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A simple, collapsible design for a large water balloon slingshot launcher features a fully adjustable
initial velocity vector and a balanced launch platform. The design facilitates quantitative explo-
rations of the dependence of the balloon range and time of flight on the initial speed, launch angle,
and projectile mass, in an environment where quadratic air drag is important. Presented are theory
and experiments that characterize this drag, and theory and experiments that characterize the non-
linear elastic energy and hysteresis of the latex tubing used in the slingshot. The experiments can
be carried out with inexpensive and readily available tools and materials. The launcher provides an
engaging way to teach projectile motion and elastic energy to students of a wide variety of ages.

I. INTRODUCTION

One goal of the Summer 2012 Science and Engineering
Camp held at Utah State University – Uintah Basin was
to capitalize on the popularity of the Angry Birds video
game to excite seventh and eighth grade students about
projectile motion and quantitative science. To this end,
we designed a slingshot device capable of lobbing a small
water balloon a distance of 85 m, with fully adjustable
and quantifiable launch angle and initial slingshot dis-
placement [1]. The device inspired a television news story
[2] that was aired by 53 NBC affiliate stations across 29
states in the United States and has already been repli-
cated by at least one individual [3, 4]. The purpose of
the present paper is to introduce the device as a tool for
teaching projectile motion, air drag, and elastic energy.
In Angry Birds, players use a simulated slingshot to

lob wingless birds at pigs stationed on various structures,
aiming the birds by adjusting their initial displacements
in the slingshot. The video game has been downloaded
over 1.7 billion times [5] and has been called “the largest
mobile app success the world has seen so far” [6].
Our realization of the Angry Birds concept is a sling-

shot device that uses biodegradable water balloons as
projectiles to enable students to easily identify landing
sites, where balloons burst and dampen the ground. Bal-
loons also enable investigations of the consequences of
changing the projectile mass m simply by changing the
mass of water in the balloons. In contrast with previous
water balloon launcher designs [7–12], our design allows
students to precisely specify a full range of initial sling-
shot displacements and launch angles.
The design is simple, inexpensive to build, and collapsi-

ble (Fig. 1). The horizontal pivot axis (A) of the launch
platform passes through its center of mass, enabling ef-
fortless movement of the platform to an elevation angle
φ and ensuring, through joint friction, that the platform
remain at this angle. This axis is located at a height h
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above the ground. The platform angle φ ranges from 0◦

(horizontal) to 90◦ (vertical), and is read directly from
an angle finder (B) attached to the platform. A sling-
shot includes latex tubing, two handles that attach to
the platform arms at C and C′, and a balloon pouch (D)
that attaches to the platform by a trigger device (E). The
handle attachment points (C and C′) are adjustable to
allow for variations in the initial slingshot displacement
b (Fig. 2). A syringe-like “Water Blast” tube is used
to quickly fill water balloons with a specified volume of
water, yielding balloon masses m that are reproducible
to within 1%. Detailed parts lists, specifications, con-
struction plans, and operating procedures are discussed
elsewhere [1].
At the summer camp, the Angry Birds workshop was

presented to groups of 15 students, ages 13 and 14. Each
workshop lasted 80 minutes and was divided approxi-
mately into a 20-minute classroom introduction, a 40-
minute outdoor experiment, and a 20-minute classroom
conclusion. In the introduction, the students were di-
vided into three teams of five and were issued safety gog-
gles. Each team was assigned an experiment and an adult
facilitator to assist with the experiment and to ensure
that goggles were properly worn. Goggles protect against
potential breakage of stretched latex tubing and against
accidental impact with flying water balloons, which can
reach speeds over 35 m/s.
Experiment 1 was to measure the horizontal balloon

range R vs. φ, with m and b constant. Experiment 2 was
to measure R vs. b, with m and φ constant. Experiment
3 was to measure R vs. m, with φ and b constant. In the
classroom introduction, the students were asked to pre-
dict the outcomes of the three experiments. For the out-
door experiments, three launcher devices (one per team)
were lined up side-by-side at one end of a 100 m field
marked by labeled flags inserted into the ground every 5
m. The students used meter sticks to interpolate R to
the nearest meter, and recorded and plotted their results
on worksheets [1]. Each team made seven measurements,
using water balloons that had been filled previously by
facilitators. In the classroom conclusion, a captain cho-
sen from each team presented and explained the team’s
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FIG. 1. Photographs of the balloon launcher device assem-
bled (a) and collapsed (b). The launch platform pivots about
a horizontal axis A. The elevation angle φ of the platform
can be read directly from an angle finder B. Four bands of
latex tubing attach to the platform at movable points C and
C′, and to a pouch D, which attaches to a trigger E. Water
balloons are launched by inserting them into the pouch and
by releasing the trigger.

results to the other teams.

An instructive and entertaining outdoor exercise, one
that closely mimics the spirit of Angry Birds, is to ask an
adult target (the “pig”) to stand at a specified distance
from the launchers (40 m, say), and to allow each team
to take one shot at him. We did this exercise after the
teams plotted their results, which they used to select φ,
m, and b for their attempts. Featured as pigs were Utah
Senator Kevin Van Tassell and Geoff Liesik, the reporter
for the television news story, which included footage of
his being splattered by a water balloon [2].
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FIG. 2. Schematic of the launch platform. Two bands of
latex surgical tubing, each of natural length L0 and linear
mass density λ0, attach to the platform at C, and two similar
bands attach at C′. The four bands meet at a pouch of mass
M that holds a projectile of mass m. Displacing the pouch
a distance b and attaching it to a trigger at E stretches each
band to length L and linear mass density λ = λ0L0/L. After
releasing the trigger, the bands return to their natural lengths
and the projectile is released by the slingshot with velocity
v0. Because L0 is larger than the platform half width d,
the slingshot releases the projectile before it passes the line
joining C and C′. Shown also are the platform pivot axis A,
the distance a from this axis to the launch point, and the
distance c from this point to the line joining C and C′.

Besides providing an engaging way to teach basic con-
cepts of projectile motion to children, the device has
much to teach physics undergraduate students about air
drag and nonlinear elastic energy. Despite the familiarity
of the concept of air drag to undergraduate students in
principle, they have neglected it so many times in prac-
tice that they may develop a fear that it is “hard.”

It is not. Reviewed below to elucidate such popular
concepts as speed decay and terminal speed are simple
rectilinear closed-form solutions for quadratic drag, that
is, a drag force that is proportional to the square of the
speed v. While linear “Stokes” drag applies for small
velocities and microscopic projectiles, quadratic drag ap-
plies for the conditions of interest, namely, macroscopic
projectiles with speeds v in the range 20–40 m/s, radii r
in the range 2–5 cm, and Reynolds numbers Re = vr/ν
in the range 5–7×104, where ν = 1.6× 10−5 m2/s is the
kinematic viscosity of air [13–18]. The range for Re is
small because the fixed potential energy of the stretched
bands implies that v decreases with increasing m and r,
whence the low end of the speed range corresponds to the
high end of the radius range. We restrict our attention
to quadratic drag, which offers rectilinear solutions that
are easily accessible to undergraduate students.

To enable comparison of our measurements of the time
of flight for vertical launches with theory, we generalize
the calculations of Ref. [19] for vertical projectile mo-
tion with quadratic drag to account for unequal initial
and final heights. Because theoretical results for near-
horizontal motion [20] and two-dimensional motion [21–
23] may exceed the reach of physics undergraduate stu-
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dents, we obtain two-dimensional solutions by simple Eu-
ler integration.

Projectile motion with air resistance has received a
great deal of attention in the literature. Drag cannot rea-
sonably be neglected in many outdoor sports and other
applications [24–28]. In addition to drag, spinning balls
experience a Magnus force that is perpendicular to the
direction of motion, such as the lift force on a ball with
backspin [29–31]. Measuring spin requires high-speed
photography and careful triangulation [29]. We ignore
any spin of our water balloons, assuming that the contact
of the slingshot pouch with the balloons and the equal
lengths of the four slingshot bands impart negligible spin
on balloons as they are launched. Likewise, we have made
no attempt to observe any deformations or vibrations of
our flexible water balloons during flight. Others have ex-
amined the effect of asymmetry and roughness of the ball
on its motion [32].

Many different launching methods have been used over
the years to study projectile motion, including curved
tubes [33], projectiles released from an object moving
horizontally [34], lacrosse sticks [32], tennis ball launchers
[27], baseball pitching machines [29], soccer ball launch-
ers [31], and hand throwing [35, 36]. Some have even
used an Xbox Kinect sensor device to measure projectile
motion [37]. Advantages of our slingshot design include
the reproducibility of the initial projectile velocity and
the full range and ease of its adjustment.

Attention has been devoted to the launch angle φmax

that maximizes R for projectile motion of a spinless
ball with equal initial and final heights. Without drag,
φmax = 45◦. Linear and quadratic drag imply φmax <
45◦, while strong drag forces proportional to vn with
n > 2 sometimes yield φmax > 45◦ [38–40].

For low-density projectiles such as beach balls, the
drag depends on the projectile acceleration [36]. This
effect is negligible for soccer balls [31, 41, 42], and we
ignore it for our high-density water balloons.

The small but observable energy losses of the stretched
latex tubing used in the slingshot offer an example of
nonlinear elastic energy and hysteresis in an environment
where energy losses can ultimately be neglected, and of-
fer an opportunity to review what it really means for a
force to be conservative. Elastic hysteresis is particularly
accessible to undergraduate students, and may help to
prepare them for the more complicated processes of fer-
romagnetic and ferroelectric hysteresis. Elastic hysteresis
has been studied previously for torsion of rubber tubing
[43], stretched bands [44, 45], bent plastic foil [46], and
compressed balls and Silly Putty [47–49].

In Sec. II, we report measurements of the nonlinear
elastic force of stretched latex tubing and its small elas-
tic hysteresis and energy losses. We justify the neglect
of these losses and introduce an associated elastic poten-
tial. We introduce simple closed empirical forms that ac-
curately represent the nonlinear elastic force and elastic
potential. In Sec. III, we use this potential and conserva-
tion of energy, including the inertia of the slingshot bands

and pouch, to predict the launch speed vs. projectile
mass and compare this prediction favorably with mea-
surements. In Sec. IV, we review Newton’s second law
applied to a spinless projectile subject to both quadratic
drag and a uniform gravitational field, and solve this
equation in instructive one-dimensional cases, including a
vertical launch with unequal initial and final heights. We
determine the average drag coefficient of water balloons
for vertical launches using time-of-flight measurements.
In Sec. V, we use this coefficient to compare measure-
ments of the horizontal range with predictions obtained
by Euler integration.

II. ELASTIC ENERGY

Four bands of latex tubing supply the energy of the
launch, each band with natural length L0 = 79 cm and
linear mass density λ0 = 0.0427 kg/m. These bands are
stretched to a length L that depends on the band at-
tachment locations (C and C′ in Fig. 2). To determine
the elastic properties of this tubing, we suspend a single
band of length L0 = 79 cm and measure its downward
extension x = L − L0 for different attached masses m.
Applying Newton’s second law gives the x-component of
the equilibrium elastic force, Fx = −mg, where g = 9.8
m/s2 is the magnitude of the gravitational acceleration.
Increasingm by adding 205-grammasses one-by-one pro-
duces the “loading” force of Fig. 3 (squares and solid
trace), with maximum extension X = 131 cm. Remov-
ing these masses one-by-one produces the “unloading”
force (circles and solid trace).
The loading and unloading forces differ slightly. To

characterize this elastic hysteresis, we consider the work
done by the elastic force,

Wx1→x2
=

∫ x2

x1

Fx(x)dx, (1)

represented in Fig. 3 as the area under the trace. The
elastic force is nonconservative because the work it does
in a closed loop is nonzero;

W0→X +WX→0 = −E, (2)

where E > 0 represents the both energy lost to inter-
nal friction during the loading / unloading cycle and the
area of the hysteresis loop in Fig. 3. Integrating numeri-
cally with linear interpolation between data points yields
W0→X = −33.9 J, the work done by the elastic force dur-
ing loading, for which the elastic force is antiparallel to
the displacement, and WX→0 = 33.0 J, the work done by
the elastic force during unloading, for which the elastic
force is parallel to the displacement. Equation (2) gives
the associated energy loss, E = 0.9 J.
Because E ≪ WX→0, we neglect internal friction and

define an elastic potential energy U(x) by Fx = −dU/dx.
Since the projectile is launched by unloading the bands,
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FIG. 3. Measured nonlinear elastic force Fx in Newtons vs. ex-
tension x in meters for a single band of elastic tubing of length
79 cm during loading (squares, solid trace) and unloading (cir-
cles, solid trace), for a maximum band extension of X = 1.31
m. The area between the two traces represents the energy
lost to friction during the loading and unloading cycle.

we use the unloading force to numerically integrate

U(x) = −
∫ x

0

Fx′(x′)dx′, (3)

using linear interpolation between data points.

Resulting numerical values of U are shown in Fig. 4
(diamonds) together with the measurements of the un-
loading force Fx from Fig. 3 (circles). Also shown in
Fig. 4 are the empirical approximations (solid traces)

Fx(x) = −kx−A
(

1− e−αx
)

(4)

and

U(x) =
1

2
kx2 +Ax−

A

α

(

1− e−αx
)

, (5)

with k = 22.68 N/m, A = 12.08 N, and α = 4.79 m−1

chosen to minimize the sum of the squares of the differ-
ences between the numerical results for U and Eq. (5).
Indeed, while Eq. (4) agrees with our measurements of
Fx to within 1 N, Eq. (5) agrees with our numerical re-
sults for U to within 0.1 J. Here, k represents the elastic
force constant that governs the linear Hooke’s law behav-
ior of Fx for large values of x (dashed trace in Fig. 4),
and A and α govern the nonlinear behavior for small x.
Note that the specific values of k, A, and α likely depend
on the length L0 of the band. Equation (4) matches our
experimental data better than a state equation used to
study the elastic behavior of rubber bands [44].

0

10

20

30

40

0

10

20

30

40

0 0.5 1 1.5

–
F

  
 (

N
) U

  (J
)

x  (m)

x

FIG. 4. Measured elastic unloading force Fx in Newtons
(circles, from Fig. 3) and corresponding elastic potential U
in Joules obtained by numerical integration of Eq. (3) (dia-
monds) vs. extension x in meters for a single band of elastic
tubing of length 79 cm. Solid traces are empirical approxi-
mations given by Eqs. (4) and (5), and the dashed trace gives
the asymptotic linear behavior of Eq. (4).

III. INITIAL SPEED

We use conservation of energy, with Eq. (5) describ-
ing the elastic potential, to determine the speed v0 of
the projectile as it leaves the slingshot. We consider the
time between the release of the trigger, when the bands,
pouch, and projectile are momentarily at rest with the
bands stretched to length L, and the launch point, where
the bands reach their natural length L0 and the slingshot
releases the projectile with speed v0 (Fig. 2). We ignore
air drag during the launch but include the masses of the
pouch and bands, which play a significant role for pro-
jectile masses of interest.

To simplify the analysis, we neglect gravitational de-
flection of the projectile during the launch by assum-
ing that the projectile executes rectilinear motion in the
plane of the launch platform (Fig. 2). When the pro-
jectile is released by the trigger, the net elastic force of
the four bands overwhelms the gravitational force on the
projectile. However, as a projectile approaches its launch
point, the elastic force decreases to zero, giving gravity
an opportunity to deflect the projectile for non-vertical
launches. Measurements reported in Sec. V indicate that
this deflection may be observable for small launch angles.

Conservation of energy gives

1

2
mkv

2
0 +mpgb sinφ = 4U(X), (6)
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where

mk = m+M +
4

3
λ0L0 (7)

accounts for the kinetic energy of the projectile of mass
m, the pouch of mass M , and the bands of linear mass
density λ0,

mp = m+M + 2λ0L0 (8)

accounts for the change in gravitational potential energy
of the projectile, the pouch, and the bands, and

U(X) =
1

2
kX2 +AX −

A

α

(

1− e−αX
)

(9)

gives the elastic potential energy of one of the four
stretched bands, with extension X = L − L0, from
Eq. (5).
To calculate the kinetic energy of the bands at launch,

we define η to be the distance from the attachment point
to a tubing element of mass λ0dη and assume that the
speed v0η/L0 of this element is proportional to η, giving a
speed of zero at the attachment point and a speed of v0 at
η = L0 (Fig. 2). Thus the kinetic energy of this element
is dK = (1/2)(λ0dη)(v0η/L0)

2. Integrating yields the
kinetic energy of one band,

K =

∫ L0

0

dK =
λ0L0

6
v20 . (10)

Multiplying this result by 4 (for the four bands of tubing)
gives the contribution of the bands to the kinetic energy
appearing in Eqs. (6) and (7).
The change in the gravitational potential energy of the

bands is given by 4λ0L0g∆y, where 4λ0L0 is the mass of
the four bands, g is the magnitude of the gravitational ac-
celeration, and ∆y is the change in the height of the cen-
ter of mass of the bands. During the launch, this center
of mass moves a distance b/2 along the launch platform
(Fig. 2) and rises a vertical distance ∆y = (b/2) sinφ,
yielding 2λ0L0gb sinφ as the change in gravitational po-
tential energy of the bands appearing in Eqs. (6) and
(8).
To test Eq. (6), we measured v0 for a series of horizon-

tal launches with balloon masses in the practical range
50 g < m < 600 g. Setting φ = 0 and rearranging yields
the predicted behavior

v0(m) = 2

√

2U(X)

m′ +m
, (11)

where m′ = M + 4λ0L0/3. The measurements were car-
ried out for L0 = 79 cm, L = 193 cm, X = 114 cm,
M = 0.02571 kg, and λ0 = 0.0427 kg/m, which yield
m′ = 0.0707 kg and U(X) = 26.0 J from Eq. (9).
For each measurement of v0, two water balloons were

prepared with masses within 1 g of each other. One of
these was launched horizontally at a vertical wooden tar-
get located 3 m from the launch point and resting on a

table. The other was launched at the same target, now
located 4 m from the launch point on the same table.
In each case, the time between the impact of the trig-
ger latch with a steel pipe and the impact of the balloon
with the target was determined from an audio recording
with a sampling rate of 48 kHz, made using the iPhone
software application TwistedWave. The difference ∆t be-
tween these times is the time required for the projectile to
travel a distance of ∆x = 1 m, which yield v0 = ∆x/∆t.
The main source of error in the measurements is the un-
certainty in the time of impact of the trigger latch, which
implies an uncertainty of about δt = 0.001 s in ∆t and
an uncertainty of v0δt/∆t in v0. The relative uncertainty
δt/∆t in the time exceeds the relative uncertainty in the
balloon mass, which helps to justify our assumption that
the two balloons used in each measurement are launched
at the same speed.
The impact times (of the trigger latch with the pipe,

and of the balloon with the target) were designated as
the instants at which their recorded sound pressure first
reached or exceeded the maximum pressure of the record-
ing software, saturating the signal. These impact times
were determined by zooming in on the audio waveform
using TwistedWave. The uncertainty in these measure-
ments is the difference between the times at which the
maximum and half-maximum pressures were reached.
The iPhone was placed an equal distance from the two

target positions, at a distance of about 3 m, to avoid the
need to account for the speed of sound. The iPhone was
placed with an unimpeded line of sight between it and
each target position, and between it and the trigger, so
it could receive the direct sound from each, not delayed
reflections. To minimize such reflections, the measure-
ments were taken outside, away from reflective surfaces.
The launcher supports were weighted to ensure that it
remained fixed.
Our measurements of v0 (open circles in Fig. 5) agree

well with Eq. (11) (solid trace) except for the two small-
est balloons. Correcting for air drag during these short (3
m) horizontal flights (Sec. IV) improves this agreement
(filled circles in Fig. 5, with uncertainties shown with
error bars). Agreement between theoretical and experi-
mental values of v0 confirms our neglect of elastic energy
losses, the form of our elastic potential, and our treat-
ment of the kinetic energy of the bands and pouch. Also
shown in Fig. 5 are corresponding values of r given by
Eq. (15).

IV. DRAG COEFFICIENT

To assess the importance of air drag in the water-
balloon trajectories achievable by the launcher and to de-
termine the drag coefficient of these balloons, we consider
Newton’s second law with gravitational and quadratic
drag forces. We assume that the balloons are spheri-
cal, of radius r, mass m, velocity v, drag coefficient C,
and cross-sectional area A = πr2 moving without spin
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FIG. 5. Measured horizontal launch speeds v0 in meters per
second vs. balloon mass m in grams before correcting for drag
(open circles) and after correcting for drag (filled circles),
compared with Eq. (11) (solid trace). Also shown (squares
and solid trace) are the corresponding balloon radii r in cm
from Eq. (15).

through still air of mass density ρa in the presence of a
uniform gravitational field g, writing [51]

mv̇ = mg−
1

2
ρaCAvv. (12)

Ignoring the volume and the mass (less than 1 g) of the
balloon membrane, writing V = (4/3)πr3 as the volume
of the water in the balloon, and writing ρw = m/V as
the mass density of water allows us to rewrite Eq. (12)
as

v̇ = g − κvv. (13)

The drag constant

κ =
3

8

ρa
ρw

C

r
(14)

has units of inverse meters and has a mass-dependent
radius

r =

(

3m

4πρw

)1/3

. (15)

Buoyancy is negligible because ρa/ρw ≪ 1.
Rectilinear motion in the absence of gravity reveals

the physical interpretation of κ. Substituting g = 0 and
v = v(x(t))x̂ into Eq. (13), applying the chain rule, and
integrating yields

v(x) = v0e
−κ(x−x0), (16)

where the coordinate x is in the direction of motion, x0 is
the initial position, and v0 is the initial speed. Thus, in

the absence of other forces, quadratic air drag produces
an exponential spatial decay of the speed, with κ−1 rep-
resenting the 1/e decay distance. Because κ ∝ 1/r, this
decay distance increases, and the importance of drag de-
creases, with increasing projectile size.
The drag coefficient C depends on the Reynolds num-

ber Re = vr/ν. Values of v0 and r shown in Fig. 5 to-
gether with the kinematic viscosity of air, ν = 1.6×10−5

m2/s [18], yield values of Re in the range 5.1–6.7×104.
These values fall in the range 3×102 < Re < 1.3×105 for
high-Reynolds-number flow that is laminar on the wind-
ward side of the projectile and turbulent in its wake,
with C ≈ 0.5 in this range for smooth spherical projec-
tiles [19, 50–52]. When the Reynolds number exceeds
the upper limit of this range, the drag coefficient drops
precipitously to C ≈ 0.1 at the “drag crisis.”
To determine C for water balloons, which are neither

completely smooth nor spherical, we compare calcula-
tions and measurements of the time of flight for vertical
launches. Taking the y axis as vertically upward with
g = −gŷ and v = vy ŷ, we use Eq. (13) to calculate the
time t1 required for a projectile at initial height y0 and
initial velocity v0 = v0ŷ to ascend to its apex at y = Y ,
where its velocity vanishes. We then calculate the time
t2 required for the projectile to descend from the apex
to the ground at y = 0, and determine the total time of
flight from T = t1 + t2. We assume for simplicity that κ
and C are constants that apply throughout the duration
of the flight.
For the ascent with vy > 0, the velocity is antiparallel

to both gravity and drag, v = vy, and Eq. (13) becomes

v̇y = −g − κv2y. (17)

Integrating with respect to time and demanding vy = 0
at the apex yields the time to the apex,

t1 = τ tan−1(v0/vt), (18)

where

vt =

√

g

κ
(19)

is the terminal speed and

τ =
1

√
κg

(20)

is the characteristic time of approach to this speed. A
second integration yields the height of the apex,

Y = y0 +
1

2κ
ln

(

1 +
v20
v2t

)

. (21)

For the descent with vy < 0, the velocity is parallel to
gravity and antiparallel to drag, v = −vy, and Eq. (13)
becomes

v̇y = −g + κv2y. (22)
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Integrating with t = 0 at the apex yields the time-
dependent velocity [53]

vy(t) = −vt tanh(t/τ) (23)

and acceleration

v̇y(t) = −g sech2(t/τ). (24)

These results confirm the physical interpretations of vt
and τ given above. The speed of a particle that is re-
leased from rest in a uniform gravitational field increases
asymptotically to the terminal speed vt in a characteristic
time τ , while the magnitude of its acceleration decreases
asymptotically from g to zero. Integrating Eq. (23) yields
the descent time,

t2 = τ cosh−1 eκY . (25)

Combining Eqs. (18), (21), and (25) yields the total time
of flight,

T = τ tan−1(v0/vt) + τ cosh−1

(

eκy0

√

1 + v20/v
2
t

)

.

(26)
Equations (21) and (26) give the maximum height and

the total time of flight for vertical trajectories with un-
equal initial and final heights. Setting y0 = 0 yields
Eqs. (33) and (44) of Ref. [19] for equal initial and fi-
nal heights.
The initial speed

v0 =

[

8U(X)

mk
− 2

mp

mk
gb

]1/2

(27)

follows from Eq. (6) with φ = 90◦, with mk, mp, and
U(X) given by Eqs. (7), (8), and (9). The increase in
gravitational potential energy during this vertical launch
renders its initial speed 1-4% smaller than the horizontal
launch speed given by Eq. (11) and shown in Fig. 5. The
initial height is (Figs. 1 and 2)

y0 = h+ a. (28)

In the limit κ → 0, Eqs. (21) and (26) reduce to the
elementary results

Y = y0 +
v20
2g

(29)

and

T =
v0
g

+
1

g

√

v20 + 2gy0 (30)

for projectile motion with constant gravitational acceler-
ation and no drag.
The drag constant κ increases with decreasing mass m

according to κ ∝ m−1/3 [Eq. (14), Eq. (15), and Fig. 6],
implying that drag is important for small particles. The
corresponding terminal speed vt ∝ m1/6 and decay time
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FIG. 6. Shown are the drag constant κ in inverse meters
and the terminal speed vt = (g/κ)1/2 in meters per second
vs. balloon mass m in grams, from Eqs. (14), (15), and (19).

τ ∝ m1/6 both vanish as m → 0 [Eq. (19), Eq. (20), and
Fig. 6], implying suspension of vanishingly small parti-
cles. Indeed, small water droplets and ice crystals are sus-
pended in clouds until the particles accumulate enough
mass to begin falling to the earth [54].
We measured the time of flight T = Tt − Tl for ver-

tical launches by using TwistedWave to determine the
total time Tt between the impact of the launcher trig-
ger latch with a steel pipe and the impact of the balloon
with the ground, and subtracting the launch time Tl, the
time between the impact of the trigger latch and the re-
lease of the projectile by the slingshot. For simplicity,
we estimate the launch time Tl = b/v0 to be the ratio of
the launch distance b to the initial speed v0, given that
projectile acceleration is largest during the early stages
of the launch when the net elastic force is greatest, and
given the smallness of Tl < 0.02Tt. We used the values
C = 0.55, ρa = 1.2 kg/m3, ρw = 1000 kg/m3, a = 0.56
m, b = 1.23 m, h = 1.05 m, y0 = 1.61 m, g = 9.8 m/s2,
L0 = 79 cm, L = 193 cm, X = 114 cm, M = 0.02571
kg, and λ0 = 0.0427 kg/m, whence U(X) = 26.0 J from
Eq. (9).
Figure 7 shows the agreement between these measure-

ments of T and Eq. (26), with v0 given by Eq. (27). This
agreement indicates that water balloons have drag coef-
ficients C = 0.55 ± 0.05 that might slightly exceed the
value C ≈ 0.5 for smooth spheres [50, 51]. The value
C = 0.55±0.05 fits both the time-of-flight measurements
shown in Fig. 7, which tend to favor slightly smaller val-
ues of C, and the large-φ range measurements in Fig. 8,
which tend to favor slightly larger values. Since C varies
with Re, and since Re varies with time while a balloon
is in flight, the value C = 0.55 should be considered as
an average value, one that does a reasonable job for the
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FIG. 7. For the right axis, measured times of flight T in sec-
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and with Eq. (30) that excludes drag (dashed trace). For the
left axis, the apex height Y in meters for vertical launches
vs. balloon mass m in grams from Eq. (21) that includes drag
(solid trace) and from Eq. (29) that excludes drag (dashed
trace).

entire flight. The measured time of flight for the 50-g
(smallest) balloon falls short of the prediction, indicat-
ing that the non-sphericity of this balloon, including the
relatively large profile of its tied-off neck, might require a
drag coefficient that is larger than 0.55. The agreement
between our measurements on flexible water balloons and
our predictions for rigid spheres suggests that in-flight de-
formations of water balloons, including vibrations, might
be negligible.

Also shown in Fig. 7 are the height Y at apex given
by Eq. (21) and the drag-free predictions of Y and T
given by Eqs. (29) and (30), which indicate that drag
plays a significant role for the smaller masses considered.
Equations (21) and (26) predict that Y → y0 and T → ∞
as m → 0, implying that any initial speed quickly decays
for a vanishingly small particle at the launch point, where
the particle remains suspended for all time, consistent
with the results vt → 0 and κ → ∞ discussed previously
[55].

Equation (16) enables us to correct the measurements
of v0 in Fig. 5 for air drag during the short (D = 3
m) horizontal flights. Neglecting the small gravitational
deflection during this flight, Eq. (16) predicts that the
speed of a horizontal projectile with initial speed v0 de-
cays to v(D) = v0e

−κD over a distance D. Solving for v0
in this equation and treating the measurements of v0 in
the previous section as v(D) yields the corrected values
plotted as filled circles in Fig. 5, thereby improving the
agreement between the predicted and measured values of
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FIG. 8. Measurements of the horizontal range R vs. launch
angle φ for initial velocity toward the east (circles) and toward
the west (squares), together with theoretical results for drag
coefficient C = 0.55 [solid trace, from numerical integration
of Eq. (13)] and C = 0 [dashed trace, Eq. (34)].

v0. Corrections are larger for the smaller balloons, con-
sistent with the arguments above that drag is important
for small masses.

V. RANGE

Measuring the horizontal range R vs. the launch angle
φ follows the spirit of Angry Birds and allows beginning
students to appreciate that two different values of φ can
produce the same value of R. Using water balloons of
mass m = 185± 1 g, we made two measurements at each
launch angle, one with initial velocity to the east and the
other to the west, with the balloons traversing the same
length of ground from opposite directions (Fig. 8). Dur-
ing the 28 minutes required to take the measurements,
the wind was light but variable, originating generally
from the southeast with average wind speed 1.1 ± 0.6
m/s and average direction of origin 140 ± 60 degrees,
measured counterclockwise from north when viewed from
above. The wind velocity measurements were taken with
a Gill WindSonic Two-Dimensional Sonic Anemometer.
We measured ranges R from a point on the ground di-
rectly below the launcher axis to the center of the damp
balloon landing site using a Kobalt 300-ft engineering
tape measure. These damp landing sites showed clearly
on the soil surface of the dry, uncultivated field.
For C = 0.55, ρw = 1.0 × 103 kg/m3, and ρa = 1.2

kg/m3, balloons of mass m = 185 g have radius r = 3.53
cm from Eq. (15) and κ = 0.00701 m−1 from Eq. (14).
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The values L0 = 79 cm, L = 193 cm, X = 114 cm,
M = 0.02571 kg, λ0 = 0.0427 kg/m, a = 0.56 m, b = 1.23
m, h = 1.05 m, g = 9.8 m/s2, U(X) = 26.0 J from
Eq. (9), mk = 0.255 kg from Eq. (7), and mp = 0.278 kg
from Eq. (8) allow us to calculate the φ-dependent initial
coordinates (Fig. 2),

x0(φ) = a cosφ (31)

y0(φ) = h+ a sinφ, (32)

and the φ-dependent initial speed [from Eq. (6)],

v0(φ) =

[

8U(X)

mk
− 2

mp

mk
gb sinφ

]1/2

, (33)

where the origin of coordinates is taken to be the point
on the ground directly below the platform launcher axis.

Equation (13) governs the flight of the projectile start-
ing with these initial conditions and ending at the landing
point where x = R and y = 0. For κ = 0, Eq. (13) re-
duces to the standard introductory physics problem of
projectile motion with constant acceleration g, yielding
a range

R = x0 +
v0x
g

(

v0y +
√

v20y + 2gy0

)

, (34)

where v0x = v0(φ) cosφ and v0y = v0(φ) sin φ. For κ ≥ 0,
Eq. (13) is easily integrated numerically using Euler’s
method. A time step of 0.001 s produces results that
agree with Eq. (34) to within 0.1% for κ = 0. We used a
time step of 0.00001 s, and double precision FORTRAN,
to obtain the solid trace in Fig. 8. For vertical launches
with drag, such Euler integration agrees with the predic-
tions of Eq. (26) to within 0.02%.

Figure 8 shows predictions for C = 0.55 from numerical
integration (solid trace), results for C = 0 (dashed trace)
from Eq. (34), and the measurements (data points). As
might be expected, drag plays a smaller role in the range
R for near-horizontal (φ ≈ 0) and near-vertical (φ ≈ 90◦)
launches than for intermediate angles. The correspond-
ing values of v0 given by Eq. (33) range from 28.1 m/s
for φ = 90◦ to 28.5 m/s for φ = 0. The agreement
between the predictions and measurements for large an-
gles φ ≥ 50◦ and the agreement for the times of flight
for vertical launches (Fig. 7) suggest that the observed
shortfall in the measured values of R for small angles
may be due to a small amount of gravitational deflection
during launch, deflection that is absent or negligible for
vertical and near-vertical launches. For a vertical launch,
the elastic force and gravity are antiparallel, and there is
no gravitational deflection.

Including gravitational deflection for small launch an-
gles would likely imply an initial velocity vector whose

elevation angle θ is less than the launch platform ele-
vation angle φ. Lower elevation angles would decrease
the predicted values of R and might improve the small-φ
agreement between theory and experiments in Fig. 8. In-
cluding this gravitational deflection would also introduce
considerable complication, precluding the use of conser-
vation of energy during the launch and rendering x0, y0,
v0, and θ dependent on time-dependent integrals over the
elastic force. A study of this deflection might make an
excellent senior thesis.

VI. CONCLUSIONS

In this paper, we introduce a collapsible projectile
launcher design that capitalizes on the popularity of An-
gry Birds to capture the interest of students in projectile
motion, air drag, and nonlinear elastic energy. The de-
sign features a fully adjustable, reproducible initial veloc-
ity vector. Using water balloons as projectiles provides
a convenient means of identifying the landing site (by a
damp spot on the ground) and a convenient means for
varying the projectile mass (by changing the volume of
water in the balloon). For the experiments reported here,
the slingshot handles were attached at the 100 cm mark
discussed in Ref. [1]. Attaching these handles at the 120
cm mark yields ranges up to 85 m for smaller balloons.
The theory presented here, which includes the inertia

of the slingshot bands and pouch, agrees well with ex-
periments and suggests that gravitational deflection dur-
ing launch may play an observable role for small launch
angles. The launcher can be built and the experiments
carried out using readily-available, inexpensive tools and
materials, including an iPhone software application to
make accurate time measurements. Analytical results
are presented for rectilinear motion with quadratic drag,
and simple Euler integration is used for two-dimensional
motion with drag.
In addition to water balloons, the launcher can be used

on softballs, baseballs, golf balls, and other small projec-
tiles in order to study the range of balls with different
masses, sizes, and Reynolds numbers. Launch speeds
were determined by measuring the time taken to travel
a fixed distance, and might alternatively be determined
through video photography, by measuring the distance
traveled between successive frames.
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