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Foundations of Wave Phenomena, Version 8.2

3. How to find normal modes.

How do we find the normal modes and resonant frequencies without making a clever

guess? Well, you can get a more complete explanation in an upper-level mechanics course,

but the gist of the trick involves a little linear algebra. The idea is the same for any number

of coupled oscillators, but let us stick to our example of two oscillators.

To begin, we again assemble the 2 coordinates, qi, i = 1, 2, into a column vector q,

q =

✓
q1
q2

◆
. (3.1)

Let K be the 2⇥ 2 symmetric matrix

K =

✓
!2 + !̃2

�!̃2

�!̃2 !2 + !̃2

◆
. (3.2)

The coupled oscillator equations (2.3), (2.4) can then be written in matrix form as (exercise)

d2q

dt2
= �Kq. (3.3)

The fact that the matrix K is not diagonal corresponds to the fact that the equations for

qi(t) are coupled.

Exercise: Check that the matrix form of the uncoupled equations (2.1), (2.2) gives a

diagonal matrix K.

You may already know how to find a new basis for the vector space in which the matrix

K is diagonal – this is the basis provided by the eigenvectors of K. So, our strategy for

solving (3.3) is to find the eigenvalues � and eigenvectors e of K. These are the solutions

to the equation

Ke = �e, (3.4)

where � is a scalar and e is a (column) vector. The eigenvalues and eigenvectors are

fundamental characteristics of the matrix K. As we shall discuss further below, the matrix

K will turn out to be such that its two (possibly equal) eigenvalues, �1 and �2 are both

positive. In addition, it will turn out that the corresponding eigenvectors, e1 and e2, are

linearly independent.* This means that any column vector v can be expressed as

v = v1e1 + v2e2,

* In other words, the eigenvectors form a basis for the vector space of 2-component column
vectors.
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for some real numbers v1 and v2, which are the components of v in the basis (e1, e2). We

shall soon see why these properties arise

Given the solutions (�1, e1), (�2, e2) to (3.4), we can build a solution to (3.3) as follows.

Write

q(t) = ↵1(t)e1 + ↵2(t)e2. (3.5)

Exercise: Why can we always do this?

Using
d2q

dt2
=

d2↵1
dt2

e1 +
d2↵2
dt2

e2, (3.6)

and†
Kq = ↵1(t)Ke1 + ↵2(t)Ke2

= �1↵1(t)e1 + �2↵2(t)e2,
(3.7)

you can easily check that (3.5) defines a solution to (3.3) if and only if✓
d2↵1
dt2

+ �1↵1(t)

◆
e1 +

✓
d2↵2
dt2

+ �2↵2(t)

◆
e2 = 0. (3.8)

Using the linear independence of the eigenvectors, this means (exercise) that ↵1 and ↵2
each solves the harmonic oscillator equation with frequency

p

�1 and
p

�2, respectively:

d2↵n
dt2

= ��n↵n(t), n = 1, 2. (3.9)

The general solution to (3.3) can then be written as (exercise)

q(t) = Re(A1e
i
p

�
1

te1 +A2e
i
p

�
2

te2), (3.10)

where A1 and A2 are any complex numbers. Thus, by finding the eigenvalues and eigen-

vectors we can reduce our problem to two copies of the harmonic oscillator equation, which

we already know how to solve.

Now you can see why we needed those properties of the eigenvalues and eigenvectors.

Firstly, if the eigenvectors don’t form a basis, we can’t assume q takes the form (3.5)

nor that (3.8) implies (3.9). It is an important theorem from linear algebra that for

any symmetric matrix with real entries, such as (3.2), the eigenvectors will form a basis,

so this assumption is satisfied in our current example. Secondly, the frequencies
p

�n
will be real numbers if and only if the eigenvalues �n are always positive. While the

aforementioned linear algebra theorem guarantees the eigenvalues of a symmetric matrix

† Note that here we use the fact that matrix multiplication is a linear operation.
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will be real, it doesn’t guarantee that they will be positive. However, as we shall see, for the

coupled oscillators the eigenvalues are positive definite, which one should expect on physical

grounds. (Exercise: How would you interpret the situation in which the eigenvalues are

negative?).

Comparing our general solution (3.10) with (2.12) we see that the resonant frequencies

ought to be related to the eigenvalues of K via

⌦i =
p

�i, i = 1, 2

and the normal modes should correspond to the eigenvectors ei. Let us work this out in

detail.

The eigenvalues of K are obtained by finding the two solutions � to the equation (3.4).

This equation is equivalent to

(K � �I)e = 0,

where I is the identity matrix. A standard result from linear algebra is that this equation

has a non-trivial solution† e if and only if � is a solution of the characteristic (or secular)

equation:

det[K � �I] = 0.

You can easily check that the characteristic equation for (3.2) is

�2 � 2(!2 + !̃2)�� !̃4 + (!2 + !̃2)2 = 0. (3.11)

This is a quadratic equation in �, which is easily solved to get the two roots (exercise)

�1 = !2

�2 = !2 + 2!̃2.
(3.12)

Note that we have just recovered the (squares of the) resonant frequencies by finding the

eigenvalues of K.

To find the eigenvectors ei of K we substitute each of the eigenvalues �i, i = 1, 2

into the eigenvalue equation (3.4) and solve for the components of the ei using standard

techniques. As a very nice exercise you should check that the resulting eigenvectors are of

the form

e1 = a

✓
1
1

◆
e2 = b

✓
�1
1

◆ (3.13)

where a and b are any constants, which can be absorbed into the definition of A1 and A2

in (3.10) (exercise).

† Exercise: what is the trivial solution?
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Exercise: Just from the form of (3.4), can you explain why the eigenvectors are only

determined up to an overall multiplicative factor?

Using these eigenvectors in (3.10) we recover the expression (2.12) – you really should

verify this yourself. In particular, it is the eigenvectors of K that determine the column

vectors appearing in (2.16) (exercise).

Note that the eigenvectors are linearly independent as advertised (exercise). Indeed,

using the usual scalar product on the vector space of column vectors v and w,

(v,w) = vTw,

you can check that e1 and e2 are orthogonal (see Problems).

To summarize: The resonant frequencies of a system of coupled oscillators, described

by the matrix di↵erential equation

d2

dt2
q = �Kq,

are determined by the eigenvalues of the matrix K. The normal modes of vibration are

determined by the eigenvectors of K.

4. Linear Chain of Coupled Oscillators.

As an important application and extension of the foregoing ideas, and to obtain a

first glimpse of wave phenomena, we consider the following system. Suppose we have N

identical particles of mass m in a line, with each particle bound to its neighbors by a

Hooke’s law force, with “spring constant” k. Let us assume the particles can only be

displaced in one-dimension; label the displacement from equilibrium for the jth particle

by qj , j = 1, 2, . . . , N . Let us also assume that particle 1 is attached to particle 2 on the

right and a rigid wall on the left, and that particle N is attached to particle N � 1 on

the left and another rigid wall on the right. The equations of motion then take the form

(exercise):
d2qj
dt2

+ !2(qj � qj�1)� !2(qj+1 � qj) = 0, j = 1, 2, . . . , N. (4.1)

For convenience, in this equation and in all that follows we have extended the range of the

index j on qj to include j = 0 and j = N + 1. You can pretend that there is a particle

fixed to each wall with displacements labeled by q0 and qN+1. Since the walls are rigid, to

obtain the correct equations of motion we must set

q0 = 0 = qN+1. (4.2)
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