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Foundations of Wave Phenomena, Version 8.2

Exercise: Just from the form of (3.4), can you explain why the eigenvectors are only

determined up to an overall multiplicative factor?

Using these eigenvectors in (3.10) we recover the expression (2.12) – you really should

verify this yourself. In particular, it is the eigenvectors of K that determine the column

vectors appearing in (2.16) (exercise).

Note that the eigenvectors are linearly independent as advertised (exercise). Indeed,

using the usual scalar product on the vector space of column vectors v and w,

(v,w) = vTw,

you can check that e1 and e2 are orthogonal (see Problems).

To summarize: The resonant frequencies of a system of coupled oscillators, described

by the matrix di↵erential equation

d2

dt2
q = �Kq,

are determined by the eigenvalues of the matrix K. The normal modes of vibration are

determined by the eigenvectors of K.

4. Linear Chain of Coupled Oscillators.

As an important application and extension of the foregoing ideas, and to obtain a

first glimpse of wave phenomena, we consider the following system. Suppose we have N

identical particles of mass m in a line, with each particle bound to its neighbors by a

Hooke’s law force, with “spring constant” k. Let us assume the particles can only be

displaced in one-dimension; label the displacement from equilibrium for the jth particle

by qj , j = 1, 2, . . . , N . Let us also assume that particle 1 is attached to particle 2 on the

right and a rigid wall on the left, and that particle N is attached to particle N � 1 on

the left and another rigid wall on the right. The equations of motion then take the form

(exercise):
d2qj
dt2

+ !2(qj � qj�1)� !2(qj+1 � qj) = 0, j = 1, 2, . . . , N. (4.1)

For convenience, in this equation and in all that follows we have extended the range of the

index j on qj to include j = 0 and j = N + 1. You can pretend that there is a particle

fixed to each wall with displacements labeled by q0 and qN+1. Since the walls are rigid, to

obtain the correct equations of motion we must set

q0 = 0 = qN+1. (4.2)
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Figure 7.  Linear chain of coupled oscillators.  Each oscillator of mass m  is
coupled to its nearest neighbor with a spring with spring constant k .  As in the
case of the two-coupled oscillator problem, displacement from equilibrium iq
is restricted to be along the chain of oscillators, as illustrated.

01 =q 02 =q
1q 2q

m k

…
0=Nq

Nq

…

The equations of motion (4.1) are, mathematically speaking, a system of N coupled,

linear, homogeneous, ordinary di↵erential equations with constant coe�cients. Note that

each oscillator is coupled only to its “nearest neighbors” (exercise). As it turns out, the

system of coupled oscillators described by (4.1) exhibits resonant frequencies and normal

modes of vibration. To see this we could set up (4.1) as a matrix equation (see Problems)

and use the linear algebraic techniques discussed above. In particular, the generalization

of the matrix K from the last section will be symmetric and hence will admit N linearly

independent eigenvectors, which define the normal modes and whose eigenvalues define

the characteristic frequencies. While this is a perfectly reasonable way to proceed, partic-

ularly for relatively low values for N , for arbitrary values of N we can reduce the analysis

considerably by employing a shortcut. We shall explain this in a moment.

This picture of a linear chain of coupled oscillators (and its three-dimensional gen-

eralization) is used in solid state physics to model the vibrational motion of atoms in a

solid. The masses represent the atomic nuclei that make up the solid and the spacing

between the masses is the atomic separation. The “springs” coupling the masses represent

a harmonic approximation to the forces binding the nuclei into the solid. In the context of

applications to solid state physics the normal modes (when treated quantum mechanically)

are identified with phonons. This phonon picture of vibrational modes of a solid is used to

describe thermal conductivity, specific heat, propagation of sound, and other properties of

the solid.
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Our goal will be to obtain the normal modes and characteristic frequencies of vibration

defined by (4.1). Recall that each of the normal modes of vibration for a pair of coupled

oscillators has the masses oscillating harmonically, all at the same frequency (cf. (2.9) and

(2.10)). Let us therefore look for a complex solution to (4.1) of the form

qj(t) = Aje
i⌦t. (4.3)

By convention we assume that the frequency ⌦ is non-negative. Substituting this into our

equations yields a recursion relation* (exercise):

�⌦2Aj = !2(Aj�1 � 2Aj +Aj+1), j = 1, 2, . . . , N, (4.4)

still subject to the conditions

A0 = 0 = AN+1.

We can solve this relation by further specifying our trial solution. Suppose Aj is of the

form:

Aj = a sin(j�), (4.5)

where � is some real number and a can be complex.† Note that this trial solution satisfies

the boundary condition q0 = 0, but we still have to take care of the condition qN+1 = 0

— we shall do this below by specifying the parameter �. We plug (4.5) into the recursion

relation to get (exercise)

�⌦2a sin(j�) = !2
n
a sin[(j � 1)�]� 2a sin[j�] + a sin[(j + 1)�]

o
. (4.6)

Note that a will drop out of this condition, that is, a is not determined by (4.4)

Exercise: What property of the equations (4.1) and/or (4.4) guarantees that a will drop

out of (4.6)?

To analyze (4.6) we use the trigonometric identity (exercise),

sin(↵+ �) = sin↵ cos� + cos↵ sin�

* A recursion relation for a set of variables Aj , , j = 1, 2, . . . n, is a sequence of equations
which allows one to determine Ak from the set A1, A2, . . . , Ak�1.

† This form of the trial solution is certainly not obvious. It can be motivated by studying
several special cases with N small. Alternatively, one can consider (4.4) for very large
values of j, in which case one can pretend that Aj is a function of the continuous variable
j. One can then interpret the recursion relation as (approximately) saying that the second
derivative of this function is proportional to the function itself. Using A0 = 0 one arrives
at (4.5) (exercise).
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to write

sin[(j ± 1)�] = sin(j�) cos(�)± cos(j�) sin(�).

Using this in (4.6) gives (exercise)

⌦2 sin(j�) = 2!2[1� cos(�)] sin(j�).

Given (4.3) and (4.5), we naturally assume that sin(j�) does not vanish identically for all

j. Thus the recursion relation (and hence the equations of motion (4.1)) are satisfied by

(4.3) and (4.5) if and only if

⌦2 = 2!2[1� cos(�)] = 4!2 sin2(�/2), (4.7)

that is,

⌦ = 2!| sin(�/2)|. (4.8)

Note that we are adhering to our convention that ⌦ be non-negative.

We still must enforce the condition qN+1 = 0, which is now AN+1 = 0. This condition

means

sin[(N + 1)�] = 0, (4.9)

so that

(N + 1)� = n⇡, n = 1, 2, . . . , N. (4.10)

In (4.10) we take the maximum value for n to be N to avoid redundant solutions; if n > N

then we obtain solutions for Aj that were already found when n  N (see below and also

the homework problems). We exclude the solution corresponding to n = 0 because this

solution has � = 0, which forces Aj = 0, i.e., this is the trivial solution qj(t) = 0 (for all

values of j) of the coupled oscillator equations.

Exercise: What property of (4.1) guarantees that qj = 0 is a solution?

To summarize thus far, there are N distinct resonant frequencies, which we label by

an integer n, where n = 1, 2, . . . , N . They take the form

⌦n = 2!| sin

✓
n⇡

2N + 2

◆
|, n = 1, 2, . . . , N. (4.11)

Compare this with the case of two coupled oscillators, treated earlier, where there were 2

resonant frequencies.

We can now return to our trial solution for the complex amplitudes Aj . For each

resonant frequency there will be a corresponding set of complex amplitudes. (In the case

of two coupled oscillators there were two resonant frequencies and two sets of amplitudes,
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representing the normal modes.) For the resonant frequency ⌦n (for some choice of n)

we denote the corresponding complex amplitudes by A(n)j , j = 1, 2, . . . , N . We have

(exercise)

A(n)j = an sin

✓
n⇡j

N + 1

◆
, (4.12)

where an is any complex number. Let us pause to keep track of our notation: j labels the

masses, N is the total number of masses, and n labels the normal modes of vibration and

their resonant frequencies. If you view the N amplitudes for each n, A(n)j , j = 1, 2, . . . , N ,

n fixed, as forming the entries of a column vector, i.e.,0BBBBBBBB@

A(n)1
A(n)2

·

·

·

A(n)N�1

A(n)N

1CCCCCCCCA
then the totality of the column vectors (obtained by letting n = 1, 2, . . . , N) would form

a basis for the N -dimensional space of column vectors with N entries. This basis is in

fact the basis of eigenvectors defined by the matrix K which we mentioned (but didn’t

explicitly write down) at the beginning of this section. As guaranteed by general results

in linear algebra, all the vectors in this basis are orthogonal. You will investigate this in

the Problems.

The solution of the equations of motion for the nth normal mode has oscillator dis-

placements given by (exercise)

q(n)j = Re


an sin

✓
n⇡j

N + 1

◆
ei⌦n

t
�
,

= |an| sin

✓
n⇡j

N + 1

◆
cos(⌦nt+ ↵n), j = 1, 2, . . . , N,

(4.13)

where we have written an = |an|ei↵n .

For the nth mode we have the following behavior. By considering (4.13) for a fixed

value of j, you can see that each mass is undergoing a harmonic oscillation at frequency

⌦n. The amplitude of oscillation for the jth oscillator is |an| sin
⇣

n⇡j
N+1

⌘
– it depends

sinusoidally on the location of the mass and has an overall scale set by an. In particular,

for the nth mode at a fixed time, as you move from one mass to the next the displacement

of each mass advances in phase by n⇡
N+1, leading to the patterns shown in figure 8. Figure

8 depicts snapshots at a fixed time of the displacement profile of the masses. A number of

di↵erent normal modes are shown.
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Another point of view on these displacement profiles is as follows. Let us suppose

that the equilibrium positions of the masses are separated by a distance d, and that the

first (j = 1) and last (j = N) masses are separated from their walls also by d when in

equilibrium. Then the jth mass, in its equilibrium position, will be a distance x = jd from

the wall attached to q1 (exercise). According to (4.13), if you examine the system at a

fixed time t, i.e., take a photograph of the system at time t, then the displacement from

equilibrium as a function of location on the chain of oscillators will be a function of the

form P sin(Qx) (exercise), where P and Q are some real constants. Thus the displacement

is a discrete form of a standing wave, which should be familiar to you from introductory

physics. Recall that a standing wave in a continuous medium (e.g., a guitar string) is a

motion of the medium in which each point of the medium oscillates harmonically (i.e.,

sinusoidally) in time from its equilibrium position, while the amplitude of the oscillation

at any fixed time varies sinusoidally from point to point in the medium.

Also recall that standing waves have nodes, which are points which have zero oscillation

amplitude, that is, they do not move at all. For our linear chain of coupled oscillators nodes

will occur where the sine vanishes, that is, where

j =
(N + 1)

n
l, l = 0, 1, 2, . . . , n. (4.14)

Note that we include the cases j = 0 and j = N+1, which are always nodes corresponding

to the (pretend) masses fixed on the walls. Of course, (4.14) only applies when j works out

to be an integer, or else there is no mass at the putative node. Indeed, for the discrete chain

of oscillators the continuum standing wave picture must be augmented by the knowledge

that the wave is only “sampled” at the points x = jd, j = 0, 1, 2, . . . , N + 1, which is why

the displacement profiles in figure 8 are somewhat more intricate than one would expect

when thinking of a sine function.

Still using the standing wave point of view, equation (4.11) is a relation between the

frequency of vibration of the (discrete) standing wave and the mode number n. Using the

interpretation for (4.12) given above, the wavelength of the discrete standing wave is in-

versely proportional to n. Thus one can also view (4.11) as a relationship between frequency

and wavelength of the standing wave and hence as a relationship between wavelength and

wave speed. We will find such a relationship in each instance of wave phenomena.* For

reasons we shall discuss later, such a relation is called a dispersion relation.

Exercises: Show that when n << N the frequency is approximately proportional to n, and

when n ⇡ N >> 1 the frequency is approximately 2!.

* The existence of the dispersion relation follows from the linearity of the equation describing
the wave and from Fourier analysis – both topics we shall discuss soon.
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Figure 8.  Selected normal modes for an 50=N  linear chain of coupled
oscillators.
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Figure 9.  Dispersion relation nΩ  for the 50=N  linear chain
of coupled oscillators.

The general solution to the equations of motion (4.1) is a superposition of all the

normal modes:

qj(t) = Re

8<:
NX
n=1

an sin

✓
n⇡j

N + 1

◆
ei⌦n

t

9=; , (4.15)

where an is a freely specifiable complex constant for each n. Note we can take the real

part before or after the summation (exercise). An equivalent form of the general solution

is therefore (exercise)

qj(t) =

8<:
NX
n=1

|an| sin

✓
n⇡j

N + 1

◆
cos(⌦nt+ ↵n)

9=; , (4.16)

where |an| and ↵n are real numbers. In any case, the solution depends on 2N real constants

via the complex numbers an in (4.15) or the real numbers (|an|,↵n) in (4.16). You should

not be surprised by this. There are N particles, each obeying Newton’s second law. Each

particle will require specification of an initial position (displacement) and initial velocity to

uniquely determine its motion. This is the same as giving an initial displacement profile and

velocity profile along the chain. Specifying the initial conditions is equivalent to specifying

the amplitudes |an| and phases ↵n. Thus one can accommodate every possible set of initial

conditions using (4.15) or (4.16) and so one is indeed justified in claiming these formulas

provide the general solution to the coupled oscillator problem.
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Let me emphasize two key results that we can glean from the preceding analysis.

First, note how the boundary conditions — i.e., the rigid wall conditions q0 = 0 = qN+1

— serve to fix the form of the characteristic frequencies and the normal modes and hence

the form of the general solution. Second, it is the initial conditions (requirements for all

space at a fixed time, e.g., initial displacement and velocity profiles) that pick out specific

solutions of the equations of motion from the general solution, i.e., determine the constants

an. In other words, the boundary conditions determine the normal modes and the initial

conditions determine the specific linear combination of normal modes that should describe

a given situation.

4.1 Other Boundary Conditions

As it turns out, the normal modes have the form of (discrete) standing waves because

we have fixed the ends of our chain of oscillators to rigid walls, i.e., q0 = 0 = qN+1. If we

change our boundary conditions we can obtain discrete versions of traveling wave solutions.

Let us briefly have a look at this.

To begin, let us consider what happens if there are no boundary conditions at all. To

do this with a minimum of fuss, we assume that the chain of oscillator extends “to infinity”.

Of course, no such thing exists. Rather, this is a just a convenient mathematical model

for a situation where we have a long chain of many oscillators and we are only interested

in the behavior of oscillators far from the ends of the chain. The idea is that near the

center of a very long chain the e↵ect of the boundary conditions should be negligible.* In

this model we still have the equations of motion (4.1) for the displacements ql, but we let

l run over all integer values. We can still use the ansatz (4.3) and we obtain (4.4). Since

we don’t have to satisfy the rigid wall boundary conditions (4.2), we try a solution of the

form

Al = aeil�. (4.17)

This gives (exercise)

�⌦2eil� = !2
n
ei(l�1)�

� 2eil� + ei(l+1)�
o
, (4.18)

from which it follows (again!) that

⌦(�) = 2!| sin(�/2)|.

This time, however, there are no boundary conditions and hence no conditions upon �.

The normal mode solutions are determined/labeled by �; they take the form

q�,l = Re
n
a(�)ei(l�+⌦(�)t)

o
. (4.19)

* This sort of model (suitably generalized to 3-dimensions) is used to describe the bulk
properties of crystalline solids.
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Notice that the exponential in (4.19) is unchanged if � ! � + 2⇡. This means that a

non-redundant description of the normal modes of vibration is achieved by restricting �

to a region of size 2⇡, e.g., 0  � < 2⇡. Notice also that when � = 0 the normal mode

has zero frequency. What can this mean? Evidently, in this case all of the displacements

(q1, q2, . . .) are equal and constant in time. It might help to picture a chain of masses

connected by springs and free to move only in one dimension (parallel to the chain). Now

visualize the chain of oscillators displaced rigidly as a whole (in one dimension, along its

length) with no compression or stretching of the springs. This is the zero frequency mode.

In our previous example, the fixed-wall boundary conditions prevented this mode from

appearing. For � > 0, the form of the normal modes given in (4.19) is a discrete version

of a traveling sinusoidal wave. In particular, at each time t the displacement profile is

a (discretely sampled) sinusoidal pattern which moves with velocity v = �

⌦d
� (exercise).

(Here d is the equilibrium separation of the oscillators.)

Aside from rigid displacements of the chain, the general motion of the chain is obtained

by a superposition of the normal modes with non-zero frequency. This is an integral of the

form:

ql(t) = Re

Z 2⇡

0
d� a(�)ei(l�+⌦(�)t). (4.20)

Let us now consider a di↵erent type of boundary condition — periodic boundary con-

ditions. Imagine we have N +1 oscillators, as before, but now we identify the first and the

last oscillators, that is, we assume that they always have the same displacement, which

need not vanish:

q1(t) = qN+1(t). (4.21)

This could be done by physically identifying the two oscillators — you might try imagining

the chain of oscillators connected into a circle — or by some other means. Our analysis

goes through as above in the case of no boundary conditions. In particular, we have the

normal modes

q�,l(t) = Re
n
a(�)ei(l�+⌦(�)t)

o
, (4.22)

with

⌦(�) = 2!| sin(�/2)|. (4.23)

but the periodic boundary conditions (4.21) mean that (exercise)

ei� = ei(N+1)�, (4.24)

so that (exercise)

� =
2⇡

N
n, n = 0, 1, 2, . . . N � 1. (4.25)

As in the case of fixed wall boundary conditions, the periodic boundary conditions force

the normal modes to come in a discrete set. We have limited the range of n so that we
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have a non-redundant set of modes (exercise). As in the case of no boundary conditions,

there is a zero frequency normal mode corresponding to a rigid displacement of all the

oscillators. The normal modes are again in the form of (discretely sampled) traveling

waves. The general motion of the oscillators is a superposition of the normal modes. This

superposition takes the form (exercise) :

ql(t) = Re
N�1X
n=0

ane
i(2⇡nl/N+2!t| sin(⇡n/N)|)
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