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Foundations of Wave Phenomena, Version 8.2

1. Harmonic Oscillations.

Everyone has seen waves on water, heard sound waves and seen light waves. But, what

exactly is a wave? Of course, the goal of this course is to address this question. But for

now you can think of a wave as a traveling or oscillatory disturbance in some continuous

medium (air, water, the electromagnetic field, etc.). As we shall see, waves can be viewed

as a collective e↵ect resulting from a combination of many harmonic oscillations. So, to

begin, we review the basics of harmonic motion.

Harmonic motion of some quantity (e.g., displacement, intensity, current, angle,. . . )

means the quantity exhibits a sinusoidal time dependence. In particular, this means that

the quantity oscillates sinusoidally in value with a frequency which is independent of both

amplitude and time. Generically, we will refer to the quantity of interest as the displace-

ment and denote it by the symbol q. The value of the displacement at time t is denoted

q(t); for harmonic motion it can be written in one of the equivalent forms

q(t) = B sin(!t+ �) (1.1)

= C cos(!t+  ) (1.2)

= D cos(!t) + E sin(!t). (1.3)

Here B,C,D,E,!,�, are all constants. The relationship between the various versions of

harmonic motion shown above is obtained using the trigonometric identities

sin(a+ b) = sin a cos b+ sin b cos a, (1.4)

cos(a+ b) = cos a cos b� sin a sin b. (1.5)

You will be asked to explore these relationships in the Problems.

The parameter ! represents the (angular) frequency of the oscillation and is normally

determined by the nature of the physical system being considered. So, typically, ! is fixed

once and for all. (Recall that the angular frequency is related to the physical frequency

f of the motion via ! = 2⇡f .) For example, the time evolution of angular displacement

of a pendulum is, for small displacements, harmonic with frequency determined by the

length of the pendulum and the acceleration due to gravity. In all that follows we assume

that ! > 0; there is no loss of generality in doing so (exercise). The other constants

B,C,D,E,�, , which represent amplitudes and phases, are normally determined by the

initial conditions for the problem at hand. For example, it is not hard to check that

D = q(0) and E = 1
!v(0), where v(t) = dq(t)

dt is the velocity at time t. Given !, no matter

which form of the harmonic motion is used, you can check that one must pick two real

numbers to uniquely specify the motion (exercise). Alternatively, we say that all harmonic

oscillations (at a given angular frequency) can be uniquely labeled by two parameters.
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1.1 The Harmonic Oscillator Equation

To say that the displacement q exhibits harmonic motion is equivalent to saying that

q(t) satisfies the harmonic oscillator equation:

d2q(t)

dt2
= �!2q(t), (1.6)

for some real constant ! > 0. This is because each of the functions (1.1)–(1.3) satisfy (1.6)

(exercise) and, in particular, every solution of (1.6) can be put into the form (1.1)–(1.3).

This latter fact is proved using techniques from a basic course in di↵erential equations.

(See also the discussion in §1.2, below.)

The frequency ! is the only parameter needed to characterize a harmonic oscillator.

Normally the constant ! is fixed once and for all in the specification of the problem at

hand. When we speak of the “the” harmonic oscillator equation we will always mean that

! has been given.

It is via the harmonic oscillator equation that one usually arrives at harmonic motion

when modeling a physical system. For example, if q is a displacement of a particle with

mass m whose dynamical behavior is controlled (at least approximately – see below) by a

Hooke’s force law,

F = �kq, k = const., (1.7)

then Newton’s second law reduces to the harmonic oscillator equation with ! =
q

k
m (ex-

ercise). More generally, we have the following situation. Let the potential energy function

describing the variable q be denoted by V (q). This means that the equation governing q

takes the form*

m
d2q(t)

dt2
= �V 0(q(t)). (1.8)

Suppose the function V (q) has a local minimum at the point q0, that is, suppose q0 is

a point of stable equilibrium. Let us choose our origin of coordinates at this point, so

that q0 = 0. Further, let us choose our reference point of potential energy (by adding

a constant to V if necessary) so that V (0) = 0. These choices are not necessary; they

are for convenience only. In the vicinity of this minimum we can write a Taylor series

approximation to V (q) (exercise):

V (q) ⇡ V (0) + V 0(0)q +
1

2
V 00(0)q2

=
1

2
V 00(0)q2.

(1.9)

* Here we use a prime on a function to indicate a derivative with respect to the argument
of the function, e.g.,

f 0(x) =
df(x)

dx
.
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(If you would like a quick review of Taylor’s theorem and Taylor series, have a look at

Appendix A.) The zeroth and first order terms in the Taylor series are absent, respectively,

because (i) we have chosen V (0) = 0 and (ii) for an equilibrium point q = 0 we have

V 0(0) = 0. Because the equilibrium point is a minimum (stable equilibrium) we have that

V 00(0) > 0. (1.10)

Incidentally, the notation V 0(0), V 00(0), etc. , means “take the derivative(s) and evaluate

the result at zero”:

V 0(0) ⌘ V 0(x)
���
x=0

.

If we use the Taylor series approximation (1.9), we can approximate the force on the system

near a point of stable equilibrium as that of a harmonic oscillator with “spring constant”

(exercise)

k = V 00(0). (1.11)

The equation of motion of the system can thus be approximated by

m
d2q(t)

dt2
= �V 0(q(t)) ⇡ �kq(t). (1.12)

( )qV

00 =q

0=V

Figure 1.  One dimensional potential ( )qV .

Dividing both sides by m and identifying !2 = k
m and we obtain the harmonic oscilla-

tor equation (1.6). The approximation of the potential energy as a quadratic function
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in the neighborhood of some local minimum is called the harmonic approximation. No

matter what the physical system is, or the meaning of the variable q(t), the harmonic

approximation leads to harmonic motion as described in (1.1)–(1.3).

The harmonic oscillator equation is a second-order, linear, homogeneous ordinary dif-

ferential equation with constant coe�cients. That’s a lot of terminology. Let’s pause for

a moment to explain it. The general form of a linear, second-order ordinary di↵erential

equation is

a(t)q00(t) + b(t)q0(t) + c(t)q(t) = d(t), (1.13)

where the coe�cients a, b, c some given functions of t. There is one dependent variable, q,

and one independent variable, t. Because there is only one independent variable, all deriva-

tives are ordinary derivatives rather than partial derivatives, which is why the equation is

called an ordinary di↵erential equation. The harmonic oscillator has constant coe�cients

because a, b, c do not in fact depend upon time. The harmonic oscillator equation is called

homogeneous because d = 0, making the equation homogeneous of the first degree in the

dependent variable q.† If d 6= 0, then the equation is called inhomogeneous. As you can

see, this equation involves no more than 2 derivatives, hence the designation second-order.

We say that this equation is linear because the di↵erential operator*

L = a(t)
d2

dt2
+ b(t)

d

dt
+ c(t) (1.14)

appearing in equation (1.13) via

Lq = d, (1.15)

has the following property (exercise)

L(rq1 + sq2) = rL(q1) + sL(q2), (1.16)

for any constants r and s.

Indeed, to be more formal about this, following the general discussion in Appendix

B, we can view the set of all real-valued functions q(t) as a real vector space. So, in this

case the “vectors” are actually functions of t!‡ The addition rule is the usual point-wise

addition of functions. The scalar multiplication is the usual multiplication of functions by

real numbers. The zero vector is the zero function, which assigns the value zero to all t.

The additive inverse of a function q(t) is the function �q(t), and so forth. We can then

view L as a linear operator, as defined in Appendix B (exercise).

† A function f(x) is homogeneous of degree p if it satisfies f(ax) = apf(x) for any constant
a (such that ax is in the domain of f).

* In this context, a di↵erential operator is simply a rule for making a function (or functions)
from any given function q(t) and its derivatives.

‡ There are a lot of functions, so this vector space is infinite dimensional. We shall make
this a little more precise when we discuss Fourier analysis.
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The linearity and homogeneity of the harmonic oscillator equation has a very important

consequence. It guarantees that given two solutions, q1(t) and q2(t), we can take any linear

combination of these solutions with constant coe�cients to make a new solution q3(t). In

other words, if r and s are constants, and if q1(t) and q2(t) are solutions to the harmonic

oscillator equation, then

q3(t) = rq1(t) + sq2(t) (1.17)

also solves that equation.

Exercise: Check that q3(t) is a solution of (1.6) if q1(t) and q2(t) are solutions. Do this

explicitly, using the harmonic oscillator equation, and then do it just using homogeneity

and the linearity of L.

1.2 The General Solution to the Harmonic Oscillator Equation

The general solution to the harmonic oscillator equation is a solution depending upon

some freely specifiable constants such that all possible solutions can be obtained by making

suitable choices of the constants. Physically, we expect to need two arbitrary constants

in the general solution since we must have the freedom to adjust the solution to match

any initial conditions, e.g., initial position and velocity. Mathematically this can be shown

to be the case thanks to the fact that the di↵erential equation is second order and any

solution will involve two constants of integration.

To construct the most general solution it is enough to find two “independent” solutions

(which are not related by linear combinations) and take their general linear combination.

For example, we can take q1(t) = cos(!t) and q2(t) = sin(!t) and the general solution is

(c.f. (1.3)):

q(t) = A cos(!t) +B sin(!t). (1.18)

While we won’t prove that all solutions can be put into this form, we can easily show that

this solution accommodates any initial conditions. If we choose our initial time to be t = 0,

then this follows from the fact that (exercise)

q(0) = A,
dq(0)

dt
= B!.

You can now see that the choice of the constants A and B is equivalent to the choice of

initial conditions. Note in particular that solutions are uniquely determined by their initial

conditions. Indeed, suppose two solutions q1(t) and q2(t) satisfy the harmonic oscillator

equation with the same initial conditions, say,

q1(0) = a = q2(0),
dq1(0)

dt
= b =

dq2(0)

dt
,
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The di↵erence between these solutions, q(t) := q1(t)�q2(t) is also a solution of the harmonic

oscillator equation, but now with vanishing initial position and initial velocity. Therefore

q(t) = 0 and we see that q1(t) = q2(t) by virtue of having the same initial conditions.

It is worth noting that the solutions to the oscillator equation form a vector space. See

Appendix B for the definition of a vector space. The underlying set is the set of solutions

to the harmonic oscillator equation. So, here again the “vectors” are functions of t. (But

this time it will turn out that the vector space will be finite-dimensional because only

the functions which are mapped to zero by the operator L are being considered.) As we

have seen, the solutions can certainly be added and multiplied by scalars (exercise) to

produce new solutions. This is because of the linear, homogeneous nature of the equation.

So, in this vector space, “addition” is just the usual addition of functions, and “scalar

multiplication” is just the usual multiplication of functions by real numbers. The function

q = 0 is a solution to the oscillator equation, so it is one of the “vectors”; it plays the role

of the zero vector. As discussed in Appendix B, a basis for a vector space is a subset of

linearly independent elements out of which all other elements can be obtained by linear

combination. The number of elements needed to make a basis is the dimension of the

vector space. Evidently, the functions q1(t) = cos!t and q2(t) = sin!t form a basis for

the vector space of solutions to the harmonic oscillator equation (c.f. equation (1.18)).

Indeed, both q1(t) and q2(t) are vectors, i.e., solutions of the harmonic oscillator equation,

and all solutions can be built from these two solutions by linear combination. Thus the

set of solutions to the harmonic oscillator equation constitutes a two-dimensional vector

space. You can also understand the appearance of two dimensions from the fact that each

solution is uniquely determined by the two initial conditions.

It is possible to equip the vector space of solutions to the harmonic oscillator equation

with a scalar product. While we won’t need this result in what follows, we briefly describe

it here just to illustrate the concept of a scalar product. Being a scalar product, it should

be defined by a rule which takes any two vectors, i.e., solutions of the harmonic oscillator

equation, and returns a real number (see Appendix B for the complete definition of a scalar

product). Let q1(t) and q2(t) be solutions of the harmonic oscillator equation. Their scalar

product is defined by

(q1, q2) = q1q2 +
1

!2 q
0

1q
0

2. (1.19)

In terms of this scalar product, the basis of solutions provided by cos!t and sin!t is

orthonormal (exercise).

1.3 Complex Representation of Solutions

In any but the simplest applications of harmonic motion it is very convenient to work

with the complex representation of harmonic motion, where we use complex numbers to
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keep track of the harmonic motion. Before showing how this is done, we’ll spend a little

time reviewing the basic properties of complex numbers.

Recall that the imaginary unit is defined formally via

i2 = �1

so that
1

i
= �i. (1.20)

A complex number z is an ordered pair of real numbers (x, y) which we write as

z = x+ iy. (1.21)

The variable x is called the real part of z, denoted Re(z), and y is called the imaginary

part of z, denoted by Im(z). We apply the usual rules for addition and multiplication

of numbers to z, keeping in mind that i2 = �1. In particular, the sum of two complex

numbers, z1 = x1 + iy1 and z2 = x2 + iy2, is given by

z1 + z2 = (x1 + x2) + i(y1 + y2).

The product of two complex number is given by (exercise)

z1z2 = (x1x2 � y1y2) + i(x1y2 + x2y1).

Two complex numbers, z1 = x1 + iy1 and z2 = x2 + iy2, are equal if and only if their real

parts are equal and their imaginary parts are equal:

z1 = z2 () x1 = x2 and y1 = y2.

Given z = x + iy, we define the complex conjugate z⇤ = x � iy. It is straightforward to

check that (exercise)

Re(z) = x =
1

2
(z + z⇤); Im(z) = y =

1

2i
(z � z⇤). (1.22)

Note that (exercise)

z2 = x2 � y2 + 2ixy, (1.23)

so that the square of a complex number z is another complex number.

Exercise: What are the real and imaginary parts of z2 ?

A complex number is neither positive or negative; these distinctions are only used for

real numbers. Note in particular that z2, being a complex number, cannot be said to be
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positive (unlike the case with real numbers). On the other hand, if we multiply z by its

complex conjugate we get a non-negative real number:

zz⇤ ⌘ |z|2 = x2 + y2 � 0. (1.24)

We call the non-negative real number |z| =
p

zz⇤ =
p

x2 + y2 the absolute value of z.

A complex number defines a point in the x-y plane — in this context also called the

complex plane — and vice versa. We can therefore introduce polar coordinates to describe

any complex number. So, for any z = x+ iy, let

x = r cos ✓ and y = r sin ✓, (1.25)

where r � 0 and 0  ✓  2⇡. (Note that, for a fixed value of r > 0, ✓ = 0 and ✓ = 2⇡

represent the same point. Also, ✓ is not defined when r = 0.) You can check that (exercise)

r =
q

x2 + y2 and ✓ = tan�1(
y

x
). (1.26)

It now follows that for any complex number z there is a radius r and an angle ✓ such that

z = r cos ✓ + ir sin ✓ = r(cos ✓ + i sin ✓). (1.27)

A famous result of Euler is that

cos ✓ + i sin ✓ = ei✓, (1.28)

(see the Problems for a proof) so we can write

z = rei✓. (1.29)
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Real Axis ( )x

Imaginary Axis ( )y

r

θ

yxz i+=

y

x

yxz i−=∗

Figure 2.  Illustration of a point z in the complex plane and
its complex conjugate ∗z .

In the polar representation of a complex number z the radius r corresponds to the absolute

value of z while the angle ✓ is known as the phase or argument of z. Evidently, a complex

number is completely characterized by its absolute value and phase.

As an exercise you can show that

cos ✓ = Re(ei✓) =
1

2
(ei✓ + e�i✓), sin ✓ = Im(ei✓) =

1

2i
(ei✓ � e�i✓).

We also have (exercise)

z2 = r2e2i✓ and zz⇤ = r2. (1.30)

With r = 1, these last two relations summarize (1) the double angle formulas for sine and

cosine,

sin 2✓ = 2 cos ✓ sin ✓, cos 2✓ = cos2 ✓ � sin2 ✓, (1.31)

and (2) the familiar identity cos2 ✓ + sin2 ✓ = 1. More generally, all those trigonometric

identities you have encountered from time to time are simple consequences of the Euler

formula. As a good exercise you should verify (1) and (2) using the complex exponential

and Euler’s formula.

Complex numbers are well-suited to describing harmonic motion because, as we have

just seen, the real and imaginary parts involve cosines and sines. Indeed, it is easy to check
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that both ei!t and e�i!t solve the oscillator equation (1.6) (exercise). (Here you should

treat i as just another constant.) Hence, for any complex numbers ↵ and �, we can solve

the harmonic oscillator equation via

q(t) = ↵ei!t + �e�i!t. (1.32)

Note that we have added, or superposed, two solutions of the equation. We shall refer to

(1.32) as the complex solution since, as it stands, q(t) is not a real number.

Normally, q represents a real-valued quantity (displacement, temperature,...). In this

case, we require

Im(q(t)) = 0 (1.33)

or (exercise)

q⇤(t) = q(t). (1.34)

Substituting our complex form (1.32) for q(t) into (1.34) gives

↵ei!t + �e�i!t = ↵⇤e�i!t + �⇤ei!t. (1.35)

In this equation, for each t, the real parts of the left and right-hand sides must be equal

as must be the imaginary parts. In a homework problem you will see this implies that

� = ↵⇤. Real solutions of the harmonic oscillator equation can therefore be written as

q(t) = ↵ei!t + ↵⇤e�i!t, (1.36)

where ↵ is any complex number. We shall refer to (1.36) as the complex form or complex

representation of the real solution of the harmonic oscillator equation. From (1.36) it is

clear that q(t) is a real number because it is a sum of a number and its complex conjugate,

i.e., is the real part of a complex number. As it should, the solution depends on two real,

freely specifiable constants: the real and imaginary parts of ↵.

Using Euler’s formula, equation (1.36) is equivalent to any of the sinusoidal repre-

sentations given in (1.1)–(1.3). Let us see how to recover (1.2); the others are obtained

in a similar fashion (see the problems). Since ↵ is a complex number, we use the polar

representation of the complex number to write

↵ = aei , (1.37)

where a and  are both real numbers (a = a⇤,  =  ⇤). We then have that

q(t) = a ei(!t+ ) + a e�i(!t+ )

= a [ei(!t+ ) + e�i(!t+ )]

= 2a cos(!t+  ),

(1.38)
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which matches our representation of harmonic motion (1.2) with the identification 2a = C.

So, we see that any particular harmonic motion is determined by a choice of the

complex number ↵ through (1.36). Using (1.36), you can check that q(0) = 2Re(↵) and

v(0) = �2!Im(↵) (exercise). Hence the real and imaginary parts of ↵ encode the initial

conditions. From the point of view of the polar representation of ↵, the absolute value of the

complex number ↵ determines the amplitude of the oscillation. The phase of the complex

number ↵ determines where the oscillation is in its cycle relative to t = 0. Evidently,

the amplitude and phase information are equivalent to the initial displacement and initial

velocity information.

Note that we can also write the general solution (1.36) as

q(t) = 2Re(↵ ei!t). (1.39)

When you see a formula such as this you should remember that it works because (1)

p(t) ⌘ ↵ei!t is a complex solution to the oscillator equation; (2) if p(t) is any complex

solution, then so is p⇤(t) (just conjugate the oscillator equation – exercise); (3) because

the oscillator equation is linear and homogeneous, the superposition of any two (complex)

solutions to the harmonic oscillator equation is another (in general, complex) solution

(exercise). Because the real part of a complex solution p(t) is proportional to p(t) + p⇤(t)

we get a real solution to the harmonic oscillator equation by taking the real part of a

complex solution. As a nice exercise you should check that the same logic shows we can

also get a real solution of the harmonic oscillator equation by taking the imaginary part

of a complex solution. The relation between these two forms of a real solution is explored

in the problems.

We have obtained a useful strategy that we shall take advantage of from time to

time: When manipulating solutions to a linear and homogeneous equation we work with

complex solutions to simplify various manipulations, and only take the real part when

appropriate. This is allowed because any real linear equation which admits a complex

solution will also admit the complex conjugate as a solution. By linearity and homogeneity,

any linear combination of these two solutions will be a solution, and in particular the real

and imaginary parts will be real solutions.
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