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The effects of model misspecification on linear regression coefficients as 
applicable to solar and linear terms 
 
Troy A. Wynn and Dr. Vincent B. Wickwar 
Utah State University, Department of Physics 
 
Abstract 
Determining atmospheric solar response from data is typically done by fitting a linear model to the data 
using a least squares approximation. These models typically include a solar proxy that follows the 11 year 
solar intensity variation, as well as a linear cooling trend. In this paper it is argued that such a regression 
model is flawed in that the atmospheric solar response might be out of phase with the solar input. And if 
so, the phase difference between solar input and atmospheric solar response can significantly bias the 
linear regression coefficient and attenuate the solar coefficient. This result is important because the sign 
of the solar response has been noted to change with altitude. Consequently, at some point between these 
two regions the solar response must go through zero, regardless of whether the actual solar response is 
zero at that altitude. 
 
Introduction 

Solar electromagnetic flux has an 11 year intensity variation. The solar ultraviolet output is of 
particular interest because of its significant impact on stratospheric and mesospheric temperatures. 
Overall solar intensity varies less than 1% W/m2. In the shorter UV spectrum it varies approximately 10% 
W/m2 (Donnelly, 1991; Donnelly et al. 1982). Various methods have been employed to determine how 
the atmosphere responds to solar input. One method involves deseasonalizing atmospheric temperatures 
and looking for elevated temperature levels at solar max and lower temperatures at solar min. This direct 
method makes no assumptions about how the atmosphere is responding to solar input and does not have 
the problem of coefficient bias or attenuation due to model misspecification. Two other methods employ a 
solar proxy: The deseasonalized temperature response can be checked for correlation with a solar proxy; 
or a model can be fit to the data using least squares regression. However, if the atmospheric solar 
response is 90o out of phase with the solar input the correlation is zero. In a least squares regression, 
including a solar proxy in the model has the implicit assumption of an in phase or out of phase 
atmospheric solar response. Depending on the phase of the solar proxy relative to the data and how the 
model is constituted, the solar response as indicated by the model can be zero when it is in fact nonzero. 

Because of the importance of atmospheric solar heating, the atmospheric solar response is typically 
included in a least squares model of atmospheric temperatures. Various proxies have been employed as 
indicators of solar activity, such as sunspot number, F10.7 cm flux, or Mg II core-to-wing ratio. As 
mentioned above, by including a solar proxy in a least squares model an implicit assumption is made: The 
atmospheric solar response is exactly in phase or exactly out of phase with the solar proxy. In this paper 
the effects of this assumption being false are explored. 

A typical least squares regression for atmospheric temperatures looks like this. 
 

Ti i + B1  ti) + B2  ti) + A1  ti) + A2 i) + A·SPi i . 
 
This model is mean centered so the intercept is omitted. T is a vector of atmospheric temperatures, t is the 

 is the magnitude of the 
atmospheric solar response; the other four terms are the annual and semi-annual oscillation respectively. 
The annual and semiannual terms affect the model coefficients very little. So I shall consider a simplified 
model. 
 

Ti 'ti + A'SPi i' .              (1a) 
 



(1a) is the proposed model to be fit to temperature data. Now suppose the true model is this, 
 

 Ti tti + A·sin  ) i ,            (2) 
 
where the atmospheric solar response has a . That is the atmospheric response to the solar 
input has phase The coefficient A is the amplitude of the atmospheric solar response. As the phase 
offset must be measured from a reference point, the time center of the data set is selected. Furthermore, 
because the data may begin at any point in a solar cycle, the solar proxy in the proposed model must also 
have a phase offset relative to the time center of the data. The proposed model may be written as  
 

Ti 'ti + A i .           (1b) 
 
For identification let the solar proxy SP ) and the solar response SR where  is 
the phase of the atmospheric solar response and  is the phase of the solar proxy.  As mentioned above, 
the phase is measured relative to the time center of the data set. For example, if the portion of the solar 
cycle coincident with the data is that shown in Figure 1  

In standard normal form the coefficients for the proposed model are  
 

E( ') = (XTX)-1XTT, 
 
where X = [t, SP] is the data space and T are measured atmospheric temperatures. Substituting (2) into 
this expression and solving ' and A' we get the following.  
 

A' = A{ (tTt)(SPTSR)  (SPTt)(SRTt)}  

 + A{ (SPTSP)(SRTt)  (SPTt)(SPT  

 
tTt, SPTSR, SPTt, etc, are inner products and the determinant of XTX. These two equations indicate 
that the linear term can be biased and also that the amplitude of the solar response is an attenuation of the 
true atmospheric solar response.  

For brevity the derivations for the following are omitted. The sine term in the solar proxy and 
atmospheric solar response may be broken into individual sine and cosine terms. By putting these terms 
into least squares models the effects of bias and attenuation can be determined for various combinations 
of the individual sine and cosine terms. 1' 
the t 1 2 , 1', and B2' will be unbiased. The results are 
shown in Table 1. What can be concluded is that if the proposed model has a sine-like solar proxy and the 
true model is one of the models shown in the top row of Table 1 then the linear term is unbiased. This is 
true regardless of the amplitude and phase of the atmospheric solar response. 
 
Table 1: Proposed models and true models. There are only two cases with a biased linear term.  

  True Models 

 E(P), E(T) 1 2  1  2  

Pr
op

os
ed

 
M

od
el

s 

1' 2  1', B2' (unbiased) 1' (unbiased) 
B2' = 0 

2' (unbiased) 
B1' = 0 

1'  1' (unbiased) 1' (unbiased)  
B1' = 0 

2  (biased) 
B2' (unbiased) 

' (biased)  
B2' = 0 2' (unbiased) 



 
 

might be data gaps 
which prevent the sum from being zero. That is if Si i and Ci i, and there are significant 
data gaps then Si·Ci is unlikely to be zero. Also, I mentioned at the beginning of this paper that a 
proposed model can be Ti 'ti i. If we break up the sine term into individual sine and 
cosine terms 
second proposed model in the above table we get B1 2' = A 1' and B2' 
are unbiased, they are attenuated versions of the true solar amplitude. 
 
USU temperatures 

Typically, when looking for a solar response, a solar proxy and linear term are included in the model, 
and this model is fit to the data using a least squares approximation. Because the phase  of the solar 
proxy is fixed, if there is a delayed atmospheric response to the solar input it s possible that the problems 
of bias and attenuation will arise in the proposed model. Suppose (2) is the true model and (1b) the 
proposed model. 

 
Ti 'ti + A'·sin i ,             (1b) 

 
  Ti i + A·sin i ,            (2) 

 
where  is the phase of the  the phase of the atmospheric solar response.  is the true 
linear term coefficient, and A the true amplitude of the atmospheric solar response

. 
 The derivation for the equations for bias and attenuation are as follows. We can write the expected 
values of these two equations: 
 

E(T) 't + A' )             (3) 

 ) ,           (4) 

 
Using least squares to solve for the coefficients of (3) we get 
 

E( ') = (XTX)-1XT E(T),  
 

where ' T, X = (t, SP) and SP ). Substituting (4) into the above expression we get  
 
 

E( ') = (XTX)-1XT ),  
 
where SR ). Solving this expression  we get.  
 

A' = A { (tTt)(SPTSR)  (SPTt)(SRTt  

SPTSP)(SRTt)  (SPTt)(SPT  , 

determinant of XTX. The inner products are summations and can be treated as integrals. 
Because we are assuming mean centered data the integrals are evaluated from t0 to +t0, where t0 is the 
maximum time of the time-centered time regressor. For example tTt = titi ~ t2 dt. Evaluating this integral 
from t0 to +t0 we get 2/3 t3. Evaluating the other inner-product terms in this manner gives the following 



 
 

 
A' = A { [2t0

3/3][ t0   s2  2s1
2

0
2]  [ s1  

0c1) 2][ s1  0c1) 2]             (5) 
 

t0  s2  2s1
2sin2

0
2][ 1  0c1

2]  [ 1  
0c1

2][t0   s2  2s1
2

0
2       (6) 

 
Tt)(SPTSP)  (SPTt)2 = { [2t0

3/3]·[t0  s2  2s1
2sin2

0
2]  [  s1  

0c1)/ 2]2 }, s1 1 2 A' is an attenuated true solar response coefficient 
A  from the true cooling trend . Depending on the phase of the solar cycle and the phase 
of the atmospheric response  to A. 

One way to test for bias in and attenuation in from 
another model-fit to the data. d A they can be used in (5) 
and (6) to at is predicted by equations (5) and (6). Let the 

respectively. These estimates are obtained by fitting this model to the 
data. 

 
E(T) = ''t + C1 2            (7) 
    

From this one obtains the amplitude A'' = (C1
2 + C2

2
2/C1 . By 

fitting (1b) to the data 
may be calculated from the solar proxy data, but is otherwise fixed. The bias and attenuation that results 
from fitting (1b) to the data when (2) is the true model can be calculated from the coefficient estimates 
obtained from fitting (1b) and (7) to the data. T  
match the bias and attenuation predicted by equations (5) and (6) there exist grounds for arguing for the 
existence of a significant phase difference between the solar input and atmospheric solar response. This 
method was tested using the USU data. 
 
Applied to the USU data 

The USU data spans from 9/3/1993 to 8/5/2003. This covers the portion of the solar cycle shown in 
Figure 1. A fitted sine function is shown in gray. The phase of the 

 -0.0151 rad (-0.86o). 
Note that the solar proxy is very nearly sine-like. Because of this 
sine-like solar input, according to the information in Table 1 there 
should be no bias. However, because of data gaps the columns 
might not be orthogonal and there could be unaccounted for bias in 
the linear and solar coefficients. This also assumes the model is not 
underspecified. 

The linear trend bias and solar amplitude attenuation is obtained 
from fitting models (1b) and (7) to the data as described above. 
These are compared to the calculated bias and attenuation predicted 
by equations (5) and (6). This is shown in Figure 2. From this 
figure we can see that between 55 and 65 km there is no bias and 
the attenuation matches that predicted by the equations. However, 
above 65 km and below 45 km there is poor agreement in the bias.  

This might be due to model under-specification, possibly a 
Pinatubo effect. She et al. (1998) found a 9 K episodic warming 

near the Mesopause that reaches a maximum mid-1993, which is when our USU data set begins. This 

 
F igure 1: The mean centered MgI I 
index plotted over the time covered 
by the USU data set. The sine 
function fit to the data is shown in 

= -0.0151 rad. 

 



might be biasing our linear trend calculations. To remove any possible Pinatubo effects the first half-year 
of data was omitted and the calculations redone. (This involved removing 28 data points.) The bias and 
attenuation were recalculated. These are shown in Figure 5Figure 5. Notice the much better agreement 
from 45 to 55 km, and also above 65 km. The attenuation also has very good agreement. If the data for the 
entire first year is omitted from the data set, the bias and attenuation remain in good agreement (Figure 6). 
Notice that below 60 km there is no bias in the linear term. Above 65 km the agreement between the bias 
predicted by the equations and the bias determined by the models are in good agreement, as is the 
attenuation. 

We can take a closer look at the attenuation on the solar response coefficient A' from model 1b. This is 
the model with a fixed solar proxy. The equations predict the coefficient A' will be attenuated according 
to the phase of the solar proxy and atmospheric solar response. This is shown in Figure 4 below. At most 
altitudes where the solar input phase is f the solar proxy coefficient goes to 
zero. This is also true when the first half-year of the data is omitted from the analysis. See Figure 3. 

The phase difference and amplitude of the atmospheric solar response are shown in Figure 7. The 
magnitude of the solar response from solar max to min is shown in Figure 7a. From 45 to 60 km the 
magnitude of the solar response is roughly 1.5 K. From 60 to 70 km it steadily increases to approximately 
5 K. From 70 to 90 km it varies around 5K. 
 
Discussion of results 
 There are two principle arguments here. If the solar is positive at one altitude and negative at another 
then naturally the amplitude of the solar response goes through zero. This might or might not say 
something about the amplitude of the solar response at that altitude. Moreover, if the atmospheric solar 

response can be positive (in phase) at one altitude and 
negative (out of phase) at another, perhaps it can have a phase 

 
 The interpretation is more difficult. If the atmosphere 
responds in phase then when the solar UV is at a maximum 
atmospheric temperatures are elevated. If the atmosphere 
responds out of phase then if the solar UV is at a maximum 
atmospheric temperatures are at a minimum. But what does it 
mean for the atmosphere to response with a phase difference 
of 90º? If the phase offset is thought of as a time delay then a 
phase difference of 90º is equivalent to nearly 2.7 years. One 

atmosphere lagging 5 years 
behind the solar input when the atmosphere has a negative 
temperature response. An out of phase response seems to 
point to a dynamical effect rather than a time delay. If at a 
given altitude the atmospheric response is 90º out of phase 
with the solar input, and assuming the time center of the data 
set is t = 0 and the solar input is sine-like, then at that altitude 
when the solar UV input is halfway between its max and min 

the atmosphere at that altitude is responding with a temperature maximum. If at another altitude the solar 
response is purely negative (180º out of phase) then when the solar UV input is at a minimum the 
atmospheric response is at a maximum. If the atmosphere has a maximum temperature response during 
solar minimum it seems possible for an atmospheric temperature max or min to occur halfway between 
solar max and min. 

An analysis of the USU Mesospheric temperature data set exhibits an out of phase atmospheric solar 
response. Between 59 and 61 km the phase changes from being nearly in phase at 59 km to nearly out of 
phase at 61 km. This rapid transition suggests a zero temperature response at 60 km; the amplitude of the 
solar response at that altitude is 0.4 K from solar max to solar min. This result is consistent with findings 
from other researchers. Kubicki et al. (2008) shows an atmospheric temperature response to the solar 

 
F igure 2: The bias and attenuation predicted 
from equations (11) and (12) compared to the 
bias and attenuation calculated from applying 
equations (1b) and (4) to the data.  

 



 
F igure 6: Same F igure 2, except the first 
year is omitted from the data set. 

 

 
F igure 5: Same as F igure 2, except the first 
� year is omitted from the data set. 

 

 
F igure 4: The phase difference between the atmospheric solar 
response and the solar proxy is shown in (a). The solar proxy 
coefficient is plotted in (b). A t most of the points where the phase 
difference between the solar input and the atmospheric solar 

-proxy coefficient 
goes to zero. The exception is at 78 km. This could be due to 
effects that are not accounted for in the model. 

 

 
F igure 3: The phase difference between the atmospheric solar 
response and the solar proxy is shown in (a). The solar proxy 
coefficient is plotted in (b). This is with the first half-year of the data 
omitted from the analysis.  A t most points where the phase difference 

f the solar-proxy coefficient goes to zero. Again 
the exception is at 78 km.  

 

 



input transitioning from positive to negative at 59 km during winter and 52 km during summer. Keckhut 
and Kodera (1999) found a temperature change from positive to zero at 52 km for winter but a fairly 
uniform temperature response of 1 K from 30-55 km for summer. A similar temperature response at 50 
km was found by Keckhut et al. (1995) as well as Cossart and Taubenheim (1987). Chanin et al. (1987) 
Figure 2 shows deseasonalized temperatures from 1979 to 1985 from 40 to 65 km, along with the 10.7 cm 

solar flux for that time period. At 40 km there is a clear negative response, at 50 km the temperature 
response is zero and at 65 km it is positive. All this suggests the atmospheric temperature response in that 
altitude region is likely to be nearly zero.  The more prominent question is about the phase at higher 
altitudes. According to an analysis of the USU data, between 80 and 90 k
and the attenuation and bias predicted by an out of phase solar response seems to be present in our data. 
In analyzing data from the HALOE experiment Remsberg et al. (2002) found a phase lag of 2.3 years at 
40º N at 0.05 hPa. This 2.3 year lag is of interest because a phase difference equivalent to one-quarter 
period is equivalent to approximately 2.7 years. (USU is located at 41.7º N.) They also report a lag of 1.9 
and 1.5 years at 0.03 hPa and 0.02 hPa respectively at same latitude (Table 7). The data analysis in 
Remsberg included a solar phase offset in the regression analysis; instead of a solar proxy a sine function 
with a phase offset was employed.  but a phase offset 
of 2.4 years indicates a significant phase difference can occur. The HALOE data in Remsberg covers 
approximately the same time period as the USU data set: 9.5 years from late 1991 to early 2001 for 
HALOE; late 1993 to late 2003 for USU. In an updated paper Remsberg and Deaver (2005) report an 
analysis of the HALOE data from 1991-2004 which shows a phase lag of 3.8 years at 0.05 hPa and 2.2 
years at 0.03 hPa. This is confirmed again in Remsberg (2008) with a phase lag of 4.5 years at 69 km; 
they show a negative phase lag between 58 and 63 km. The difference in the height of the phase offset in 
our data might partly be due to a zonal asymmetry in the solar response. Simulations by Hampson et al. 
(2006) show zonal asymmetries in atmospheric solar response of up to 10 K (solar max to solar min) at 49 
km. They also listed several important differences in atmospheric solar response profiles from six 
different data collection sites. 
 
Conclusions 

If a fixed phase solar proxy is employed in a least squares regression analysis of atmospheric 
temperatures to extract the amplitude of the atmospheric solar response, if the atmosphere is responding 
out of phase to the solar input the regression solar response amplitude can be attenuated and the cooling 
rate severely bias. An analysis of the USU temperature data indicates an atmospheric solar response of 1 
K (max to min) between 45 and 60 km, and approximately 5 K (max to min) between 75 and 90 km. Had 

 
F igure 7: (a) Phase difference between the solar proxy (solar input) and the atmospheric solar response.  (b) The 
magnitude of the atmospheric solar response from solar maximum to solar minimum.  

 



a solar proxy been fit to the data we would not have found these results. 
 There is good evidence to indicate that the atmospheric solar response between 50 and 60 km is 

very small. The analysis by Remsberg et al. (2008) shows a significant phase lag in the atmospheric solar 
response. Remsberg shows a phase lag of 4.5 years at approximately 68 km at 40º N. At that altitude the 
USU data shows an out of phase atmospheric solar response. This difference might be due to zonal 
asymmetries in the atmospheric solar response.  

An analysis of the bias and attenuation match those predicted by the models. Though more analysis is 
needed, it does seem reasonable that the atmosphere can have a response to the solar input that is in 
phase, out of phase, or any other phase offset to the solar input.  
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