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Foundations of Wave Phenomena, Version 8.2

5. The Continuum Limit and the Wave Equation.

Our example of a chain of oscillators is nice because it is easy to visualize such a system,

namely, a chain of masses connected by springs. But the ideas of our example are far more

useful than might appear from this one simple mechanical model. Indeed, many materials

(including solids, liquids and gases) have some aspects of their physical response to (usually

small) perturbations behaving just as if they were a bunch of coupled oscillators — at least

to a first approximation. In a sense we will explore later, even the electromagnetic field

behaves this way! This “harmonic oscillator” response to perturbations leads — in a

continuum model — to the appearance of wave phenomena in the traditional sense. We

caught a glimpse of this when we examined the normal modes for a chain of oscillators

with various boundary conditions. Because the harmonic approximation is often a good

first approximation to the behavior of systems near stable equilibrium, you can see why

wave phenomena are so ubiquitous. The key di↵erence between a wave in some medium

and the examples of §4 is that wave phenomena are typically associated with propagation

media (earth, water, air, etc.) which are modeled as continuous rather than discrete. As

mentioned earlier, our chain of oscillators in §4 can be viewed as a discrete model of a

continuous (one-dimensional) material. We now want to introduce a phenomenological

description of the material in which we ignore the atomic discreteness of matter. In this

continuum model we shall derive the simplest of the wave equations.

The basic physical idea is reasonably simple. Often times we are interested in certain

macroscopic properties of some material (e.g., the behavior of a plucked guitar string as a

function of time and space) and we want to ignore most of the details of the microscopic

make-up of the material since they should be irrelevant for the most part.* So long as the

length scales associated with the macroscopic behavior of the material (e.g., wavelengths)

are much larger than the length scales associated with the microscopic structure (e.g., the

inter-particle spacing) we can approximate the behavior of the material by taking a limit

in which the inter-particle spacing approaches zero while letting the number of oscillators

become arbitrarily large (“approach infinity”).

We will have to exercise a little care in this limiting process. Here “care” means that

we keep fixed some macroscopic quantities characterizing the material in which the waves

are propagating. As we proceed, some good examples of the materials to keep in mind are:

sound waves in an “elastic solid”, e.g., in a metal rod; a vibrating string or rope under

tension; sound waves in a gas. Each of these materials will have certain physical parameters

which are relevant to the propagation of the wave and which are macroscopic reflections

of the oscillator parameters which model the microscopic behavior of the material. For

* Indeed, usually one can usefully describe the macroscopic behavior of a material using a
handful of judiciously chosen parameters. A complete description of the underlying atomic
physics would in principle require something like Avagadro’s number worth of parameters!
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example each of the three illustrations just mentioned will be characterized (in part) by

their mass density.

Let us emphasize that a continuum approximation, by its very nature, will not have

universal validity. For example, if we consider wave phenomena in which the wavelengths

are comparable to (or smaller than) the inter-particle spacing i.e., for su�ciently high fre-

quencies, then we don’t expect our model will accurately model what is actually happening

physically.

5.1 Derivation of the Wave Equation

As in §4, we suppose that the equilibrium separation of the oscillators is d and we

label the equilibrium position of the oscillators by x = jd. We can then denote by q(x, t)

the displacement of the jth oscillator from its equilibrium position at time t. Our use of

the symbol x, usually reserved for a continuous variable, anticipates our implementation

of the strategy wherein the inter-particle spacing is so small (compared to the typical sizes

of macroscopic phenomena) that we can model the particles as forming a continuous mass

distribution. We rearrange the equations of motion (4.1) into the form (exercise)

d2q(x, t)

dt2
= �!2d


1

d
{q(x, t)� q(x� d, t)}

�
+ !2d


1

d
{q(x+ d, t)� q(x, t)}

�
. (5.1)

We now study the right-hand side of this equation in the limit where d is very small. In this

case we can view q(x, t) as a continuous function of x to a better and better approximation,

and we have that† (exercises)

1

d
{q(x, t)� q(x� d, t)} ⇡

✓
@q

@x

◆
x=jd�d/2

, (5.2)

and
1

d
{q(x+ d, t)� q(x, t)} ⇡

✓
@q

@x

◆
x=jd+d/2

. (5.3)

In the same manner, the di↵erence of these terms yields the second derivative of q with

respect to x: ✓
@q

@x

◆
x=jd+d/2

�

✓
@q

@x

◆
x=jd�d/2

⇡ d

✓
@2q(x, t)

@x2

◆
x=jd

. (5.4)

We can therefore write the equation of motion in this approximation as:

@2q(x, t)

@t2
= !2d2

@2q(x, t)

@x2
. (5.5)

† Yes, those definitions for derivatives as limits of di↵erences that you learned in calculus class
really do come in handy after all! An even better way to understand these approximations
is via Taylor’s theorem. See Appendix A and the Problems.
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This is already a wave equation, but to get our final form of it we need to consider the

limit as d ! 0. We do this as follows.

First recall that the inter-particle “springs” have the natural frequency

! =

r
k

m
. (5.6)

We express the spring constant k — which represents “microscopic” information — as

k =


d
, (5.7)

where the physical interpretation of the “macroscopic” constant  depends upon what we

are modeling. In general,  represents the macroscopic manifestation of the microscopic

restoring forces. For transverse† vibrations of a string,  will represent the tension on

the string. For the longitudinal† vibrations of an elastic medium (e.g., sound waves in a

solid),  will represent the Young’s modulus, which determines the sti↵ness of the material

making up the medium. For compression (sound) waves in air,  will be the elastic modulus.

The quantity  is one of two macroscopic quantities that are held fixed when taking the

continuum limit. We now have (exercise)

!2d2 =
d

m
. (5.8)

Next we express the mass of the oscillators — another microscopic quantity – as

m = µd, (5.9)

where µ, which is a macroscopic quantity, represents the mass per unit length of the

continuum medium. The mass per unit length is the other macroscopic quantity that is

held fixed in the continuum limit. We now have

!2d2 =


µ
. (5.10)

In the continuum limit the microscopic parameters satisfy: d ! 0, ! ! 1, m ! 0, k ! 1,

with the macroscopic parameters  and µ — characterizing the continuous material in

question — held fixed. Setting v2 := 
µ,* (5.5) becomes

@2q(x, t)

@t2
= v2

@2q(x, t)

@x2
. (5.11)

† Recall that “transverse waves” have a displacement which is orthogonal to the direction
of propagation of the displacement, while “longitudinal waves” have a displacement which
is parallel to the direction of propagation.

* The notation “a := b” indicates that we are making a definition, namely, “a is defined to
be the quantity b”. Thus we can distinguish between equalities that we should be able to
deduce from some other facts (which use “=”), and equalities true merely by definition
(which use “:=”). The notation “a := b” is close to, but not quite the same as, a ⌘ b,
which means “a is identically equal to b”, as in 5 ⌘ 5.
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This is the one-dimensional wave equation, which is a fundamental example of a partial

di↵erential equation. It has one dependent variable and two independent variables. The

equation (5.11), and its generalizations, will be the subject of all of our attention from now

on.

Here are some miscellaneous comments on the preceding construction of the wave

equation.

• We are now using partial time derivatives instead of ordinary derivatives, i.e., we are

holding x fixed when we vary t to take the time derivative and we are holding t fixed

when we compute derivatives with respect to x.

• The wave equation is a partial di↵erential equation (PDE). It is a linear, homogeneous

PDE with constant coe�cients. Another example of a such a PDE you may have

already seen is Laplace’s equation in Cartesian coordinates.

• Prior to taking the continuum limit, we had x = jd labeling the equilibrium position

of the jth mass and qj(t) was denoting the displacement of that mass from its equi-

librium position at time t. In the continuum approximation, the chain of oscillators is

represented by a line of fixed mass density. Points on the line are labeled x and the

displacement “from equilibrium” of a point at x on the line at time t is denoted by

q(x, t).

• The second time derivative of q(x, t) in the wave equation is just the acceleration

that features in Newton’s second law. The second spatial derivative of q(x, t) is the

continuum limit of the harmonic “nearest neighbor” interaction.

• If the continuum is meant to describe an elastic medium undergoing longitudinal vi-

brations (e.g., sound waves) then the displacement q(x, t) represents a compression or

rarefaction of the elastic medium the sound is traveling in at the point x and time t,

that is, q represents a longitudinal density wave. If the continuum is meant to repre-

sent a vibrating string under tension, then q(x, t) represents the deflection of the string

at (x, t) from its equilibrium position, that is, q represents a transverse displacement

wave.

• The parameter v that appears in (5.11) is easily seen to have units of speed (exercise).

We shall see that v characterizes the speed of the waves that satisfy (5.11). By the

way, an easy way to remember how the velocity factor enters the wave equation is to

use dimensional analysis: the 1
v2 is needed to balance the units (exercise).

To summarize: the 1-dimensional wave equation describes the displacement from equi-

librium in time of a continuum of matter in which displacements of infinitesimal elements

of mass experience a nearest-neighbor Hooke’s law restoring force.

45 c
� C. G. Torre



Foundations of Wave Phenomena, Version 8.2

5.2. Boundary Conditions

In our discussion of the chain of oscillators we considered various boundary conditions.

Since the wave equation can be viewed as a limiting case of the chain of oscillators, there

are corresponding boundary conditions here as well. Let us briefly describe them here.

Of course, the case of no boundary conditions has, for the most part, already been

dealt with in the previous paragraphs since no boundary conditions were imposed there.

Typically, one will ignore boundary conditions if one is not near a boundary and one is

considering features of the wave which are much smaller than the spatial domain of the

problem. One will then speak of, e.g., waves on a “long” string. The usual mathematical

model for such a situation is to suppose that the spatial domain x is all of the real numbers:

�1 < x < 1.

Next consider our original fixed-wall boundary conditions. These are sometimes called

Dirichlet conditions in this context. Here the spatial domain of interest is usually taken to

be finite, say, 0  x  L, and the displacement q = q(x, t) vanishes at the boundaries for

all time:

q(0, t) = 0 = q(L, t). (5.12)

This boundary condition models a string under tension with fixed ends (e.g., a guitar

string). It also models sound waves in air in a finite, closed region (in a one-dimensional

approximation — e.g., a long closed pipe.)

A vibrating metal rod (whose spatial cross section is small compared to its length L)

which is clamped at one end or a vibrating column of air in a pipe which is open at one

end could be modeled with just the boundary conditions

q(0, t) = 0.

Periodic boundary conditions can be handled similarly, on a finite interval 0  x  L

we insist that

q(0, t) = q(L, t). (5.13)

This condition could be used to model a vibrating loop of string, or sound in a closed

circular pipe.
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