

 43

Fig. 4.8. LDScanner™ scan console.

As shown in fig. 4.8, once all the parameters are entered the Scan button becomes

active. To conduct a scan the operator presses the Scan button. The Scan Console takes

the parameters entered by the operator and checks that all the inputs are valid. If the

parameters are valid then they are sent to the lidar. During this process, LDScanner™

monitors replies from the lidar for any problems and notifies the operator as appropriate.

If the lidar was programmed successfully, the program moves into the Run Scan block.

4) Run Scan: As the Run Scan block starts (see fig. 4.9) a dialog box appears

indicating that the lidar was programmed successfully, giving an approximate scan time

and prompting whether the operator wants to proceed or cancel the scan. If the operator

 44

clicks Cancel, the Scan Console form is restarted with the scan parameters sub-screen

again displayed. The operator can modify the scan parameters and try again or close the

program.

If the operator clicks OK, the Scan Console buttons are all deactivated and the

scan begins. LDScanner™ is not accessible during the scan. This is to prevent problems

during the scan process. An override is provided if the operator wants to interrupt the

scan process. By pressing and holding the CTRL+C key combination the console will

activate and prompt the operator to stop or continue the scan. If the operator chooses to

stop the scan then LDScanner™ will close the files and stop the threads. However, no

communication can take place with the lidar until the lidar is finished scanning. The only

way to stop the lidar during the scan process is to turn the lidar power off, an action that

is not recommended.

While scanning, LDScanner™ stores all collected data into the appropriate lidar

(lda) or EO (tex) files and monitors for when the lidar is finished scanning and has

returned to the starting position. Once the lidar is finished scanning, LDScanner™ ends

all threads. This stops the synchronization box and EO camera and closes all the data

files. LDScanner™ moves into the Scan Complete block once everything is stopped and

closed.

5) Scan Complete: The Scan Complete portion of LDScanner™ is in fig. 4.10.

This portion starts by letting the operator know if there were any errors during the scan.

The error is simply displayed for the operator’s information and does not affect program

flow.

 45

Fig. 4.9. LDScanner™ run scan.

Fig. 4.10. LDScanner™ scan complete.

 46

When the completion of the scan has been acknowledged another dialog box

appears that prompts the operator whether or not to analyze the files. The analyzing

process checks for correct file format and size. Again, the operator can choose to analyze

or not, but the program will continue either way. If the operator chooses to analyze the

files, a dialog box will appear when analyzing is finished indicating whether or not the

files contain errors.

Finally, the last dialog box that appears asks the operator whether or not to start

LDImager™. If the operator clicks Yes, LDScanner™ closes, parks the lidar in the

storage position and LDImager™ is started. If the operator clicks No, LDScanner™

simply starts over. If the operator clicks Cancel, LDScanner™ parks the lidar in the

storage position and closes.

6) Debugging LDScanner™: While LDScanner™ was being put together and

tested; a significant but intermittent bug was encountered. This bug had to do with the

threads used in the program. To handle the different simultaneous tasks that were

required of the computer a new thread, or concurrent process, was started for each device.

As a result there was a thread for the lidar, a thread for the EO camera and a thread for

the synchronization box.

There were a number of different manifestations of the thread problem and were

all caused by the same error: the threads weren’t finishing before the program would

move on. A thread timing problem occurred on a thread.suspend and thread.resume

check. The program would test whether the thread existed or was paused to determine if

it should be started or resumed. If the program determined that the thread was paused,

 47

the resume command was sent but the program would return an error. It was evident that

sometime in between the check and sending the command the thread had changed states

and so the program would error out.

Another related thread problem occurred when the scan was complete. The

program would indicate that the scan was complete before the camera thread could finish.

This would result in the EO camera file either closing prematurely or not closing at all.

The solution to these issues was to ensure that the program was able to finish its

current task before moving on. These tasks didn’t release properly even though they

were within a thread which is a protected region. This was believed to be a VB issue. To

overcome this problem, a brief delay was added to the program to allow the thread to

finish what it was doing before performing the logic test.

7) Advanced Editor: There are several configuration parameters used in

LDScanner™. These parameters are stored in a file called setup.xml. When

LDScanner™ is started it checks to see if the setup.xml file exists. If the file exists the

parameter values stored in the file are assigned to the applicable parameter within the

program. If the file does not exist then LDScanner™ will create the file using default

values stored within the program.

The setup.xml file contains two tables called CameraSetup and GeneralSetup (see

Table 4.1). Within each of the tables are parameters that will change on a regular basis

and parameters that are fixed following calibration. The values for Brightness, Analog

Gain, ShutterSpeed and NextFileName are variables that are changed within

LDScanner™ at runtime. These properties are automatically saved to the setup.xml file

 48

when the operator begins a scan. Every time LDScanner™ starts the setup.xml file is

reloaded using the most recent property values. This saves time when multiple scans are

being conducted.

The remaining parameters of Height, Width, Bottom, Left, PacketSize,

LidarReturn, LidarAmplitudeMax and LidarAmplitudeMin are fixed and are not

modified during normal program operation. The Advanced Editor makes these

parameters available for editing during calibration. A screen shot of the Advanced editor

is shown in fig. 4.11.

Multiple scanning profiles can be created for use in the setup.xml file. The

Advanced Editor allows the operator to create, edit and delete these profiles. It also

allows the operator to see what the current LDScanner™ settings are and save any of the

profiles into the setup.xml file for use as the default settings.

Fig. 4.11. Advanced editor screen shot.

 49

TABLE 4.1

CAMERASETUP AND GENERALSETUP .XML TABLES

When the program is started, the Advanced Editor checks to see if

consoleprofile.xml and setup.xml exist. If they do not exist then consoleprofile.xml is

created with two default profiles called Wide Lens and Narrow Lens. The program then

creates setup.xml using the Wide Lens profile which contains the same default values that

LDScanner™ uses to create the setup.xml file. If the files exist then the .xml tables are

loaded into the editor and the operator can modify the settings from there.

The profile editor allows the operator of the camera to create multiple profiles

based on the lens used to capture the images. The lenses are chosen to increase or

decrease the effective field of view (FOV) available with the camera. The two default

profiles were created for a Wide lens, approximately 80
o
 FOV and a Narrow lens,

approximately 40
o
 FOV. The Advanced Editor allows the operator to modify these

existing profiles as well as add additional profiles as new lenses are incorporated into the

system.

 50

B. LDImager™

LDImager™ converts the raw data sets from the lidar and EO camera, collected

by LDScanner™, into a format that can be rendered and viewed in LDModeler™. This

is accomplished by creating a 3dd and jpg or other standard lidar and image format files.

LDImager™ also allows the operator to analyze any files that have previously been

collected to ensure that the file format and size is correct. Once a data set has been

converted, LDImager™ allows the user to create a histogram of the jpg image showing

the intensity distribution across the entire image. Finally, LDImager™ allows the

operator to create, edit and delete profiles used for the conversion. Figure 4.12 shows a

screen shot of LDImager™.

Fig. 4.12. LDImager™ GUI.

 51

LDImager™ has a simple program flow that allows the operator to Tile,

Histogram or Analyze the collected EO data. The Histogram option is only available

after a data set has been tiled.

Since the Histogram button is initially disabled, the operator really only has two

options when the program starts. These options are to Tile or Analyze Raw Files. The

program flow is very simple and is shown in fig. 4.13. Each of these steps will be

discussed in the following section.

Fig. 4.13. LDImager™ program flow.

 52

1) Tile: If the operator chooses to Tile, the profile must be selected. The

profiles are located in the file tileprofile.xml. When LDImager™ first starts it checks for

the tileprofile.xml file and if the file exists, the profiles are loaded into the program. If

the file does not exist, LDImager™ creates the file with two default profiles called Wide

Lens and Narrow Lens and then loads the two profiles into the program. The operator

can choose the desired profile by selecting it from the drop down box just below the Tile

Raw Image button.

Once the desired profile is selected the operator then selects Tile Raw Image.

When this button is pressed the Windows Open dialog box appears. The operator selects

the tex file that is to be tiled and then the Windows Save As… dialog box appears. The

operator is prompted with a default file name and can choose to accept this file name or

use a different name for the lidar and EO output. Once the operator has selected the

output file, the tiling process begins by displaying a Tiling… busy box. LDImager™

automatically saves the 3D Texel™ image to file as a jpeg image when the tiling is

complete. Then it displays three images to the operator. The intensity image displays the

lidar intensity information from the scan. In addition to range and intensity information,

the lidar receiver also collects the red, green, and blue (RGB) color information for the

individual range points. This color information is displayed in the color channel window.

The last window contains the 3D Texel™ image derived from the tiling operation. The

operator now has the option to histogram the recently tiled image, tile another image or

analyze data sets.

a) Tiling Algorithm: When the data sets are first collected they are not in a

 53

format that is viewable by LDModeler™. The standard formats accepted by

LDModeler™ are 3dd and jpg. The lda file from the lidar contains the x-y-z point cloud,

color channel and intensity information. The tex file contains hundreds of raw images

that are collected at approximately three times the line-scan rate of the lidar data.

LDImager™ takes the two data sets and generates the necessary 3dd and jpg files for

viewing.

The redundant data in the tex file is necessary because of the lack of

synchronization information coming from the lidar. On the previous prototype the lidar

had an internal trigger signal that was made available to the camera so that every time the

lidar took a picture the camera would take a picture also. Unfortunately, no such trigger

signal is available on this scanner. Also, the lidar does not send a signal indicating its

status until the scanner has returned to the start position.

To counter these problems, the lidar and EO camera were synchronized through

the Synchronization Box by starting both sensors at the same time and generating a

known triggering frequency. The lidar frequency is approximately 20 columns per

second and the EO camera approximately 60 columns, or frames, per second. The

triggering rate of both devices is known to double precision.

The algorithm used for tiling the raw images, developed by Dr. Robert Pack, was

coded by Stan Colby of RappidMapper into a dynamically linked library called

TexelEng.dll. The entry point into TexelEng.dll and the entire tiling algorithm is through

a single function called TexelImageProcessing. This function requires thirteen inputs.

These inputs and descriptions of each are shown in fig. 4.14 and can be edited in the

 54

profile editor discussed in Chapter 4, section C.

The LDImager™ GUI provides an interface between the operator and the

TexelEng.dll. The parameter values required by the TexelImageProcessing function are

stored in the tileprofile.xml file for each individual profile. These values can be modified

using the profile editor available within LDImager™.

2) Histogram: Once the 3D Texel™ image has been generated the operator can

generate an intensity Histogram of the image. The Histogram is generated by sub-

sampling every fourth pixel of the jpg 3D Texel™ image. The results are displayed in a

new pop-up window once the histogram process has completed.

3) Analyze: If the operator clicks the Analyze Raw Files button the Windows

Open… dialog box appears. The operator selects the desired tex file to analyze and then

LDImager™ checks the lda file and tex file format and size compatibility. The results

are reported to the operator in a dialog box when completed.

TEXELHANDLE ht, //texel handle
LIDARHANDLE hl, //lidar handle
int uOffset, //u-coordinate of optical center of the FPA
int vOffset, //v-coordinate of optical center of the FPA
double lAzimuthAngle, //radians, Azimuth shift to align camera with
ladar
double lElevationAngle, //radians, Elevation shift to align camera with
ladar,
double uPixelWidth, //millimeters for pixel width of the camera
double vPixelHeight, //millimeters for pixel height of the camera
double focalLength, //millimeters for focal length of camera lens
int xPixelsPerLidar, //ratio of final image x vs lidar columns like
5:1
int yPixelsPerLidar, //ratio of final image y vs lidar rows like 5:1
double lidarTimingRatio,//lidar vs texel ratio normally should be 1.
Int texelFrameOffset //texel frame offset normally should be 0

Fig. 4.14. TexelEng.dll inputs.

 55

C. Create, Edit or Delete LDImager™ Profile

LDImager™ tiles images based on the profile chosen by the operator. Two

default profiles are created and stored in the tileprofile.xml file the first time the program

is started. LDImager™ provides a GUI interface to the tileprofile.xml file that allows

profile creation, editing or deletion. To access the Camera Profile Editor for LDImager™

the operator clicks the Edit Profile button located below the profile drop down box on the

main screen.

After clicking the Edit Profile button, the Camera Profile Editor starts and the

profile editor, similar to fig. 4.15, is displayed. Initially a profile is not selected. The

operator can select one of the default profiles or select the New… option from the

Description drop down box. After selecting a profile, the operator can choose to edit or

delete the profile. The Advanced Settings can be displayed by checking the Show

Advanced Settings checkbox. Changes are saved to the tileprofile.xml file.

D. Prototype II Software Summary

Custom software was developed to control the scan process of the 3D Texel™

camera and then generate 3D standard data files. This software was called LDScanner™

and LDImager™.

LDScanner™ controls the capturing and saving of data from the lidar and EO

camera. This program ensures proper operation of all hardware and validates the files

upon collection. The interface resembles a field computer with a program flow similar to

a Wizard for 3D Texel™ camera setup and operation. The program greatly simplifies the

scanning process while still providing customizability. An Advanced Editor was created

 56

to maintain the initialization parameters saved as profiles in consoleprofile.xml and

setup.xml.

LDImager™ converts the raw data sets collected by LDScanner™ into standard

lidar and texel image formats. This is accomplished by creating a 3dd and jpg file

format. LDImager™ also analyzes data files to ensure data integrity and once a data set

has been tiled, LDImager™ allows the user to Histogram the jpg image for intensity

distribution across the entire image. Tiling profiles can also be created, edited and

deleted by the operator using the profile editor in LDImager™. This data can be quality

controlled in the field and adjustments can be made to ensure quality before leaving the

site.

Fig. 4.15. Camera profile editor for LDImager™.

 57

CHAPTER 5

ELECTRO OPTICAL CAMERA INTERFACING

The Prototype II CAIL 3D Texel™ camera uses the ISG LW-3-S-1394-C 'Smart'

Digital Imaging Module to collect color imagery. There were several initial approaches

to controlling the ISG camera via LDScanner™ but ultimately a modified Carnegie

Melon University (CMU) demo program was used [15]. LDScanner™ was written in

VB so the modified CMU demo program had to be converted into VB. The

CMU1394.dll API has a single entry point through a class declaration and because VB

cannot instantiate a class, a wrapper was created that made individual entry points for all

of the members and functions within CMU1394.dll. This exposed all members and

functions associated with the driver. Once the members and functions were exposed, the

camera could be controlled and the Camera Image dialog box was created. The work in

this chapter was completed exclusively by the author.

A. Requirements

In Chapter 5 LDScanner™ was introduced as an interface between the operator

and the lidar and EO sensors. There is an additional interface between the LDScanner™

software and each of the sensors that handles the low level data flow as shown in fig. 5.1.

The focus of the author’s exclusive contribution to this project was the construction of the

EO camera interface between the LDScanner™ software and the EO camera.

 58

Fig. 5.1. EO camera interface.

The first part of constructing the EO camera interface was to define what

LDScanner™ needed to control. The essential requirements are that the EO camera

interface must allow control over the following items:

� Region of Interest (ROI), or sub frame

� Position on the CMOS array

� Camera properties

� Digital gain

� Brightness

� White balance

� Shutter speed

� Triggering

� File format

The ROI is the desired frame size. There are standard frame sizes that can be

selected, but LDScanner™ needs to be able to isolate a custom rectangular region, or

ROI, and then modify the position of the ROI on the CMOS array. LDScanner™ must

also be able to allow the operator to modify the camera properties to adjust the image

 59

quality. In order to coordinate the lidar and EO camera LDScanner™ must also be able

to trigger the camera. Finally, the images captured from the camera need to be saved out

in a custom file format defined by CAIL.

In addition to these requirements the software needed to be developed as rapidly

as possible with a robust implementation. As with any engineering design, there is a

trade-off between the development time and robustness requirements. This chapter

discusses the solutions that were examined and the implementation of the final solution.

The final solution was written in C++ and then made available to VB. The method used

to allow VB access to the C++ code and the implementation of the Camera Control

dialog box in VB is covered in the latter portion of this chapter.

B. Initial Considerations

When the development of the Prototype II 3D Texel™ camera began the goal was

to finish the camera within three weeks. From the beginning it was known that using the

CMU1394 API would be the most robust method, but it would require the most time for

development. Because of the time limitation, alternative solutions were sought. The

alternate solutions examined were Third Party Toolkits, ISG Lightwise demo and CMU

demo.

1) Third Party Toolkits: Third party toolkits provide tools that can simplify and

expedite the development process. The demo applications of several image toolboxes (IC

Imaging Control, Unibrain, ActiveDcam, etc…) were downloaded and installed into

Microsoft Visual Studio. The most promising one of these was IC Imaging Control. A

sample program was written within a day that allowed a standard 640 (h) x 480 (v) image

 60

to be pulled from the camera in real time at 15 fps and saved to any file format desired.

Unfortunately, this toolbox had limited functionality. The ROI could not be modified,

the position of the ROI on the CMOS array couldn’t be changed, triggering was not

available and no camera properties could be modified.

In order to use a third party toolkit, the FireWire™ driver on the camera had to be

compatible with the Windows Driver Model (WDM). WDM provides a software

interface standard that, when met, controls the communication between the FireWire™

(1394), USB and PCI devices with DirectX/DirectShow. As fig. 5.2 [16] shows, IC

Imaging Control, and all third party toolkits examined, interface with the FireWire™

devices through DirectX and thus require the camera driver to be WDM compliant.

Fig. 5.2. WDM diagram.

 61

The ISG EO camera documentation, however, did not indicate whether it was

WDM compliant or not so ISG was contacted [17]. Unfortunately, ISG had not designed

their camera around a WDM Stream Class Driver, but instead the ISG camera uses an

open source driver from Carnegie Melon University called CMU1394.dll [15]. The

driver and API are freely available from The CMU Robotics Institute [18]. By using the

CMU driver ISG’s camera is not limited to the Windows environment for development,

but this also means that none of the third party toolkits could be used.

2) ISG Demo Program: Once it was established that third party imaging

software toolkits could not be used, another approach was taken. The ISG camera came

with a modified CMU demo program, called Lightwise, which included an additional

Camera Control dialog window designed to control the specific features of their camera

[19]. The ISG demo program was built for this camera which meant that is should meet

all of the camera requirements.

The ISG software includes a Camera Control Dialog box, shown in fig. 5.3, which

allows the ROI and its position on the array to be modified dynamically. The software

can also control the digital gain, brightness, white balance and shutter speed. There were

also several options available for triggering the camera as shown in fig. 5.4. The only

requirement that the ISG software didn’t meet was to allow for a custom output format,

although it was possible to work around this problem.

The biggest disappointment with the ISG software was that, despite it being based

on the open source CMU demo, ISG would not release the source code that included the

additional Camera Control dialog. This meant that either the program works as-is in the

 62

final solution or it doesn’t work at all.

The reason the ISG demo program was not used was that VB could not get a

handle on the program nor could the program functions be accessed through the

command line. The only way to use the ISG demo program from LDScanner™ was to

use the VB SendKeys commands. SendKeys commands are used to emulate the button

presses and mouse movement that an operator would use to run a GUI. There is no

robust error checking methods within the SendKeys command structure so if anything

went wrong, such as the operator pressing a key or minimizing the program while keys

are being sent, nothing could be done to remedy the situation. For this reason the ISG

demo program was not used.

Fig. 5.3. ISG ROI.

 63

Fig. 5.4. ISG trigger control.

3) CMU Demo Program: The ISG demo program is based on the CMU demo

program. Since the ISG program was able to accomplish most of the requirements, it was

presumed that the CMU demo program would also be able to perform most of the

requirements. Unfortunately, this program suffered the same shortcomings as the ISG

demo program did. However, the CMU demo program source code was available and

could be edited. The CMU demo program uses Microsoft Foundation Classes (MFC) and

a substantial portion of development time was consumed in learning MFC in order to be

able to edit the program. Once understood though, the demo program could be easily

modified to incorporate all of the requirements. As it turned out, the CMU demo

 64

program could be modified to implement the requirements in a robust manner.

C. Implementation Issues

The modified CMU demo code met all requirements but had problems being

incorporated into LDScanner™. The problem was that VB couldn’t access the functions

from the CMU1394.dll. To overcome this problem a wrapper was created that exposed

the functions in CMU1394.dll to VB.

1) Modified CMU Demo: The CMU demo was written so that all of the camera

functionality was available to the operator, but the operator had to manually select what

the program was to do. To use the demo code in the final solution it needed to simply

perform the required tasks when LDScanner™ called it. In other words, the CMU demo

program needed to be reduced to a single function. This function needed to Initialize the

camera, Acquire Images according to a trigger signal and then Shut Down. The function

program flow is shown in fig. 5.5. The code developed in the CMU demo could then be

ported to VB and used directly in LDScanner™.

Fig. 5.5. Modified CMU demo program flow.

 65

a) Initialization: Initialization can be broken into two components, the file and

the camera initializations. File initialization takes only a few commands and includes the

CAIL custom tex file format description. The camera initialization is a little more

involved as it covers everything from ensuring that a camera exists to setting camera

properties. Most of the code written in the modified CMU demo was associated with

initializing the camera.

• File Initialization: While the 3D Texel™ camera is operating, the EO camera

collects 2048(v) x 16(h) pixels at a frame rate just over 60 fps. A typical scan runs

around 20 seconds. That means there can be more than 1200 individual frames for one

scan. Having to open and close so many files would slow down the capturing and tiling

processes and would be cumbersome to maintain.

Rather than generating hundreds of individual files, a better way of storing all

these frames was to put them into one file. This required that a custom file format be

defined. The file format took on the extension tex because the file is a collection of texel

images, see Appendix E for complete tex documentation. The tex format used in

Prototype II has a 16 byte header: 4 bytes for the header size, 4 bytes for the frame width,

4 bytes for the frame height and 4 bytes for the period of the frame rate. This is followed

by the individual frames. Each new frame is appended onto the file so that the first frame

follows the header and each succeeding frame is added until the function is stopped. The

file grows continually as the program is running. When scanning is complete the file is

closed and the function ends.

The initialization of this file is straight forward. A file is opened in ab mode

 66

using the fopen command. The ab mode means that all new data will be appended to the

end of the file in binary (untranslated) mode so that carriage-return and linefeed

characters are suppressed. After opening the file, the header is read and the file is left

open. At this point the file initialization is complete and is ready to save images.

• Camera Initialization: The camera initialization is broken into general, partial

scan (within a designated ROI), and triggering initialization. Regardless of the camera

use, the general initialization remains the same. This involves checking to make sure the

camera exists and is working properly, selecting the desired camera, initializing the

necessary resources and filling in the camera register values. The basic code is shown in

fig. 5.6. The critical functions, like CheckLink, provide error checking in case of

problems. If the function returns CAM_SUCCESS then the program continues. If there

are problems with any of the critical functions, the error must be handled by closing the

program. The general initialization must be completed before the partial scan or

triggering can be setup.

if(theCamera->CheckLink() != CAM_SUCCESS)
 return CAM_ERROR;

if(theCamera->InitCamera() != CAM_SUCCESS)
 return CAM_ERROR;

theCamera->InquireControlRegisters();

theCamera->StatusControlRegisters();

Fig. 5.6. EO general initialization.

 67

Next, the partial scan format needs to be set up. Partial scan format is a subclass

within the CMU1394.dll driver that designates the ROI and its position on the CMOS

array. The first step is to query the camera to see if it supports partial scan format. If a

partial scan exists, this function allows the inquire and status functions to be called.

These functions determine the camera properties and fill in the appropriate partial scan

class member variables.

The format and mode of the camera need to be designated next. The CMU driver

supports several standard formats as well as a custom partial scan format, see Table 5.1

[15]. Within each format there are different modes that can be selected. The image size

and color format is based on the format and mode selected except in partial scan format.

The partial scan format allows customization of the size of the region of interest (ROI),

image position, packet size and color format. There are no defined modes within the

partial scan format so by setting the mode the operator defines the mode rather than

querying the driver for predetermined values. Because of this, any mode, zero through

seven, can be selected.

Once the format and mode are selected the specific partial scan settings can be

entered. This includes setting the ROI, image position on the focal plane array, packet

size and color code. Each image transferred between the camera and computer is broken

up into packets. The packet size option defines how large these packets are. The color

code option defines whether the image will be output in RGB, YUV, Mono or RAW

format.

By being able to customize these options the camera can be configured in many

 68

different ways. However, there are some general guidelines to follow. The camera has a

limited ROI granularity value of 8. This means that any ROI can be defined as long as

both the height and width are divisible by 8. The ROI for the 3D Texel™ Prototype II

was defined as 2048 (v) x 16 (h). The camera is mounted on its side so to allow the long

dimension to be vertical. With the camera on its side and using the wide angle lens, the

camera had an 80 degree elevation field-of–view which matches the lidar elevation field-

of-view.

TABLE 5.1

CMU FORMAT AND MODE

 69

Next, the SetPosition function is called. This function positions the ROI on the

array. Initially the ROI was positioned in the center of the array horizontally (1536/2 - 8

= 760) until calibration could be completed. The granularity of the SetPosition command

was determined to be 1 so the ROI can be calibrated down to one pixel.

The packet size also needs to be defined. The default packet size is 4096 bytes

and works if the full array 2048 (h) x 1536 (v) is used. Since a custom ROI is being used,

the packet size needs to be customized. To determine the packet size the equation below

was used. The only other requirement is that the packet size does not exceed the default

size of 4096 bytes because this is the maximum size that the FireWire™ protocol allows.

.0
*

mod =








packetsize

HeightWidth

The last item of the partial scan initialization to set up is the color code. The color

code options are Raw8, Raw10, RGB, YUV and monochrome. The RGB format was

selected for the Prototype II 3D Texel™ camera. The complete partial scan initialization

code is shown in fig. 5.7.

theCamera->m_controlSize.Supported();
theCamera->m_controlSize.Inquire();
theCamera->m_controlSize.Status();

theCamera->SetVideoFormat(7);
theCamera->SetVideoMode(0);

if(theCamera->m_controlSize.SetSize(width, height) != CAM_SUCCESS)
return CAM_ERROR;
if(theCamera->m_controlSize.SetPosition(left, top) != CAM_SUCCESS)
return CAM_ERROR;
if(theCamera->m_controlSize.SetBytesPerPacket(packetSize) !=
CAM_SUCCESS)
return CAM_ERROR;
if(theCamera->m_controlSize.SetColorCode(4) != CAM_SUCCESS)
return CAM_ERROR;

Fig. 5.7. Partial scan initialization.

 70

The last part of the camera initialization is the triggering shown in fig. 5.8. Again

the initialize and status functions for the triggering class need to be called to fill in the

triggering class member variables from the EO camera. A bug was discovered in the

CMU driver on these functions. Both functions are supposed to return CAM_SUCCESS

if they work correctly and CAM_ERROR if there are problems. Both functions always

return CAM_ERROR when called even though the member variables are filled.

Therefore, both functions were called but no error checking was used.

 After calling these functions the triggering mode is set. The triggering mode

determines whether the input signal expected is a one shot or retriggerable signal and

whether the rising or falling edge is used to trigger. The triggering mode selected was for

a one shot signal on the rising edge [11]. Once the mode is set, triggering is turned on by

setting the TurnOn function to true. With the triggering turned on the camera is now

configured and ready to start capturing images.

b) Image Acquisition: With the camera initialized and triggering turned on,

images can now be acquired. The acquisition process, shown in fig. 5.9, is relatively

simple. First, the StartImageAcquisition function is called to initialize the resources

necessary for acquiring images then starts the camera streaming [15]. This command is

called only once. Once the camera is streaming, images can be read from the camera

buffer by using the AcquireImage function. The AcquireImage function grabs a single

frame from the camera and places the frame into a buffer called m_pData. The frame is

pulled out of m_pData by the getRGB function and then written to file using the fwrite

function. The AcquireImage, getRGB and fwrite functions are nested inside a while loop

 71

that runs continually until the scan is complete.

The AcquireImage function won’t read until the image buffer on the camera has

received a new image. If the AcquireImage function waits for more than ten seconds a

timeout occurs and the function returns an error. The coordination of the camera and

trigger signal became critical because of the timeout potential. If the AcquireImage

function is called and the trigger TurnOn value set to true but the camera is not triggered

within ten seconds then the program exits and no images are captured.

c) Shut Down: Once the Acquire Image portion is finished the program begins

the shut down phase, see fig. 5.10. This is a simple process that ensures that the camera

is shut down properly and the file is closed. To close down the camera the

StopImageAcquisition function is called. This function stops streaming video and frees

the resources allocated by StartImageAcquisition [15]. No error checking was used on

this function because it will return CAM_SUCCESS regardless of whether it has

successfully stopped the camera or not. If it does encounter an error in the process, it

traces it, but then continues on to free whatever remaining resource(s) it can.

Once the video has been stopped, the trigger TurnOn function is set to false and

the file is closed using fclose. The m_pBitmap buffer is then deleted to free up resources

and finally, the program exits with CAM_SUCCESS.

theCamera->m_controlTrigger.Inquire();
theCamera->m_controlTrigger.Status();
if(theCamera->m_controlTrigger.SetMode(0,0) != CAM_SUCCESS)
return CAM_ERROR;
if(theCamera->m_controlTrigger.TurnOn(true) != CAM_SUCCESS)
return CAM_ERROR;

Fig. 5.8. Triggering initialization.

 72

while(bView==true)
{
if (theCamera->AcquireImage())
return CAM_ERROR_FRAME_TIMEOUT;

theCamera->getRGB(m_pBitmap);
fwrite(m_pBitmap,1,width * height * 3, fp);

}

Fig. 5.9. Acquire image.

theCamera->StopImageAcquisition()
theCamera->m_controlTrigger.TurnOn(false);
fclose(fp);
delete [] m_pBitmap;
return CAM_SUCCESS;

Fig. 5.10. Shut down.

The CMU demo program was thus modified to initialize, acquire images and shut

down. Once the CMU API was understood, and this sample program written, it needed

to be made available to LDScanner™.

2) Accessing CMU1394.dll From VB: The EO camera was tested and ran

successfully using the modified CMU demo program. This program was written in

Visual C++. The functions within the CMU 1394 software library work in C++, but

LDScanner™ is written in Visual Basic. In order for the final solution to be robust, the

software used to control the EO camera had to be integrated into LDScanner™.

Visual Basic allows use of functions within dll’s with very little effort as long as

each function has its own entry point into the dll. The CMU dll was written so that it

could handle multiple cameras. This is possible by keeping all of the functions within a

class and declaring a new instance of the class for each new camera. This means that the

entry point to all of the CMU functions is through a class. VB cannot instantiate an

 73

instance of a C++ class so the modified CMU demo program could not be converted into

VB nor could LDScanner™ get a handle on the program.

a) Camera.dll Wrapper: Since Visual Basic has no way of accessing functions

contained within the CMU1394.dll driver, a portion of the code would still need to be in

C++. Initially it looked like a separate program would have to be developed in C++ and

VB would simply execute the program without having a handle on it. After much

research, Dan Scofield of the Utah State University Computer Sciences Department

presented a solution. The solution was to make a wrapper around the dll that instantiates

of the CMU1394.dll class within C++ and then exposes all of the required functions [20].

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include "1394Camera.h"

C1394Camera *theCamera; // class instantiation

int __declspec(dllexport) CALLBACK C1394CameraHeight()
{
return(theCamera->m_height);
}

BOOL APIENTRY DllMain(HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved
)
{
switch(ul_reason_for_call)
{
case DLL_PROCESS_ATTACH:
{
theCamera = new C1394Camera();
break;
}
case DLL_PROCESS_DETACH:
{
delete theCamera;
break;
}
default:
{
break;
}
}
return TRUE;
}

Fig. 5.11. CMU wrapper camera.cpp.

 74

Dan Scofield set up the framework for the wrapper shown in fig. 5.11. The wrapper

is made up of two files, Camera.cpp and Camera.def. The Camera.cpp file is divided into

three main areas. The top portion of the code contains the libraries needed for the dll and

a single C1394Camera instantiation called theCamera, the middle portion is an example

function declaration and the bottom portion of the code is the entry point into the dll. The

Camera.def file is a function definition file. These two files are compiled into a single

Camera.dll file.

The basic structure demonstrated how to expose a single member of the

CMU1394.dll API within Camera.dll. Using this example the remaining members and

functions within CMU1394.dll were exposed by adding function calls in the middle

portion of the code. The complete Camera.dll source code is included in Appendix B.

In addition to exposing the individual members and functions from the

CMU1394.dll, it was decided that, since the modified CMU demo program was written in

C++, the best way to implement this code was to create an additional function within

Camera.dll. This function contains the modified CMU demo code and is called

StartRecorder, see Appendix A. The StartRecorder function can be started and stopped

from VB since it has an individual entry point through Camera.dll. In order to stop the

function, a second function was created within Camera.dll called StopRecorder.

StopRecorder sets the value bView to false. bView is a Boolean variable used as the test

for the while loop within the StartRecorder function. It is a global variable that is

initialized to true within StartRecorder to allow the while loop to start.

After all functions were created the wrapper was compiled. This exposed and

 75

made individual entry points available for each member and function in the CMU dll.

With the entry points available, this dll could be used by LDScanner™ to control the EO

camera.

b) VB Module: To import the newly created functions from the wrapper into VB

a module called CMUCamera.vb was created. The format for accessing the Camera.dll

function was to declare the function within VB. Just as with any other VB function

declaration the input variables and return variable types are defined as well as the

functions scope. A sample declaration is shown in fig. 5.12.

One of the biggest problems with importing dll functions into VB is data type

integrity. For example, in C++ a bool is 1 byte whereas in VB a bool is 2 bytes. There

were a number of different data types used in the CMU driver and it was essential to

match by equivalent data type rather than by names. A list of the data types used in C++

and their equivalent in VB is shown in Table 5.2.

Every member variable and function within the CMU dll that needed to be

accessed within VB needed to have a function declaration like the one above. The

CMUCamera.vb VB module contained all of the dll members and functions as well as the

StartRecorder and StopRecorder function declarations. The complete CMUCamera.vb is

given in Appendix C. Once this module was constructed the entire CMU1394.dll API

could be used in VB just as it is used in C++.

Friend Declare Function C1394CameraHeight Lib "Camera.dll" () As Integer

Fig. 5.12. C++ function exposure in VB.

 76

TABLE 5.2

DATA TYPES

C++ Data Type Equivalent VB Data Type Bytes

Bool Byte 1

Char Byte 1

Short Boolean, Char or Short 2

unsigned short Short 2

unsigned char* IntPtr 2

Int Integer 4

Long Integer 4

Float Integer 4

unsigned long UInt32 4

Double Double 8

long double Long 8

Fig. 5.13. Camera image dialog box.

 77

D. Camera Image Dialog Box

Before the StartRecorder function can be run, the operator needs the opportunity

to set the camera properties. The camera properties can be changed by CMU1394.dll

through functions that are made available in VB through Camera.dll. To make these

functions accessible to the operator a Camera Image dialog box was created. The dialog

box contains four areas called Image, Properties, Histogram Plot and Pick Points. These

regions are shown in fig. 5.13.

1) Image: The image portion displays a sub-sampled image from the EO camera

in real time. The displayed image is similar in shape to the image to be captured, only

wider. The width of each frame that will be captured corresponds to the width of the

cross-hairs overlaid on the EO image. The cross-hairs also indicate the point that the

lidar and EO camera are viewing which is used in the Pick Azimuth Limits portion of the

dialog box to set start and end points of scan.

2) Properties: The right hand side of the dialog box contains three items. The

portion on the top has the common image property controls of Shutter speed, Analog

Gain, Brightness and White Balance. The maximum and minimum range of these

controls is determined by querying the camera, except in the case of the shutter speed.

The shutter speed had to be limited to within the triggerable region of the camera. A

relative, unitless, maximum shutter value of 44 was determined through experimentation.

3) Histogram: The next portion of the dialog box is the intensity histogram

region. The intensity histogram is created by converting the RGB data collected from the

image into YUV and then displaying the Y, or intensity, value. The equations used to

 78

convert from RGB to YUV are shown below. The intensity information is all that is

needed for the histogram so only the Y value was used. YUV values are calculated by

() () ()
()
().*877.0

*493.0

*114.0*587.0*299.0

YBV

YRU

BGRY

−=

−=

++=

The histogram provides a quantitative representation of the intensity values of the

image being displayed. This allows the operator to mathematically determine the quality

of the image so that over or under saturation does not occur and thus an optimal image is

obtained. The histogram is dynamically scaled so that the chart is relative, not absolute.

The ideal histogram image is an even distribution across all intensity values (from 0 to

255 or black to white). Since an even distribution is not normally possible, the EO

camera is usually adjusted so values do not pile up on the right side (oversaturated) or on

the left side (undersaturated).

4) Pick Limits: The last section of the camera control dialog box contains the

pick limits section duplicated from the scan console. These controls are used to setup the

scan. The left and right arrows move the lidar clockwise and counter-clockwise when

pressed once and continue to rotate until the button is pressed again or the lidar reaches

the internal limit switches.

The lidar orientation can be determined by viewing the cross hairs on the image of

the Camera Image dialog box or by observing the lidar itself. When the lidar has rotated

to the desired position, the operator presses the Set button. When the Set button is

pressed the lidar position encoder is queried and the angle, in degrees, is saved. The text

 79

label on the Camera Image dialog box changes from Pick 1
st
 Az Limit to Pick 2

nd
 Az

Limit. The operator then rotates the lidar to the second point and presses the Set button

again. The lidar position value is saved, the camera dialog box closes and the first and

second position values appear in the corresponding blanks on the scan console.

There are two ways to close the Camera Image dialog box. The first is by

selecting the azimuth limits for the scan. If, however, the operator wants to change the

camera properties without picking azimuth limits, the Apply and Close button will close

the dialog box. The complete Camera Image dialog box source code is in Appendix D.

E. EO Camera Summary

The EO camera is used to collect the texture elements for the 3D images. An ISG

EO camera that uses the open source CMU1394.dll driver with API was used for the

Prototype II 3D Texel™ camera. In order to use this camera, LDScanner™ had to be

programmed to control it. There were several initial approaches to controlling the ISG

camera but ultimately a modified CMU demo program using the CMU1394.dll API was

used. LDScanner™ was written in VB and a wrapper dll was created that made

individual entry points for all of the members and functions within CMU1394.dll. The

exposed members and functions were then used to control the camera and create the

Camera Image dialog box.

 80

CHAPTER 6

RECOMMENDATIONS AND CONCLUSIONS

After the Prototype II 3D Texel™ camera had been designed and constructed it

was then calibrated and tested. When the calibration and testing were complete the

camera was delivered to RappidMapper for commercial use. A design review was then

conducted to discuss the positive and negative aspects of Prototype II. The outcome of

this meeting is discussed briefly, followed by some suggestions for future work. Finally,

the conclusion summarizes the work presented in this paper.

A. Design Review and Future Work

Prototype II was a huge improvement, in many different ways, over Prototype I.

With hardware, the line scan lidar allowed the scan time to be reduced by an order of

magnitude while still maintaining high resolution. The FireWire™ Camera simplified

the image capturing process and, since an external capture card wasn’t needed, also

allowed the use of a lightweight laptop computer. This also meant that less power was

needed to run the camera so the number, size and consequently the weight of the batteries

could be reduced. The cabling, synchronization box, lidar and laptop were designed and

built compact and robust which simplified the packing of the hardware components.

The software was simplified and well thought out. This reduced the scan setup

time. In addition, a considerable amount of enhancements were made to the program to

minimize operator input during instrument operation. Error checking and error handling

 81

were improved and most bugs were removed before release. The design was simple,

effective and robust.

Although the design and construction of Prototype II showed much improvement

from Prototype I it can still be improved. The biggest hardware concern was the

synchronization box. It was designed specifically for this lidar which means that a new

synchronization box would need to be designed for any new prototype 3D Texel™

camera built. For this reason it is recommended that a more generalized synchronization

box be designed that can be used on Prototype I, Prototype II and potentially any other

prototypes.

While redesigning the synchronization box, size should also be a consideration.

Functionality more than size was the concern during construction of the first Prototype II

camera, but if more of these cameras are to be built the synchronization box would need

to be more compact. While reducing the size of the synchronization circuitry, increased

integration of that circuitry into the laptop strain relief or the EO camera mount should

also be considered.

Another hardware concern was the battery box and charger. Although the design

used for the construction of the first Prototype II was adequate, a more robust solution is

desirable. For future work, it is recommended that a commercial lithium battery and

charger be purchased from an outside manufacturer.

The last hardware suggestion for improvement has to do with the 3D Texel™

camera packaging. Currently two separate boxes, one that stores the lidar and the other

that stores everything else but the tripod and gps equipment, are used for the 3D Texel™

 82

camera. A goal during redesign is to reduce the size of as much of the hardware as

possible so that only one box is needed for storage and transport.

The software is continually modified and updated based on the current needs, but

there is one major improvement that could be made if the LDScanner™ and LDImager™

programs were ever revisited. This improvement would be in the languages chosen to

write the software. Currently both of these programs were written in Visual Basic and

then integrated with C++ dll’s. A better solution would be to rewrite both LDScanner™

and LDImager™ into C++ so that the entire package is in one language. This would

remove the need for the language translation modules, Camera.dll and CMUCamera.vb.

B. Conclusion

CAIL has designed and constructed a second prototype integrated lidar/EO

camera, or 3D Texel™ camera. This 3D Texel™ camera produces 3D images by

synchronizing and aligning a line-scan lidar and EO camera outputs. This paper

presented the background of CAIL 3D Texel™ camera technology and the overall design

of Prototype II compared with previous work. The specific hardware, software and EO

camera interfacing contributed to by the author was explained. The paper concluded with

a discussion of the Prototype II design and suggestions for future work on this design.

 83

REFERENCES

[1] R. T. Pack, “A co-boresighted synchronized ladar/EO imager for creating 3D

images of dynamic scenes.” The International Society for Optical Engineering, Vol.

5791, Apr. 2005.

[2] Answers.com, Abbreviationz, “LIDAR.” [http://www.answers.com/topic/lidar-1],

July 2005.

[3] RIEGL USA, [http://www.riegl.com/terrestrial_scanners/lpm-2k_/lpm_2k_all.htm],

Oct. 2005.

[4] PS 12 Volt Batteries, Power Sonic, “Rechargeable Batteries.” [http://www.power-

sonic.com], July 2005.

[5] K. Sealy, Personal Interview. Student, Utah State University Center for Advanced

Imaging Lidar, July 28, 2005.

[6] Prosilica, “Why Firewire? Camera Link”

[http://www.prosilica.com/support/why_firewire.htm], Nov. 2005.

[7] RIEGL Laser Measurement Systems “LMS-Z210i Laser Mirror Scanner: Technical

Documentation and Users Instructions.” pg. 29, 2003.

[8] RIEGL USA, [http://www.riegl.com/terrestrial_scanners/lms-z210i_/210i_all.htm],

Oct. 2005.

[9] RIEGL Laser Measurement Systems “LMS-Z210i Laser Mirror Scanner: Technical

Documentation and Users Instructions.” pg. 14, 2003.

[10] Imaging Solutions Group, “LightWise Camera Series: LW-3-S-1394 FireWire™

Smart Digital Imaging Module.” pg. 3-4, 2004.

[11] Imaging Solutions Group, “LightWise Camera Series: LW-3-S-1394 FireWire™

Smart Digital Imaging Module.” pg. 8-15, 2004.

[12] RIEGL Laser Measurement Systems “LMS-Z210i Laser Mirror Scanner: Technical

Documentation and Users Instructions.” pg. 6, 2003.

[13] Powerizer, “14.8 V 2000mah Li-Ion 18650 battery module with Protection IC.”

[http://batteryspace.com/index.asp?PageAction=VIEWPROD&ProdID=1328], July

2005.

 84

[14] Hobby Lobby, “Chargers for Lithium Poly Cells/Packs: Apache 1-4 Cell Li-Poly

Smart Charger 2500.” [http://www.hobby-lobby.com/chargers_lipoly.htm], July

2005.

[15] C. Baker, “Carnegie Melon 1394 Digital Camera Driver, Help Manual.” Carnegie

Melon Robotics Institute, [http://www.cs.cmu.edu/~iwan/1394/1394camera63.zip],

Mar. 31, 2004.

[16] IC Imaging Control Group, “IC Imaging Control Technical Concept: How does IC

Imaging Control interacts with other components?”

[http://www.imagingcontrol.com/ic/docs/faq/how_components_interact.htm], July

2005.

[17] K. Van Isegham, Personal Interview. Founder, Imaging Solutions Group, Feb. 9,

2005.

[18] Carnegie Melon University, Robotics Institute, “IEEE 1394a Driver.”

[http://www.cs.cmu.edu/~iwan/1394/], July 2005.

[19] Imaging Solutions Group, “LightWise Camera Series: LW-3-S-1394 FireWire™

Smart Digital Imaging Module.” pg. 33, 2004.

[20] D. Scofield, Personal Interview. Student, Utah State University Computer Science

Department, Mar. 7, 2005.

 85

APPENDICES

 86

APPENDIX A

STARTRECORDER FUNCTION

CMU Error Codes [12]

int __declspec(dllexport) CALLBACK StartRecorder(char* filename, int width, int
height, int left, int top, int packetSize)
{
 // File declarations
 unsigned char *m_pBitmap = new unsigned char[height * width * 3];

 // HEADER: sizeofheader - int(4 bytes), width - int(4 bytes), height
 // - int(4 bytes), time between images in ns - unsigned int (4 bytes)
 BYTE texhead[17]; //Little Endean
 FILE *fp;

 //Header Size
 texhead[0] = 0x10;
 texhead[1] = 0x00;
 texhead[2] = 0x00;
 texhead[3] = 0x00;
 //Width
 texhead[4] = (BYTE)(width & 0x000000FF);
 texhead[5] = (BYTE)((width & 0x0000FF00)>>8);
 texhead[6] = (BYTE)((width & 0x00FF0000)>>16);
 texhead[7] = (BYTE)((width & 0xFF000000)>>24);
 //Height
 texhead[8] = (BYTE)(height & 0x000000FF);
 texhead[9] = (BYTE)((height & 0x0000FF00)>>8);
 texhead[10] = (BYTE)((height & 0x00FF0000)>>16);
 texhead[11] = (BYTE)((height & 0xFF000000)>>24);
 //Time - 60Hz
 texhead[12] = 0;
 texhead[13] = 0x4C;
 texhead[14] = 0xFE;
 texhead[15] = 0;

 //Time - 30Hz

 87

 //texhead[12] = 0;
 //texhead[13] = 0x98;
 //texhead[14] = 0xFC;
 //texhead[15] = 0x01;

 // Initialize the camera
 if(theCamera->CheckLink() != CAM_SUCCESS)
 return CAM_ERROR;
 if(theCamera->InitCamera() != CAM_SUCCESS)
 return CAM_ERROR;

 theCamera->InquireControlRegisters();
 theCamera->StatusControlRegisters();

 // reads the feature inquiry registers and fills in the
 // corresponding member variables
 theCamera->m_controlSize.Supported();
 theCamera->m_controlSize.Inquire();
 theCamera->m_controlSize.Status();

 // Set partial scan format and mode
 theCamera->SetVideoFormat(7);
 theCamera->SetVideoMode(0);

 if(theCamera->m_controlSize.SetColorCode(4) != CAM_SUCCESS)
 return CAM_ERROR_BUSY;

 // Set partial scan values
 if(theCamera->m_controlSize.SetSize(width, height) != CAM_SUCCESS)
 return CAM_ERROR_NOT_INITIALIZED;
 if(theCamera->m_controlSize.SetPosition(left, top) != CAM_SUCCESS)
 return CAM_ERROR_INVALID_VIDEO_SETTINGS;
 if(theCamera->m_controlSize.SetBytesPerPacket(packetSize) !=
 CAM_SUCCESS)
 return CAM_ERROR_INSUFFICIENT_RESOURCES;

 // Triggering stuff
 // When trying to error check the Inquire request always returns
 // CAM_ERROR but the triggering function still works. So, don't
 // check for errors on inquire and status
 theCamera->m_controlTrigger.Inquire();
 theCamera->m_controlTrigger.Status();
 if(theCamera->m_controlTrigger.SetMode(0,0) != CAM_SUCCESS)
 return CAM_ERROR_BUSY;
 if(theCamera->m_controlTrigger.TurnOn(true) != CAM_SUCCESS)
 return CAM_ERROR_BUSY;

 // initializes the resources necessary for acquiring images
// and starts the camera streaming. Make sure to use ImageAcquisition
// and NOT ImageCapture
 if (theCamera->StartImageAcquisition())
 {
 theCamera->StopImageAcquisition();
 theCamera->m_controlTrigger.TurnOn(false);
 return CAM_ERROR;
 }

 // Deletes existing file if it exists
 if(remove(filename)==-1);

 88

 fp = fopen(filename,"ab");
 fwrite(&texhead[0],1,16,fp);

 bView = TRUE;
 while(bView == true)
 {
 if (theCamera->AcquireImage() && bView == true)
 {
 theCamera->StopImageAcquisition();
 theCamera->m_controlTrigger.TurnOn(false);
 fclose(fp);
 delete [] m_pBitmap;
 return CAM_ERROR_FRAME_TIMEOUT;

 }
 else if (bView == true)
 {
 theCamera->getRGB(m_pBitmap);
 fwrite(m_pBitmap,1,width * height * 3, fp);
 }
 }
 // Cleans everything up
 if (theCamera->StopImageAcquisition())
 return CAM_ERROR;
 theCamera->m_controlTrigger.TurnOn(false);
 fclose(fp);
 delete [] m_pBitmap;

 return CAM_SUCCESS;
}

 89

APPENDIX B

CAMERA.DLL SOURCE CODE

Camera.def

LIBRARY Camera

EXPORTS
 StopRecorder @1
 StartRecorder @2

 C1394CameraHeight @3
 C1394CameraWidth @4
 C1394CamerapData @5
 C1394CameraLinkChecked @6
 C1394CameraInitialized @7

 CheckLinkVB @8
 SelectCameraVB @9
 InitCameraVB @10
 GetVersionVB @11
 GetNodeVB @12
 GetNumberCamerasVB @13
 GetMaxSpeedVB @14
 MemGetNumberChannelsVB @15
 MemGetCurrentChannelVB @16
 MemLoadChannelVB @17
 MemSaveChannelVB @18
 RegLoadSettingsVB @19
 RegSaveSettingsVB @20
 ReadQuadletVB @21
 WriteQuadletVB @22
 GetVideoFormatVB @23
 SetVideoFormatVB @24
 GetVideoModeVB @25
 SetVideoModeVB @26
 GetVideoFrameRateVB @27
 SetVideoFrameRateVB @28
 StartImageCaptureVB @29
 StopImageCaptureVB @30
 CaptureImageVB @31
 StartImageAcquisitionVB @32
 StopImageAcquisitionVB @33
 AcquireImageVB @34
 AcquireImageExVB @35
 getRGBVB @36
 getDIBVB @37
 YtoRGBVB @38
 Y16toRGBVB @39
 YUV411toRGBVB @40
 YUV422toRGBVB @41

 90

 YUV444toRGBVB @42
 RGB16toRGBVB @43
 InquireControlRegistersVB @44
 StatusControlRegistersVB @45
 SetBrightnessVB @46
 SetAutoExposureVB @47
 SetSharpnessVB @48
 SetWhiteBalanceVB @49
 SetHueVB @50
 SetSaturationVB @51
 SetGammaVB @52
 SetShutterVB @53
 SetGainVB @54
 SetIrisVB @55
 SetFocusVB @56
 SetZoomVB @57

 GetBrightnessMin @58
 GetBrightnessMax @59
 GetBrightnessValue1 @60
 GetAutoExposureMin @61
 GetAutoExposureMax @62
 GetAutoExposureValue1 @63
 GetSharpnessMin @64
 GetSharpnessMax @65
 GetSharpnessValue1 @66
 GetWBMin @67
 GetWBMax @68
 GetWBValue1 @69
 GetWBValue2 @70
 GetWBOnePushStatus @71
 GetHueMin @72
 GetHueMax @73
 GetHueValue1 @74
 GetSaturationMin @75
 GetSaturationMax @76
 GetSaturationValue1 @77
 GetGammaMin @78
 GetGammaMax @79
 GetGammaValue1 @80
 GetShutterMin @81
 GetShutterMax @82
 GetShutterValue1 @83
 GetGainMin @84
 GetGainMax @85
 GetGainValue1 @86
 GetIrisMin @87
 GetIrisMax @88
 GetIrisValue1 @89
 GetFocusMin @90
 GetFocusMax @91
 GetFocusValue1 @92
 GetZoomMin @93
 GetZoomMax @94

 91

 GetZoomValue1 @95

 SetWBOnePush @96

 ControlSizemaxV @97
 ControlSizemaxH @98
 ControlSizeunitV @99
 ControlSizeunitH @100
 ControlSizeunitVpos @101
 ControlSizeunitHpos @102
 ControlSizetop @103
 ControlSizeleft @104
 ControlSizeheight @105
 ControlSizewidth @106
 ControlSizecolorCode @107
 ControlSizepixelsFrame @108
 ControlSizebytesFrameHigh @109
 ControlSizebytesFrameLow @110
 ControlSizebytesPacketMin @111
 ControlSizebytesPacketMax @112
 ControlSizebytesPacket @113
 ControlSizepacketsFrame @114

 SupportedVB @115
 ModeSupportedVB @116
 SetColorCodeVB @117
 SetSizeVB @118
 SetPositionVB @119
 SetBytesPerPacketVB @120
 InquireSizeVB @121
 StatusSizeVB @122

 ControlTriggerpresent @123
 ControlTriggerreadout @124
 ControlTriggeronoff @125
 ControlTriggerpolarity @126
 ControlTriggerMode @127
 ControlTriggerstatusPolarity @128
 ControlTriggerstatusOnOff @129
 ControlTriggerstatusMode @130

 SetTriggerModeVB @131
 SetTriggerPolarityVB @132
 TurnTriggerOnVB @133
 StatusTriggerVB @134
 InquireTriggerVB @135

 92

Camera.cpp

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include "1394Camera.h"

// This is the main camera class used to control the
// external device. It is created here so that the
// DLL can interface with it and give an external
// interface not involving classes.
C1394Camera *theCamera;
bool bView;
extern "C"
/**
**/
/* StopRecorder and StartRecorder Functions used in ladar program
*/
/**
**/
void __declspec(dllexport) CALLBACK StopRecorder()
{
 bView = FALSE;
}
int __declspec(dllexport) CALLBACK StartRecorder(char* filename, int
width, int height, int left, int top, int packetSize)
{
 // File declarations
 unsigned char *m_pBitmap = new unsigned char[height * width * 3];
 // HEADER: sizeofheader - int(4 bytes), width - int(4 bytes),
 // height - int(4 bytes), time between images in ns –
 // unsigned int (4 bytes)
 BYTE texhead[17]; //Little Endian
 FILE *fp;
 //int number = 0;
 int *lpnDroppedFrames = new int[1];

 //Header Size
 texhead[0] = 0x10;
 texhead[1] = 0x00;
 texhead[2] = 0x00;
 texhead[3] = 0x00;
 //Width
 texhead[4] = (BYTE)(width & 0x000000FF);
 texhead[5] = (BYTE)((width & 0x0000FF00)>>8);
 texhead[6] = (BYTE)((width & 0x00FF0000)>>16);
 texhead[7] = (BYTE)((width & 0xFF000000)>>24);
 //Height
 texhead[8] = (BYTE)(height & 0x000000FF);
 texhead[9] = (BYTE)((height & 0x0000FF00)>>8);
 texhead[10] = (BYTE)((height & 0x00FF0000)>>16);
 texhead[11] = (BYTE)((height & 0xFF000000)>>24);
 //Time - 60Hz
 texhead[12] = 0;

 93

 texhead[13] = 0x4C;
 texhead[14] = 0xFE;
 texhead[15] = 0;

 //Time - 30Hz
 //texhead[12] = 0;
 //texhead[13] = 0x98;
 //texhead[14] = 0xFC;
 //texhead[15] = 0x01;

 // Initialize the camera
 if(theCamera->CheckLink() != CAM_SUCCESS)
 return CAM_ERROR;
 if(theCamera->InitCamera() != CAM_SUCCESS)
 return CAM_ERROR;

 theCamera->InquireControlRegisters();
 theCamera->StatusControlRegisters();

 // reads the feature inquiry registers and fills in the
 // corresponding member variables
 theCamera->m_controlSize.Supported();
 theCamera->m_controlSize.Inquire();
 theCamera->m_controlSize.Status();

 // Set partial scan format and mode
 theCamera->SetVideoFormat(7);
 theCamera->SetVideoMode(0);

 // RGB color code 4
 if(theCamera->m_controlSize.SetColorCode(4) != CAM_SUCCESS)
 return CAM_ERROR_BUSY;

 // Set partial scan values
 if(theCamera->m_controlSize.SetSize(width, height) !=
CAM_SUCCESS)
 return CAM_ERROR_NOT_INITIALIZED;
 if(theCamera->m_controlSize.SetPosition(left, top) !=
CAM_SUCCESS)
 return CAM_ERROR_INVALID_VIDEO_SETTINGS;
 if(theCamera->m_controlSize.SetBytesPerPacket(packetSize)
 != CAM_SUCCESS)
 return CAM_ERROR_INSUFFICIENT_RESOURCES;

 // theCamera->SetVideoFrameRate(5);

 // Triggering stuff
 // When trying to error check the Inquire request always returns
 // CAM_ERROR but the triggering function still works. So, don't
 // check for errors on inquire and status
 theCamera->m_controlTrigger.Inquire();
 theCamera->m_controlTrigger.Status();

 if(theCamera->m_controlTrigger.SetMode(0,0) != CAM_SUCCESS)

 94

 return CAM_ERROR_BUSY;
 //if(theCamera->m_controlTrigger.SetPolarity(true) !=
CAM_SUCCESS)
 // return CAM_ERROR_INSUFFICIENT_RESOURCES;
 if(theCamera->m_controlTrigger.TurnOn(true) != CAM_SUCCESS)
 return CAM_ERROR_BUSY;

 // initializes the resources necessary for acquiring images and
 // starts the camera streaming
 // Make sure to use ImageAcquisition and NOT ImageCapture
 if (theCamera->StartImageAcquisition())
 {
 theCamera->StopImageAcquisition();
 theCamera->m_controlTrigger.TurnOn(false);
 return CAM_ERROR;
 }

 // Deletes existing file if it exists
 if(remove(filename)==-1);

 fp = fopen(filename,"ab");
 fwrite(&texhead[0],1,16,fp);

 bView = TRUE;
 //size_t NumBytesWritten = 0;
 //size_t buffsize;
 //char outbuff(20);
 //long counter = 0;
 //FILE* outfp;

 //if(remove(strcat(filename,"n"))==-1);
 //outfp = fopen(filename,"a");

 //outfp = fopen(filename,"at");

 // Captures images and saves to file until bView is FALSE
 // (bView is changed by StopRecorder)
 while(bView == true)
 {
 //if (theCamera->AcquireImage() && bView == true)
 if (theCamera->AcquireImageEx(false, lpnDroppedFrames)
 && bView == true)
 {
 theCamera->StopImageAcquisition();
 theCamera->m_controlTrigger.TurnOn(false);
 fclose(fp);
 delete [] m_pBitmap;
 return CAM_ERROR_FRAME_TIMEOUT;

 }
 else if (bView == true)
 {
 theCamera->getRGB(m_pBitmap);
 fwrite(m_pBitmap,1,width * height * 3, fp);

 95

 }
 }

 // Shutdown
 if (theCamera->StopImageAcquisition())
 return CAM_ERROR;
 theCamera->m_controlTrigger.TurnOn(false);
 fclose(fp);
 //fclose(outfp);
 delete [] m_pBitmap;
 return CAM_SUCCESS;
}

/**
**/
/* Function definitions for the C1394Camera Class Members
*/
/**
**/
int __declspec(dllexport) CALLBACK C1394CameraHeight()
{
 return(theCamera->m_height);
}
int __declspec(dllexport) CALLBACK C1394CameraWidth()
{
 return(theCamera->m_width);
}
unsigned char* __declspec(dllexport) CALLBACK C1394CamerapData()
{
 return(theCamera->m_pData);
}
bool __declspec(dllexport) CALLBACK C1394CameraLinkChecked()
{
 return(theCamera->m_linkChecked);
}
bool __declspec(dllexport) CALLBACK C1394CameraInitialized()
{
 return(theCamera->m_cameraInitialized);
}
/**
**/
/* Function definitions for the C1394Camera Class Functions
*/
/**
**/
int __declspec(dllexport) CALLBACK CheckLinkVB()
{
 return(theCamera->CheckLink());
}
int __declspec(dllexport) CALLBACK SelectCameraVB(int node)
{
 return(theCamera->SelectCamera(node));
}

 96

int __declspec(dllexport) CALLBACK InitCameraVB()
{
 return(theCamera->InitCamera());
}
unsigned long __declspec(dllexport) CALLBACK GetVersionVB()
{
 return(theCamera->GetVersion());
}
int __declspec(dllexport) CALLBACK GetNodeVB()
{
 return(theCamera->GetNode());
}
int __declspec(dllexport) CALLBACK GetNumberCamerasVB()
{
 return(theCamera->GetNumberCameras());
}
int __declspec(dllexport) CALLBACK GetMaxSpeedVB()
{
 return(theCamera->GetMaxSpeed());
}
int __declspec(dllexport) CALLBACK MemGetNumberChannelsVB()
{
 return(theCamera->MemGetNumChannels());
}
int __declspec(dllexport) CALLBACK MemGetCurrentChannelVB()
{
 return(theCamera->MemGetCurrentChannel());
}
int __declspec(dllexport) CALLBACK MemLoadChannelVB(int channel)
{
 return(theCamera->MemLoadChannel(channel));
}
int __declspec(dllexport) CALLBACK MemSaveChannelVB(int channel)
{
 return(theCamera->MemSaveChannel(channel));
}
int __declspec(dllexport) CALLBACK RegLoadSettingsVB(const char *pname)
{
 return(theCamera->RegLoadSettings(pname));
}
int __declspec(dllexport) CALLBACK RegSaveSettingsVB(const char *pname)
{
 return(theCamera->RegSaveSettings(pname));
}
int __declspec(dllexport) CALLBACK ReadQuadletVB(unsigned long address,
unsigned long *pdata)
{
 return(theCamera->ReadQuadlet(address, pdata));
}
int __declspec(dllexport) CALLBACK WriteQuadletVB(unsigned long
address, unsigned long data)
{
 return(theCamera->WriteQuadlet(address,data));
}

 97

int __declspec(dllexport) CALLBACK GetVideoFormatVB()
{
 return(theCamera->GetVideoFormat());
}
int __declspec(dllexport) CALLBACK SetVideoFormatVB(unsigned long
format)
{
 return(theCamera->SetVideoFormat(format));
}
int __declspec(dllexport) CALLBACK GetVideoModeVB()
{
 return(theCamera->GetVideoMode());
}
int __declspec(dllexport) CALLBACK SetVideoModeVB(unsigned long mode)
{
 return(theCamera->SetVideoMode(mode));
}
int __declspec(dllexport) CALLBACK GetVideoFrameRateVB()
{
 return(theCamera->GetVideoFrameRate());
}
int __declspec(dllexport) CALLBACK SetVideoFrameRateVB(
 unsigned long framerate)
{
 return(theCamera->SetVideoFrameRate(framerate));
}
int __declspec(dllexport) CALLBACK StartImageCaptureVB()
{
 return(theCamera->StartImageCapture());
}
int __declspec(dllexport) CALLBACK StopImageCaptureVB()
{
 return(theCamera->StopImageCapture());
}
int __declspec(dllexport) CALLBACK CaptureImageVB()
{
 return(theCamera->CaptureImage());
}
int __declspec(dllexport) CALLBACK StartImageAcquisitionVB()
{
 return(theCamera->StartImageAcquisition());
}
int __declspec(dllexport) CALLBACK StopImageAcquisitionVB()
{
 return(theCamera->StopImageAcquisition());
}
int __declspec(dllexport) CALLBACK AcquireImageVB()
{
 return(theCamera->AcquireImage());
}
int __declspec(dllexport) CALLBACK AcquireImageExVB(
 bool DropStaleFrames,
 int *lpnDroppedFrames)
{

 98

 return(theCamera->AcquireImageEx(DropStaleFrames,
lpnDroppedFrames));
}
void __declspec(dllexport) CALLBACK getRGBVB(unsigned char *pBitmap)
{
 return(theCamera->getRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK getDIBVB(unsigned char *pBitmap)
{
 return(theCamera->getDIB(pBitmap));
}
void __declspec(dllexport) CALLBACK YtoRGBVB(unsigned char *pBitmap)
{
 return(theCamera->YtoRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK Y16toRGBVB(unsigned char *pBitmap)
{
 return(theCamera->Y16toRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK YUV411toRGBVB(unsigned char
*pBitmap)
{
 return(theCamera->YUV411toRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK YUV422toRGBVB(unsigned char
*pBitmap)
{
 return(theCamera->YUV422toRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK YUV444toRGBVB(unsigned char
*pBitmap)
{
 return(theCamera->YUV444toRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK RGB16toRGBVB(unsigned char
*pBitmap)
{
 return(theCamera->RGB16toRGB(pBitmap));
}
void __declspec(dllexport) CALLBACK InquireControlRegistersVB()
{
 return(theCamera->InquireControlRegisters());
}
void __declspec(dllexport) CALLBACK StatusControlRegistersVB()
{
 return(theCamera->StatusControlRegisters());
}
/* CameraControl wrapper functions */
void __declspec(dllexport) CALLBACK SetBrightnessVB(int value)
{
 return(theCamera->SetBrightness(value));
}
void __declspec(dllexport) CALLBACK SetAutoExposureVB(int value)
{

 99

 return(theCamera->SetAutoExposure(value));
}
void __declspec(dllexport) CALLBACK SetSharpnessVB(int value)
{
 return(theCamera->SetSharpness(value));
}
void __declspec(dllexport) CALLBACK SetWhiteBalanceVB(int u,int v)
{
 return(theCamera->SetWhiteBalance(u,v));
}
void __declspec(dllexport) CALLBACK SetHueVB(int value)
{
 return(theCamera->SetHue(value));
}
void __declspec(dllexport) CALLBACK SetSaturationVB(int value)
{
 return(theCamera->SetSaturation(value));
}
void __declspec(dllexport) CALLBACK SetGammaVB(int value)
{
 return(theCamera->SetGamma(value));
}
void __declspec(dllexport) CALLBACK SetShutterVB(int value)
{
 return(theCamera->SetShutter(value));
}
void __declspec(dllexport) CALLBACK SetGainVB(int value)
{
 return(theCamera->SetGain(value));
}
void __declspec(dllexport) CALLBACK SetIrisVB(int value)
{
 return(theCamera->SetIris(value));
}
void __declspec(dllexport) CALLBACK SetFocusVB(int value)
{
 return(theCamera->SetFocus(value));
}
void __declspec(dllexport) CALLBACK SetZoomVB(int value)
{
 return(theCamera->SetZoom(value));
}
/**
**/
/* Function definitions for the C1394CameraControl Class Members
*/
/**
**/
unsigned short __declspec(dllexport) CALLBACK GetBrightnessMin()
{
 return(theCamera->m_controlBrightness.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetBrightnessMax()
{

 100

 return(theCamera->m_controlBrightness.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetBrightnessValue1()
{
 return(theCamera->m_controlBrightness.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetAutoExposureMin()
{
 return(theCamera->m_controlAutoExposure.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetAutoExposureMax()
{
 return(theCamera->m_controlAutoExposure.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetAutoExposureValue1()
{
 return(theCamera->m_controlAutoExposure.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetSharpnessMin()
{
 return(theCamera->m_controlSharpness.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetSharpnessMax()
{
 return(theCamera->m_controlSharpness.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetSharpnessValue1()
{
 return(theCamera->m_controlSharpness.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetWBMin()
{
 return(theCamera->m_controlWhiteBalance.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetWBMax()
{
 return(theCamera->m_controlWhiteBalance.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetWBValue1()
{
 return(theCamera->m_controlWhiteBalance.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetWBValue2()
{
 return(theCamera->m_controlWhiteBalance.m_value2);
}
bool __declspec(dllexport) CALLBACK GetWBOnePushStatus()
{
 return(theCamera->m_controlWhiteBalance.m_statusOnePush);
}
unsigned short __declspec(dllexport) CALLBACK GetHueMin()
{
 return(theCamera->m_controlHue.m_min);
}

 101

unsigned short __declspec(dllexport) CALLBACK GetHueMax()
{
 return(theCamera->m_controlHue.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetHueValue1()
{
 return(theCamera->m_controlHue.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetSaturationMin()
{
 return(theCamera->m_controlSaturation.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetSaturationMax()
{
 return(theCamera->m_controlSaturation.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetSaturationValue1()
{
 return(theCamera->m_controlSaturation.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetGammaMin()
{
 return(theCamera->m_controlGamma.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetGammaMax()
{
 return(theCamera->m_controlGamma.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetGammaValue1()
{
 return(theCamera->m_controlGamma.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetShutterMin()
{
 return(theCamera->m_controlShutter.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetShutterMax()
{
 return(theCamera->m_controlShutter.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetShutterValue1()
{
 return(theCamera->m_controlShutter.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetGainMin()
{
 return(theCamera->m_controlGain.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetGainMax()
{
 return(theCamera->m_controlGain.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetGainValue1()
{

 102

 return(theCamera->m_controlGain.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetIrisMin()
{
 return(theCamera->m_controlIris.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetIrisMax()
{
 return(theCamera->m_controlIris.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetIrisValue1()
{
 return(theCamera->m_controlIris.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetFocusMin()
{
 return(theCamera->m_controlFocus.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetFocusMax()
{
 return(theCamera->m_controlFocus.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetFocusValue1()
{
 return(theCamera->m_controlFocus.m_value1);
}
unsigned short __declspec(dllexport) CALLBACK GetZoomMin()
{
 return(theCamera->m_controlZoom.m_min);
}
unsigned short __declspec(dllexport) CALLBACK GetZoomMax()
{
 return(theCamera->m_controlZoom.m_max);
}
unsigned short __declspec(dllexport) CALLBACK GetZoomValue1()
{
 return(theCamera->m_controlZoom.m_value1);
}
/**
**/
/* Function definitions for the C1394CameraControl Class Functions
*/
/**
**/
int __declspec(dllexport) CALLBACK SetWBOnePush()
{
 return(theCamera->m_controlWhiteBalance.SetOnePush());
}
/**
**/
/* Function definitions for the C1394CameraControlSize Class Member
*/
/**
**/

 103

int __declspec(dllexport) CALLBACK ControlSizemaxV()
{
 return(theCamera->m_controlSize.m_maxV);
}
int __declspec(dllexport) CALLBACK ControlSizemaxH()
{
 return(theCamera->m_controlSize.m_maxH);
}
int __declspec(dllexport) CALLBACK ControlSizeunitV()
{
 return(theCamera->m_controlSize.m_unitV);
}
int __declspec(dllexport) CALLBACK ControlSizeunitH()
{
 return(theCamera->m_controlSize.m_unitH);
}
int __declspec(dllexport) CALLBACK ControlSizeunitVpos()
{
 return(theCamera->m_controlSize.m_unitVpos);
}
int __declspec(dllexport) CALLBACK ControlSizeunitHpos()
{
 return(theCamera->m_controlSize.m_unitHpos);
}
int __declspec(dllexport) CALLBACK ControlSizetop()
{
 return(theCamera->m_controlSize.m_top);
}
int __declspec(dllexport) CALLBACK ControlSizeleft()
{
 return(theCamera->m_controlSize.m_left);
}
int __declspec(dllexport) CALLBACK ControlSizeheight()
{
 return(theCamera->m_controlSize.m_height);
}
int __declspec(dllexport) CALLBACK ControlSizewidth()
{
 return(theCamera->m_controlSize.m_width);
}
int __declspec(dllexport) CALLBACK ControlSizecolorCode()
{
 return(theCamera->m_controlSize.m_colorCode);
}
int __declspec(dllexport) CALLBACK ControlSizepixelsFrame()
{
 return(theCamera->m_controlSize.m_pixelsFrame);
}
int __declspec(dllexport) CALLBACK ControlSizebytesFrameHigh()
{
 return(theCamera->m_controlSize.m_bytesFrameHigh);
}
int __declspec(dllexport) CALLBACK ControlSizebytesFrameLow()

 104

{
 return(theCamera->m_controlSize.m_bytesFrameLow);
}
int __declspec(dllexport) CALLBACK ControlSizebytesPacketMin()
{
 return(theCamera->m_controlSize.m_bytesPacketMin);
}
int __declspec(dllexport) CALLBACK ControlSizebytesPacketMax()
{
 return(theCamera->m_controlSize.m_bytesPacketMax);
}
int __declspec(dllexport) CALLBACK ControlSizebytesPacket()
{
 return(theCamera->m_controlSize.m_bytesPacket);
}
int __declspec(dllexport) CALLBACK ControlSizepacketsFrame()
{
 return(theCamera->m_controlSize.m_packetsFrame);
}
/**
/
/* Function definitions for the C1394CameraControlSize Class
Functions*/
/**
/
bool __declspec(dllexport) CALLBACK SupportedVB()
{
 return(theCamera->m_controlSize.Supported());
}
bool __declspec(dllexport) CALLBACK ModeSupportedVB(int mode)
{
 return(theCamera->m_controlSize.ModeSupported(mode));
}
int __declspec(dllexport) CALLBACK SetColorCodeVB(int code)
{
 return(theCamera->m_controlSize.SetColorCode(code));
}
int __declspec(dllexport) CALLBACK SetSizeVB(int width, int height)
{
 theCamera->m_controlSize.Status();
 theCamera->m_controlSize.Inquire();
 return(theCamera->m_controlSize.SetSize(width, height));
}
int __declspec(dllexport) CALLBACK SetPositionVB(int left, int top)
{
 return(theCamera->m_controlSize.SetPosition(left,top));
}
int __declspec(dllexport) CALLBACK SetBytesPerPacketVB(int bytes)
{
 return(theCamera->m_controlSize.SetBytesPerPacket(bytes));
}
int __declspec(dllexport) CALLBACK InquireSizeVB()
{
 return(theCamera->m_controlSize.Inquire());

 105

}
int __declspec(dllexport) CALLBACK StatusSizeVB()
{
 return(theCamera->m_controlSize.Status());
}
/**
**/
/* Function definitions for the C1394CameraControlTrigger Class Methods
*/
/**
**/
bool __declspec(dllexport) CALLBACK ControlTriggerpresent()
{
 return(theCamera->m_controlTrigger.m_present);
}
bool __declspec(dllexport) CALLBACK ControlTriggerreadout()
{
 return(theCamera->m_controlTrigger.m_readout);
}
bool __declspec(dllexport) CALLBACK ControlTriggeronoff()
{
 return(theCamera->m_controlTrigger.m_onoff);
}
bool __declspec(dllexport) CALLBACK ControlTriggerpolarity()
{
 return(theCamera->m_controlTrigger.m_polarity);
}
bool* __declspec(dllexport) CALLBACK ControlTriggerMode()
{
 return(theCamera->m_controlTrigger.m_triggerMode);
}
bool __declspec(dllexport) CALLBACK ControlTriggerstatusPolarity()
{
 return(theCamera->m_controlTrigger.m_statusPolarity);
}
bool __declspec(dllexport) CALLBACK ControlTriggerstatusOnOff()
{
 return(theCamera->m_controlTrigger.m_statusOnOff);
}
int __declspec(dllexport) CALLBACK ControlTriggerstatusMode()
{
 return(theCamera->m_controlTrigger.m_statusMode);
}
/**
**/
/*Function definitions for the C1394CameraControlTrigger Class
Functions*/
/**
**/
int __declspec(dllexport) CALLBACK SetTriggerModeVB(int mode, int
parameter)
{
 return(theCamera->m_controlTrigger.SetMode(mode, parameter));
}

 106

int __declspec(dllexport) CALLBACK SetTriggerPolarityVB(bool polarity)
{
 return(theCamera->m_controlTrigger.SetPolarity(polarity));
}
int __declspec(dllexport) CALLBACK TurnTriggerOnVB(bool on)
{
 return(theCamera->m_controlTrigger.TurnOn(on));
}
int __declspec(dllexport) CALLBACK StatusTriggerVB()
{
 return(theCamera->m_controlTrigger.Status());
}
int __declspec(dllexport) CALLBACK InquireTriggerVB()
{
 return(theCamera->m_controlTrigger.Inquire());
}
/**
** DllMain
** This routine is called when the DLL is loaded, unloaded
** etc. It is also called when threads are entered and
** exited (not dealt with here)
**/
//extern "C"
BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 switch(ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 {
 // Code to run when the DLL is loaded
 // Create camera class here
 // MessageBox(NULL, "A theCamera class has been
instantiated", "Information",
 //MB_OK);
 theCamera = new C1394Camera();
 break;
 }
 case DLL_PROCESS_DETACH:
 {
 // Code to run when the DLL is freed
 // Destroy camera class here
 //MessageBox(NULL, "theCamera destructor has been
called", "Information",
 //MB_OK);
 delete theCamera;
 break;
 }
 case DLL_THREAD_ATTACH:
 {
 // Code to run when a thread is created during the DLL's
lifetime.

 107

 break;
 }
 case DLL_THREAD_DETACH:
 {
 // Code to run when a thread ends normally.
 break;
 }
 default:
 {
 break;
 }
 }

 return TRUE;
}

 108

APPENDIX C

CMUCAMERA.VB SOURCE CODE

Module CMUCamera
#Region "Camera DLL Constants"
 Friend Const CAM_SUCCESS As Int16 = 0
 Friend Const CAM_ERROR As Int16 = -1
 Friend Const CAM_ERROR_NOT_INITIALIZED As Int16 = 1
 Friend Const CAM_ERROR_INVALID_VIDEO_SETTINGS As Int16 = 2
 Friend Const CAM_ERROR_BUSY As Int16 = 3
 Friend Const CAM_ERROR_INSUFFICIENT_RESOURCES As Int16 = 4
 Friend Const CAM_ERROR_PARAM_OUT_OF_RANGE As Int16 = 5
 Friend Const CAM_ERROR_FRAME_TIMEOUT As Int16 = 6
#End Region

 'Recording Functions
 Friend Declare Sub StopRecorder Lib "Camera.dll" ()
 Friend Declare Function StartRecorder Lib "Camera.dll" (_
 ByVal filename As String, _
 ByVal width As Integer, _
 ByVal height As Integer, _
 ByVal left As Integer, _
 ByVal top As Integer, _
 ByVal packetSize As Integer _
) As Integer

 'Function definitions for the C1394Camera Class Members
 Friend Declare Function C1394CameraHeight Lib "Camera.dll" () _
 As Integer
 Friend Declare Function C1394CameraWidth Lib "Camera.dll" () _
 As Integer
 Friend Declare Function C1394CamerapData Lib "Camera.dll" () _
 As Byte 'Pointer Issues
 Friend Declare Function C1394CameraLinkChecked Lib "Camera.dll" ()
_
 As Byte
 Friend Declare Function C1394CameraInitialized Lib "Camera.dll" ()
_
 As Byte

 'Function definitions for the C1394Camera Class Functions
 Friend Declare Function CheckLinkVB Lib "Camera.dll" () As Integer
 Friend Declare Function SelectCameraVB Lib "Camera.dll" (_
 ByVal node As Integer
) As Integer
 Friend Declare Function InitCameraVB Lib "Camera.dll" () As Integer
 Friend Declare Function GetVersionVB Lib "Camera.dll" () As UInt32
 Friend Declare Function GetNodeVB Lib "Camera.dll" () As Integer
 Friend Declare Function GetNumberCamerasVB Lib "Camera.dll" () _
 As Integer
 Friend Declare Function GetMaxSpeedVB Lib "Camera.dll" () As

 109

Integer
 Friend Declare Function MemGetNumberChannelsVB Lib "Camera.dll" ()
_
 As Integer
 Friend Declare Function MemGetCurrentChannelVB Lib "Camera.dll" ()
_
 As Integer
 Friend Declare Function MemLoadChannelVB Lib "Camera.dll" (_
 ByVal channel As Integer _
) As Integer
 Friend Declare Function MemSaveChannelVB Lib "Camera.dll" (_
 ByVal channel As Integer _
) As Integer
 Friend Declare Function RegLoadSettingsVB Lib "Camera.dll" (_
 ByRef pname As Byte _
) As Integer
 Friend Declare Function RegSaveSettingsVB Lib "Camera.dll" (_
 ByRef pname As Byte _
) As Integer
 Friend Declare Function ReadQuadletVB Lib "Camera.dll" (_
 ByVal address As UInt32, _
 ByRef pdata As UInt32 _
) As Integer
 Friend Declare Function WriteQuadletVB Lib "Camera.dll" (_
 ByVal address As UInt32, _
 ByVal pdata As UInt32 _
) As Integer
 Friend Declare Function GetVideoFormatVB Lib "Camera.dll" (_
) As Integer
 Friend Declare Function SetVideoFormatVB Lib "Camera.dll" (_
 ByVal format As UInt32 _
) As Integer
 Friend Declare Function GetVideoModeVB Lib "Camera.dll" () As
Integer
 Friend Declare Function SetVideoModeVB Lib "Camera.dll" (_
 ByVal mode As UInt32 _
) As Integer
 Friend Declare Function GetVideoFrameRateVB Lib "Camera.dll" (_
) As Integer
 Friend Declare Function SetVideoFrameRateVB Lib "Camera.dll" (_
 ByVal frame_rate As UInt32 _
) As Integer
 Friend Declare Function StartImageCaptureVB Lib "Camera.dll" (_
) As Integer
 Friend Declare Function StopImageCaptureVB Lib "Camera.dll" (_
) As Integer
 Friend Declare Function CaptureImageVB Lib "Camera.dll" () As
Integer
 Friend Declare Function StartImageAcquisitionVB Lib "Camera.dll" (
_
) As Integer
 Friend Declare Function StopImageAcquisitionVB Lib "Camera.dll" (_
) As Integer
 Friend Declare Function AcquireImageVB Lib "Camera.dll" () As

 110

Integer
 Friend Declare Function AcquireImageExVB Lib "Camera.dll" (_
 ByVal DropStaleFrames As Byte, _
 ByRef lpnDroppedFrames As Integer _
) As Integer
 Friend Declare Sub getRGBVB Lib "Camera.dll" (ByVal pBitmap() As
Byte)
 Friend Declare Sub getDIBVB Lib "Camera.dll" (ByVal pBitmap() As
Byte)
 Friend Declare Sub YtoRGBVB Lib "Camera.dll" (ByVal pBitmap() As
Byte)
 Friend Declare Sub Y16toRGBVB Lib "Camera.dll" (_
 ByVal pBitmap() As Byte)
 Friend Declare Sub YUV411toRGBVB Lib "Camera.dll" (ByVal pBitmap()
_
 As Byte)
 Friend Declare Sub YUV422toRGBVB Lib "Camera.dll" (ByVal pBitmap()
_
 As Byte)
 Friend Declare Sub YUV444toRGBVB Lib "Camera.dll" (ByVal pBitmap()
_
 As Byte)
 Friend Declare Sub RGB16TORGBVB Lib "Camera.dll" (ByVal pBitmap() _
 As Byte)
 Friend Declare Function SetWBOnePush Lib "Camera.dll" () As Integer

 ' Camera Control Functions
 Friend Declare Sub InquireControlRegistersVB Lib "Camera.dll" ()
 Friend Declare Sub StatusControlRegistersVB Lib "Camera.dll" ()
 Friend Declare Sub SetBrightnessVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetAutoExposureVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetSharpnessVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetWhiteBalanceVB Lib "Camera.dll" (_
 ByVal u As Integer, _
 ByVal v As Integer)
 Friend Declare Sub SetHueVB Lib "Camera.dll" (ByVal value As
Integer)
 Friend Declare Sub SetSaturationVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetGammaVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetShutterVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetGainVB Lib "Camera.dll" (ByVal value As
Integer)
 Friend Declare Sub SetIrisVB Lib "Camera.dll" (ByVal value As
Integer)
 Friend Declare Sub SetFocusVB Lib "Camera.dll" (_
 ByVal value As Integer)
 Friend Declare Sub SetZoomVB Lib "Camera.dll" (ByVal value As
Integer)

 111

 ' Camera Control Methods
 Friend Declare Function GetBrightnessMin Lib "Camera.dll" () As
Short
 Friend Declare Function GetBrightnessMax Lib "Camera.dll" () As
Short
 Friend Declare Function GetBrightnessValue1 Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetAutoExposureMin Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetAutoExposureMax Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetAutoExposureValue1 Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetSharpnessMin Lib "Camera.dll" () As
Short
 Friend Declare Function GetSharpnessMax Lib "Camera.dll" () As
Short
 Friend Declare Function GetSharpnessValue1 Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetWBMin Lib "Camera.dll" () As Short
 Friend Declare Function GetWBMax Lib "Camera.dll" () As Short
 Friend Declare Function GetWBValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetWBValue2 Lib "Camera.dll" () As Short
 Friend Declare Function GetWBOnePushStatus Lib "Camera.dll" () As
Byte
 Friend Declare Function GetHueMin Lib "Camera.dll" () As Short
 Friend Declare Function GetHueMax Lib "Camera.dll" () As Short
 Friend Declare Function GetHueValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetSaturationMin Lib "Camera.dll" () As
Short
 Friend Declare Function GetSaturationMax Lib "Camera.dll" () As
Short
 Friend Declare Function GetSaturationValue1 Lib "Camera.dll" () _
 As Short
 Friend Declare Function GetGammaMin Lib "Camera.dll" () As Short
 Friend Declare Function GetGammaMax Lib "Camera.dll" () As Short
 Friend Declare Function GetGammaValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetShutterMin Lib "Camera.dll" () As Short
 Friend Declare Function GetShutterMax Lib "Camera.dll" () As Short
 Friend Declare Function GetShutterValue1 Lib "Camera.dll" () As
Short
 Friend Declare Function GetGainMin Lib "Camera.dll" () As Short
 Friend Declare Function GetGainMax Lib "Camera.dll" () As Short
 Friend Declare Function GetGainValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetIrisMin Lib "Camera.dll" () As Short
 Friend Declare Function GetIrisMax Lib "Camera.dll" () As Short
 Friend Declare Function GetIrisValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetFocusMin Lib "Camera.dll" () As Short
 Friend Declare Function GetFocusMax Lib "Camera.dll" () As Short
 Friend Declare Function GetFocusValue1 Lib "Camera.dll" () As Short
 Friend Declare Function GetZoomMin Lib "Camera.dll" () As Short
 Friend Declare Function GetZoomMax Lib "Camera.dll" () As Short
 Friend Declare Function GetZoomValue1 Lib "Camera.dll" () As Short

 112

 ' Camera Control Functions
 Friend Declare Function SetWBOnePush Lib "Camera.dll" (_
 ByVal value As Integer _
) As Integer

 'Function definitions for the C1394CameraControlSize Class Methods
 Friend Declare Function ControlSizemaxV Lib "Camera.dll" () As Byte
 Friend Declare Function ControlSizemaxH Lib "Camera.dll" () As Byte
 Friend Declare Function ControlSizeunitV Lib "Camera.dll" () As
Byte
 Friend Declare Function ControlSizeunitH Lib "Camera.dll" () As
Byte
 Friend Declare Function ControlSizeunitVpos Lib "Camera.dll" () _
 As Byte
 Friend Declare Function ControlSizeunitHpos Lib "Camera.dll" () _
 As Byte
 Friend Declare Function ControlSizetop Lib "Camera.dll" () As Byte
 Friend Declare Function ControlSizeleft Lib "Camera.dll" () As Byte
 Friend Declare Function ControlSizeheight Lib "Camera.dll" () As
Byte
 Friend Declare Function ControlSizewidth Lib "Camera.dll" () As
Byte
 Friend Declare Function ControlSizecolorCode Lib "Camera.dll" () _
 As Byte
 Friend Declare Function ControlSizepixelsFrame Lib "Camera.dll" ()
_
 As Byte
 Friend Declare Function ControlSizebytesframeHigh Lib "Camera.dll"
(_
) As Byte
 Friend Declare Function ControlSizebytesFrameLow Lib "Camera.dll" (
_
) As Byte
 Friend Declare Function ControlSizebytesPacketMin Lib "Camera.dll"
(_
) As Byte
 Friend Declare Function ControlSizebytesPacketMax Lib "Camera.dll"
(_
) As Byte
 Friend Declare Function ControlSizebytesPacket Lib "Camera.dll" (_
) As Byte
 Friend Declare Function ControlSizepacketsFrame Lib "Camera.dll" (
_
) As Byte

 ' Function definitions for the C1394CameraControlSize Class
Functions
 Friend Declare Function SupportedVB Lib "Camera.dll" () As Byte
 Friend Declare Function ModeSupportedVB Lib "Camera.dll" () As Byte
 Friend Declare Function SetColorCodeVB Lib "Camera.dll" (_
 ByVal code As Integer _
) As Integer
 Friend Declare Function SetSizeVB Lib "Camera.dll" (_

 113

 ByVal width As Integer, _
 ByVal height As Integer _
) As Integer
 Friend Declare Function SetPositionVB Lib "Camera.dll" (_
 ByVal left As Integer, _
 ByVal top As Integer _
) As Integer
 Friend Declare Function SetBytesPerPacketVB Lib "Camera.dll" (_
 ByVal bytes As Integer _
) As Integer
 Friend Declare Function InquireSizeVB Lib "Camera.dll" () As
Integer
 Friend Declare Function StatusSizeVB Lib "Camera.dll" () As Integer

 ' Function definitions for the C1394CameraControlTrigger Class
Members
 Friend Declare Function ControlTriggerpresent Lib "Camera.dll" (_
) As Byte
 Friend Declare Function ControlTriggerreadout Lib "Camera.dll" (_
) As Byte
 Friend Declare Function ControlTriggeronoff Lib "Camera.dll" (_
) As Byte
 Friend Declare Function ControlTriggerpolarity Lib "Camera.dll" (_
) As Byte
 'Friend Declare Function ControlTriggermode Lib "Camera.dll" (_
) As Byte 'This is type pointer to byte
 Friend Declare Function ControlTriggerstatusPolarity Lib _
 "Camera.dll" () As Byte
 Friend Declare Function ControlTriggerstatusOnOff Lib "Camera.dll"
(
) As Byte
 Friend Declare Function ControlTriggerstatusMode Lib "Camera.dll" (
_
) As Byte

 ' Function definitions for the C1394CameraControlTrigger Class
 Functions
 Friend Declare Function SetTriggerModeVB Lib "Camera.dll" (_
 ByVal mode As Integer, _
 ByVal parameter As Integer _
) As Integer
 Friend Declare Function SetTriggerPolarityVB Lib "Camera.dll" (_
 ByVal polarity As Byte _
) As Integer
 Friend Declare Function TurnTriggerOnVB Lib "Camera.dll" (_
 ByVal triggerOn As Boolean _
) As Integer
 Friend Declare Function StatusTriggerVB Lib "Camera.dll" () As
Integer
 Friend Declare Function InquireTriggerVB Lib "Camera.dll" (_
) As Integer

 Friend Declare Function InitializeRoutine Lib "Camera.dll" (_
) As Integer

 114

End Module

 115

APPENDIX D

CAMERA DIALOG BOX SOURCE CODE

Imports System.Math

Public Class PicForm
 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As
Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form
Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 Friend WithEvents CMUImageBox As System.Windows.Forms.PictureBox
 Friend WithEvents PicTimer As System.Windows.Forms.Timer
 Friend WithEvents ControlsPanel As System.Windows.Forms.Panel
 Friend WithEvents TextBoxAutoExposure As
System.Windows.Forms.TextBox
 Friend WithEvents LabelAutoExposure As System.Windows.Forms.Label
 Friend WithEvents trbrAutoExposure As System.Windows.Forms.TrackBar
 Friend WithEvents TextBoxBrightness As System.Windows.Forms.TextBox
 Friend WithEvents TextBoxShutter As System.Windows.Forms.TextBox
 Friend WithEvents GroupBox1 As System.Windows.Forms.GroupBox
 Friend WithEvents LabelWBviolet As System.Windows.Forms.Label
 Friend WithEvents LabelWBblue As System.Windows.Forms.Label
 Friend WithEvents trbrWBblue As System.Windows.Forms.TrackBar

 116

 Friend WithEvents trbrWBviolet As System.Windows.Forms.TrackBar
 Friend WithEvents TextBoxWBviolet As System.Windows.Forms.TextBox
 Friend WithEvents TextBoxWBblue As System.Windows.Forms.TextBox
 Friend WithEvents ButtonWBOnePush As System.Windows.Forms.Button
 Friend WithEvents LabelBrightness As System.Windows.Forms.Label
 Friend WithEvents LabelShutter As System.Windows.Forms.Label
 Friend WithEvents trbrBrightness As System.Windows.Forms.TrackBar
 Friend WithEvents trbrShutter As System.Windows.Forms.TrackBar
 Friend WithEvents HistoImageBox As System.Windows.Forms.PictureBox
 Friend WithEvents LeftBtn As System.Windows.Forms.CheckBox
 Friend WithEvents SetBtn As System.Windows.Forms.Button
 Friend WithEvents RightBtn As System.Windows.Forms.CheckBox
 Friend WithEvents PickLimitLbl As System.Windows.Forms.Label
 Friend WithEvents HistLbl As System.Windows.Forms.Label
 Friend WithEvents ApplyCloseBtn As System.Windows.Forms.Button
 <System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()
 Me.components = New System.ComponentModel.Container
 Dim resources As System.Resources.ResourceManager = New
System.Resources.ResourceManager(GetType(PicForm))
 Me.CMUImageBox = New System.Windows.Forms.PictureBox
 Me.PicTimer = New System.Windows.Forms.Timer(Me.components)
 Me.ControlsPanel = New System.Windows.Forms.Panel
 Me.HistLbl = New System.Windows.Forms.Label
 Me.HistoImageBox = New System.Windows.Forms.PictureBox
 Me.TextBoxAutoExposure = New System.Windows.Forms.TextBox
 Me.LabelAutoExposure = New System.Windows.Forms.Label
 Me.trbrAutoExposure = New System.Windows.Forms.TrackBar
 Me.TextBoxBrightness = New System.Windows.Forms.TextBox
 Me.TextBoxShutter = New System.Windows.Forms.TextBox
 Me.GroupBox1 = New System.Windows.Forms.GroupBox
 Me.LabelWBviolet = New System.Windows.Forms.Label
 Me.LabelWBblue = New System.Windows.Forms.Label
 Me.trbrWBblue = New System.Windows.Forms.TrackBar
 Me.trbrWBviolet = New System.Windows.Forms.TrackBar
 Me.TextBoxWBviolet = New System.Windows.Forms.TextBox
 Me.TextBoxWBblue = New System.Windows.Forms.TextBox
 Me.ButtonWBOnePush = New System.Windows.Forms.Button
 Me.LabelBrightness = New System.Windows.Forms.Label
 Me.LabelShutter = New System.Windows.Forms.Label
 Me.trbrBrightness = New System.Windows.Forms.TrackBar
 Me.trbrShutter = New System.Windows.Forms.TrackBar
 Me.SetBtn = New System.Windows.Forms.Button
 Me.RightBtn = New System.Windows.Forms.CheckBox
 Me.PickLimitLbl = New System.Windows.Forms.Label
 Me.LeftBtn = New System.Windows.Forms.CheckBox
 Me.ApplyCloseBtn = New System.Windows.Forms.Button
 Me.ControlsPanel.SuspendLayout()
 CType(Me.trbrAutoExposure,
System.ComponentModel.ISupportInitialize).BeginInit()
 Me.GroupBox1.SuspendLayout()
 CType(Me.trbrWBblue,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.trbrWBviolet,

 117

System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.trbrBrightness,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.trbrShutter,
System.ComponentModel.ISupportInitialize).BeginInit()
 Me.SuspendLayout()
 '
 'CMUImageBox
 '
 Me.CMUImageBox.Location = New System.Drawing.Point(0, 0)
 Me.CMUImageBox.Name = "CMUImageBox"
 Me.CMUImageBox.Size = New System.Drawing.Size(240, 224)
 Me.CMUImageBox.SizeMode =
System.Windows.Forms.PictureBoxSizeMode.AutoSize
 Me.CMUImageBox.TabIndex = 1
 Me.CMUImageBox.TabStop = False
 '
 'PicTimer
 '
 '
 'ControlsPanel
 '
 Me.ControlsPanel.BorderStyle =
System.Windows.Forms.BorderStyle.Fixed3D
 Me.ControlsPanel.Controls.Add(Me.ApplyCloseBtn)
 Me.ControlsPanel.Controls.Add(Me.HistLbl)
 Me.ControlsPanel.Controls.Add(Me.HistoImageBox)
 Me.ControlsPanel.Controls.Add(Me.TextBoxAutoExposure)
 Me.ControlsPanel.Controls.Add(Me.LabelAutoExposure)
 Me.ControlsPanel.Controls.Add(Me.trbrAutoExposure)
 Me.ControlsPanel.Controls.Add(Me.TextBoxBrightness)
 Me.ControlsPanel.Controls.Add(Me.TextBoxShutter)
 Me.ControlsPanel.Controls.Add(Me.GroupBox1)
 Me.ControlsPanel.Controls.Add(Me.LabelBrightness)
 Me.ControlsPanel.Controls.Add(Me.LabelShutter)
 Me.ControlsPanel.Controls.Add(Me.trbrBrightness)
 Me.ControlsPanel.Controls.Add(Me.trbrShutter)
 Me.ControlsPanel.Controls.Add(Me.SetBtn)
 Me.ControlsPanel.Controls.Add(Me.RightBtn)
 Me.ControlsPanel.Controls.Add(Me.PickLimitLbl)
 Me.ControlsPanel.Controls.Add(Me.LeftBtn)
 Me.ControlsPanel.Location = New System.Drawing.Point(256, 8)
 Me.ControlsPanel.Name = "ControlsPanel"
 Me.ControlsPanel.Size = New System.Drawing.Size(272, 472)
 Me.ControlsPanel.TabIndex = 2
 '
 'HistLbl
 '
 Me.HistLbl.Font = New System.Drawing.Font("Microsoft Sans
Serif", 9.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.HistLbl.Location = New System.Drawing.Point(8, 339)
 Me.HistLbl.Name = "HistLbl"
 Me.HistLbl.Size = New System.Drawing.Size(256, 23)

 118

 Me.HistLbl.TabIndex = 38
 Me.HistLbl.Text = "Intensity Histogram"
 Me.HistLbl.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'HistoImageBox
 '
 Me.HistoImageBox.Location = New System.Drawing.Point(8, 208)
 Me.HistoImageBox.Name = "HistoImageBox"
 Me.HistoImageBox.Size = New System.Drawing.Size(256, 128)
 Me.HistoImageBox.TabIndex = 37
 Me.HistoImageBox.TabStop = False
 '
 'TextBoxAutoExposure
 '
 Me.TextBoxAutoExposure.Enabled = False
 Me.TextBoxAutoExposure.Location = New System.Drawing.Point(61,
136)
 Me.TextBoxAutoExposure.Name = "TextBoxAutoExposure"
 Me.TextBoxAutoExposure.Size = New System.Drawing.Size(32, 20)
 Me.TextBoxAutoExposure.TabIndex = 36
 Me.TextBoxAutoExposure.Text = ""
 '
 'LabelAutoExposure
 '
 Me.LabelAutoExposure.Font = New System.Drawing.Font("Microsoft
Sans Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.LabelAutoExposure.Location = New System.Drawing.Point(56, 9)
 Me.LabelAutoExposure.Name = "LabelAutoExposure"
 Me.LabelAutoExposure.Size = New System.Drawing.Size(40, 23)
 Me.LabelAutoExposure.TabIndex = 35
 Me.LabelAutoExposure.Text = "Analog Gain"
 Me.LabelAutoExposure.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'trbrAutoExposure
 '
 Me.trbrAutoExposure.LargeChange = 1
 Me.trbrAutoExposure.Location = New System.Drawing.Point(56, 32)
 Me.trbrAutoExposure.Name = "trbrAutoExposure"
 Me.trbrAutoExposure.Orientation =
System.Windows.Forms.Orientation.Vertical
 Me.trbrAutoExposure.Size = New System.Drawing.Size(42, 104)
 Me.trbrAutoExposure.TabIndex = 34
 Me.trbrAutoExposure.TickStyle =
System.Windows.Forms.TickStyle.Both
 '
 'TextBoxBrightness
 '
 Me.TextBoxBrightness.Enabled = False
 Me.TextBoxBrightness.Location = New System.Drawing.Point(109,
136)
 Me.TextBoxBrightness.Name = "TextBoxBrightness"

 119

 Me.TextBoxBrightness.Size = New System.Drawing.Size(32, 20)
 Me.TextBoxBrightness.TabIndex = 31
 Me.TextBoxBrightness.Text = ""
 '
 'TextBoxShutter
 '
 Me.TextBoxShutter.Enabled = False
 Me.TextBoxShutter.Location = New System.Drawing.Point(16, 136)
 Me.TextBoxShutter.Name = "TextBoxShutter"
 Me.TextBoxShutter.Size = New System.Drawing.Size(32, 20)
 Me.TextBoxShutter.TabIndex = 30
 Me.TextBoxShutter.Text = ""
 '
 'GroupBox1
 '
 Me.GroupBox1.Controls.Add(Me.LabelWBviolet)
 Me.GroupBox1.Controls.Add(Me.LabelWBblue)
 Me.GroupBox1.Controls.Add(Me.trbrWBblue)
 Me.GroupBox1.Controls.Add(Me.trbrWBviolet)
 Me.GroupBox1.Controls.Add(Me.TextBoxWBviolet)
 Me.GroupBox1.Controls.Add(Me.TextBoxWBblue)
 Me.GroupBox1.Controls.Add(Me.ButtonWBOnePush)
 Me.GroupBox1.Font = New System.Drawing.Font("Microsoft Sans
Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.GroupBox1.Location = New System.Drawing.Point(160, 8)
 Me.GroupBox1.Name = "GroupBox1"
 Me.GroupBox1.Size = New System.Drawing.Size(96, 192)
 Me.GroupBox1.TabIndex = 29
 Me.GroupBox1.TabStop = False
 Me.GroupBox1.Text = "White Balance"
 '
 'LabelWBviolet
 '
 Me.LabelWBviolet.Font = New System.Drawing.Font("Microsoft Sans
Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.LabelWBviolet.Location = New System.Drawing.Point(49, 16)
 Me.LabelWBviolet.Name = "LabelWBviolet"
 Me.LabelWBviolet.Size = New System.Drawing.Size(40, 23)
 Me.LabelWBviolet.TabIndex = 9
 Me.LabelWBviolet.Text = "v"
 Me.LabelWBviolet.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'LabelWBblue
 '
 Me.LabelWBblue.Font = New System.Drawing.Font("Microsoft Sans
Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.LabelWBblue.Location = New System.Drawing.Point(4, 16)
 Me.LabelWBblue.Name = "LabelWBblue"
 Me.LabelWBblue.Size = New System.Drawing.Size(40, 23)
 Me.LabelWBblue.TabIndex = 8

 120

 Me.LabelWBblue.Text = "u"
 Me.LabelWBblue.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'trbrWBblue
 '
 Me.trbrWBblue.LargeChange = 1
 Me.trbrWBblue.Location = New System.Drawing.Point(3, 24)
 Me.trbrWBblue.Name = "trbrWBblue"
 Me.trbrWBblue.Orientation =
System.Windows.Forms.Orientation.Vertical
 Me.trbrWBblue.Size = New System.Drawing.Size(42, 104)
 Me.trbrWBblue.TabIndex = 2
 Me.trbrWBblue.TickStyle = System.Windows.Forms.TickStyle.Both
 '
 'trbrWBviolet
 '
 Me.trbrWBviolet.LargeChange = 1
 Me.trbrWBviolet.Location = New System.Drawing.Point(48, 24)
 Me.trbrWBviolet.Name = "trbrWBviolet"
 Me.trbrWBviolet.Orientation =
System.Windows.Forms.Orientation.Vertical
 Me.trbrWBviolet.Size = New System.Drawing.Size(42, 104)
 Me.trbrWBviolet.TabIndex = 3
 Me.trbrWBviolet.TickStyle = System.Windows.Forms.TickStyle.Both
 '
 'TextBoxWBviolet
 '
 Me.TextBoxWBviolet.Enabled = False
 Me.TextBoxWBviolet.Location = New System.Drawing.Point(53, 128)
 Me.TextBoxWBviolet.Name = "TextBoxWBviolet"
 Me.TextBoxWBviolet.Size = New System.Drawing.Size(32, 19)
 Me.TextBoxWBviolet.TabIndex = 17
 Me.TextBoxWBviolet.Text = ""
 '
 'TextBoxWBblue
 '
 Me.TextBoxWBblue.Enabled = False
 Me.TextBoxWBblue.Location = New System.Drawing.Point(8, 128)
 Me.TextBoxWBblue.Name = "TextBoxWBblue"
 Me.TextBoxWBblue.Size = New System.Drawing.Size(32, 19)
 Me.TextBoxWBblue.TabIndex = 16
 Me.TextBoxWBblue.Text = ""
 '
 'ButtonWBOnePush
 '
 Me.ButtonWBOnePush.Font = New System.Drawing.Font("Microsoft
Sans Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.ButtonWBOnePush.Location = New System.Drawing.Point(8, 152)
 Me.ButtonWBOnePush.Name = "ButtonWBOnePush"
 Me.ButtonWBOnePush.Size = New System.Drawing.Size(80, 32)
 Me.ButtonWBOnePush.TabIndex = 20
 Me.ButtonWBOnePush.Text = "Auto WB"

 121

 '
 'LabelBrightness
 '
 Me.LabelBrightness.Font = New System.Drawing.Font("Microsoft
Sans Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.LabelBrightness.Location = New System.Drawing.Point(93, 9)
 Me.LabelBrightness.Name = "LabelBrightness"
 Me.LabelBrightness.Size = New System.Drawing.Size(64, 23)
 Me.LabelBrightness.TabIndex = 28
 Me.LabelBrightness.Text = "Brightness"
 Me.LabelBrightness.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'LabelShutter
 '
 Me.LabelShutter.Font = New System.Drawing.Font("Microsoft Sans
Serif", 7.5!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.LabelShutter.Location = New System.Drawing.Point(7, 9)
 Me.LabelShutter.Name = "LabelShutter"
 Me.LabelShutter.Size = New System.Drawing.Size(50, 23)
 Me.LabelShutter.TabIndex = 27
 Me.LabelShutter.Text = "Shutter"
 Me.LabelShutter.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'trbrBrightness
 '
 Me.trbrBrightness.LargeChange = 1
 Me.trbrBrightness.Location = New System.Drawing.Point(104, 32)
 Me.trbrBrightness.Name = "trbrBrightness"
 Me.trbrBrightness.Orientation =
System.Windows.Forms.Orientation.Vertical
 Me.trbrBrightness.Size = New System.Drawing.Size(42, 104)
 Me.trbrBrightness.TabIndex = 26
 Me.trbrBrightness.TickStyle =
System.Windows.Forms.TickStyle.Both
 '
 'trbrShutter
 '
 Me.trbrShutter.LargeChange = 1
 Me.trbrShutter.Location = New System.Drawing.Point(11, 32)
 Me.trbrShutter.Name = "trbrShutter"
 Me.trbrShutter.Orientation =
System.Windows.Forms.Orientation.Vertical
 Me.trbrShutter.Size = New System.Drawing.Size(42, 104)
 Me.trbrShutter.TabIndex = 25
 Me.trbrShutter.TickStyle = System.Windows.Forms.TickStyle.Both
 '
 'SetBtn
 '
 Me.SetBtn.BackColor = System.Drawing.SystemColors.Control
 Me.SetBtn.Font = New System.Drawing.Font("Microsoft Sans

 122

Serif", 14.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.SetBtn.Location = New System.Drawing.Point(88, 416)
 Me.SetBtn.Name = "SetBtn"
 Me.SetBtn.Size = New System.Drawing.Size(96, 40)
 Me.SetBtn.TabIndex = 8
 Me.SetBtn.Text = "Set"
 '
 'RightBtn
 '
 Me.RightBtn.Appearance = System.Windows.Forms.Appearance.Button
 Me.RightBtn.Image =
CType(resources.GetObject("RightBtn.Image"), System.Drawing.Image)
 Me.RightBtn.Location = New System.Drawing.Point(200, 416)
 Me.RightBtn.Name = "RightBtn"
 Me.RightBtn.Size = New System.Drawing.Size(48, 40)
 Me.RightBtn.TabIndex = 9
 '
 'PickLimitLbl
 '
 Me.PickLimitLbl.Font = New System.Drawing.Font("Microsoft Sans
Serif", 16.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.PickLimitLbl.Location = New System.Drawing.Point(32, 376)
 Me.PickLimitLbl.Name = "PickLimitLbl"
 Me.PickLimitLbl.Size = New System.Drawing.Size(208, 32)
 Me.PickLimitLbl.TabIndex = 10
 Me.PickLimitLbl.Text = "Pick 1st Az Limit"
 Me.PickLimitLbl.TextAlign =
System.Drawing.ContentAlignment.TopCenter
 '
 'LeftBtn
 '
 Me.LeftBtn.Appearance = System.Windows.Forms.Appearance.Button
 Me.LeftBtn.Image = CType(resources.GetObject("LeftBtn.Image"),
System.Drawing.Image)
 Me.LeftBtn.Location = New System.Drawing.Point(24, 416)
 Me.LeftBtn.Name = "LeftBtn"
 Me.LeftBtn.Size = New System.Drawing.Size(48, 40)
 Me.LeftBtn.TabIndex = 7
 '
 'ApplyCloseBtn
 '
 Me.ApplyCloseBtn.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.ApplyCloseBtn.Location = New System.Drawing.Point(40, 163)
 Me.ApplyCloseBtn.Name = "ApplyCloseBtn"
 Me.ApplyCloseBtn.Size = New System.Drawing.Size(80, 32)
 Me.ApplyCloseBtn.TabIndex = 39
 Me.ApplyCloseBtn.Text = "Apply && Close"
 '
 'PicForm
 '

 123

 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
 Me.ClientSize = New System.Drawing.Size(530, 495)
 Me.ControlBox = False
 Me.Controls.Add(Me.ControlsPanel)
 Me.Controls.Add(Me.CMUImageBox)
 Me.FormBorderStyle =
System.Windows.Forms.FormBorderStyle.FixedSingle
 Me.Name = "PicForm"
 Me.ShowInTaskbar = False
 Me.Text = "Camera Image"
 Me.ControlsPanel.ResumeLayout(False)
 CType(Me.trbrAutoExposure,
System.ComponentModel.ISupportInitialize).EndInit()
 Me.GroupBox1.ResumeLayout(False)
 CType(Me.trbrWBblue,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.trbrWBviolet,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.trbrBrightness,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.trbrShutter,
System.ComponentModel.ISupportInitialize).EndInit()
 Me.ResumeLayout(False)

 End Sub

#End Region

#Region " Variables Global to PicForm"
 Private Const XDimension As Integer = 768 'X Dimension of
Viewable Image
 Private Const YDimension As Integer = 2048 'Y Dimension of
Viewable Image
 Private Const XLimit As Integer = 1536 - XDimension 'X Dimension
Position Limit
 Private Const XYRatio As Integer = 4 'Ratio of
Viewable Image
 Private pbitmap(XDimension * YDimension * 3 - 1) As Byte 'Buffer
for Image
 Private cmubmp As New Bitmap(CInt(XDimension / XYRatio),
CInt(YDimension / XYRatio), Imaging.PixelFormat.Format24bppRgb) 'Image
Bitmap
 'Private isloaded As Boolean = False
 Private iserror As Boolean = False 'Shows error
 Private histpic As New Bitmap(256, 128) 'Histogram
Bitmap
 Private bins(255) As Integer 'Binning for
Histogram
 Private XPos As Integer = 0 'Position of
Viewable Image
#End Region

#Region " Initialization and Closing "
 Private Sub PicForm_Load(ByVal sender As System.Object, ByVal e As

 124

System.EventArgs) Handles MyBase.Load
 'Size form according to image size
 Me.Height = CMUImageBox.Height + 15
 Me.Width = CMUImageBox.Width + 10

 ' Initialize Camera
 If Not CheckLinkVB() = CAM_SUCCESS Then
 MsgBox("Error: No camera found")
 End
 End If

 If Not InitCameraVB() = CAM_SUCCESS Then
 MsgBox("Error: No camera initialized")
 End
 End If

 InquireControlRegistersVB()
 StatusControlRegistersVB()
 SupportedVB()
 InquireSizeVB()
 StatusSizeVB()

 If Not SetVideoFormatVB(Convert.ToUInt32(7)) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set video format")
 End
 End If

 If Not SetVideoModeVB(Convert.ToUInt32(0)) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set video mode")
 End
 End If

 If Not SetColorCodeVB(4) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set color code")
 End
 End If

 'Make variable x, y dependant on setup settings
 If Not SetSizeVB(YDimension, XDimension) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set video size")
 End
 End If

 'Make variable position dependant on setup settings
 'camerawidth
 If CameraLeft > XLimit Then
 XPos = XLimit
 Else
 XPos = CameraLeft + CameraWidth / 2 - XDimension / 2
 If XPos < 0 Then XPos = 0
 End If

 If Not SetPositionVB(0, XPos) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set video position")

 125

 End
 End If

 If Not SetBytesPerPacketVB(4096) = CAM_SUCCESS Then
 MsgBox("Error: Unable to set packet size")
 End
 End If

 If Not StartImageCaptureVB() = CAM_SUCCESS Then
 StopImageCaptureVB()
 TurnTriggerOnVB(False)
 MsgBox("Error: Unable to set image capture")
 End
 End If

 ' Initialize Camera Controls
 Dim checkshutter As Integer
 Dim checkautoexposure As Integer

 InquireControlRegistersVB()
 StatusControlRegistersVB()

 ' Shutter Initialization
 trbrShutter.Minimum = GetShutterMin
 trbrShutter.Maximum = 44 'This is the largest time that can
still be triggered at 60Hz
 trbrShutter.TickFrequency = (trbrShutter.Maximum -
trbrShutter.Minimum) / 10
 If CameraShutterSpeed > 44 Then CameraShutterSpeed = 44
 If CameraShutterSpeed < trbrShutter.Minimum Then
CameraShutterSpeed = trbrShutter.Minimum
 SetShutterVB(CameraShutterSpeed)
 trbrShutter.Value = GetShutterValue1
 TextBoxShutter.Text = GetShutterValue1

 ' Auto Exposure Initialization
 trbrAutoExposure.Minimum = GetAutoExposureMin
 trbrAutoExposure.Maximum = GetAutoExposureMax 'Reduced slightly
so the tick marks look good
 trbrAutoExposure.TickFrequency = (trbrAutoExposure.Maximum -
trbrAutoExposure.Minimum - (trbrAutoExposure.Maximum - 100)) / 10
 If CameraAnalogGain > trbrAutoExposure.Maximum Then
CameraAnalogGain = trbrAutoExposure.Maximum
 If CameraAnalogGain < trbrAutoExposure.Minimum Then
CameraAnalogGain = trbrAutoExposure.Minimum
 SetAutoExposureVB(CameraAnalogGain)
 trbrAutoExposure.Value = GetAutoExposureValue1
 TextBoxAutoExposure.Text = GetAutoExposureValue1

 ' White Balance Initialization
 trbrWBblue.Minimum = GetWBMin
 trbrWBblue.Maximum = GetWBMax
 trbrWBblue.TickFrequency = (trbrWBblue.Maximum -
trbrWBblue.Minimum) / 10

 126

 trbrWBblue.Value = GetWBValue2
 trbrWBviolet.Minimum = GetWBMin
 trbrWBviolet.Maximum = GetWBMax
 trbrWBviolet.TickFrequency = (trbrWBviolet.Maximum -
trbrWBviolet.Minimum) / 10
 trbrWBviolet.Value = GetWBValue1
 TextBoxWBblue.Text = GetWBValue2
 TextBoxWBviolet.Text = GetWBValue1

 ' Brightness Initialization
 trbrBrightness.Minimum = GetBrightnessMin
 trbrBrightness.Maximum = GetBrightnessMax
 trbrBrightness.TickFrequency = (trbrBrightness.Maximum -
trbrBrightness.Minimum) / 10
 If CameraBrightness > trbrBrightness.Maximum Then
CameraBrightness = trbrBrightness.Maximum
 If CameraBrightness < trbrBrightness.Minimum Then
CameraBrightness = trbrBrightness.Minimum
 SetBrightnessVB(CameraBrightness)
 trbrBrightness.Value = GetBrightnessMax - CameraBrightness
 TextBoxBrightness.Text = GetBrightnessValue1

 ' Digital Gain Initialization
 SetGainVB(GetGainMin) 'sets digital gain to 1

 CMUImageBox.Image = cmubmp
 HistoImageBox.Image = histpic
 PicTimer.Enabled = True
 'isloaded = True
 End Sub

 Private Sub PicForm_Closing(ByVal sender As System.Object, ByVal e
As System.ComponentModel.CancelEventArgs) Handles MyBase.Closing
 KillImage()
 End Sub

 Friend Sub KillImage()
 PicTimer.Enabled = False
 Try
 StopImageCaptureVB()
 TurnTriggerOnVB(False)
 Catch
 End Try
 End Sub

 'Resize form according to image size and place controls
appropriately
 Private Sub CMUImageBox_Resize(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles CMUImageBox.Resize
 Me.Width = CMUImageBox.Width + ControlsPanel.Width + 20
 CMUImageBox.Location = New Point(5, 5)
 ControlsPanel.Location = New Point(CMUImageBox.Width + 10, 5)

 If CMUImageBox.Height > ControlsPanel.Height Then

 127

 Me.Height = CMUImageBox.Height + 40
 Else
 Me.Height = ControlsPanel.Height + 40
 End If
 End Sub
#End Region

#Region " Image Refresh Timer "
 Private Sub PicTimer_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles PicTimer.Tick
 'Try Campturing Image
 If Not CaptureImageVB() = CAM_SUCCESS Then
 StopImageCaptureVB()
 TurnTriggerOnVB(False)
 If Not iserror Then
 MsgBox("The image could not display")
 iserror = True
 End If
 Exit Sub
 End If

 iserror = False
 getRGBVB(pbitmap)

 Dim i, j, k, n, m As Integer
 Dim maxbin As Integer = 0

 Dim binner As Double
 Dim centerY, centerX, halfwidthcross As Integer
 centerY = YDimension / (2 * XYRatio)
 centerX = (CameraLeft + CameraWidth / 2) / XYRatio - XPos /
XYRatio
 halfwidthcross = CameraWidth / (XYRatio * 2)
 Array.Clear(bins, 0, bins.Length)
 k = 0
 For j = 0 To CInt(XDimension / XYRatio) - 1 Step 1
 For i = CInt(YDimension / XYRatio) - 1 To 0 Step -1
 'Place crosshair or image
 If i <= centerY + 10 AndAlso i > centerY - 10 AndAlso j
_
 <= centerX + halfwidthcross AndAlso j > centerX - _
 halfwidthcross Then
 cmubmp.SetPixel(j, i, Color.Red)
 ElseIf j <= centerX + 10 AndAlso j > centerX - 10 _
 AndAlso i <= centerY + halfwidthcross AndAlso i > _
 centerY - halfwidthcross Then
 cmubmp.SetPixel(j, i, Color.Red)
 Else
 cmubmp.SetPixel(j, i, Color.FromArgb(pbitmap(k) _
 , pbitmap(k + 1), pbitmap(k + 2)))
 End If

 'Bin Intensity Image for Histogram -- Use Y image in
YUV

 128

 'translation from RGB
 binner = CDbl(pbitmap(k)) * 0.299 + CDbl(pbitmap(k +
1)) _
 * 0.587 + CDbl(pbitmap(k + 2)) * 0.114
 If binner > 255 Then binner = 255
 bins(CInt(binner)) += 1
 k += XYRatio * 3
 Next i
 k += YDimension * 3 * (XYRatio - 1)
 Next j

 'Create a histogram
 For n = 0 To 255
 For m = 0 To 127
 histpic.SetPixel(n, m, Color.White)
 Next m
 Next n

 For m = 0 To 255
 maxbin = Max(bins(m), maxbin)
 Next m

 For m = 0 To 255
 k = CInt(bins(m) / (maxbin / 128))
 For n = 0 To k - 1
 histpic.SetPixel(m, 127 - n, Color.Black)
 Next n
 Next m

 CMUImageBox.Refresh()
 HistoImageBox.Refresh()
 End Sub
#End Region

#Region " Camera controls "
 ' These functions handle the trackbar scroll commands
 Private Sub trbrShutter_Scroll(_
ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
trbrShutter.Scroll
 CameraShutterSpeed = trbrShutter.Value
 SetShutterVB(CameraShutterSpeed)
 TextBoxShutter.Text = GetShutterValue1
 End Sub

 Private Sub trbrAutoExposure_Scroll(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles trbrAutoExposure.Scroll
 CameraAnalogGain = trbrAutoExposure.Value
 SetAutoExposureVB(CameraAnalogGain)
 TextBoxAutoExposure.Text = GetAutoExposureValue1
 End Sub

 Private Sub trbrBrightness_Scroll(ByVal sender As Object, ByVal e
As System.EventArgs) Handles trbrBrightness.Scroll
 CameraBrightness = GetBrightnessMax - trbrBrightness.Value

 129

 SetBrightnessVB(CameraBrightness)
 TextBoxBrightness.Text = GetBrightnessValue1
 End Sub

 Private Sub trbrWBblue_Scroll(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles trbrWBblue.Scroll
 SetWhiteBalanceVB(trbrWBblue.Value, trbrWBviolet.Value)
 TextBoxWBblue.Text = GetWBValue2
 TextBoxWBviolet.Text = GetWBValue1
 End Sub

 Private Sub trbrWBviolet_Scroll(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles trbrWBviolet.Scroll
 SetWhiteBalanceVB(trbrWBblue.Value, trbrWBviolet.Value)
 TextBoxWBblue.Text = GetWBValue2
 TextBoxWBviolet.Text = GetWBValue1
 End Sub

 Private Sub ButtonWBOnePush_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ButtonWBOnePush.Click
 SetWBOnePush()
 InquireControlRegistersVB()
 StatusControlRegistersVB()
 ' White Balance Initialization
 trbrWBblue.Minimum = GetWBMin
 trbrWBblue.Maximum = GetWBMax
 trbrWBblue.TickFrequency = (trbrWBblue.Maximum -
trbrWBblue.Minimum) / 10
 trbrWBblue.Value = GetWBValue2
 trbrWBviolet.Minimum = GetWBMin
 trbrWBviolet.Maximum = GetWBMax
 trbrWBviolet.TickFrequency = (trbrWBviolet.Maximum -
trbrWBviolet.Minimum) / 10
 trbrWBviolet.Value = GetWBValue1
 TextBoxWBblue.Text = GetWBValue2
 TextBoxWBviolet.Text = GetWBValue1
 End Sub
#End Region

#Region "LIDAR Scanner Controls"
 'Handles Right Push Button (Uses Scan_Console objects)
 Private Sub RightBtn_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles RightBtn.Click
 ScanForm.RightBtn.Checked = Not ScanForm.RightBtn.Checked
 ScanForm.RightBtnAction()
 End Sub

 'Handles Left Push Button (Uses Scan_Console objects)
 Private Sub LeftBtn_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LeftBtn.Click
 ScanForm.LeftBtn.Checked = Not ScanForm.LeftBtn.Checked
 ScanForm.LeftBtnAction()
 End Sub

 130

 'Handles Set Push Button (Uses Scan_Console objects)
 Private Sub SetBtn_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SetBtn.Click
 ScanForm.SetBtn.PerformClick()
 End Sub

 'Handles Clicking of Apply and Close Button (Uses Scan_Console
objects)
 Private Sub ApplyCloseBtn_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ApplyCloseBtn.Click
 ScanForm.PanelSetup.Visible = True
 ScanForm.PanelPickLim.Visible = False
 ScanForm.PickLimBtn.Text = "Pick Limits"
 ScanForm.PickLimitLbl.Text = "Pick 1st Az Limit"
 PickLimitLbl.Text = "Pick 1st Az Limit"
 Try
 Me.KillImage()
 Me.Dispose()
 Catch
 Finally
 ScanForm.Refresh()
 End Try
 End Sub
#End Region

End Class

 131

APPENDIX E

CAIL TEX FILE FORMAT DEFINITION

CAIL TEX file format

The TEX file format was established during the design of Prototype I. The original TEX

file format is a collection of RAW 8 bit (64 (h) x 20 (v) pixel) images written to file

sequentially. Since there is no header attached to this file, there is no way to distinguish

TEX files generated by Prototype I from subsequent TEX files. Therefore, a header is

added to the TEX file in Prototype II: Version 1.0.0. This provides adequate information

about the images captured within the file. To allow for backwards compatibility this

formal document was created. The following document contains the existing TEX file

information as well as the proposed TEX file format.

Prototype I: Version 0.0.0

Structure:

Field # Data Bytes Format Units Offset Description

1 Images Varies RAW8

64 x 20

pixels/image

- 0 Images in

specified format

Images

 132

Prototype II: Version 1.0.0

Structure:

Field # Data Bytes Format Units Offset Description

Header Size 4 integer bytes 0 Number of bytes

in header

Width 4 integer pixels 4 Width of image

Height 4 integer pixels 8 Height of image

1

(header)

Time 4 integer microsecs 12 Period between

image captures

2 Images Varies RGB 3

Bytes/Pixel

- 16 Images in

specified format

Header Images

 133

PROTOTYPE II: VERSION 1.1.0

Field # Data Bytes Format Units Offset Description

Header Size 4 integer bytes 0 Number of bytes

in header

Data Offset 4 integer bytes 4 Number of bytes

to data

Version:

Major

4 integer 8 Major

Version:

Minor

4 integer 12 Minor

Version:

Update

4 integer 16 Update

1

(header)

Date/Time 8 double 20 When the file

was originally

created

Camera Serial

Number

4 integer 28

Pixel Height 8 double µm 32

Pixel Width 8 double µm 40

physical pixel

dimensions

Max Height 4 integer pixels 48 Number of pixels

in height

Max Width 4 integer pixels 52 Number of pixels

in width

Height 4 integer pixels 56 Height of image

Width 4 integer pixels 60 Width of image

Array Offset

Left

4 integer pixels 64 image offset on

array

Array Offset

Bottom

4 integer pixels 68 image offset on

array

Image Format

(needs

changing)

1 byte From

table

72 Pixel data type in

image

Image Scalar

(needs

changing)

1 byte From

Table

73 Number of bytes

per pixel

Focal Length 4 double mm 74 Lens focal length

(EO

info)

Camera

Offset X

8 double m 78 Physical offset

from lidar

Header Images

 134

Camera

Offset Y

8 double m 86

Camera

Offset Z

8 double m 94

centroid

(parallax)

Camera

Rotation X

8 double deg 102

Camera

Rotation Y

8 double deg 110

Camera

Rotation Z

8 double deg 118

Physical rotation

offset of camera

from lidar

centroid

Camera Gain 8 double 126

Camera

Brightness

8 double 124

Camera

Exposure

8 double 132

Camera WB

violet

8 double 140

Camera WB

blue

8 double 148

relative value

Lidar Serial

Number

8 char 156

Az/Hfov

Left

8 double deg 164

Az/Hfov

Right

8 double deg 172

Elevation/

Vfov Top

8 double deg 180

Elevation/

Vfov Bottom

8 double deg 188

tilt angle 8 double deg 196 angle of texel

camera tilt

through tilt axis

tilt offset 8 double 204 ??

(lidar

info)

tilt axis 8 double 212 tilt axis

GPS Serial

Number

8 char 220

GPS Offset X 8 double m 228

GPS Offset Y 8 double m 236

GPS Offset Z 8 double m 244

distance from

lidar centroid to

antenna

(GPS

info)

Latitude/

Northing

8 double deg 252

 135

Longitude/

Easting

8 double deg 260

Azimuth/

Elevation

8 double m 268

Zone (type) 4 integer 276 Indicates lat/long

or N,E and

Azimuth

Projection 4 double 284

Datum 8 char 292

2 Images Varies = byte *

Image Scalar

 300 Images in

specified format

Image Format Value Image Format Image Scalar

0 RAW8 1

1 RAW10 2

2 RGB 3

3 YUV 3

4 Monochrome 1

>=3 Undefined in Vs. 1.1.0 Undefined in Vs 1.1.0

