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ABSTRACT

In this research we examine how electron heat moves along magnetic field lines and how this

affects temperature variations in plasmas. Specifically we wrote FORTRAN code to solve

the electron temperature equation numerically. We also solved the steady state electron tem-

perature equation analytically using an integrating factor. We verified that the numerical

and analytical solutions obtained the same result. Finally we calculated the standard devi-

ation of temperature in our domain for the steady state. Gaussian legendre quadrature was

used to integrate various functions. We represented our magnetic field and heat source with

Fourier series. The sin and cosine coefficients for the heat source and the inhomogeneous

magnetic field strength were given in an input file along with other initial conditions which

our code read prior to each run. This allowed different numerical experiments to be run

without the need to recompile the code for each one. The primary result that was found was

that an increase in the initial background temperatures led to smaller variations in tempera-

ture. That is, as plasma collisionality decreases with increasing mean temperature, diffusive

electron heat flow is capable of smoothing out temperature perturbations more effectively.
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1. Introduction

In our world today the average human is becoming more dependent on energy con-

sumption. As traditional methods like coal, oil, and natural gas lead to environmental

concerns and alternative renewable sources like solar, hydro, and wind are either currently

too inefficient or lack scalability, we are left with a promising candidate in nuclear power.

Current nuclear power involves fission, the process of breaking large nuclear isotopes apart

and harnessing the energy from the separation. This provides large energy gains with little

environmental impact. The largest drawback to nuclear fission is the radioactive materials

that are produced from the fission process. One solution to this is to use nuclear fusion, the

joining of two light nuclei. In contrast to fission, the energy gains are more substantial per

unit mass and little hazardous radioactive material is produced. The difficulty for fusion lies

in the temperatures required to overcome the electrostatic repulsion of the two nuclei being

smashed together. One current method for managing particles at these high temperatures

is by confining them with magnetic fields. The tokamak, shown in the figure below, is the

most common device used.

Figure 1: A simple tokamak confines high energy particles with toroidal (long way around

the torus) and poloidal (short way around the torus) magnetic fields
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An understanding of how tokamaks confine electron thermal energy is the motivation

for this research. In this project we will examine how electron heat flow leads to different

temperature variance along magnetic field lines.

2. Electron Motion in Magnetic Fields

The most basic electron motion involves a constant magnetic field and leads to circular

motion around this field. If the electron has any initial velocity in the direction of the

magnetic field then this circular motion becomes helical. This is shown in the figure below.

Figure 2: The magnetic part of the Lorentz force

leads to helical motion in a constant magnetic field

The tokamak takes this fairly simple motion one step farther by wrapping the magnetic

field back around on itself and thus creating a magnetic loop for the electron or any ion to

cycle around. Unlike the simple case above, the tokamak does not have a constant magnetic

field since the toroidal field is proportional to the inverse of the major radius. This leads to

particles with small velocities parallel to the magnetic field bouncing back and forth as they

go from lower to higher field strengths. Particles with larger components for their parallel
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velocities continue to cycle around the torus. The interactions between these trapped and

passing particles leads to more complex motion. For our research we used the electron

temperature equation to model heat flow for our charged particles. We then looked at the

numerical solution to the electron temperature equation and compared this to the analytical

solution for the steady state temperature equation.

3. Methods

In this section we will explain how we solved the steady state temperature equation

analytically. We will also look at how we represented the magnetic and heat source terms

in FORTRAN and the integration technique that was used when calculating the standard

deviation of temperature. The code for both the numerical solution and analytical solution

can be found in the appendix.

a. Analytical Solution

For the analytical solution we start with the following steady-state equation relating the

heat source, S, to the parallel electron heat flow, q|| :

1) S = ~∇ · (q||b̂) = b̂ · ~∇q|| + q||~∇ · b̂ =
dq||
dL
− q||

dlnB
dL

This is the steady-state form of the electron temperature evolution equation. Since this

differential equation is of the form y′ + f(x)y = g(x) we know we can solve it using an

integrating factor. The integrating factor is calculated as

2) u(L) = e
∫ L− dlnB

dL′ dL′
= e−lnB = 1

B
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Multiplying each term in our equation by this factor yields

3) 1
B

dq||
dL
− 1

B
dlnB
dL

q|| =
d
dL

(
q||
B

) = S
B

Finally we can integrate both sides from 0 to L to get our final result

4)
q||(L)

B(L)
− q||(0)

B(0)
=

∫ L

0
dL′ S

B

S and B are represented as Fourier series and we use Gauss-Legendre integration to

calculate the right side integral.

b. Gauss Legendre Integration

When evaluating integrals we often require a numerical approximation scheme since the

analytical solution may be unattainable. These approximation schemes are known as quadra-

ture rules and typically they are given as a sum of weights at various points multiplied by

the integrand evaluated at these same points. A well known example is the trapezoidal rule

which uses the weights as the distance between two points multiplied by the integrand value

at these points. This rule is shown in the equation below.

∫ b

a
f(x)dx ≈ 1

2

∑N
i=1(xi+1 − xi) ∗ (f(xi+1) + f(xi))

Gaussian Legendre quadrature is a method used to provide exact numerical results with n

weights for a function represented as a polynomial of degree 2n - 1.(NumericalRecipes,1992) These

weights are associated with the Legendre polynomials in the following way:

wi = 2
(1−x2

i )]P
′
n(xi)]2

, where Pn is the nth Legendre Polynomial, and∫ 1

−1 f(x)dx =
∑n

i=1 wif(xi)
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4. Results

In this section, we present results from numerical solutions of the electron temperature

equation 3
2
ndT

dt
= −~∇·(q||~b)+S. Comparing the numerical solution with the analytical steady

state solution found that the two were consistent as long as
∫ L

0
S
B

= 0. This periodicity

restraint came from the fact that
q||(L)

B(L)
− q||(0)

B(0)
= 0 and seems to indicate we are not free

to choose any magnetic field and heat source. The next thing we examined was how the

standard deviation of temperature varied as we increased the background temperature. The

first graph shows what heat source was used for the calculations and the second graph shows

how the temperature variation changed when we altered the initial background temperature.

The decrease in temperature variation comes from the diffusive electron heat flow smoothing

out temperature pertubations more effectively because of the decrease in plasma collisionality

with the increased mean temperature.

Graph 1: Constant heat source and the resulting steady-state temperature for 10 eV

background temperature are shown. This corresponds to the 10 eV data point in Graph 2
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Graph 2: The standard deviation of temperature is shown

to decrease as we increase our initial background temperature which

lowers collisionality and makes diffusive heat transport more robust

Finally, we also examined how altering the magnitude of the sinusoidal pertubation in

magnetic field strength affected temperature variation. In this experiment we held the

initial background temeprature at 30ev and altered our B source, that is the strength of

the sinusoidal variation in |B|. The first graph shows the weaker and stronger sinusoidal

terms that we used. The second graph shows how the temperature variation was affected by

changing the strength of the sinusoidal variation in |B|.
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Graph 3: The weak and strong sinusoidal terms are shown with the temperature

Graph 4: The standard deviation of temperature is shown to decrease as we increase the

magnitude of the sinusoidal pertubation in magnetic field strength
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5. Conclusion and Future Study

In conclusion, we were able to model electron temperature flow given a specific magnetic

field and a heat source. We were able to verify that increasing the background temperature

led to less temperature variations because of decreased plasma collisionality. Currently our

numerical solution only solves for the linear case. For future study I would like to visit the

nonlinear case and attempt to modify the code that simulates this.

9



APPENDIX

FORTRAN Code Used for Numerical and Analytical

Solution

a. Numerical Solution
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b. Analytical
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