
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2008

An Evolutionary Approach to Image Compression in the Discrete An Evolutionary Approach to Image Compression in the Discrete

Cosine Transform Domain Cosine Transform Domain

Benjamin E. Banham
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Banham, Benjamin E., "An Evolutionary Approach to Image Compression in the Discrete Cosine Transform
Domain" (2008). All Graduate Theses and Dissertations. 5.
https://digitalcommons.usu.edu/etd/5

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/5?utm_source=digitalcommons.usu.edu%2Fetd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

AN EVOLUTIONARY APPROACH TO IMAGE COMPRESSION

IN THE DISCRETE COSINE TRANSFORM DOMAIN

by

Benjamin E. Banham

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

 in

Computer Science

Approved:

_______________________ _______________________
Xiaojun Qi Stephen J. Allan
Major Professor Committee Member

_______________________ _______________________
Daniel W. Watson Byron R. Burnham
Committee Member Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2008

ii

Copyright © Benjamin E. Banham 2008
All Rights Reserved

iii

ABSTRACT

An Evolutionary Approach to Image Compression in the

Discrete Cosine Transform Domain

by

Benjamin E. Banham, Master of Science

Utah State University, 2008

Major Professor: Dr. Xiaojun Qi
Department: Computer Science

 This paper examines the application of genetic programming to image

compression while working in the frequency domain. Several methods utilized by JPEG

encoding are applied to the image before utilizing a genetic programming system.

Specifically, the discrete cosine transform (DCT) is applied to the original image,

followed by the zig-zag scanning of DCT coefficients. The genetic programming system

is finally applied to the one-dimensional array resulting from the zig-zag scan. The

research takes an existing genetic programming system developed for the spatial domain

and develops DCT domain functionality. The results from the DCT domain-based

genetic programming system are compared with those from the spatial domain-based

system, and show improvements to the image quality with a reduction up to half of the

evolved image’s average error. The results show that working in the frequency domain

has advantages over the spatial domain. Several methods to exploit these advantages are

proposed and evaluated. (55 pages)

iv

ACKNOWLEDGMENTS

 There are many people who contributed to the success of this research. First of

all, many thanks go to Dr. Xiaojun Qi for serving as my major professor and for

providing so much helpful advice, suggestions, and improvements to this paper. Thanks

also go to my other committee members, Dr. Dan Watson and Dr. Steve Allan, for

serving on my committee, and for many quality courses throughout my education. I also

wish to thank Dr. Don Cooley for serving as my advisor, helping to outline my

coursework, and answering an endless stream of questions. To all of my professors at

Utah State University, who helped me to learn a great deal over the years, I extend my

appreciation. To all of these I extend my appreciation. Finally, I would like to thank my

wife, Jennifer, for herding the kids away from me during study, and whose patience,

support, and gentle reminders were indispensable to the success of my education.

 I would also like to acknowledge and thank Matteo Frigo and Steven G. Johnson

for making their powerful discrete Fourier transform library publicly available, as well as

Tamas Szalay whose C# wrappers made it easy to use the library from C#.

Benjamin Banham

v

CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

1 INTRODUCTION ...1

 1.1 Background ...1
 1.2 Research Goal and Contributions ...2
 1.3 Thesis Outline ...3

2 RELATED WORK ..4

 2.1 The Genetic Programming Technique ..4
 2.2 Applying Genetic Programming to the Raw Image Data5
 2.3 Improving Existing Methods ..6

3 PROPOSED GENETIC PROGRAMMING SYSTEM ...8

 3.1 Overview of Galloway’s System ..8

 3.1.1 Image Subdivision ...9
 3.1.2 Calculating Fitness ..10
 3.1.3 Configurable Function Signatures...11

 3.2 The Proposed System ...11

 3.2.1 Compression Scheme ..12

 3.2.1.1 Quad-Tree Decomposition ..12
 3.2.1.2 Discrete Cosine Transform ...12
 3.2.1.3 Zig-Zag Scanning ..15
 3.2.1.4 Genetic Programming Method ..16

vi

 3.2.1.4.1 Design Differences for the Frequency Domain16
 3.2.1.4.2 Bounding Possible Output ...16
 3.2.1.4.3 Improving System Performance17
 3.2.1.4.4 Reducing the Workload ...20

 3.2.2 Decompression Scheme ..23

 3.2.2.1 Estimated Value Generation ...24
 3.2.2.2 Zig-Zag Mirror Scanning ..25
 3.2.2.3 Inverse DCT ..25

4 TEST RESULTS ...26

 4.1 Experiment Set A: Configuration Parameter Tests ..26
 4.2 Experiment Set A Results ...28
 4.3 Experiment Set B: Frequency Domain versus Spatial Domain29
 4.4 Experiment Set B Results ...34

5 CONCLUSIONS AND FUTURE WORK ..41

 5.1 Strengths and Weaknesses ..41
 5.2 Improved Results ..43
 5.3 Future Research ..44

REFERENCES ..47

vii

LIST OF TABLES

Table Page

3.1 Added GPConfiguration Building Block Functions ..17

3.2 Added GPConfiguration Parameters ..21

4.1 GPConfiguration Parameters for Experiment Set A ..27

4.2 Parameters for Experiment Set A ..28

4.3 Parameters for Experiment Set B ...34

4.4 GPConfiguration Parameters for Experiment Set B ..34

4.5 Mean Error Comparisons Between GP Systems ...36

viii

LIST OF FIGURES

Figure Page

3.1 Block diagram of DCT-based GP system ..12

3.2 Example DCT application ..13

3.3 Illustration of the zig-zag scanning order ..15

3.4 Results of the GP efficiency test ..19

3.5 Illustration of adjusting by average error ...24

4.1 Results for experiment A_Julie1_FX ...30

4.2 Results for experiment A_Julie1_QT ..31

4.3 Results for experiment A_F16_FX ..32

4.4 Results for experiment A_F16_QT ..33

4.5 Results for experiment B_Julie1_FX ...37

4.6 Results for experiment B_Julie1_QT ...38

4.7 Results for experiment B_F16_FX ..39

4.8 Results for experiment B_F16_QT ..40

5.1 DCT coefficient data for a 4-by-4 subimage ...42

CHAPTER 1

INTRODUCTION

1.1 Background

 Overcoming memory or disk space limitations is a familiar challenge in

computing and will continue to be so, since disk space and memory cannot be

unbounded. Adding hardware ultimately does not answer this growing need, since

applications continue to demand increasing amounts of space. There is a cycle: as more

space becomes available, data and media that previously could not be stored use all of the

newly available space. To help alleviate space limitations, software allies with hardware

by way of compression. Compression is a means of reducing the space requirements of

data at the cost of increased computation time needed to access the data.

Several different approaches to compression exist, with a variety of strengths and

computational requirements. The use of genetic programming (GP) to accomplish

compression requires large amounts of computation power and time to achieve the

compression. However, the time spent on GP compression is acceptable for many

applications [8] since most compression techniques are asymmetric, and decompression

time is minimal. The hope is that the large increase in time over conventional

compression methods will pay dividends of better compression.

The basic principle behind GP is to have the computer evolve a program to

perform the task that needs to be done, without telling it exactly how to do it [9]. For

image compression, the task that needs to be done is to generate the approximation values

to represent an image. The motivation behind applying the genetic programming

technique to image compression is to generate a program which represents an image and

2

then compress the program, potentially achieving better compression results over simply

compressing the actual image [8].

1.2 Research Goal and Contributions

The goal of this paper is to add to this body of research with the unique

contribution of using a GP system that works with a frequency domain representation of

an image. This research also utilizes the advantages of a discrete cosine transform (DCT)

for handling and reducing the impact of error. The experimental results show that

applying GP in the frequency domain produces results that are at least as good as those

produced by applying GP in the spatial domain, with the added benefit of more flexibility

in how the data are handled. The following bulleted items list the major contributions of

this research.

• Development of subdivision methods that apply the DCT on subimages,

converting the image data into a frequency domain representation, and zig-zag

gather the DCT coefficients prior to applying the GP.

• Development of a fitness calculation method which evaluates the GP

population functions specifically on their ability to represent DCT coefficient

data.

• Development of configurable GP parameters which take advantage of a

frequency domain representation to improve the performance of the GP

system.

3

1.3 Thesis Outline

 Chapter 2 presents a brief literature review, wherein the existing approaches to

image compression are summarized and the problems associated with these systems are

also addressed.

 Chapter 3 describes the GP system developed by Galloway [5] and the general

framework of the proposed compression system in detail. A description of the

experiments is also presented.

 Chapter 4 presents the experimental results, wherein the quality of the

approximated images generated by the proposed system is compared with that of the peer

system developed by Galloway to illustrate the effectiveness of the proposed system.

 Chapter 5 concludes the thesis with a brief discussion and summary of the

proposed approach and some directions for future work.

4

CHAPTER 2

RELATED WORK

 Many GP compression systems have been developed. Several relevant image

compression systems and the techniques deployed in these systems are briefly reviewed

here.

2.1 The Genetic Programming
 Technique

 The genetic programming (GP) technique is a specialized genetic algorithm (GA)

developed by John Koza [9]. In GP, each of the solutions or chromosomes in the

population is a computer program or function. Each program of the population is run and

the results generated are evaluated and assigned a fitness value according to how well the

program performed the desired task. For example, a chromosome for GP that is trying to

reconstruct an image might be assigned a fitness value that is the inverse of the difference

between the original and reconstructed image. A chromosome that recreates an image

with less difference from the original (less error) is given a higher fitness value. The

symbolic representations (genes) of a chromosome in GP are the individual instructions

that make up a program or function.

 Genetic programming has good potential and applicability to the reconstruction

and compression of images. As Koza points out, the problem space for GP may be

highly nonlinear [9]. This feature is important for working with images, since a group of

pixel values in an image to be reconstructed by GP may not have a linear relationship.

The nonlinear problem space of GP is even more important in the frequency domain,

5

wherein the frequency components of pixel values are less likely to have a linear

relationship.

2.2 Applying GP to the
 Raw Image Data

Some methods of applying GP for image compression work directly with the

image data, such as the approach proposed in [10]. The GP the authors developed creates

functions whose input is simply the X and Y coordinates of a pixel, and the output was

the pixel intensity. A GP often works with just a grayscale image so that there is only

one intensity value. However, any such GP could be extended to a multidimensional

image by working on each of the different color planes individually [10].

Nordin and Banzhaf [10] present several techniques to make their GP more

effective. One method they use, which they term “chunking,” is to break up the image

into equal-sized chunks and to develop programs to represent each chunk. As they

pointed out, in all likelihood, GP do not converge on a solution that produces an

acceptable image quality for a full-sized image since large entropy prevents a single

program from adequately reproducing each pixel value. By chunking, the authors are

able to work with smaller sets of data containing less entropy and converging on an

acceptable solution more quickly. Another technique presented in [10] is termed a

compiling genetic programming system (CGPS). This is different from a GP system that

is interpreted at each step (for instance, using LISP). Instead, it directly manipulates the

machine code to represent each program in a generation. Such representation reduces the

time required to converge on a solution and, therefore, addresses the time-consuming

6

issue of GP implementation. Finally, Nordin and Banzhaf observe that better

compression results are achieved when the image data are represented in one dimension

instead of two dimensions [10].

Many GP implementations seek to reduce execution costs [1, 4, 5, 7, 10, 11].

Galloway [5] developed a GP system similar to that proposed by Nordin and Banzhaf,

but he applied the current technology of C# to get the speed benefits of using a compiled

rather than interpreted language. The aforementioned methods all demonstrate that

applying GP to the raw image data achieves promising compression results. Each of the

methods show that getting the data in a form that is manageable to the GP technique is

integral to the success of the system.

2.3 Improving Existing Methods

 Improving a key compression source of an existing algorithm should lead to

overall improved compression and/or quality. Therefore, several GP-based image

compression techniques try to optimize a component of an existing, proven image

compression system to improve the efficiency of the whole system. One example is

Wu’s approach [13], wherein he optimizes a single aspect of the proven and well used

JPEG compression algorithm. Wu points out that the quantization table is responsible for

a significant portion of JPEG’s compression capabilities and control over quality.

Consequently, he developed a GP algorithm to find an optimal quantization table for a

specific image. Specifically, his proposed technique replaces the generic JPEG

quantization table with the optimal one found by the GP and runs the otherwise

untouched JPEG compression algorithm.

7

 Jiang and Butler [11] present similar work in finding an optimal quantization

table. Their research focused around the vector quantization in general. Their goal was

to apply GP to converge on an optimal codebook representing the target image. They

started with a small population of five randomly generated codebooks, and then measured

how well each codebook represented the target image. The codebook with the smallest

error was determined as the most fit. Their results show that the idea holds promise: it

produced a 15% improvement over many of the common compression techniques at the

time the experiments were performed.

 Fukanaga and Stechert also apply GP to an aspect of a developed compression

technique [4]. Their work optimizes a predictive coding compression algorithm.

Working from a nonlinear predictive model, the value of each pixel is predicted based

upon the values of its eight neighbors. The error image (the image formed from the

difference between the original image and the predicted image) is Huffman encoded and

stored. The pixel values around the edges of the image are also stored so that there are

some initial “neighbors” to work with. This algorithm lends itself very well to GP, as it

finds an optimal predictor such that the error image contains minimal entropy and can be

highly compressed.

 These methods illustrate how the utilization and consideration of high performing

compression methods increase potential for achieving good compression results. Each of

these methods attains promising results by a combining current compression technology

with genetic programming.

8

CHAPTER 3

PROPOSED GENETIC PROGRAMMING SYSTEM

 The genetic programming system used for this research was built upon

Galloway’s engine. A detailed overview of Galloway’s system can be found in [5].

Here, a brief overview of Galloway’s system is presented along with details of the

changes incorporated for this research.

There are several advantages to building on Galloway’s system. First, it is written

in C#, which combines the flexibility of an interpreted language for generating code on

the fly with the speed of compiled code. Second, the image data are broken up and

represented in a similar manner as Nordin’s chunking scheme [10]. This representation is

highly suitable to the necessary preliminary steps for applying the DCT and working in

the frequency domain. Third, the current design allows for adding new functionality

without requiring an overhaul of existing functions and classes. That is, it allows for the

definition of new functionally by utilizing the appropriate hooks. Fourth, building upon

an existing system allows for a fair comparison between the results of the two data

representation domains.

3.1 Overview of Galloway’s System

There are three main classes for the system: Generation, GPUtilities, and

GPConfiguration. The Generation class provides the functions to initialize the first

generation of functions, generate the next generation (including mating the programs to

create offspring), evaluate, and compile the generation. GPUtilities provides many utility

functions to the system including gathering statistics and creating the image represented

9

by a generation. It also provides the functions for representing an image in multiple

quad-tree-based blocks, the functions for evaluating the fitness of a generation, and even

the signatures for the functions to be evolved. GPConfiguration is a collection of all the

different configurable options, including mate selection methods, mutation probability,

and the individual operations from which the evolved functions are constructed.

From these three major classes, the system is able to perform the core signature

steps of any genetic programming system. It first sets up all of the desired

GPConfiguration options, instantiates a Generation object and calls its initialization

method, and finally sets up a loop inside of which the Generation object’s function for

generating the next generation is called. During the loop, the GPUtilities object is used to

generate statistics for the evaluation and is called upon by the Generation object to

evaluate the population fitness.

3.1.1 Image Subdivision

 Before actually jumping into the loop of generating new populations and

evaluating fitness, Galloway’s system breaks up the input image into smaller blocks.

This is done either by creating fixed-size blocks of some maximum size, or by generating

a quad-tree [5], which breaks up the image into blocks based on the complexity of the

block. That is, areas of an image with lower complexity are broken into larger-sized

blocks. The image is next represented in a tree form, with individual nodes storing the

subimage data, which have been either uniformly divided or quad-tree divided. The fixed

tree form (i.e., the subimage data have been uniformly divided) is just a quad-tree with

10

every single node being the same size. In this case, all of the terminal nodes are at the

same level on the tree.

This subdivision of the image is important for the application of the DCT. It is a

distinction of the JPEG encoding algorithm, and provides a more manageable set of data

to be reconstructed by the genetic programs.

Unlike most existing GP methods, which generally work on a small-sized single

image or only a portion of a larger image, Galloway’s system applies the GP to a

collection of subimages. These subimages, which have varying sizes based on the

uniformity measure, are further represented by the same GP program. In addition,

Galloway’s system develops a population of functions that can represent multiple images.

Some side effects of this feature are discussed in Section 3.2.1.4.3.

3.1.2 Calculating Fitness

 As mentioned in the previous subsection, the GP system evolves a population of

functions to multiple target subimages. This design requires a unique method to calculate

the function fitness. Galloway tackles this issue by assigning two fitness values to each

function. The first fitness value is a priority, which is simply a count of the number of

nodes that use the function as its best fit. That is, if a node chooses a function as the most

capable of representing its data, the priority of the function is increased by one. The

second fitness value is the function fitness, which is calculated as the function’s best

representation of any subimage measured by the mean square error between the subimage

and its estimation. A function’s overall fitness is first calculated by its priority, and the

11

best node fitness is considered in the case of equal priorities. Specifically, if a function is

the best representation of more nodes than another function, it is kept.

3.1.3 Configurable Function Signatures

 Galloway’s system tests different forms of evolving functions to comprise the

population. One function takes two parameters, the x and y coordinates of the pixel

values. The other function takes seven parameters, the x and y coordinates of the pixel

value, the four corner pixel values of the subimage block, and the size of the image block.

As a result, his system allows the population functions to be configurable. This

configurable feature is a benefit to the future development of the system. One of the

goals of this research is to test the effectiveness of using a one-dimensional array of data

based upon 1) the fact that the zig-zag-gathered frequency components are in that form

and 2) Nordin’s [10] observation that compression results are better when the data are

represented one-dimensionally.

3.2 The Proposed System

 In this research, we propose to apply a configurable GP method to the one-

dimensional zig-zag DCT coefficients of varying subimages to achieve comparable

compression results. An illustration of how the different components of the proposed

system are connected is presented in Figure 3.1. The following subsections detail each

component of the proposed system.

12

Figure 3.1. Block diagram of DCT-based GP system compression and decompression.

3.2.1 Compression Scheme

 3.2.1.1 Quad-Tree Decomposition. The first step of the compression scheme,

quad-tree decomposition, is identical to Galloway’s system. The quad-tree

decomposition can be configured to either break up the image into fixed-sized subimages,

or to break it up into varying-sized subimages based on image complexity.

3.2.1.2 Discrete Cosine Transform (DCT). Once the image has been broken up

into more manageable subimages, the data are ready for the second step which transforms

the data into the frequency domain. We apply the DCT to get the data into the frequency

domain. This transform was chosen because it is the one used by the JPEG compression

algorithm [6, 11, 13], and because of its ability to obtain fewer data, thus allowing for

more efficient encoding [6].

Like other transforms, DCT is based on Fourier’s work showing that a function

can be represented as a sum of sines or cosines of different frequencies [6]. Each of the

13

DCT coefficients produced by applying the transform represent factors that can be

multiplied to cosines of differing frequencies and summed up to regain the original

spatial domain data. This frequency domain representation has the beneficial quality of

compacting information into the lower frequency components for image data, which is a

central reason it is used in image compression techniques. Figure 3.2 shows an example

of pixel intensity values from a 4-by-4 subimage, along with the coefficients produced by

applying the DCT. Lower frequency information is located at the upper left corner, and

higher frequency information is located at the bottom right corner, as explained in

Section 3.2.1.3.

 Unfortunately, like most programming languages, C# does not provide a built in

function for this method. As a result, we created and implemented the DCT class to fill

this language void. The DCT class makes use of the fastest Fourier transform in the West

(FFTW) library, which is written in C [2, 3]. The choice to use this library was based on

the fact that it is free, it is licensed by the Gnu Public License (GPL), and it is fast. The

FFTW achieves performance comparable to commercial transform libraries by

dynamically tuning the transforms to the hardware upon which it is being executed;

hence, the program runs as quickly and efficiently as possible [2]. As pointed out

175 169 169 172 304 -1 12 0
171 167 167 171 25 3 0 0
166 162 163 168 -4 0 0 0
160 156 157 163 1 0 0 0

 (a) (b)

Figure 3.2. Example DCT Application. (a) The original subimage pixel
 intensity data. (b) Its frequency domain representation by applying the DCT.

14

previously, speed is a very important feature when working with a genetic programming

system.

 The DCT class also makes use of a library developed by Tamas Szalay [12] which

provides C# wrappers around the FFTW C functions. This library makes utilizing the C

library from C# painless, and keeps the code in the DCT class cleaner.

 The main components of the DCT class are comprised of two functions and a

constructor. The constructor takes an integer argument that specifies the size N of an N-

by-N array of data, allocates the memory, and sets up the plans required by the FFTW

library. An FFTW plan is a specification of a transform type and sets up the chosen

transform to perform the dynamic tuning of the transform to the hardware. Once the

memory and plan have been set up, the transform is ready for use. The other two

functions perform the forward and backward DCT. Each function has to copy the data

from the C# managed arrays to unmanaged arrays useable by FFTW, invoke FFTW’s

forward or reverse (inverse) transform, and finally copy the values out of the unmanaged

array to a C# array. Both of these functions take the array of values as arguments to be

transformed as well as the total number of elements in the two-dimensional array (i.e., the

size of one dimension of the two-dimensional array). A DCT transform is performed by

instantiating a DCT object and calling an execute function on the target data to perform

either the forward or reverse transformation. All these make performing the DCT as easy

and fast as if the DCT were built into the language.

 The forward DCT is performed right after the image has been broken up into

smaller blocks in the quad-tree decomposition step. This choice was made to reduce the

15

amount of times the DCT operation needs to be performed, since it is a relatively time

consuming operation. Otherwise, the DCT would need to be performed for each node

every time the generation of functions was evaluated for fitness.

3.2.1.3 Zig-Zag Scanning. Once the data is transformed into the frequency

domain by the DCT, it is next reordered into a one-dimensional representation. As

previously mentioned, one benefit this research sets out to take advantage of is the

improved results given by a one-dimensional representation of the data [10]. The JPEG

encoding scheme provides the perfect method to attain a one-dimensional representation

by using a zig-zag scanning order, as illustrated in Figure 3.3, which starts at the direct

current (DC) coefficient (i.e., the coefficient located at the top left corner) of the DCT

transform. This scanning order of collecting the data takes advantage of the long runs of

zeros that typically occur in higher frequency DCT coefficients [6]. These runs of zeroes

are a major contributor to JPEG’s high compression ratios. They also allow a frequency-

based GP system to reduce the amount of work required for evolving the population.

Section 3.2.1.4.4 discusses some potential ways to take advantage of this representation.

Figure 3.3. Illustration of the zig-zag scanning order.

16

 A function for gathering data using the zig-zag scanning order was implemented

and added to the GPUtilities class. This function takes a two-dimensional array of data

and its size as arguments and outputs a one-dimensional array of the zig-zag-collected

data.

3.2.1.4 GP Method. Once the data is in a one-dimensional array, the GP

algorithm begins evolving functions to represent it. The GP algorithm contains the basic

sequence of population initialization, evaluation, and mating common to any GP system.

The core details of the algorithm are detailed in [5]. Here, the modifications important to

this research are detailed.

3.2.1.4.1 Design Differences for the Frequency Domain. Evolving GP functions

in the spatial domain is different from evolving GP functions in the frequency domain. In

the spatial domain, each subimage is almost homogeneous. That is, all the data in the

spatial domain are closely related to each other. However, all the data in the frequency

domain show less correlation and display more entropy. As a result, we removed two

interpolation functions (e.g., Interpolate and InterpolantFunc) from Galloway’s system

and added three functions, which are described in Table 3.1. These functions are among

the simple building blocks used by the GP system to generate functions. Besides the

inclusion of these building block functions, the GP system’s population functions are

composed of simple arithmetic operations and comparison operators as detailed in [5].

3.2.1.4.2 Bounding Possible Output. It is intuitive that allowing the individual

GP programs to generate values which are unbounded or at least bounded only by the

upper and lower ranges of a certain data type would lead to a very inefficient GP system

17

Table 3.1. Added GPConfiguration Building Block Functions.

Function name Possible
Values

Description

Sin256 0-255 Takes amplitude, period, and position
parameters and returns a truncated integer sine
value. The modulus 256 is performed on the
amplitude parameter to attain values below 256.

Modit256 0-255 Returns modulus 256 of the input parameter.
Modit128 0-127 Returns modulus 128 of the input parameter.

design. In other words, it is not reasonable to allow the generation of values in the range

of 0 to 65535 if the actual range of values is 0 to 255, as in the case of an 8-bit grayscale

image. In Galloway’s research, 0 to 255 was the allowable range for the grayscale pixel

values, so his bound was immediately visible. The bound for the DCT coefficients was

not as readily available, so we needed to determine a reasonable maximum for DCT

coefficients.

To determine the bound on the DCT values, we randomly generated millions of

two-dimensional arrays of varying size of M-by-M, where M is divisible by 4 due to the

use of the quad-tree subdivision, and the values in the two-dimensional array range from

0-255 to simulate the case of an 8-bit grayscale image. We then applied the DCT to

them, and analyzed the range of the DCT coefficients. The largest magnitude

encountered was 653. This occurred when the size of the array was larger than 64-by-64.

Since the block size of larger than 64-by-64 will not likely occur in our quad-tree

subdivision, and since a value over 600 was rarely encountered even in larger block sizes,

the initial bound was set to 600. We also added precaution code to pop up a message

window to alert if an actual DCT coefficient value from a subimage exceeded this

amount. As a result, a new configuration variable was added to the GPConfiguration

18

class to set the maximum bound for DCT coefficients to be 600. This value was used in

the code as a modulus to the output of the evolved functions. Thus, the range of values

producible by the evolved functions was -600 to 600 (the modulus is taken with 1 plus

the bound so that this top value is also attainable).

 This worked well for most cases. However, there was some wasted effort in the

GP evolution process, since the range from -600 to 600 was not the actual range for the

DCT coefficients. To resolve this, the maximum DCT coefficient magnitude was

calculated as the DCT was applied to each of the subimages. The largest DCT coefficient

of all subimages was recorded, which required an extra 16 bits of data to be stored with

the final results. However, these extra bits were considered inconsequential compared to

the potential of a gain in quality or compression.

3.2.1.4.3 Improving System Performance. Testing the Efficiency of the GP

System. In order to uncover any shortcomings in Galloway’s system, a simple

experiment was performed, wherein we tested whether Galloway’s GP system could

perfectly evolve an image that it had previously created. In other words, a test was

performed to see whether the GP system could evolve the same functions it had evolved

in a previous run.

An image was put into Galloway’s GP system with the constraint that it could

only be subdivided into four fixed-sized blocks before it was evolved. This constraint

was designed to overwhelm the systems capabilities, and therefore create an image

significantly less complex than the original. Figure 3.4 shows the original “Julie1.bmp”

image and the resulting image evolved under this constraint.

19

 Once the test image had been created, it was put back into the GP system to see if

it could recreate its previous product. The system failed to recreate the image. An

examination of the population’s function fitness values revealed that nearly all of them

represented the bottom left subimage of Figure 3.4(b) without error. This shortcoming of

Galloway’s system is due to the following reasons: 1) The system wastes time evolving

multiple functions for a subimage that has already found one function to perfectly

represent it; and 2) The system causes the evolving functions to converge onto the least

complex subimages, and therefore the more complex subimages are not well represented.

The next section discusses the code changes we made to fix this problem.

Fitness Calculation Improvements. In view of the outcome of the simple test

described above, we proposed two improvements to the GP system. Previous GP

systems that evolve only a single, small image can effectively use the fitness calculation

designed by Galloway. However, Galloway’s system needs a more representative

(a) (b)

Figure 3.4. Results of the GP efficiency test. (a) The original “Julie1.bmp”. (b) Its
evolved representation by applying the GP system on four equal-sized subimages.

20

calculation. First, if a subimage is being perfectly represented by a function of the

population, the remaining population should not be applied to it. Not applying the

remaining population decreases the number of calculations necessary during the

population fitness evaluation, and frees up the rest of the population functions to

converge on representations of the other subimages. Second, the function should not be

assigned a fitness that measures how well it represents a single node. Instead, it should

be assigned a fitness that measures how well it represents all of the nodes. In other

words, the GP system should prefer functions representing many nodes over those

representing only a few. This fitness calculation requirement results from the complex

burden the GP system has of evolving many functions to represent many subimages.

To implement the first improvement, a small code change was made to the

GPUtilities population evaluation function to short circuit further evaluation of functions

on a subimage when the data was already perfectly represented by one of the functions.

The second improvement was also implemented in the GPUtilities population function

and was made by summing the fitness calculations for a function as it was applied to each

of the subimages in the quad-tree.

3.2.1.4.4 Reducing the Workload. We made two major observations made

during research and experimentation that led to a few ideas for reducing the amount of

work the GP performs when finding functions to represent subimage DCT coefficients.

First, when introducing an error into a set of DCT coefficients after function estimation,

after taking the inverse DCT to regain the pixel values, the error is spread out among the

pixel values and not just centralized to one place. Second, the DCT usually results in

21

long runs of zeros in the higher frequency components [6]. Table 3.2 summarizes the

added three parameters, namely DCTQuantize, DCTEvolvePercent, and

AdjustErrorByAvgDifference, to reduce the workload of the GP system. The optimal

values for these parameters were determined by experimentation, which is described and

discussed in later sections.

Parameter DCTQuantize. The JPEG encoding algorithm takes advantage of both

of the above observations when applying the quantization step. Here, each of the DCT

coefficients is divided by the corresponding value in a defined quantization table. This

does introduce some round off error, but it is virtually unnoticeable in the reconstructed

image. The algorithm is also able to create even longer runs of zero by eliminating very

small DCT coefficient values.

 In this research, we utilized the concept of the quantization as employed by the

JPEG encoding algorithm. However, we were not able to make direct use of the same

quantization method due to our varying block sizes and the fixed 8-by-8 quantization

Table 3.2. Added GPConfiguration Parameters.

Property Name Possible

Values
Description

DCTQuantize > 0 This is an integer value that specifies the amount
to quantize each DCT coefficient.

DCTEvolvePercent 0..1 This value will vary the number of DCT values
to be evolved. Only the first n percent of the
values will be worked on, while the rest are just
set to 0’s.

AdjustErrorByAvgDifference True /
false

This tells the fitness evaluation function whether
or not to generate and adjust by an average error.
Doing so will reduce the overall error between
the original subimage values and the estimated
values, bringing the estimated values closer to
the actual values.

22

table used by JPEG. Instead, we used the quantization idea as a base to develop a simpler

quantization method. It works in this way. After applying the DCT on the original

subimage, a configurable quantization amount is applied to quantize each DCT

coefficient. The resultant DCT coefficients have a smaller range for the GP to estimate.

For example, if the configurable quantization value is set to be 10 and the original range

of DCT coefficients is from -600 to 600, the new quantized DCT coefficients range from

-60 to 60. It is easy to see that the GP takes less effort to estimate this smaller range. As

a result, we added a new integer parameter (i.e., DCTQuantize) to the GPConfiguration

class to specify the amount of quantization to perform. A value of 1 will performs no

quantization.

Parameter DCTEvolvePercent. Introducing the DCTEvolvePercent parameter

was motivated by the observation that the majority of high frequency components are

zero at the far end of the array of DCT coefficients. Therefore, it would be better to skip

estimating them, given that they are zeroes, and the evolved functions might assign

unneeded error.

A configuration parameter (i.e., DCTEvolvePercent) was added to specify the

percentage of DCT coefficients to evolve. The DCT coefficients falling into the specified

percent are evolved by the GP functions, and the remaining DCT coefficients are set to 0.

This gives a performance boost in terms of execution speed since fewer values need to be

evaluated. In addition, it has the potential of reducing errors that might be introduced in

the runs of zeros.

23

Parameter AdjustErrorByAvgDifference. Another observation we made was the

possibility of some good estimators being thrown away because they were off by large

estimation errors even though they represent the subimage well (i.e., the estimated and

the actual images resemble each other, except one of them is much brighter or darker than

the other). To address this, we stored the average error between the best function’s

estimation and the subimage data. This value is calculated and stored for each subimage

of the quad-tree. Figure 3.5 illustrates this idea, wherein an estimation of the values is off

by roughly the same amount for each pixel. The figure clearly shows that adjusting by

the average error potentially helps the GP more quickly find good representative

functions, and helps increase the number of subimages represented per function. For

example, if one function output has values 3, 3, 3 and another output has values 7, 7, 7,

only one of those functions is necessary when using an adjustment value, since the same

output can be achieved by the appropriate adjustment.

 As a result, we added a boolean parameter (i.e., AdjustErrorByAvgDifference) to

the GPConfiguration class to signal whether the GPUtilities fitness evaluation function

should calculate and store the average error to adjust the estimation.

3.2.2 Decompression Scheme

 Technically, decompression is not a part of the GP compression system.

However, when presenting a compression scheme, it is important to describe how the

decompression is done as well. Also, the decompression steps are called by the last

instruction of the GP engine’s next generation/evaluation loop to update the GUI, thus

showing the progress of the compression. As mentioned in the introduction, the

24

0

2

4

6

8

10

12

14

16

1 2 3 4 5

E s tim ated A djus ted Es tim ate A c tual

Figure 3.5. Illustration of adjusting by average error to more closely match actual data.

application of GP to image compression is an asymmetric technique. The time it takes to

compress an image is measureable in hours, while the time to decompress is measureable

in milliseconds. The previous subsections detailed several time intensive steps required

for the compression. However, the decompression scheme is significantly faster and

simpler. It performs the reverse of the compression scheme steps. The following

subsections detail each component of the decompression.

3.2.2.1 Estimated Value Generation. The first step of the decompression scheme

is to generate the estimated values by calling the evolved function with the appropriate

parameters. For this research, the data was represented as a one-dimensional array while

the functions were evolved so the input parameter is the index into the one-dimensional

array. To generate the estimated values, an integer is looped from 0 to 1 less than the

25

number of pixels in the subimage and passed into the function which returns the

estimated DCT coefficient at the index corresponding to the input integer.

3.2.2.2 Zig-Zag Mirror Scanning. The next step of the decompression scheme is

to get the DCT coefficients from the one-dimensional array back into a two-dimensional

array. In order to do this, a “mirror” function is necessary to un-zig-zag the collected

data. This function does the inverse of the zig-zag function, taking a one-dimensional

array as an argument and outputting a two-dimensional array of the restored data.

3.2.2.3 Inverse DCT. The inverse DCT is next performed to restore (i.e.,

transform) the DCT coefficients to pixel intensities. This last step takes the un-zig-

zagged values produced by the evolved functions to produce an estimation of the original

image, which should very closely resemble the original image.

26

CHAPTER 4

TEST RESULTS

 The goal of this paper is to show that applying GP in the frequency domain can

improve compression results. Further, the frequency domain provides flexibility in how

the data can be handled, which could provide further performance gains. To support this

thesis, two sets of experiments were performed which we refer to as experiment set A and

experiment set B. Experiment set A evaluated the performance of the new configuration

parameters introduced in Subsection 3.2.1.4.4 for reducing the GP workload. Experiment

set B compared the performance of the modified frequency domain GP system against

the original spatial domain system. All experiments were performed with the same

images and configuration options outlined by Galloway [5], in order to provide a more

accurate and fair comparison of the GP systems. All of the experiments evaluated the

improvement in image quality, which was measured by calculating the mean error

between original and approximated images, and by visual inspection where appropriate.

A description of experiment set A is provided in Section 4.1 with the results immediately

following in Section 4.2. Similarly, a description of experiment set B is provided in

Section 4.3 with the results immediately following in Section 4.4.

4.1 Experiment Set A: Configuration
 Parameter Tests

 The hypotheses and their implementations presented in Section 3.2.1.4.4 were

proposed as ways to boost the performance of the frequency domain-based GP system.

Two of the configuration parameters, DCTQuantize and DCTEvolvePercent, take

27

advantage of the characteristics of a frequency domain representation. These parameters

have the potential to improve performance by reducing the data the GP system needs to

process and reduce the likelihood of error. The third parameter works off the principle

that some good functions in the population can be saved by adjusting their output to more

accurately estimate the target data.

The value combinations listed in Table 4.1 were created to test the effectiveness

of these three parameters. These combinations were developed to test several values

within each parameter’s range, including the value that essentially turns each parameter

on or off (i.e., enabled or disabled). A disabled parameter means its value has no effect

on the system. For example, the value 1 for DCTQuantize indicates that the quantization

is not used and all the DCT coefficients are kept the same. The value 1 for

Table 4.1. GPConfiguration Values for Experiment Set A.

AdjustErrorByAvgDifference = false AdjustErrorByAvgDifference = true

DCTQuantize DCTEvolvePercent

1 0.4
1 0.6
1 0.8
1 1.0

2 0.4
2 0.6
2 0.8
2 1.0

5 0.4
5 0.6
5 0.8
5 1.0

10 0.4
10 0.6
10 0.8
10 1.0

DCTQuantize DCTEvolvePercent

1 0.4
1 0.6
1 0.8
1 1.0

2 0.4
2 0.6
2 0.8
2 1.0

5 0.4
5 0.6
5 0.8
5 1.0

10 0.4
10 0.6
10 0.8
10 1.0

28

DCTEvolvePercent indicates that all the DCT coefficients are evolved.

In order to provide a wider range of conditions and to test the robustness of these

parameters, four sets of experiments were created by using two images of different sizes

as well as using both the fixed and varying-sized subimage representations of those

images. These tests are summarized in Table 4.2. For all experiments in this set, the

number of generations and the population size were both set to 500. This value was

chosen as a good balance between enough functions to effectively represent the image

and a shorter running time to facilitate running many experiments.

4.2 Experiment Set A Results

 Figures 4.1 through 4.4 show the results of experiment set A. Each of the image

subdivision methods of each input image are presented individually. Specifically, Figure

4.1 presents the experimental results for image Julie1 represented in a fixed block

Table 4.2. Parameters for Experiment Set A.

Test Name Image Subdivision Method Number of

Generations
Population
Size

A_Julie1_FX Julie1
(256-by-256)

Fixed blocks
4x4 block size
(4096 blocks)

500 500

A_Julie1_QT Julie1 Quad-tree
4x4 min block
size
(<4096 blocks)

500 500

A_F16_FX F16
(512-by-512)

Fixed blocks
4x4 block size
(16384 blocks)

500 500

A_F16_QT F16 Quad-tree
4x4 min block
size
(<16384 blocks)

500 500

29

subdivision form. Figure 4.2 presents the experimental results for image Julie1

represented in a variable size quad-tree form. Similarly, Figures 4.3 and 4.4 shows the

experimental results for image F16 represented in a fixed block form and in a variable

size quad-tree form, respectively.

The data presented for the experimental result is the mean error between the

original and the approximated image. Both a table of the data and its graphical depiction

are provided. The labels are abbreviations for evolution percent (EP) representing the

DCTEvolvePercent parameter, quantization (Q) representing the DCTQuantize

parameter, and adjust error (AE) for the AdjustErrorByAvgDifference parameter.

4.3 Experiment Set B: Frequency Domain
 Versus Spatial Domain

 We conducted an experiment comparing the results of the frequency domain-

based GP system against the spatial domain-based system to justify the premise of this

research. This experiment set, experiment set B, was designed to produce results directly

comparable to Galloway’s final results. The same original images, population sizes, and

number of generations in Galloway’s experiments were used in this experiment set, and

are summarized in Table 4.3. Table 4.4 summarizes the values of the added

configuration parameters we set. These values ensure that the choices for these

parameters are essentially disabled. That is, the quantization is not used, all the DCT

coefficients are used for evolving, and no adjustable errors are recorded.

30

.

0

1

2

3

4

5

6

Julie FX M e an Error (AE O ff)

E P 100% 2.59 2.59 2.71 2.96

E P 80% 2.82 2.69 2.9 3.47

E P 60% 2.74 2.72 2.77 3.49

E P 40% 3.88 3.96 3.87 5.21

Q1 Q2 Q5 Q10

.

0

1

2

3

4

5

6

 Julie FX M e an Error (AE O n)

E P 100% 2.45 2.57 2.62 2.91

E P 80% 2.45 2.74 2.72 3.36

E P 60% 2.62 2.68 3.12 3.08

E P 40% 4.18 4.08 5.12 5.43

Q1 Q2 Q5 Q10

Figure 4.1. Results for experiment A_Julie1_FX.

31

0

1

2

3

4

5

Julie Q T M e an Error (AE O ff)

EP 100% 3.27 3.32 3.4 3.47

EP 80% 3.27 3.22 3.32 3.49

EP 60% 3.24 3.4 3.38 3.5

EP 40% 4.14 4.1 4.1 4.52

Q1 Q2 Q5 Q10

0

1

2

3

4

5

Julie QT Mean Error (AE On)

EP 100% 3.22 3.34 3.3 3.47

EP 80% 3.11 3.39 3.32 3.61

EP 60% 3.25 3.4 3.61 3.54

EP 40% 4.33 4.26 4.48 4.59

Q1 Q2 Q5 Q10

Figure 4.2. Results for experiment A_Julie1_QT.

32

0

1

2

3

4

5

6

F16 FX Mean Error (AE Off)

E P 100% 3.12 3.06 3.08 3.22

E P 80% 3.15 3.35 3.29 3.27

E P 60% 3.24 3.27 3.31 3.27

E P 40% 4.23 5.21 4.98 5.77

Q1 Q2 Q5 Q10

0

1

2

3

4

5

6

F16 FX M e an Error (AE O n)

E P 100% 3.03 3.06 3.07 3.2

E P 80% 3.13 3.17 5.23 3.42

E P 60% 3.4 3.2 3.3 3.69

E P 40% 4.79 5.1 5.71 5.68

Q1 Q2 Q5 Q10

Figure 4.3. Results for experiment A_F16_FX.

33

0

1

2

3

4

5

F16 Q T M e an Error (AE O ff)

EP 100% 3.56 3.59 3.61 3.74

EP 80% 3.58 3.6 3.67 3.96

EP 60% 3.62 3.67 3.66 3.85

EP 40% 4.74 4.68 4.71 4.8

Q1 Q2 Q5 Q10

0

1

2

3

4

5

6

F16 QT Mean Error (AE On)

E P 100% 3.5 3.55 3.64 3.74

E P 80% 3.6 3.58 3.68 3.86

E P 60% 3.56 3.66 3.74 4.11

E P 40% 5.15 5.25 5.17 5.11

Q1 Q2 Q5 Q10

Figure 4.4. Results for experiment A_F16_QT.

34

Table 4.3. Parameters for Experiment Set B.

Test Name Image Subdivision Method Number of
Generations

Population
Size

B_Julie1_FX Julie1
(256-by-256)

Fixed blocks
4x4 block size
(4096 blocks)

500 128

B_Julie1_QT Julie1 Quad-tree
4x4 min block size
(<4096 blocks)

500 128

B_F16_FX F16
(512-by-512)

Fixed blocks
4x4 block size
(16384 blocks)

200 128

B_F16_QT F16 Quad-tree
4x4 min block size
(<16384 blocks)

200 128

Table 4.4. GPConfiguration Parameters for Experiment Set B.

Parameter Name Value
DCTQuantize 1

DCTEvolvePercent 1.0

AdjustErrorByAvgDifference false

4.4 Experiment Set B Results

As mentioned in Section 3.1.3, Galloway tested two types of evolvable functions

in his research. One type of function took more parameters and required more storage

per subimage. The extra parameters were the values of the four corner pixels and the size

of the image block. Galloway concludes that the additional information was useful to the

GP, since the results of the GP when run with this function type were superior to the

other function type which requires both x and y coordinates of a pixel [5]. In our system,

the proposed evolvable function requires more data storage per subimage than

35

Galloway’s two-parameter function, but less than his seven-parameter function. For

these reasons, the results of experiment set B are compared against the results of both

function types proposed in Galloway’s system.

Table 4.5 shows comparisons in quality between the results of each of the four

experiments in experiment set B and their equivalent experiments in Galloway’s research.

The numerical data in each cell is the average mean error, standard deviation, and highest

error between the pixel values of the original and approximated image.. The results from

Galloway’s experiments are italicized. The abbreviations used in Galloway’s system are

directly adopted here for the convenience of comparison. Specifically, FX represents the

compression scheme using a fixed block subdivision, QT represents the compression

scheme using a variable quad-tree subdivision, XY represents the compression scheme

using the two-parameter (i.e., x and y coordinates of a pixel) evolvable function, and

XYC4Z represents the compression scheme using the seven-parameter evolvable

function. The evolved images and their calculated error images are shown in Figures 4.5

through 4.8. The first row shows the evolved and error images generated by Galloway’s

2-parameter evolvable function. The second row shows the evolved and error images

generated by our approach with all of the new GPConfiguration parameters disabled.

The third row shows the evolved and error images generated by Galloway’s seven-

parameter evolvable function.

36

Table 4.5. Mean Error Comparisons Between GP Systems.

Test Name Mean Error Std
Dev

High

B_Julie1_FX
 Julie_FX_XY
 Julie_FX_XYC4Z

3.18
5.85
3.32

7.64
11.36
7.36

86
124
124

B_Julie1_QT
 Julie_QT_XY
 Julie_QT_XYC4Z

3.81
6.80
4.14

7.54
12.63
7.88

78
122
103

B_f16_FX
 F16_FX_XY
 F16_FX_XYC4Z

3.83
6.11
4.56

8.44
14.01
11.13

88
108
126

B_f16_QT
 F16_QT_XY
 F16_QT_XYC4Z

4.10
6.36
4.52

7.78
13.41
9.33

85
119
127

37

Julie1_FX_XY_128

Julie1_FX_XY_128 Error

B_Julie1_FX

B_Julie1_FX Error

Julie1_FX_XYC4Z_128

Julie1_FX_XYC4Z_128 Error

Figure 4.5. Results for experiment B_Julie1_FX

38

Julie1_QT_XY_128

Julie1_QT_XY_128 Error

B_Julie1_QT

B_Julie1_QT Error

Julie1_QT_XYC4Z_128

Julie1_QT_XYC4Z_128 Error

Figure 4.6. Results for experiment B_Julie1_QT.

39

F16_FX_XY_128

F16_FX_XY_128 Error

B_F16_FX

B_F16_FX Error

F16_FX_XYC4Z_128

F16_FX_XYC4Z_128 Error

Figure 4.7. Results for experiment B_F16_FX.

40

F16_QT_XY_128

F16_QT_XY_128 Error

B_F16_QT

B_F16_QT Error

F16_QT_XYC4Z_128

F16_QT_XYC4Z_128 Error

Figure 4.8. Results for experiment B_F16_QT.

41

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

 The results shown in Chapter 4 are both exciting and surprising. The experiment

B results show visible improvement over the spatial domain counterparts. The

experiment A results prove that at least one of the proposed ideas has merit. They also

show that the other proposed ideas fail to provide a benefit for this system. Below, we

discuss the results of each test set individually.

5.1 Strengths and Weaknesses

 The results of experiment set A show some definite trends. Comparing the graphs

in Figures 4.1 through 4.4 across the AdjustErrorByAvgDifference parameter, we see an

improvement when the parameter is set to true. This is understandable. This parameter

helps the system recognize a function that provides a better fitness when adjusted errors

are used and an unadjusted error would make the estimation unfit. Even when the same

population function is the most fit with or without the error adjustment, this operation

reduces the search space, thus allowing for a better estimation.

 The DCTQuantize and DCTEvolvePercent parameters are less effective than the

AdjustErrorByAvgDifference parameter. Figures 4.1 through 4.4 demonstrate that there

is an increase in error as either the DCTQuantize value increases or the

DCTEvolvePercent parameter decreases. The experiments show that our methods of

quantization and evolving only a percentage of the DCT coefficients actually degrade the

system’s performance.

42

Examining the DCT coefficients of one subimage during evolution reveals why

these two parameters are less effective. Figure 5.1 presents a comparison between a

subimage’s DCT coefficients at the end of the GP system when run with DCTQuantize

set to 1 and the same subimage’s DCT coefficients at the end of the GP system when run

with DCTQuantize set to 10. The first row of values for each of the data sets is the actual

DCT coefficients or quantized actual DCT coefficients, the second row is the estimated

DCT coefficients or estimated quantized DCT coefficients, and the third row is the error

between the actual and estimated DCT coefficients or the error between the quantized

actual and estimated DCT coefficients. A subimage’s fitness value is calculated by the

mean square error (MSE) between the estimated and actual DCT coefficients or the MSE

between the quantized estimated and actual DCT coefficients. However, when the

quantization is used in the compression, we need to take the estimated quantized DCT

coefficients and multiply them by the quantization amount (10 in our example) in order to

reverse the quantization. This unquantized data should be subtracted from the actual,

original DCT coefficients to get the true error and the true subimage fitness. As a result,

No Quantization (fitness 1346.9375)
-453 0 453 346 0 0 0 0 0 188 0 0 0 0 0 0
-453 -21 381 414 2 35 34 -14 38 114 -24 35 0 0 0 0
 0 21 72 -68 -2 -35 -34 14 -38 74 24 -35 0 0 0 0

Quantized by 10 (fitness 21.9375)
 -45 0 45 35 0 0 0 0 0 19 0 0 0 0 0 0
 -45 3 42 40 2 1 2 2 2 2 1 1 0 0 0 0
 0 -3 3 -5 -2 -1 -2 -2 -2 17 -1 -1 0 0 0 0

Figure 5.1. DCT coefficient data for a 4-by-4 sub image with and without quantization.

43

the true fitness of the quantized subimage is revealed to be 2239.3125 instead of 21.9375,

which is 892.375 greater than the fitness when it is not quantized at all. That is, even

though the estimation errors are less when the subimage DCT coefficients are quantized,

the true estimation error after the quantization is reversed is greater than the estimation

error if quantization had never been done at all.

 We can also understand from Figure 5.1 why it is problematic to evolve only a

percentage of DCT coefficients. The example in this figure shows only a few runs of

zeroes at the end of the actual DCT coefficients. Evolving less than 63% of the DCT

coefficients in this example would produce significant error when the value 188 is simply

set to the 0 default instead of evolving an estimate for it. Depending on the image, the

DCTEvolvePercent parameter may actually work well if it is set to a value that does not

neglect any significant DCT coefficients, as in this example. Every image would likely

have a different optimal value for the DCTEvolvePercent parameter. This value could be

calculated after the zig-zag scanning step of the GP system by recording the minimum

length of the runs of zeros among all subimages. However, as a suggestion for future

research, Section 5.3 presents a solution that is likely to be more beneficial than this one.

5.2 Improved Results

 It is obvious from our experiments that quality of both images in experiment set B

created by the frequency domain-based GP system is better than quality of both images

created by the spatial domain version. Table 4.5 clearly shows this improvement, which

is indicated by the small MSE. On average, the results of our system have an MSE that is

59% of the MSE of Galloway’s system’s results when using his two-parameter function,

44

and 91% when using his seven-parameter function. The highest pixel error for our results

is typically 70% of Galloway’s, with a smaller spread of error in all but one case. Figures

4.5 through 4.8 also illustrate these improvements in a more impressive and visible

manner. The error images resulting from our proposed system are visibly the smoothest.

In particular, in the case of the Julie1 image, a quality difference can even be visually

detected in the estimated image from our system. As stated before, the proposed DCT

domain GP system could potentially require more storage space than Galloway’s system

using two-parameter population functions. However, it still requires less storage than

using seven- parameter population functions. In both comparisons, our system achieves

better results. Working in the frequency domain has a lot of potential, especially if the

flexibility of the frequency domain representation of the data can be appropriately

employed.

5.3 Future Research

 As discussed in Section 3.2.1.4.1, the evolving functions need to produce output

that has more entropy than the spatial domain GP system, since the values in the

frequency domain are less correlated than their spatial domain representations.

Introducing building block functions for the evolving GP that would work well on data

with more entropy was an important part of this research. Similarly, removing functions

that introduced homogeneity was another important part of this research. However, much

more consideration could be made to developing building block functions that provide

better suited output for the evolving functions. One possibility is to incorporate some

form of a pseudo-random number generator. These functions are typically very simple in

45

implementation and might prove to be a good fit for this system requirement due to their

randomness and simplicity.

 Section 3.2.1.4.3 explains how improvements to the population fitness calculation

method were able to squeeze better performance out of the system, as well as better

image quality. However, there is still potential for improvement in this part of the

system. One possibility is to un-zig-zag scan the data of the inverse DCT before

calculating the fitness. In this way, the error calculations would be for the actual pixel

data, which ultimately is what the GP system is trying to estimate anyway. Additionally,

this idea might benefit more from the AdjustErrorByAvgDifference parameter than our

system did, since the data the system is trying to correctly estimate would be directly

adjusted.

 Run length encoding is a powerful compression tool utilized by the JPEG

algorithm that could also be an effective tool in this research. The run length encoding

method takes runs of identical values and represents them as a single value and a count.

In some respects, the DCTEvolvePercent parameter is just a naïve form of run length

encoding, since it is essentially assuming that some percentage of the values were non-

zero and the rest were zero. A more intelligent approach of applying this idea might be to

actually store runs of zeros and non-zeros. This would leave only a run of non-zero

values for the GP system to evolve, since a large percentage of the DCT coefficients are

zero. This implementation could also be combined with the

AdjustErrorByAvgDifference parameter. Fewer zeroes (or in this case no zeros) between

non-zero values it would increase the accuracy of the error adjustment.

46

 Galloway was able to get better results from his seven-parameter population

functions than his simpler two-parameter functions which accept only the x and y

coordinates of pixels in the image. He concluded that these better results were a direct

consequence of providing data that held useful information about the image. These

results could be tested to see if they are extensible to our system. Potential data to be

provided might be the minimum and maximum DCT coefficient values, the number of

non-zeros, or even some form of run length encoding information.

 Image subdivision is an area of the original GP system that was not directly

modified for the frequency domain system. The original system uses a complexity

calculation to determine if a subimage is simple enough to be evolved. Modifying this

subdivision method to take into account the entropy features of the frequency domain

representation of the data would likely improve performance. For example, zig-zag scan

the DCT of a subimage and measure the length of the ending runs of zeros. This could

make the subdivision better suited for other parts of the system wherein exploiting these

characteristics of a frequency domain representation would prove beneficial.

47

REFERENCES

[1] Feiel, H., and Ramakrishnan, S. A genetic approach to color image compression.

In Proceedings of the 1997 ACM Symposium on Applied Computing, 1997.

[2] Frigo, M. and Johnson, S.G. The Design and Implementation of FFTW3.

Proceedings of the IEEE 93, 2 (2005), 216-231.

[3] Frigo, M., and Johnson, S.G. The FFTW web page. 2006. http://www.fftw.org.

June 2008.

[4] Fukunaga A., and Stechert A. Evolving nonlinear predictive models for lossless

image compression with genetic programming. In Proceedings of 3rd Annual
Genetic Programming Conference, 1998.

[5] Galloway, J. An Evolutionary Approach to Image Compression in C#. Master’s

Thesis, Utah State University, 2003.

[6] Gonzalez, R., and Woods, R. Digital Image Processing, Prentice Hall, 2002.

[7] Jiang, J., and Butler, D. A genetic algorithm design for vector quantization. In

Genetic Algorithms in Engineering Systems: Innovations and Applications, 1995.

[8] Koza, J. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, 1992.

[9] Koza, J. Genetic Programming II. MIT Press, 1994.

[10] Nordin, P., and Banzhaf, W. Programmatic Compression of Images and Sound. In

Genetic Programming 1996: Proceedings of the First Annual Conference, 1996.

[11] Saha, S. Image compression – from DCT to wavelets: A review. ACM Crossroads

6, 3 (Spring 2000), 12-21

[12] Szalay, T. Using FFTW in C#. 2006.
 http://www.sdss.jhu.edu/~tamas/bytes/fftwcsharp.html. June 2008.

[13] Wu Y.-G. GA-based DCT quantisation table design procedure for medical

images. Vision, Image and Signal Processing, IEEE 151, 5 (October 2004), 353-
359.

http://www.fftw.org/
http://www.sdss.jhu.edu/%7Etamas/bytes/fftwcsharp.html

	An Evolutionary Approach to Image Compression in the Discrete Cosine Transform Domain
	Recommended Citation

	An Evolutionary Approach to Image Compression in the Discrete Cosine Transform Domain

