Darboux Integrability - A Brief Historical Survey

Ian M. Anderson
Utah State University

Follow this and additional works at: http://digitalcommons.usu.edu/mathsci_presentations

Part of the Mathematics Commons

Recommended Citation
Darboux Integrability —

A Brief Historical Survey

Symmetry in Variational Problems and Differential Equations

Ian Anderson

Utah State University

May 22, 2011
History Past

The classical method of Monge. Given

\[F(x, y, u, u_x, u_y) = 0 \quad \text{add} \quad G(x, y, u, u_x, u_y) = 0 \]

so that \(u_x = A(x, y, u), \ u_y = B(x, y, u) \) is consistent [Jacobi, Lie].
The classical method of Monge. Given

\[F(x, y, u, u_x, u_y) = 0 \quad \text{add} \quad G(x, y, u, u_x, u_y) = 0 \]

so that \(u_x = A(x, y, u), \ u_y = B(x, y, u) \) is consistent [Jacobi, Lie].

The generalization of the Monge method to 2nd order PDE leads to the methods of Ampère and Darboux (and [Cartan, 1910])

\[F(x, y, u, p, q, r, s, t) = 0 \quad \text{add} \quad G(x, y, u, p, q) = 0 \]
\[F(x, y, u, p, q, r, s, t) = 0 \quad \text{add} \quad G(x, y, u, p, q, r, s, t) = 0 \]
\[F(x, y, u, p, q, r, s, t) = 0 \quad \text{add} \quad G(3\text{rd ord}) = 0 \]

The compatible equation \(G = 0 \) is called an intermediate integral (order, complete, general ...).
History Past

- Goursat and his students made many detailed investigations regarding the existence of these intermediate integrals.
History Past

• Goursat and his students made many detailed investigations regarding the existence of these intermediate integrals.

• Classification of DI systems were made for restricted classes of equations.
History Past

- Goursat and his students made many detailed investigations regarding the existence of these intermediate integrals.
- Classification of DI systems were made for restricted classes of equations.
- In more recent times an extended classification of DI systems has been given [Sokolov].
History Past

• Goursat and his students made many detailed investigations regarding the existence of these intermediate integrals.

• Classification of DI systems were made for restricted classes of equations.

• In more recent times an extended classification of DI systems has been given [Sokolov].

• Higher order symmetries and conservation laws for these equations have been studied [Sokolov, IA, Kamran, Juras, and Bieseleker].
History Past

- Goursat and his students made many detailed investigations regarding the existence of these intermediate integrals.
- Classification of DI systems were made for restricted classes of equations.
- In more recent times an extended classification of DI systems has been given [Sokolov].
- Higher order symmetries and conservation laws for these equations have been studied [Sokolov, IA, Kamran, Juras, and Bieseeker].
- Bäcklund transformations for the classical DI systems of Goursat were studied [Clelland and Ivey].
History Past

- Goursat and his students made many detailed investigations regarding the existence of these intermediate integrals.

- Classification of DI systems were made for restricted classes of equations.

- In more recent times an extended classification of DI systems has been given [Sokolov].

- Higher order symmetries and conservation laws for these equations have been studied [Sokolov, IA, Kamran, Juras, and Bieseeker].

- Bäcklund transformations for the classical DI systems of Goursat were studied [Clelland and Ivey].

- DI systems always appear in geometric studies of PDE and in equivalence problems [eg. D. The].
History Past

- Goursat and his students made many detailed investigations regarding the existence of these intermediate integrals.
- Classification of DI systems were made for restricted classes of equations.
- In more recent times an extended classification of DI systems has been given [Sokolov].
- Higher order symmetries and conservation laws for these equations have been studied [Sokolov, IA, Kamran, Juras, and Bieseeker].
- Bäcklund transformations for the classical DI systems of Goursat were studied [Clelland and Ivey].
- DI systems always appear in geometric studies of PDE and in equivalence problems [eg. D. The].
- Many papers in the theoretical physics literature (σ-models) on integrable systems unwittingly arrive at DI systems.
Vessiot’s Fundamental Discovery

Prior to 1939, the method of Darboux was always viewed from the viewpoint of compatibility theory. The method had no group theoretic interpretation.
Vessiot’s Fundamental Discovery

Prior to 1939, the method of Darboux was always viewed from the viewpoint of compatibility theory. The method had no group theoretic interpretation.

This changed with a fundamental observation of Vessiot.

\[u_{xy} = e^u, \quad u_{xx} - \frac{1}{2} u_x^2 = f(x), \quad u_{yy} - \frac{1}{2} u_y^2 = g(y) \]

\[p_x = f(x) + \frac{1}{2} p^2 \quad \dot{p} = a(x) + b(x)p + c(x)p^2. \]
Vessiot’s Fundamental Discovery

Prior to 1939, the method of Darboux was always viewed from the viewpoint of compatibility theory. The method had no group theoretic interpretation.

This changed with a fundamental observation of Vessiot.

\[u_{xy} = e^u, \quad u_{xx} - \frac{1}{2}u_x^2 = f(x), \quad u_{yy} - \frac{1}{2}u_y^2 = g(y) \]

\[p_x = f(x) + \frac{1}{2}p^2 \quad \dot{p} = a(x) + b(x)p + c(x)p^2. \]

This is a Ricatti equation. Riccatti equations are ODE of Lie type, associated to \(SL2 \).
Vessiot’s Fundamental Discovery

Prior to 1939, the method of Darboux was always viewed from the viewpoint of compatibility theory. The method had no group theoretic interpretation.

This changed with a fundamental observation of Vessiot.

\[u_{xy} = e^u, \quad u_{xx} - \frac{1}{2}u_x^2 = f(x), \quad u_{yy} - \frac{1}{2}u_y^2 = g(y) \]

\[p_x = f(x) + \frac{1}{2}p^2, \quad \dot{p} = a(x) + b(x)p + c(x)p^2. \]

This is a Ricatti equation. Riccatti equations are ODE of Lie type, associated to $SL2$.

Vessiot’s great idea was to turn this around. For each equation of Lie type associated to a Lie group ($\dim \leq 3$), he produced a DI equation of the form $u_{xy} = f(x, y, u, u_x, u_y)$.

Vessiot’s Fundamental Discovery

Prior to 1939, the method of Darboux was always viewed from the viewpoint of compatibility theory. The method had no group theoretic interpretation.

This changed with a fundamental observation of Vessiot.

\[
\begin{align*}
 u_{xy} &= e^u, \\
 u_{xx} - \frac{1}{2}u_x^2 &= f(x), \\
 u_{yy} - \frac{1}{2}u_y^2 &= g(y)
\end{align*}
\]

\[
\begin{align*}
 p_x &= f(x) + \frac{1}{2}p^2 \\
 \dot{p} &= a(x) + b(x)p + c(x)p^2
\end{align*}
\]

This is a Ricatti equation. Riccatti equations are ODE of Lie type, associated to $SL2$.

Vessiot’s great idea was to turn this around. For each equation of Lie type associated to a Lie group (dim ≤ 3), he produced a DI equation of the form $u_{xy} = f(x, y, u, u_x, u_y)$.

He reproduced the classical classification of Goursat and even integrated one of the equations which the master was unable to solve.
Vessiot’s Fundamental Discovery

Prior to 1939, the method of Darboux was always viewed from the viewpoint of compatibility theory. The method had no group theoretic interpretation.

This changed with a fundamental observation of Vessiot.

\[u_{xy} = e^u, \quad u_{xx} - \frac{1}{2} u_x^2 = f(x), \quad u_{yy} - \frac{1}{2} u_y^2 = g(y) \]

\[p_x = f(x) + \frac{1}{2} p^2 \quad \dot{p} = a(x) + b(x)p + c(x)p^2. \]

This is a Ricatti equation. Riccatti equations are ODE of Lie type, associated to \(SL2 \).

Vessiot’s great idea was to turn this around. For each equation of Lie type associated to a Lie group (\(\text{dim} \leq 3 \)), he produced a DI equation of the form \(u_{xy} = f(x, y, u, u_x, u_y) \).

He reproduced the classical classification of Goursat and even integrated one of the equations which the master was unable to solve.

But the groups arising in Vessiot’s approach are \textit{not} symmetry groups in the usual sense.
History Present

Vassiliou showed that the Vessiot group for the classical DI systems could in fact be constructed by derived flag calculations.
History Present

Vassiliou showed that the Vessiot group for the classical DI systems could in fact be constructed by derived flag calculations.

IA, Fels and Vassiliou built upon these ideas in a recent article which:

• gives a far-reaching generalization of the definition of DI in terms of EDS.
• introduces the general idea of a non-linear superposition formula for EDS.
• gives a general derivation of the Vessiot group.
• proves that the Vessiot group is an invariant of any DI system.
• uses the Vessiot group to construct a non-linear superposition formula for any DI system.
• gives a completely algorithmic integration procedure, much better than the classical one.
History Present

Vassiliou showed that the Vessiot group for the classical DI systems could in fact be constructed by derived flag calculations.

IA, Fels and Vassiliou built upon these ideas in a recent article which:

- gives a far-reaching generalization of the definition of DI in terms of EDS.
History Present

Vassiliou showed that the Vessiot group for the classical DI systems could in fact be constructed by derived flag calculations.

IA, Fels and Vassiliou built upon these ideas in a recent article which:

• gives a far-reaching generalization of the definition of DI in terms of EDS.

• introduces the general idea of a non-linear superposition formula for EDS.
Vassiliou showed that the Vessiot group for the classical DI systems could in fact be constructed by derived flag calculations.

IA, Fels and Vassiliou built upon these ideas in a recent article which:

- gives a far-reaching generalization of the definition of DI in terms of EDS.
- introduces the general idea of a non-linear superposition formula for EDS.
- gives a general derivation of the Vessiot group.
History Present

Vassiliou showed that the Vessiot group for the classical DI systems could in fact be constructed by derived flag calculations.

IA, Fels and Vassiliou built upon these ideas in a recent article which:

• gives a far-reaching generalization of the definition of DI in terms of EDS.

• introduces the general idea of a non-linear superposition formula for EDS.

• gives a general derivation of the Vessiot group.

• proves that the Vessiot group is an invariant of any DI system.
History Present

Vassiliou showed that the Vessiot group for the classical DI systems could in fact be constructed by derived flag calculations.

IA, Fels and Vassiliou built upon these ideas in a recent article which:

- gives a far-reaching generalization of the definition of DI in terms of EDS.
- introduces the general idea of a non-linear superposition formula for EDS.
- gives a general derivation of the Vessiot group.
- proves that the Vessiot group is an invariant of any DI system.
- uses the Vessiot group to construct a non-linear superposition formula for any DI system.
History Present

Vassiliou showed that the Vessiot group for the classical DI systems could in fact be constructed by derived flag calculations.

IA, Fels and Vassiliou built upon these ideas in a recent article which:

- gives a far-reaching generalization of the definition of DI in terms of EDS.
- introduces the general idea of a non-linear superposition formula for EDS.
- gives a general derivation of the Vessiot group.
- proves that the Vessiot group is an invariant of any DI system.
- uses the Vessiot group to construct a non-linear superposition formula for any DI system.
- gives a completely algorithmic integration procedure, much better than the classical one.
Example

Starting from $u_{xy} = e^u$, the theory tells us to

- Consider two copies of jet space $J^3(\mathbb{R}, \mathbb{R})[x, X, X', X'']$ and $J^3(\mathbb{R}, \mathbb{R})[y, Y, Y', Y'']$.
- Look to the diagonal action of $SL(2)$ with infinitesimal generators $\partial X + \partial Y$, $X \partial X + Y \partial Y$, $\frac{1}{2} X^2 \partial X + \frac{1}{2} Y^2 \partial Y$.
- Calculate the reduced differential system $(J^3 \times J^3)/SL(2)$, that is, calculate joint differential invariants.
- In the context of this simple example, the lowest order joint differential invariant gives the general solution.

$u = \log \frac{X'}{Y'}(X - Y)^2$
Example

Starting from $u_{xy} = e^u$, the theory tells us to

- Consider two copies of jet space

\[J^3(\mathbb{R}, \mathbb{R})[x, X, X', X'', X'''] \quad \text{and} \quad J^3(\mathbb{R}, \mathbb{R})(y, Y, Y', Y'', Y''') \]
Example

Starting from \(u_{xy} = e^u \), the theory tells us to

- Consider two copies of jet space

\[
J^3(\mathbb{R}, \mathbb{R})[x, X, X', X'', X'''] \quad \text{and} \quad J^3(\mathbb{R}, \mathbb{R})(y, Y, Y', Y'', Y''')
\]

- Look to the diagonal action of \(SL(2) \) with infinitesimal generators

\[
\partial_X + \partial_Y, \quad X\partial_X + Y\partial_Y, \quad \frac{1}{2}X^2\partial_X + \frac{1}{2}Y^2\partial_Y,
\]
Example

Starting from $u_{xy} = e^u$, the theory tells us to

- Consider two copies of jet space

$$J^3(R, R)[x, X, X', X'', X'''] \quad \text{and} \quad J^3(R, R)(y, Y, Y', Y'', Y''')$$

- Look to the diagonal action of $SL(2)$ with infinitesimal generators

$$\partial_X + \partial_Y, \quad X\partial_X + Y\partial_Y, \quad \frac{1}{2}X^2\partial_X + \frac{1}{2}Y^2\partial_Y,$$

- Calculate the reduced differential system $(J^3 \times J^3)/SL(2)$, that is, calculate joint differential invariants.
Example

Starting from $u_{xy} = e^u$, the theory tells us to

• Consider two copies of jet space

$$J^3(\mathbb{R}, \mathbb{R})[x, X, X', X'', X'''] \quad \text{and} \quad J^3(\mathbb{R}, \mathbb{R})(y, Y, Y', Y'', Y''')$$

• Look to the diagonal action of $SL(2)$ with infinitesimal generators

$$\partial_X + \partial_Y, \quad X\partial_X + Y\partial_Y, \quad \frac{1}{2}X^2\partial_X + \frac{1}{2}Y^2\partial_Y,$$

• Calculate the reduced differential system $(J^3 \times J^3)/SL(2)$, that is, calculate joint differential invariants.

• In the context of this simple example, the lowest order joint differential invariant gives the general solution.

$$u = \log \frac{2X'Y'}{(X - Y)^2}$$
Intermediate Integrals and Differential Invariants

Every intermediate integral for any DI system is in fact a differential invariant for the Vessiot group action.
Intermediate Integrals and Differential Invariants

Every intermediate integral for any DI system is in fact a differential invariant for the Vessiot group action.

All the classical work of Goursat on studying intermediate integrals is in fact (essentially) covered by Lie’s work on differential invariants and invariant differential operators [Olver].
Classification

From this new viewpoint:

There are as many DI EDS as there are symmetry groups of differential equations!
Classification

From this new viewpoint:

There are as many DI EDS as there are symmetry groups of differential equations!

BUT, only certain symmetry groups of very special DE will lead to DI EDS representing a desired type of equation.
Primitive and Imprimitive Actions

We have calculated all systems of DI equations arising from vector field systems in the plane [Lie, GLKO].
Primitive and Imprimitive Actions

We have calculated all systems of DI equations arising from vector field systems in the plane [Lie, GLKO].

- Vessiot groups with imprimitive actions give "triangularized" DI systems – essentially known examples
Primitive and Imprimitive Actions

We have calculated all systems of DI equations arising from vector field systems in the plane [Lie, GLKO].

- Vessiot groups with imprimitive actions give ”triangularized” DI systems – essentially known examples
- Vessiot groups with primitive actions give genuinely new examples.
Cauchy Problem

The Vessiot group dictates the solvability of the Cauchy problem.

\[u_{xy} = e^{u^3} + u_{xx} + u_{yy} + 1 = 0 \]
Cauchy Problem

The Vessiot group dictates the solvability of the Cauchy problem.

- Let \mathcal{I} be a DI integrable system. If the Vessiot group is solvable then the Cauchy problem can be solved by quadratures.
Cauchy Problem

The Vessiot group dictates the solvability of the Cauchy problem.

- Let \mathcal{I} be a DI integrable system. If the Vessiot group is solvable then the Cauchy problem can be solved by quadratures.

$$u_{xy} = e^u$$

$$3 \cdot u_{xx} u_{yy}^3 + 1 = 0$$
Bäcklund Transformations

The subgroups of the Vessiot group can be used to construct Bäcklund transformations for any DI integrable system.
Bäcklund Transformations

The subgroups of the Vessiot group can be used to construct Bäcklund transformations for any DI integrable system

- All previously constructed examples can easily be derived by symmetry reduction.

\[u_{xy} = \frac{1}{1 - u^2} \sin u \]

has Vessiot group \(SO(3) \). But \(SO(3) \) has no real 2-dimensional subalgebras and therefore it does not admit a 1-dimensional Bäcklund transformation to the wave equation.
Bäcklund Transformations

The subgroups of the Vessiot group can be used to construct Bäcklund transformations for any DI integrable system

- All previously constructed examples can easily be derived by symmetry reduction.
- Many new examples can easily be derived by symmetry reduction.
Bäcklund Transformations

The subgroups of the Vessiot group can be used to construct Bäcklund transformations for any DI integrable system

- All previously constructed examples can easily be derived by symmetry reduction.
- Many new examples can easily be derived by symmetry reduction.
- The equation

\[u_{xy} = \frac{\sqrt{1 - u_x^2} \sqrt{1 - u_y^2}}{\sin u} \]

has Vessiot group $SO(3)$. But $SO(3)$ has no real 2 dimensional subalgebras and therefore it does not admit a 1-dimensional Bäcklund transformation to the wave equation.
History Future

• clean up the theory of generalized symmetries for DI systems.
• verify Sokolov's classification using group theoretical methods.
• analyze completely the Toda lattice systems (parabolic geometries associated to simple Lie algebras).
• study multi-soliton solutions from our group theoretic non-linear superposition viewpoint.
• decide what to do about 'parabolic' DI systems ([Cartan, 1911])

References
History Future

- clean up the theory of generalized symmetries for DI systems.
History Present

• clean up the theory of generalized symmetries for DI systems.
• verify Sokolov’s classification using group theoretical methods.
History Future

- clean up the theory of generalized symmetries for DI systems.
- verify Sokolov's classification using group theoretical methods.
- analyze completely the Toda lattice systems (parabolic geometries associated to simple Lie algebras).
History Future

• clean up the theory of generalized symmetries for DI systems.
• verify Sokolov’s classification using group theoretical methods.
• analyze completely the Toda lattice systems (parabolic geometries associated to simple Lie algebras).
• study multi-soliton solutions from our group theoretic non-linear superposition viewpoint.
History Future

• clean up the theory of generalized symmetries for DI systems.
• verify Sokolov’s classification using group theoretical methods.
• analyze completely the Toda lattice systems (parabolic geometries associated to simple Lie algebras).
• study multi-soliton solutions from our group theoretic non-linear superposition viewpoint.
• decide what to do about ‘parabolic’ DI systems ([Cartan, 1911])
The Method of Laplace

Jacobi – Meyer

Lie Equations

The Method of Darboux - Classical Theory

The Method of Darboux - Via Group Theory

[22] ———, *Sur les équations aux dérivées partielles du second ordre, F(x,y,z,p,q,r,s,t)=0, intégrables par la méthode de Darboux*, J. Math. Pure Appl. 21 (1942), 1–66.

The Method of Darboux - Classification

[34] , Lá méthode de Darboux et les équations \(s = f(x, y, z, p, q) \), Mémorial de Sciences Mathématique 12 (1926).

The Method of Darboux - Transformation Theory

The Method of Darboux - Symmetries and Conservation Laws

