
• 50 cm from front of post
• 1 cm2 collecting area
• Selected and screened for 
undesirable features
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FEL alignment system
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FEL Lamp Screening
1. Inspect, test, anneal, age, pot into base
2. Spectral line screening (currently 0 % pass rate)

a) 250 nm to 400 nm in 0.1 nm steps with 0.04 nm bandpass (emission 
and absorption lines)

3. Temporal stability (90 % pass rate)
a) <0.5 % before and after 24 h continuous operation at four 

wavelengths in UV to near infrared

4. Geometric (95% pass rate)
a) < 1% in ± 1° at 655 nm
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FEL Output
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Dependence on horizontal and vertical angles
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Power Supply Feedback Loop

16 bit D→A 
Converter

Lamp
0.01 Ω Shunt

Resistor

Computer

Power Supply

Digital
Voltmeter

Voltage to 
current 
conversion in the 
power supply

8.2 A ± 1 mA 
stabilization

~ 5 s 
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Vertical Side Horizontal

Optic 
Axis Radiometer 

Aperture

Lamp Orientations
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Orientation dependence of the FEL
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Protocols for FEL Standard Lamps
1. Orientation

a) 50 cm from front of posts, entrance pupil diameter 
of 1 cm2, use special alignment jig for FELs

2. Electrical
a) maintain polarity, constant current, log voltage drop 

and burning hours
b) Similar sensitivity to error in current as strip lamps

3. Operational
a) 30 min warm-up; recalibrate every 50 h
b) transfer to user working standards
c) don’t touch the envelope; don’t enclose the lamp 

during operation; baffle properly
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D2 Irradiance Standards

•30 W output 
• Stable relative spectral irradiance 
distribution
• 200 nm to 350 nm
• Modified by addition of bipost base 
(same as FEL)

• Calibrated by a) relative distribution 
from wall stabilized hydrogen arc and  
b) FEL at 250 nm
• 50 cm from front of post
• 1 cm2 collecting area
• Selected and screened for undesirable 
features
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Deuterium, Xe and FEL
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NIST uncertainties (k=1) (lowest in the world)
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4.  Properties of Detectors
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1. Radiometric characteristics of photodiodes
2. Electronic characteristics of photodiodes
3. Comparison of basic detector characteristics
4. PMTs
5. Selection of detectors for different applications
6. Selection of signal meters for different detectors

Outline
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1. Internal Quantum Efficiency (IQE),
2. External Quantum Efficiency (EQE), and
3. Spectral Responsivity s(λ) of Quantum Detectors
4. Noise Equivalent Power (NEP) and D*
5. Radiometric Sensitivity, Photons/s
6. Response Linearity of Photodiodes
7. Spatial and Angular Responsivities
8. Temperature Dependent Responsivity

Radiometric characteristics of photodiodes
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IQE, EQE, and s(λ) of quantum detectors

Number of collected electrons
IQE = 

Number of absorbed photons

EQE = (1-ρ) IQE

where ρ is the reflectance;

The power responsivity is:
e λ

s(λ) = EQE  = EQE ∗ λ ∗ const.
h c
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Spectral power responsivity of frequently used photodiodes
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Spectral responsivity variations within the same model
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Noise Equivalent Power (NEP) and D* of detectors

  P N N
NEP =   =  =     [W/Hz1/2]

S/N(∆f=1) S/P R

where, S is the detector output signal for
P incident radiant power,
R is the detector responsivity, and
N is the detector output noise.

    A1/2

D* =   [cm Hz1/2/W],
  NEP

where A is the detector area.
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Spatial response of large-area photodiodes

Si S1337 @ 500 nm UV100 @ 500nm
Contour Lines = 0.5 %

GaP @ 340 nm
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Angular response of a 1337 Si photodiode
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Temperature dependent responsivity of photodiodes
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1. Photodiode shunt resistance
2. Linear photocurrent measurements
3. Noise and drift
4. Settling time
5. Stability

Fundamental electronic characteristics 
of detectors and photocurrent meters
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Photodiode (PV) shunt-resistance

The shunt resistance has 
a major influence for 
linearity and voltage-gain 
of noise and drift !

The shunt resistance is 
temperature dependent!
For Si, the increase with 
decreasing temperature 
is ~11%/°C.
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RS

IP

Photodiode

RI

R

A
V

Current-meter

R
RS >> RI = 

Α

Linear PV photo-current measurement

1. Example: For R=10 GΩ and open-loop gain A=106, RI=10 kΩ. 
RS=10 MΩ is needed to obtain 0.1 % non-linearity.

RS has to be selected to a 
minimum value to obtain 
a linear relationship 
between V and IP:
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Detector noise sources

1. Photon noise: noise contained in the signal and noise due to background 
radiation

2. Detector-generated noise:
 Johnson: thermal motion of charged particles and thermal current 

fluctuations in resistors
 Shot: in (PV) detectors with P-N junction (variance in the rate of 

photoelectron generation)
 G-R: in PC detectors produced by fluctuations in the generation and 

recombination of current carriers
 1/f: caused by non-perfect conductive contact and bias current or voltage 

in detectors
3. Preamplifier noise: Johnson, Shot, G-R, 1/f and

 Phonon: from temperature changes not caused by the detected radiation
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Equivalent PV circuit showing the main noise components
The feedback impedance, R and C, of operational amplifier, OA, converts the 
photocurrent IP of photodiode P into a voltage V.  RS and CJ are the photodiode 
impedance.  Single circles illustrate voltage sources and double circles illustrate 
current sources.  One signal (the photocurrent) source and three noise sources 
(voltage noise VN, current noise IN, and resistor noise RN) are shown in the circuit. 

CJ

RS
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Output total-noise measured in dark

Dark noise with S1226-8BQ photodiode (RS=7 GΩ) and OPA128LM.
The integration time of the DVM at the I-V output is 1.7 s.
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Settling time of a Si photodiode current meter
using Model S1226 (RS=7 GΩ) and OPA128LM
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The settling time depends on 
the magnitude of the signal 
change as well !
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Long term stability of Si photometers
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Comparison of typical characteristics of radiometric quality 
detectors within the 200 nm to 20 µm range

Type Wavelength 
range [nm]

Diameter 
[mm]

Spatial response 
non-uniformity [%] NEP [pW Hz-1/2] (Shunt) resistance 

[M Ω]

Nitrided Si to  320 5 - 10 1 0.1 - 1 10 - 100

Silicon 200 - 1000 5 - 18 0.3 (2-10) x 10-4 100 - 10000

Ge 800 - 1800 5 - 13 1 0.1 0.01

InGaAs 800 - 1800 5-10 0.5 0.02 1

Extended 
InGaAs 1000 - 2550 2 - 3 1 (?) 1 0.001

InSb 1600 - 5500 4 - 7 1 1 0.1 - 1

HgCdTe 
PV or PC 2000 - 26000 2 - 4 10 - 90 PV:  30 

PC: 300
PV:  200 Ω
PC:  15 Ω

Pyroelectric 200 - 20000 5 - 12 0.1 - 5 104 - 105 _

Thermopile 200 - 20000 5 - 10 0.2 - 3 2 x 104 N/A

Bolometer 
(cryogenic) 200 - 20000 5 - 10 1 40 1 - 2 

at 4.5 K
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Photomultiplier Tubes (PMT)
Advantages:
• Multiplication of secondary-electrons :

 Extremely high responsivity
 Exceptionally low noise

• Large photosensitive area
• Fast time response
• Virtually ideal constant-current source (very high shunt resistance)
Disadvantages:
• Poor spatial response uniformity
• Temperature dependent responsivity
• Fatigue and hysteresis (overshoot or undershoot for high-voltage and light )
• High-voltage, temperature, illumination, and time dependent dark-current
• Very stable high-voltage is required
• Affected by magnetic fields
• Drift and aging
• Linear and stable operation only at low signal levels
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DC and AC PMT measurements
Photocathode Anode

Dynodes

R R R R

-HV

RI

Rf

A
Vo

Photocathode Anode

Dynodes

R R R R

+HV

C

  AC 
meterRL

DC:

AC:

The current of the R voltage dividers must be much larger than Ia !

Ia
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[W]

Comparison of PMT to Si photodiode

where e is the elementary electron charge,
Iad is the PMT anode dark current [A],
K is the PMT current amplification, and
∆f is the electrical bandwidth [Hz].

NPMT = 2eIad K∆f = 54pA

Responsivity [A/W]

PMT Si PMT/Si

5 x 105 5 x 10-1 106

Noise [pA] 54 6 x 10-4 105

Signal/Noise 10x

∆ f = 0.3 Hz  
(NPLC=100 on DVM)

NEP [W] 10-16 10-15 0.1
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Selection of detectors for different applications
• Radiant power measurement:

 Detectors with high spatial-response uniformity are needed 
• Irradiance and radiance measurements:

 Spatially non-uniform detectors can be used with uniform sources
• Photometric and color measurements:

 Si photodiodes should be used 
• UV measurements:

 Passivating Nitrided Oxides or Pt-Silicide front layers eliminate UV damage
• Scale extension to UV and IR:

 Pyroelectric detectors and bolometers with high spatial-response uniformity
• SW-IR measurements (1 µm to 5 µm):

 NIR photodiodes, extended InGaAs and InSb photodiodes are preferred
• LW-IR measurements (5 µm to 20 µm):

 HgCdTe detectors, pyroelectric detectors, and cryogenic bolometers



2013 - Basics: Page 126Calcon Tutorial 2013:Spectroradiometry

Scheme of optical radiation measurements

Matching preamplifier to a selected photodiode will dominate the 
performance (signal-to-noise ratio) of the overall measurement !

Optical 
Radiation

shutter

chopper

photodiode

preamplifier 
(photocurrent 
     meter)

Commercial measuring electronic

DVM

Lockin Output 1

Output 2
IN = AC measurement mode

OUT = DC mode
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Frequency dependence of photodiodes

• The internal speed depends on the 
 Time to convert the accumulated charge into current

• The maximum frequency depends on the
 Area of the photodiode
 Type of material

• The internal capacitance Cj depends on the
 Active area
 Resistivity (can change from 1 Ωcm to 10 kΩcm for Si)
 Reverse voltage
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Frequency dependence of photodiodes (cont.)

• Time constant of a photodiode
(with one dominating internal capacitance Cj):

τ = CjRL
where RL is the load-resistance

• Rise time (for photodiodes with multiple time constants): 
The current changes from 10 % to 90 %
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Frequency dependence of photodiodes (cont.)

If the photodiode (shunt) resistance is much larger than RL,
the voltage on RL is: V = I RL / (1+ jωCjRL) 
The upper roll-off frequency is  f0 = ω0/2π = 1/2πCjRL

where ω0 = 1/τ, and I is the photocurrent.
For Cj =1 nF and RL=1 kΩ,  f0 = 160 kHz
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-20
-40 f [Hz]

Relative V/I gain [dB]

fo = 1.6 x 105 Hz
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I Cj RLV
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AC (chopped) radiation measurement
Chopping is needed to tune out measurement from the 1/f noise range (close to 

0 Hz) and the eliminate DC background signal in infrared measurements.
Chopped measurements need partial frequency compensations !

- τ1=RC must be small to keep the roll-off higher than the signal frequency
- Photodiode with small Cj is needed to decrease τ2 , e.g. Hamamatsu S5226-8BQ
- Wide band (high open loop gain and low noise) OPA is needed, e.g. OPA627.
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AC (chopped) radiation measurement (cont.)
• Signal gain curves (measured). The 3 dB roll-off frequencies for all 

gains are 80 Hz or higher except for gain 1010 V/A.
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Partial compensations were 
made for all the signal 
gains shown here. No 
compensation was made 
for 1010 V/A. The operating 
point should be on the flat 
parts of the curves at 10 Hz 
chopping (or frequency 
stabilized chopper is 
needed) !
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AC measurements with chopper and lockin
• Chopper: 1. tunes out the signal (by modulation) from 1/f noise

and drift
2. Separates the signal to be measured from the DC 
background signal

 Frequency: needs to be stable if the operating point is on the slope of the 
signal-gain versus frequency curve

• Lockin: phase controlled rectifier + low-pass filter
 Phase control: synchronized from chopper
 Low-pass filter: smoothes out the rectified (structured but DC) signal
 Output: in-phase and quadrature (X and Y) components of the signal (in 

rectangular form), or magnitude M=(X2+Y2)1/2 and phase Φ (in polar form)
 Input: sine or square wave. The sine wave measurement selects the 

fundamental frequency component of the chopped waveform.
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Sine wave lockin measures square wave
Calibration of the lockin reading against a DVM.

• Signal to be measured:

• Theoretical reading of sine-wave lockin:

• Reference reading of a DVM in DCV mode (with large S/N): 
S2= H with running chopper,      or S2= 2H if the chopper is stopped

• The real correction factor is the ratio of the lockin reading to the 
DVM reading:  S1/S2

2H

time

output 
signal

S1 =
H
2

4
π

= 0.9003H
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Selection of commercial signal meters for detectors
• DC or AC photocurrent from photodiodes:

 Electrometers, current preamplifiers, and picoammeters can be used
 The typical shunt resistance of a DVM in DC-I mode is 1 kΩ in the lowest 

(300 µA f.s.) range. The input shunt resistance can be higher for DMMs. A 
“Burden” voltage of about 0.2 V can develop on this resistance causing an error 
in the measured current. The lower the detector resistance the larger the error. 

DO NOT DO THIS:
• V-measurement on detectors or load resistors:

 Non-linearity with biased PC detectors
 High non-linearity with photodiodes (measurement along the V-axis of the I-V 

curve)

• Photodiode shunt resistance measurement with ohm-meters
(A large current would be forced through the photodiode!)
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5.  Determining Measurement 
Uncertainties
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1. Measurement Uncertainty, Measurement Error 
2. Accuracy & Precision 
3. Measurement Equation 
4. Measurement Steps 
5. Direct Methods for Uncertainty Propagation 
6. GUM Supplement 1 

Outline
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Measurement Equation Approach:
In general, we use the measurement equation approach for characterizing 
and calibrating sources and radiometers.  A simplified measurement 
equation is:

( ) ( ) ( ) λωθλλφθλλφθλλω λ
ω

φ
λ

dddcos,,,,,,,,,,,,, ⋅⋅⋅⋅⋅=∆ ∫∫∫
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Measurement Uncertainty

The “true value” of the measurand is the value of the 
measurand.

Formal definition
Uncertainty of measurement is a parameter, associated with the result 
of a measurement, that characterizes the dispersion of the values that 

could reasonably be attributed to the measurand.

“Expressed as a standard deviation (u)”

Measurement result is complete only when a 
quantitative estimate of the uncertainty in the 
measurement is stated.
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Why do you need an uncertainty budget?

Traceability- “Property of the result of a measurement or the 
value of a standard whereby it can be related to stated 
references, usually national or international standards, through 
an unbroken chain of comparisons, all having stated 
uncertainties.”

ISO International Vocabulary of Basic and General Terms in 
Metrology, 2nd ed., 1993, definition 6.10

Uncertainty budget will enable one to identify the dominant 
terms in the uncertainties to reduce those terms.
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Repeatability and Reproducibility

Closeness of agreement between the results of successive measurements of 
the same measurand carried out

Reproducibility
under changed conditions of  

measurement

Different 
principle 
method 
observer 
location 

instrument  
time 

Repeatability
under same conditions of  

measurement

Same
principle 
method 
observer 
location 

instrument  
time 
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Accuracy and Precision

Accuracy
Closeness of agreement between the result of  a measurement and the value 

of the measurand.
Precision

Closeness of agreement between the results of  measurements of the same 
measurand.

Value of the Measurand

{

M
ea

su
re

m
en

t

{

Accuracy Precision

{

Note: The ISO Guide 
to Uncertainty in 
Measurements (GUM) 
discourages the use of 
the terms, but are still 
used and confused in 
common usage.
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Accuracy and Precision - Example
Precision

A
cc

ur
ac

y

Low

High

High

Low
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Error of Measurement

Result of a measurement minus the value of the measurand.
(Sum of random and systematic errors)

Random error
Result of a measurement

minus
the mean that would result 
from an infinite number of 
measurements of the same 

measurand carried out 
under repeatability 

conditions

Systematic error

Mean that would result from 
an infinite number of 

measurements of the same 
measurand carried out under 

repeatability conditions
minus

the value of the measurand.

iki xx −, xxi −
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Error of Measurement - Illustration

Measurements

Mean

Random error

Systematic error
Value of the
Measurand
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Classification of Uncertainty Components

Due to random effects
(Type A)

Give rise to possible random 
error in the unpredictable result 

of the current measurement 
process.

Usually decrease with increasing 
number of observations

Due to systematic effects
(Type B)

Give rise to possible systematic
error in the result due to recognized 
effects in the current measurement 

process.



2013 - Basics: Page 146Calcon Tutorial 2013:Spectroradiometry

Correction and Correction Factor

Correction
Value added algebraically to the uncorrected result of a measurement to 

compensate for systematic error.

Correction = - (systematic error)

Correction Factor
Numerical factor by which the uncorrected result of a measurement is 

multiplied to compensate for systematic error.

Used to account for systematic error

E.g. Linearity, offset, shunt resistance, drift, stray light
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Standard Uncertainty
Measurand (y) determined from m input parameters xi through functional relationship

f(x1, x2, ..., xi, ..., xm)

Standard uncertainty
Estimated standard deviation associated with each input estimate xi, denoted u(xi)

Example:  u(Γ),  u(λ), u(T), etc.

Standard uncertainty u(xi) determined from probability distribution (P) of parameter (xi)

P

xi

Example: Radiometer signal measurement
v ≅ Γ· G· s(λ) · τ(λ) ·L(λ,T) ·∆λ

Input parameters are throughput (Γ), gain (G), responsivity (s), transmittance (τ), 
radiance (L), wavelength (λ), bandwidth (∆λ) and source temperature (T)
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Normal Probability Distribution

0.1

0.2

0.3

16 % 16 %

68 %

0.1

0.2

0.3

2.25 % 2.25 %

95.5 %

xi−3σ xi−2σ xi−σ xi xi+σ xi+2σ xi+3σ xi−3σ xi−2σ xi−σ xi xi+σ xi+2σ xi+3σ

Probability that x lies between (xi - σ)  and (xi + σ) is 68 %.
For large number of observations, about 68 % of the values lie in this range, OR

a value deviating more than σ from mean xi will occur about once in 3 trials.

Probability that x lies between (xi - 2σ)  and (xi + 2σ) is 95.5 %.
For large number of observations, about 95 % of the values lie in this range, OR
a value deviating more than 2σ from mean xi will occur about once in 20 trials.

σ: standard deviation 
xi : sample mean
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Evaluation of Uncertainty

Type A
Evaluated using statistical 
methods for analyzing the 

measurements.

Examples: Standard deviation of 
a series of independent 

observations,
Least squares fit

Type B
Evaluated by methods other than 

statistical.

Examples: Scientific 
judgment,experience, 

manufacturer’s specification, data 
from other sources (reports, 

handbooks)

Two Categories: Type A and Type B
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Statistical Parameter – Sample Mean

Mean

Sum of all the sample values (xi,k) divided by the size of the sample (n)

Example
Five voltage readings:   0.9, 1.2, 1.1, 0.8, 1.0

Size of the sample = 5
Sample mean = (0.9 + 1.2 + 1.1 + 0.8 + 1.0)/5 = 1.0 [V] .

∑
=

=
n

k
kii x

n
x

1
,

1
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Statistical Parameter – Sample Variance

Variance:

Sum of the squares of the deviations of the sample values (xi,k) from the 
mean value (xi), divided by (n - 1).

Measures the spread or dispersion of the sample values, and is positive.

Variance of the mean

Example: Five voltage readings:   0.9, 1.2, 1.1, 0.8, 1.0; Sample mean =  1.0 [V]

Variance = [(0.9-1.0)2 + (1.2-1.0)2 + (1.1-1.0)2 + (0.8-1.0)2 + (1.0-1.0)2 ]/(5-1) = 0.025 [V2]

Variance of the mean =  0.025/5 = 0.005 [V2]

∑
=

−
−

=
n

k
ikiki xx

n
x

1

2
,,

2 )(
1

1)(σ

n
x

x ki
i

)(
)( ,

2
2 σ

σ =



2013 - Basics: Page 152Calcon Tutorial 2013:Spectroradiometry

Type A Evaluation of Standard Uncertainty

Standard deviation = (Variance)1/2 =  σ(xi,k)
(Positive square root of the sample variance)

Standard deviation of the mean: σ(xi) = σ(xi,k) /n1/2

Example: Five voltage readings:   0.9, 1.2, 1.1, 0.8, 1.0
Sample mean =  1.0 [V], Variance = 0.025 [V2], Variance of the mean  =   0.005 [V2]

Standard deviation = (Variance)1/2 =  0.0251/2 = 0.158 [V] 
Standard uncertainty = Standard deviation of the mean =  0.158/51/2 = 0.071 [V]

Relative standard uncertainty =  0.071/1.0 = 0.071

Standard uncertainty u(xi) =  σ(xi)
(Standard deviation divided by the square root of the number of samples)

Relative standard uncertainty = u(xi)/xi



2013 - Basics: Page 153Calcon Tutorial 2013:Spectroradiometry

Type B Evaluation of Standard Uncertainty

Evaluated based on scientific judgment, experience, manufacturer’s 
specification, data from other sources (reports, handbooks)

Examples
Convert a quoted uncertainty (with a stated multiple) to a standard 

uncertainty by dividing by the multiple

Convert a quoted uncertainty (with a specified confidence level, such as 95 % 
or 99 %)  to a standard uncertainty by dividing by the appropriate factor for a 

normal distribution
Computational methods

Model the quantity by an assumed probability distribution such as normal, 
rectangular or triangular. 
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Type B Calculation – Normal Distribution

Estimated the lower limit (a-), and the upper limit (a+) of the quantity.
Best estimated value of the quantity (mean) = center of the limits

50.0 % probability, value lies in the interval a- to a+,  then u(xi) = 1.48 a
67.7 % probability, value lies in the interval a- to a+,  then u(xi) =  a
99.7 % probability, value lies in the interval a- to a+,  then u(xi) =  a/3

0.1

0.2

0.3

Lo
w

er
 li

m
it

U
pp

er
 li

m
it

M
ea

n 
va

lu
e

Assumed normal
distribution

a- a+

Half width of interval
a =  (a+ - a-)/2

Center of the limits
= (a+ + a-)/2
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Type B Calculation – Rectangular Distribution

Best estimated value of the quantity (mean) = center of the limits
with

u(xi) = a/3½ or [max-min]/(12)1/2

a- a+

Half width of interval
a =  (a+ - a-)/2

Center of the limits
= (a+ + a-)/2

P

1/(2a)

Equal probability the value lies in the interval a- and a+ is 100 % 
and zero outside

(Reasonable default model in the absence of any other information)
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Type B Calculation – Triangular Distribution

Best estimated value of the quantity (mean) = center of the limits
with

u(xi) = a/6½ or [max-min]/(24)1/2

a- a+

Half width of interval
a =  (a+ - a-)/2

Center of the limits
= (a+ + a-)/2

P

1/a

Probability the value lies in the interval a- and a+ is 100 % 
and zero outside
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Expressing Measurement Uncertainty

Functional relationship between measurand and input parameters
y = f(x1, x2, ..., xi, ..., xm)

uc
2 (y) =

∂f
∂xi

 

 
 

 

 
 

2

i =1

m

∑ u2 (xi) + 2
∂f
∂xi

∂f
∂xjj =i+1

m

∑
i=1

m −1

∑ u(xi , xj )

Combined standard uncertainty, uc(y)
Represents the estimated standard uncertainty of the measurand y.

given by
Law of Propagation of Uncertainty

∂f/∂xi : sensitivity coefficient, u(xi) : standard uncertainty of xi
u(xi)/xi : relative standard uncertainty of xi
u(xi, xj) : covariance of xi and xj                     = u(xi) • u(xj) • r(xi, xj)
r(xi, xj) : correlation coefficient r = 0, if uncorrelated [-1 ≤ r ≤ 1]
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Expressing Measurement Uncertainty - Example

y = a ⋅ x1 + b ⋅ x2

∂y
∂x1

= a
∂y
∂x2

= b

uc
2 (y) = a2 ⋅ u2 (x1) + b2 ⋅u2(x2 )

y = a ⋅ x1 ⋅ x2

∂y
∂x1

= a ⋅ x2
∂y
∂x2

= a ⋅ x1

uc
2 (y) = a2 ⋅ x2

2 ⋅ u2 (x1) + a2 ⋅ x1
2 ⋅u2(x2 )

uc
2 (y)
y2 =

u2 (x1)
x1

2 +
u2 (x2 )

x2
2

Multiplicative function (Two independent random variables x1 and x2)
Use relative standard uncertainties to calculate combined standard uncertainty

Additive function (Two independent random variables x1 and x2)
Use standard uncertainties to calculate combined standard uncertainty
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Example: Frequency of pendulum
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The relationship between frequency,ω and length is 
given by the sensitivity coefficient, ½.
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Expanded Uncertainty

Measure of uncertainty defining an interval about the result y within which the 
measurand is confidently believed to lie.

Expanded uncertainty (U) = Coverage factor (k)  x Combined uncertainty uc(y)

Coverage factor
k

Confidence level for a 
normal probability distribution

1.000 68.27 %
1.645 90.00 %
1.960 95.00 %
2.000 95.45 %
2.576 99.00 %
3.000 99.73 %

1 out of 20 times you 
should fall outside 
your uncertainty 
budget
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Uncertainty Evaluation Procedure – Summary 
1. Express functional relationship between the measurand (y) and input 

parameters (xi).
y = f(x1, x2, …, xi, …, xm)

2. Determine values of input parameters xi [Statistical analysis or other means].

3. Evaluate standard uncertainty u(xi) of each input xi (Type A or Type B 
technique).

4. Calculate the value of measurand (y) from the functional relationship [Step 1].

5. Determine the combined standard uncertainty uc(y) from the standard 
uncertainties associated with each input parameter (xi). [Step 3].

6. Calculate the expanded standard uncertainty (U) as the combined standard 
uncertainty uc(y) times the coverage factor (k).

7. Report the value of the measurand y [Step 4] and specify the combined 
standard uncertainty uc(y) [Step 5] or the expanded uncertainty U [Step 6].
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6a. Applications from the NIST 
Short Course:

Photometer Responsivity 
Calibration
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Objectives of Lab #2
1. Measure the spectral power responsivity of the NIST 

photometer by comparison to a NIST-traceable 
silicon photodiode standard (STD).  (Calibration)

2. Use the previously calibrated NIST photometer to 
measure the 100 W QTH lamp at about 3 m distance, 
and compare the measured illuminance (lux) to those 
found using a separatelu calibrated commercial 
photometer. (Validation)
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Spectral Responsivity [A/W] (Lab #2, Step 1)
Lab #2 Spectral Responsivity Measurement Setup

Photometer Spectral Responsivity 
[A/W] is given by: s

p

s

ms

s

mp

p

p s
G
G

V
V

V
V

s =

Alignment Laser

Alignment Mirror

Monitor
Monochromator

Shutter

Lamp

Beamsplitter

Detector Position
(Photometer #118 or WS)

Order Sorting Filter
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Realization of Detector-based 
Illuminance [lux]

1. Start with calibrated Si diode

2. Calibrate the spectral power 
responsivity of a photometer 
using monochromator system

3. Convert to illuminance 
responsivity using aperture 
(and calculation)

4. Calibrate Test illuminance 
meter with Photometer

Application Example from Photometry (Lab #2)

Illuminance Responsivity 
[ampere/lux]
(Photometer)

Illuminance Meter
[lux]

(Test meter)

Spectral Responsivity 
[ampere/watt] 

(Silicon photodiode)

Optical Power [watt]
(Cryogenic radiometer)

Calibrated Aperture

Traceability Chain
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Uncertainty Calculation Example
Application to detector calibration (Lab #2)

s
x

s

ms
s

mx
x

x S
G
G

V
V

V
V

S ⋅⋅=

Signal measurement equation

Sx Spectral responsivity of test detector

Ss Spectral responsivity of standard detector

V Voltage from test detector (x) or standard detector (s)

Vm Voltage from monitor detector

G Amplifier gain
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sv,i illuminance responsivity [A/lx]  (Note: lx = lm/m2)
A area of the photometer aperture [m2]
P(λ) spectral power distribution of the light source (CIE 

Illuminant A with 2856 K Planck distribution)
s(λ) photometer spectral power responsivity [A/W]
Km maximum spectral luminous efficacy [683 lm/W]
V(λ) spectral luminous efficiency function

Illuminance Responsivity [A/lx] (Lab #2, Step 2)

( ) ( )
( ) ( )∫

∫=
λ

λ

λλλ

λλλ

d  

d  

m
iv, VPK

sP
As
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Vp photometer signal [V]
sv,i illuminance responsivity [A/lx]
Gp photometer gain [V/A]

Illuminance Meter Calibration [lx] (Lab #2, Step 3)

piv,

p
pv, Gs

VE =

Ev,t illuminance measured by the test photometer [lx]
tv,

pv,
tv, E

ECF =

The illuminance Ev,p [lx] measured by the photometer is:

The calibration factor for the test photometer is:
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Spectral Responsivity, V(λ), and Illuminant A

SRSC FR #118
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Uniformity of SRSC FR #117 with V(λ) Filter
Responsivity uniformity

0.2 % contours at 555 nm;
1.1 mm beam size;
0.5 mm/Step
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Linearity of the NIST standard photometers
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Stability of NIST Photometers
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Stability of Silicon Photodiodes

Comparison of Vis SCF Si WS Ratios
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similar data for several months.

Differences in the Vis SCF Silicon WS H626/H629 ratios from 1992 to 2002.

Scale Uncertainty (k=1): 0.1 %
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Responsivity of Short Course Radiometer, NIST SC FR #117
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Factors Contributing to Uncertainty
Detector Calibration – Lab #2

Examples of Sensitivity Coefficients

Absolute Relative

Ss : 

Vx : 

Vs :

λ :
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Combined Standard Uncertainty
Detector Calibration – Lab #2

Law of Propagation of Uncertainties

Using absolute uncertainties

Using relative uncertainties
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Quantity 
(Symbol) 

Unit Value Probability 
Distribution 

Uncertainty 
limit 

Standard 
uncertainty 

Relative 
sensitivity  

Relative 
uncertainty  

 
Std. Resp. (Ss) A/W 0.2848 Normal  0.0003 1/0.2848 0.11 % 
Std. Signal (Vs) V 2 Normal  0.002 1/2 0.10 % 
Test Signal (Vx) V 1.8 Normal  0.004 1/1.8 0.22 % 
Monitor Signal (Vms) V 1.1 Normal  0.001 1/1.1 0.09 % 
Monitor Signal (Vmx) V 1.09 Normal  0.001 1/1.09 0.09 % 
Std. Gain (Gs) A/V 10-6 Normal  10-10 1/10-6 0.01 % 
Test Gain (Gx) A/V 10-6 Normal  10-10 1/10-6 0.01 % 
Wavelength (λ) nm 550 Rectangular 1 0.6 1/9 0.07 % 

 
Test Resp. (Sx) A/W 0.2587 Combined uncertainty in the responsivity 0.30 % 
   Expanded uncertainty 0.60 % 
 

Uncertainty Summary
Detector Calibration (at 550 nm) – Lab #2
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Findings: Difference from NIST Calibration Values

Spectral Power Responsivity of FR-118: Percent 
Difference from the SCF Calibration
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The Uncertainties - Spectral Responsivity

Source of uncertainty Type Relative Standard 
Uncertainty [%]

Absolute responsivity scale B 0.100 sp-250-41 Value

Working Standard Diode Signal A 0.014 from data

Test Detector (Photometer) Signal A 0.020 from data

Monitor Diode Signal with WS Diode A 0.040 from data

Monitor Diode Signal with Test Detector (Photometer) A 0.040 from data

Working Standard Diode Amplifier Gain B 0.120 Doubled SP-250 data

Test Detector (Photometer) Amplifier Gain B 0.100 Doubled SP-250 data

Monochromator Wavelength Calibration B 0.040 Estimated using .2nm Error

Relative combined standard uncertainty (RSS) [%]
0.20

Relative expanded uncertainty (k = 2) [%] 0.40
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Goal 2:  Calibration of the Illuminance meter using the Filter 
Radiometer

1. QTH source, close to illuminant A (2856 K)
2. Three detectors set up to 3 m from the source.
3. The filter radiometer was used to calibrate the two 

illuminance meters
4. A variation of baffling was used
5. Two different reference planes on the illuminance 

meter were used
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The Uncertainties - Illuminance Responsivity

Source of uncertainty Type

Relative 
Standard 

Uncertainty 
[%]

Absolute responsivity scale B 0.200

Transfer of scale to photometer A 0.080 Values from SP250-37

Wavelength calibration of monochromator B 0.040
Estimated using .2nm 
Error

Numerical aperture of monochromator beam B 0.100 Values from SP250-37

Area of photometer aperture B 0.100 Values from SP250-37

Temperature variation A 0.060 Values from SP250-37

Other factors A 0.240 Values from SP250-37

Relative combined standard uncertainty (RSS) [%]
0.36

Relative expanded uncertainty (k = 2) [%] 0.72
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The Uncertainties - Illuminance Meter

Source of uncertainty Type

Relative 
Standard 

Uncertainty 
[%]

Illuminance unit realization B 0.360

Long-term drift of the photometer B 0.150 Values from SP250-37

Photometer temperature variation A 0.030 Values from SP250-37

Spectral mismatch factor of photometer B 0.020 Values from SP250-37

Illuminance meter alignment (distance and angle) A 0.200 Estimate within 3mm error

Illuminance nonuniformity B 0.050 Values from SP250-37

Lamp current regulation A 0.040
Conservative estimates (no warmup stablization 
time)

Stray light in the “photometry bench” B 0.100
Conservative estimates Double the SP250-37 
value

Random noise (scatter by dust, lamp drift, etc.) A 0.100 Values from SP250-37

Display resolution of the illuminance meter (1 in 199) A 0.400 Conservative estimates

Inconsistency in responsivity between luminance levels B 0.120 Values from SP250-37

Relative combined standard uncertainty (RSS) [%] 0.63

Relative expanded uncertainty (k = 2) [%] 1.26
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The Results of the Illuminance Meter Calibrations Day 3

Day 3: Group C

Illuminance meter

FR-0118 
Measured 
Value [Lx]

NIST 
Correction 

Factor Photometer Based Value [Lx]
NIST Calibrated Value 
[lx]

Difference
[%]

EOS 22.28 1.027 21.70 22.29 -0.03

Non EOS 22.28 1.147 19.30 22.14 0.64
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6b. Applications from the NIST 
Short Course: 

Spectral irradiance to spectral 
radiance transfer
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Diagram of the lab setup
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The spectral radiances of the FEL-plaque can be 
determined in two ways:

1. Using spectral irradiance to spectral radiance 
transfer knowing the 45°/0° reflectance factor of 
a plaque and the spectral irradiances of a 
standard source. (Calibration)

2. Using spectral radiance responsivities from the 
known spectral radiances of an argon-filled 
tungsten-strip lamp. (Validation)

Calibration and Validation of spectral radiance 
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Since the spectral radiance responsivities of the detector 
system did not change, then the spectral radiance of the 
plaque is also 

The irradiance at the plaque surface is given by

If the spectral irradiance is uniform then

(1)

(3)

(2)

Equations for spectral irradiance to radiance transfer
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Uncertainty Analysis – Experiment 3

Radiance of plaque LP from two methods

1. Calibration from lamp irradiance and plaque reflectance factor

2. Validation using radiance of strip lamp

Where vR = signal from strip lamp

vP = signal from plaque

LR = radiance of strip lamp

ρ = reflectance factor of plaque

E = irradiance of lamp
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Uncertainties of Two Methods

1. Lamp irradiance transfer

a. Lamp distance (spectrally flat)

b. Lamp current (spectrally dependent)

c. Plaque reflectance

d. Plaque uniformity

e. Signal to noise (depends on signal level (spectrally dependent))

f. Wavelength (spectrally dependent)

2. Strip lamp radiance

1. Strip lamp current (spectrally dependent)

2. Signals

3. Wavelength

Note:  need to separate systematic and random effects since both lamps are traceable back to the 
same primary NIST standard
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Measured (k=2)

Wavelength [nm] RFL radiance Net signal (RFL) Gain(RFL)
Net signal 
(plaque) Gain(plaque)

Plaque 
Radiance total uncertainties

350 2972.07 0.00396 1.00E+06 0.00282 1.00E+09 2.12 4.58

400 9943.19 0.01714 1.00E+06 0.01021 1.00E+09 5.93 2.06

450 23405.37 0.04864 1.00E+06 0.02455 1.00E+09 11.82 1.37

500 43786.72 0.09614 1.00E+06 0.04264 1.00E+09 19.42 1.16

600 97489.44 0.20893 1.00E+06 0.07652 1.00E+09 35.70 1.11

654.575 129028.26 0.24759 1.00E+06 0.08397 1.00E+09 43.76 1.05

700 152685.80 0.25385 1.00E+06 0.08176 1.00E+09 49.18 0.89

800 191676.85 0.22930 1.00E+06 0.06750 1.00E+09 56.42 0.90

900 212010.44 0.28633 1.00E+06 0.07935 1.00E+09 58.75 0.90

1050 211363.32 0.24745 1.00E+06 0.06488 1.00E+09 55.42 0.90

Uncertainties from the radiance lamp transfer
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FEL 
irradiance

FEL 
irradiance Uncertainty of

0/45 
Reflectance Uncertainty Spatial Plaque Total

Wavelength 
[nm] at 50 cm at d

Spectral 
radiance Factor of R factor Uniformity Radiance uncertainty

350 9.024 6.711 0.1 0.985 0.6 0.5 2.104 0.79
400 24.443 18.176 0.1 1 0.43 0.5 5.786 0.67
450 49.024 36.454 0.1 1.008 0.4 0.5 11.697 0.65
500 80.519 59.875 0.1 1.01 0.35 0.5 19.249 0.62
600 149.318 111.034 0.1 1.013 0.35 0.5 35.803 0.62

654.575 182.219 135.499 0.1 1.013 0.35 0.5 43.691 0.62
700 204.738 152.245 0.1 1.013 0.35 0.5 49.091 0.62
800 236.210 175.647 0.1 1.013 0.33 0.5 56.637 0.61
900 244.919 182.124 0.1 1.014 0.32 0.5 58.783 0.60

1050 231.451 172.109 0.1 1.014 0.32 0.5 55.551 0.60

Uncertainties of the FEL/Plaque transfer
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Conclusions:
1. A calibration-validation plan (SI-traceable) for a satellite sensor should

a) Meet the calibration requirements 
b) Describe the calibration approach (calibration)
c) Describe the use of on-board calibrators
d) Describe the system-level end-to-end calibration performance 

(validation)
2. Elements of the plan should

a) Answer how the calibration requirements will meet the mission and 
instrument requirements

b) Develop a sensor design and radiometric model (measurement equation)
c) Characterize subsystems (uncertainty analysis)
d) Compare model predictions and validate system level calibrations
e) Establish pre-launch radiometric uncertainties

From: NISTIR 7637 (2009), “Best Practice Guideline…” R. Datla et al.
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