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Comprehensive Theoretical Framework for Modeling Diverse 
Electron Transport Experiments in Parallel Plate Geometries 

 
Alec M. Sim1  

Irvine Valley College, Irvine, CA, 92604  
 

J.R. Dennison2 
Utah State University, Logan, UT, 84322 

 
 

A unified set of parameters and dynamic equations have been developed to describe the time-dependent 
surface voltage and currents measured for a broad range of electron transport experiments conducted in 
parallel plate geometry with a dielectric slab above a grounded electrode and with either a floating or fixed 
voltage upper surface.  The framework can model measurements of constant voltage, time-of-flight and AC 
conductivity; radiation induced conductivity; surface voltage accumulation and decay; electrostatic 
discharge; electron emission and electron-induced luminescence.  The broad applications of the theoretical 
framework are outlined in terms a comprehensive classification of the ways in which charge is injected into or 
excited within a material; these classifications include surface deposition, bulk deposition and penetrating 
radiation for pulsed, stepped and periodic applied voltages/charge from either surface electrodes or electron 
beams. A set of equations are developed to model evolving electron transport and related phenomena in 
highly disordered insulating materials over large ranges of time, electric field, temperature, absorbed dose, 
and adsorbed dose rate.  These analytic equations derived from physics-based theories predict the 
equilibrium and time-dependent accumulation, dissipation and transport of charge carriers; these basic 
equations  are  (i)  Gauss’  law,  (ii)  a  1D  electron  continuity  equation  with  Ohm’s  law  and  source  terms,  (iii)  a  
1D continuity equation for holes with source terms, and (iv) the sum of currents due to various conduction 
mechanisms (including contributions from drift, diffusion, dispersion, polarization, and radiation-induced 
processes).  The total conductivity is modeled as the sum of contributions from three independent 
conductivity mechanisms: thermally activated hopping, variable range hopping, and radiation-induced 
conductivity using a concise, unified set of independent fitting parameters. At a microscopic level, modeling 
and understanding these conduction mechanisms in disordered insulating materials is fundamentally based 
on a detailed knowledge of the distribution and occupation of the density of states (DOS) of nearly-free and 
trapped charged carriers. The conduction is controlled by transitions between extended valence and 
conduction band states, between localized trap states and the extended valence and conduction band states, 
and hopping between localized states; constant, linear, power law, exponential and Gaussian localized DOS 
are considered.  By analyzing the observed temperature, field, dose rate and time dependent conductivities 
that result from both extended and localized trap state conduction, this theoretical framework provides new 
insight into the role of the localized trap state DOS in myriad ground-based materials testing methods. 

Nomenclature 
a   =  average nearest neighbor trap separation or TAH hopping distance [L] 
𝑎஻   =  Bohr radius [L] 
A   =  area [L2] 
𝐴௕௘௔௠   =  cross-sectional area of electron beam [L2] 
B   =  general constant  
br   =  capture cross section for holes, recombination centers [L2] 
bt   =  capture cross section for trapping centers [L2] 
c   =  speed of light [LT-1] 
d   =  sample thickness or depth [𝐿] 
D   =  Fick’s  diffusion  coefficient  for  electrons  [𝐸𝑇ିଵ𝑀ିଵ] 
𝐷̇   =  absorbed radiation dose rate (can also be written Ddot)[𝐸𝑀ିଵ𝑇ିଵ] 
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𝜀   = energy [𝐸] 
𝜀  ̅   = mean energy lost per collision 
𝜀b   = electron beam energy[E] 
𝜀௜௡௖  =  incident beam energy (note this is different from the beam energy) [𝐸] 
𝜀஼஻   =  energy of the conduction band edge [𝐸] 
𝜀CF   =  energy difference between top of conduction band and the steady-state Fermi level [𝐸] 
𝜀ி   =  Fermi energy  [𝐸] 
𝜀௙   =  Fermi level or chemical potential  [𝐸]  
𝜀௙଴   =  equilibrium Fermi level  [𝐸] 
𝜀gap   =  energy width of band gap [E] 
𝜀௚௡ௗ    =  ground state energy [E] 
𝜀௛௜௚௛    =  energy high in the energy gap of a DOS [E] 
𝜀HI, 𝜀LO = Energies to determine n from the Bethe-Joy formula range extremes for NIST databases. 
𝜀HOMO  =  energy of the highest occupied molecular orbital [E] 
𝜀௜   = energy level of a single localized state [E] 
𝜀ி௜    =  energy of the Fermi level; i represents the DOS type: e for exponential, G for Gaussian, etc. [E] 
𝜀௧   =  transport band energy; t stands for transport [E] 
𝜀ij   =  energy between sites i and j [E] 
𝜀௟௢௪    =  energy low in the energy gap of a DOS [E] 
𝜀LUMO  = energy of the lowest unoccupied molecular orbital [E] 
𝜀max  = energy at maximum secondary electron yield, δmax. 
𝜀mean  =  mean energy at the center of the energy distribution for a DOS [E] 
𝜀min  = energy at the minimum in the mean free path curve. 
𝜀ொ  =  mobility edge energy [E] 
𝜀௣   =  energy distribution of a power DOS, gives scale to the energetic distribution of the DOS [E] 
𝜀p

eff  = effective plasmon energy. 
𝜀௧   =  energy level of the transport band, where t stands for transport [E] 
𝜀௧௥௔௣  =  DOS energy level of a single set of trapped states, delta function type  [𝐸] 
𝜀௏஻   =  energy of the top of the valence band, usually set to zero [E] 
𝜀o   =  energy difference between bottom of conduction band and the Fermi level [E] 
𝜀଴௜    =  energy scale for a given DOS; i represents the DOS type: c for constant, e for exponential, G for   
    Gaussian, l for linear, p for power, and t for single trap level delta function [𝐸] 
F(z)  =  electric field as a function of distance, may also be a function of energy and time  [𝐸𝑄ିଵ𝐿ିଵ] 
F(t)   =  time-dependent evolution of carriers in the DOS [unitless]  
𝑓௜(𝜀, 𝑡)  =  mean occupation number; i is given by subscripts FD for Fermi-Dirac and MB for Maxwell-   
    Boltzmann distributions [unitless] 
FESD  =  electrostatic breakdown field strength  [𝐸𝑄ିଵ𝐿ିଵ] 
𝑓ி஽   =  Fermi-Dirac distribution function, usually a function of energy [unitless] 
f   =  flux density of incident radiation  [𝑁𝐿ିଷ] 
𝐹௦(𝑡)  =  time-dependent electric field at the surface of the insulator [𝐸𝑄ିଵ𝐿ିଵ] 
𝐹௧(𝑡)  =  time-dependent electric field produced by the trapped charge distribution [𝐸𝑄ିଵ𝐿ିଵ] 
𝐹଴   =  applied electric field [𝐸𝑄ିଵ𝐿ିଵ] 
G   =  generation rate of carriers  [𝑁𝐿ିଷ𝑇ିଵ] 
𝐺௘௫    =  electron generation density; the ex refers to an external source  [𝑁𝐿ିଷ𝑇ିଵ] 
h   =  Planck constant  [𝐸𝑇𝐿ିଵ] 
i   =  index or subscript indicator [unitless] 
I   =  current  [𝑄𝑇ିଵ] 
J   = current density  [𝑄𝑇ିଵ𝐿ିଶ] 
j   =  index or subscript indicator [unitless]  
𝐽௕    =  current density of the incident electron beam   [𝑄𝑇ିଵ𝐿ିଶ] 
𝐽௖(𝑡)  =  conduction current density as a function of time  [𝑄𝑇ିଵ𝐿ିଶ] 
𝐽ௗ(𝑡)  =  displacement current density as a function of time  [𝑄𝑇ିଵ𝐿ିଶ]  
𝐽஽(t)   = diffusion current density as a function of time  [𝑄𝑇ିଵ𝐿ିଶ] 
𝐽ௗ௜௦௣(𝑡)  =  dispersion current density as a function of time  [𝑄𝑇ିଵ𝐿ିଶ] 
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𝐽௜௡௝(𝑡)  =  injected current density as a function of time  [𝑄𝑇ିଵ𝐿ିଶ] 
𝐽௅௘௔௞(𝑡) =  leakage current density as a function of time  [𝑄𝑇ିଵ𝐿ିଶ] 
𝐽௠௘௔௦(𝑡) = current density as a function of time measured at the rear electrode  [𝑄𝑇ିଵ𝐿ିଶ] 
𝐽௣(𝑡)  =  polarization current density as a function of time  [𝑄𝑇ିଵ𝐿ିଶ]  
  𝐽௣଴   =  maximum (initial) polarization current density as a function of time  [𝑄𝑇ିଵ𝐿ିଶ] 
𝐽௣↓(𝑡)  =  decrease in polarization current density as a function of time  [𝑄𝑇ିଵ𝐿ିଶ] 
𝐽௣↑(𝑡)  =  increase in polarization current density as a function of time  [𝑄𝑇ିଵ𝐿ିଶ]  
  𝐽௦(𝑡)   =  surface injection current density at the surface that enters the sample as a function of time   [𝑄𝑇ିଵ𝐿ିଶ] 
𝐽௦௔௧   =  equilibrium saturation current density that exits the sample at the rear electrode   [𝑄𝑇ିଵ𝐿ିଶ] 
𝐽௦ௗ   =  steady state current density as measured at the rear electrode, not to be confused with surface injection 
    current density or time-dependent current density  [𝑄𝑇ିଵ𝐿ିଶ]  
𝐽௧௢௧(t)  =  total current density as a function of time  [𝑄𝑇ିଵ𝐿ିଶ] 
𝐽଴   =  initial current density  [𝑄𝑇ିଵ𝐿ିଶ] 
K   = Empirical constant in the Bethe Joy formula. 
K(zp)  =  number of electrons deposited per unit time per unit volume, where zp is the penetration     
    depth  [𝑁𝐸ିଵ𝐿ିଷ] 
kb   =   Boltzmann constant  [𝐸𝐾ିଵ] 
MA   = Atomic weight. 
me   = Electron rest mass. 
N   = Stopping power exponent. 
NA   = Avogadro’s  number. 
𝑁(𝜀)  =  density of localized states per unit energy per unit volume  [𝑁𝐸ିଵ𝐿ିଷ] 
𝑁஺   =  number of participating particles at site A [unitless] 
𝑁஻   =  number of participating particles at site B [unitless] 
𝑛௘   =  density of free carriers per unit volume  [𝑁𝐿ିଷ] 
𝑛௘(𝜀, 𝑡) =  density of free carriers per unit energy per unit volume  [𝑁𝐿ିଷ] 
𝑁௘   =  total density of electron conduction states within  𝑘௕𝑇  of the CB per unit volume  [𝑁𝐿ିଷ] 
𝑁௜௡௝  =  total density of injected carriers  [𝑁𝐿ିଷ] 
𝑛௛(𝑡)  =  density of immobile holes per unit volume  [𝑁𝐿ିଷ] 
𝑛௧   =  density of trapped carriers per unit volume, not the total  [𝑁𝐿ିଷ] 
𝑛௧(𝜀, 𝑡) =  density of trapped carriers (occupied trap states) per unit energy per unit volume  [𝑁𝐸ିଵ𝐿ିଷ] 
𝑁௧   =  total density of (available) localized states per unit volume; (not a trapped carrier),      
    𝑁௧ = ∫𝑁(𝜀)𝑑𝜀   [𝑁𝐿ିଷ] 
ntot(z,t)  =  total density of carriers per unit volume as a function of spatial position and time  [𝑁𝐿ିଷ] 
𝑁௩   =  total density of valence states per unit volume  [𝑁𝐿ିଷ] 
P   = a constant, usually a power [unitless] 
P   =  polarization density  [𝑄𝐿ିସ𝐸𝑀ିଵ𝑇ଶ] 
qi   =  charge per carrier, where i is the type of carrier: e = electron, h = hole, ex = exiton, etc.  [𝑄] 
Qinj   =  injected charge per unit area  [𝑄𝐿ିଶ]  
Q௔௖௖       =  accumulated charge [Q] 
r   =  radius to some point P in the sample or in space  [𝐿] 
R   =  range of a carrier; this can apply to the range of an incident particle penetrating into a material or the 
    range of an electron as it hops from one localized state to the next, typically a mean value   [𝐿] 
𝑆(𝑟, 𝑡)  =  volume charge rate density creation term; has dimensions of  [  𝐿ିଷ𝑇ିଵ] 
sc   =  capture cross section of conduction electrons by fixed holes  [𝐿ଶ] 
SCSDA  = Electron stopping power in CSDA 
t   =  time [𝑇] 
T   =  temperature  [𝐾] 
𝑡ఛ   =  transit time, time for carriers to cross the sample thickness d  [𝑇] 
T0   =  characteristic dispersion of states in a given DOS; always coupled with kb to give energy  [𝐾] 
𝑇଴௜   =  characteristic dispersion of states in a given DOS; i represent DOS type: e for exponential, l for linear, 
    G for Gaussian  [𝐾] 
V   =  volume  [𝐿ିଷ] 
V   =  electric potential  [𝐸𝑄ିଵ] 
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𝑣஺   =  velocity of carriers at some site A  [𝐿𝑇ିଵ] 
𝑉௔௣௣  =  externally applied voltage  [𝐸𝑄ିଵ] 
𝑣௘   =  velocity of electron  [𝐿𝑇ିଵ] 
𝑣௜   =  velocity of object I   [𝐿𝑇ିଵ] 
𝑉௦(𝑧, 𝑡)  =  surface potential   [𝐸𝑄ିଵ]𝑣்  = thermal velocity of carrier  [𝐿𝑇ିଵ] 
𝑉଴    =  initial potential   [𝐸𝑄ିଵ] 
W   =  width of energetic distribution of potential wells; band width, in a density of states  [𝐸] 
𝑊௝   =  energy of the jth hop from some other localized state  [𝐸] 
Y0   =  initial uncharged yield [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] 
z   =  spatial coordinate with unit vector 𝑧̂,  generally used to represent a position into a sample  [𝐿] 
zp   =  penetration depth of carriers into a sample also called the range; see range, R  [𝐿] 
α   =  dispersion parameter, T/T0 [unitless] 
𝛼௘௥    =  interaction coefficient between CB and holes  [𝐿ଷ𝑇  𝑁ିଵ]  
𝛼௘௧   =  interaction coefficient between CB and trapped states  [𝐿ଷ𝑇  𝑁ିଵ]  
𝛼௧௘   =  interaction coefficient between trapped states and CB  [𝐿ଷ𝑇  𝑁ିଵ]  
𝛼௧௥   =  interaction coefficient between trapped states and holes  [𝐿ଷ𝑇  𝑁ିଵ] 
𝛼௧௧   =  interaction coefficient between trapped states and trap states at the transport energy  [𝐿ଷ𝑇  𝑁ିଵ]  
𝛿௬௜௘௟ௗ       = secondary electron yield coefficient  [𝑁] 
δmax  = Maximum secondary electron yield. 
ϵr   =  relative permittivity of material  [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] 
ϵ0   =  permittivity of free space  [𝑄ଶ𝐿ିଷ𝑀ିଵ𝑇ଶ] 
𝜂   =  real space decay constant of the localized wave function for a given state         
    (also called localization length)  [𝐿] 
𝜂௬௜௘௟ௗ    =  backscattered yield for secondary electron emission [unitless] 
𝜆̅   = Inelastic mean free path at 𝜀  ̅
𝜆ூெி௉  = Inelastic mean free path 
λmin   = Inelastic mean free path at 𝜀min 
𝜆ௌா   = Secondary electron inelastic mean free path 
𝜃(𝑧 − 𝑧଴) =  Heaviside step function at the spatial point z0 [unitless] 
μi   =  carrier mobility, where i is the type of carrier: e = electron, etc.  [𝐿ଶ𝑇ିଵ𝐸ିଵ𝑄] 
𝜇௘   =  trap-free mobility of an electron in the conduction band  [𝐿ଶ𝑇ିଵ𝐸ିଵ𝑄] 
𝜇௧௥௔௣  =  trap-reduced mobility  [𝐿ଶ𝑇ିଵ𝐸ିଵ𝑄] 
𝑣௘௧(𝜀)  =  probability of carrier trapping per unit time as a function of energy  [𝑇ିଵ] 
𝑣௘௥(𝜀)  =  probability of electron hole recombination per unit time as a function of energy  [𝑇ିଵ] 
𝑣௜௝    =  hopping rate between sites i and j  [𝑇ିଵ] 
𝜈௜௢௡  =  frequency of escape attempts for an ion in ionic conduction  [𝑇ିଵ] 
𝑣௧௘(𝜀)  =  probability that an electron will escape from trap per unit time as a function of energy; also called the 
    frequency factor in many applications  [𝑇ିଵ] 
νTAH  =  hopping frequency for thermally activated hopping conductivity  [𝑇ିଵ] 
𝑣௧௛(𝜀)  =  probability of a trapped election to recombine with a hole per unit time  [𝑇ିଵ] 
νVRH  = hopping attack frequency for variable range hopping conductivity  [𝑇ିଵ] 
v0   =  frequency of carrier escapes  [𝑇ିଵ] 
ρ   =  resistivity of a material  [𝐸𝑇𝑄ିଶ𝐿] 
𝜌௕   =  bound charge density  [𝑄𝐿ିଷ] 
𝜌௙   =  free charge density  [𝑄𝐿ିଷ] 
𝜌௠   =  mass density  [𝑀𝐿ିଷ] 
𝜌௧௢௧  =  total charge density  [𝑄𝐿ିଷ] 
𝜌௧௢௧(𝑧, 𝑡)  =  total charge density at position z and time t  [𝑄𝐿ିଷ] 
σ   =  conductivity  [𝑄ଶ𝐿ିଷ𝑇ିଵ𝐸ିଵ] 
𝜎௜௡௜௧௜௔௟   =  initial total electron yield before charge accumulation [unitless]  
𝜎ௗ   =  drift conductivity  [𝑄ଶ𝐿ିଷ𝑇ିଵ𝐸ିଵ] 
σdiff  =  diffusive conductivity  [𝑄ଶ𝐿ିଷ𝑇ିଵ𝐸ିଵ] 
σtotal  =  total conductivity  [𝑄ଶ𝐿ିଷ𝑇ିଵ𝐸ିଵ] 
σP   =  polarization conductivity  [𝑄ଶ𝐿ିଷ𝑇ିଵ𝐸ିଵ] 
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σTAH  =  thermally activated hopping (TAH) conductivity  [𝑄ଶ𝐿ିଷ𝑇ିଵ𝐸ିଵ] 
σTAHo  =  thermally activated hopping reduced conductivity scaling factor  [𝑄ଶ𝐿ିଷ𝑇ିଵ𝐸ିଵ] 
𝜎்௢௧  =  total conductivity; i.e., the sum of conductivities  [𝑄ଶ𝐿ିଷ𝑇ିଵ𝐸ିଵ] 
σVRH  =  variable range hopping (VRH) conductivity  [𝑄ଶ𝐿ିଷ𝑇ିଵ𝐸ିଵ] 
σVRHo  =  variable range hopping reduced conductivity scaling factor  [𝑄ଶ𝐿ିଷ𝑇ିଵ𝐸ିଵ] 
𝜎௏ோு௜   =  variable rage hopping conductivity for an i type DOS: e for exponential, G for Gaussian,     
    etc.  [𝑄ଶ𝐿ିଷ𝑇ିଵ𝐸ିଵ] 
𝜏   =  characteristic onset time for current decay to occur  [𝑇] 
𝜏஼஻   =  lifetime of a carrier in the conduction band without trapping  [𝑇] 
𝜏௧௥௔௣  =  lifetime of a carrier in a trapped state  [𝑇] 
𝜒    = Electron affinity. 
 

I. Introduction 
pacecraft in orbit are exposed to intense plasma environments and high energy particles. Charging to high 
potentials can lead to satellite material alterations, which can degrade instrumentation performance, induce 

systems failures, and create potential safety hazards.1-4 The ubiquity of highly insulating materials in the design of 
spacecraft and many other technology components places special emphasis on understanding and modeling the 
electrical properties of the insulators. Detailed study of experimental data and physical models are critical for 
predicting and mitigating potentially damaging charging phenomena.5-6 Developing a better understanding of the 
physics of insulating materials, increasing the versatility and reliability of charge transport models, and expanding 
the database of information for the electronic properties of insulating materials provides assistance for spacecraft 
designers in accommodation and mitigation of these harmful effects.2,7 In this paper we explore the following 
relevant concepts: simplified parallel plate charging geometry, unification of theoretical charge transport models in a 
single formalism using a common nomenclature and physically based parameters set, density of states (DOS) driven 
charge transport, and charge injection models.  Using these concepts, myriad charge transport and spacecraft 
charging effects can be modeled.        
 The complex relationships between spacecraft insulators and their surroundings are fundamentally based on a 
detailed knowledge of how individual materials store and transport charge. The key to mitigating these effects is an 
understanding of the time required to dissipate harmful charge imbalances on and within the material used in 
spacecraft construction.8 For simple systems considered here the charge decay time is a function of the material 
conductivity, 𝜎൫𝐹, 𝐷̇, 𝑇, 𝑡൯, which in turn is a function of electric field F, incident flux f, time t, dose rate  𝐷̇, and 
material temperature T: that is, 𝜏ௗ௘௖௔௬ ∝   𝜎൫𝐹, 𝐷̇, 𝑇, 𝑡൯

ିଵ.   
 The conductivity of a material is the key transport parameter in determining how deposited charge will 
redistribute throughout the system, how rapidly charge imbalances will dissipate, and what equilibrium potential 
will be established under given environmental conditions.9  Further, the conductivity connects the physical make up 
of a material with the number of available carriers, their type, and how mobile charge is within the material. It is the 
low charge mobility of insulators that causes charge to accumulate where deposited, preventing uniform 
redistribution of charge and creating differential local potentials.  Through careful experimental applications we can 
develop an understanding of the relationship between material make up, carrier type, carrier density and the effects 
on carrier mobility. 
 The Utah State University (USU) Material Physics Group (MPG) has been developed to specifically address the 
spacecraft community’s   concerns for the charging of materials.10-14  The USU MPG has built an extensive 
knowledgebase of the behaviors observed in many spacecraft materials.15  This database,16 in addition to application 
of theoretical models, has been implemented in engineering tools used in spacecraft design.15 The accumulation of 
nearly two decades of work has provided the USU-MPG with a unique platform from which to study the spacecraft 
charging problem at the material level. Each of the experimental systems has been designed to test specific material 
behavior or phenomena that result from composite behavior. Fig. 1 is a graphical representation of the experimental 
systems and their dependence on conductivity  𝜎, temperature  𝑇, electric field  𝐹, time 𝑡, frequency  𝜔, and dose 
rate  𝐷̇. In each of these applications, the USU-MPG has implemented theoretical models to describe the observed 
behavior.  
 Many engineering models currently in use for spacecraft design are largely static in their predictions and 
therefore new models based on the dynamic physics—largely developed for photoconductors, high voltage power 
applications, and electrets—must be applied to make significant improvements in predicting time-dependent 
behaviors. Consider a spacecraft near the danger point, which undergoes a high energy event—say a sudden high 

S 
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Figure I. Materials Physics Group experimental organization diagram and conduction 
mechanisms.  Each box represents a specific conduction mechanism associated with a specific set 
of experimentally measured parameters. (A) Model unification (Sim, 2013). (B) RIC = Radiation 
Induced Conductivity (Guthrie, 2013). (C) DCC = Dark Current Conductivity (Brunson, 2008; 
Dekany, 2009). (D) ESD = Electrostatic Breakdown (C Sim, 2010). (E) SEE = Secondary Electron 
Emission (Hoffmann, 2009). (F) SVP = Small Voltage Probe (Hodges, 2012). (G) POL= Impulse 
polarization studies (Brunson, 2009). (H) FD = Frequency domain polarization studies. 
 

flux of energetic particles.  Depending on the charge deposition rate, induced dissipation rate, and net local field the 
event may cause a system failure.  In addition, the large majority of models do not include the effects of low 
temperature behavior of materials, where the mobility may be reduced by several orders of magnitude due to 
structural phase transitions or changes in the physical transport mechanisms. For many highly insulating materials 
there is a transition in the mobility where the conduction process is no longer driven by pure thermal processes 
involving the conduction band, but rather is a process that proceeds purely by localized quantum mechanical 
interactions.  Most materials are not well characterized for low temperatures, intermediate dose-rates, and very high 
fields. The need for a dynamic description of spacecraft charging for all time scales, temperature ranges, injection 
types, and field dependencies is evident.  
 The USU MPG has developed a consistent theoretical formalism that describes material behavior across many 
experimental systems. In this publication an overview of the key elements and advances of the USU MPG 
theoretical models are presented.  This is not intended to be a complete description of the theory; for a more 
complete description, the interested reader should consult Refs. 17-25.  
 We first present a discussion of idealized experimental configurations. This facilitates the introduction of the 
theory from an experimental point of view. The theoretical development begins with simple conduction processes, 
idealized band structure, microscopic carrier transport, and macroscopic transport.  It uses this physical foundation 
to develop a compartmentalized method for understanding the interaction of charge transport and finally the 
transport equations. The transport equations are extended to include all of the experimental configuration needed to 
study single layer thin film spacecraft materials, which are typically highly insulating disordered materials (HDIM). 

II. Experimental Configurations 
 The large majority of experimental systems involved in testing HDIM can be categorized as shown in Fig. 2.  
Two injection modes are identified, surface electrode injection (red boxes) and charge beam injection (blue boxes).  
Surface electrode injection typically uses a simple parallel plate capacitor configuration that injects charge into the 
material via an electrode(s) and an applied field leading to charge injection effects, electron transport phenomena, 
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polarization, and electrostatic breakdown. This type of experiment is very general and the interested reader can find 
the details of the USU experimental system in Ref. 18.  In the charge beam injection experimental configuration, a 
charged particle (electron or ion) beam or a photon source is incident on the material. Depending on the specifics of 
the deposition process, charge and/or energy is deposited or removed from the sample and different physical 
phenomena are observed.18,8  Charge beam injection is a more complex process.  It includes the possibility of 
induced charge emission from the incident surface and the possibility the incident charge is deposited on the surface, 
deposited within the material, or penetrates fully through the material depositing only energy.  Together, four 
different types of charge and energy injection are identified in Fig. 2 for the spatial domain of deposited charge.  
Each of these spatial modes can combine with three types of charge and energy injection in the time domain (black 
boxes): pulsed injection, stepped injection and periodic injection.  This combination delineates 12 different 
experimental   configurations   for   the   “simple” parallel plate capacitor configuration that are all described by the 
theoretical framework outlined in this paper. Specifics of the periodic injection configurations will be discussed in 
subsequent publications.  
 Consider a charge source—such as an electron beam—incident on a highly insulating spacecraft material 
sample. Three experimental configurations (blue boxes) are depicted in Fig. 2: (i) low incident beam energies, where 
charge is deposited or released from the surface and surface charging/discharging, time of flight (TOF), surface drift 
and diffusion, and low energy secondary electron emission (SEE) can be studied;19-21 (ii) intermediate energies, 
where charge is deposited within the material and SEE, SCLC, dispersion, diffusion, drift, charge trapping due to 
bulk states, and electrostatic discharge (ESD), plus photoemission such as luminescence are studied; and (iii) higher 
energies, where incident charge completely penetrates the material depositing only energy and leading to radiation 
induced conductivity (RIC), dispersion, recombination, bulk state trapping, electroluminescence, and ESD are 
studied.  
 Given the six configurations indentified in Fig. 2 and the simple parallel plate geometry framework for the fields 
and currents in Fig. 3, a systematic theoretical development is achieved that allows for a physical understanding of 
the observed phenomena, characterization of material parameters across a wide array of experimental platforms, 

Figure 2. Simple characterization of experimental configurations. These diagrams provide a 
comprehensive classification of experimental configurations that describe all the common ways in 
which charge and energy can be injected into a material. Electrode injection modes are outlined in 
red.  Charge beam injection modes are outlined in blue.  Four types of charge/energy injection in 
the spatial domain are identified.  Hence, there are twelve combinations of charge/energy injection 
experimental configurations in this classification scheme. 
 

(a) 

(b) (i) 

(i) 

(ii) 

(ii) 

(iii) 

(iii) 
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prediction of behavior for spacecraft materials under a wide variety of conditions, and for the first time provides an 
avenue by which multiple physical phenomena and their effects on spacecraft materials can be predicted and results 
of measurements compared for the different methods. In what follows we present an outline of the theoretical basis 
used to understand charge transport in these configurations and the equations developed for the system current and 
voltage observables. To understand how the current density equation can be studied across experimental systems all 
the currents that can occur in any arrangement of systems must be considered.  Having considered all the current 
densities and resulting potentials, a macroscopic model that includes the complex disordered nature of the material is 
needed.   

III. Introductory theory 
 How can we model charge transport and the resulting conductivity in highly disordered insulators as a function 
of material interactions with incident radiation dose 𝐷̇, applied electric field  𝐹, temperature  𝑇, position of deposited 
charge 𝑧, and time  𝑡? In practice the problem is very complex and requires a detailed understanding of the 
microscopic mechanism that lead to macroscopic-measurable-behavior. Using the simplification that the system can 
be treated as a parallel plate capacitor yields a consistent pathway by which a complete theoretical formalism can be 
applied across many experimental system. In order to accomplish this, models for the internal and external currents, 
internal and external potentials, deposited charge as a function of depth in the sample z, charge ejected from the 
sample surface, internal and external fields, polarization, disordered nature of the material, and any of the six 
configurations presented in Fig. 2 must be brought together.   

A. Conduction processes 
 We can write the generic observed current density as    𝐽 =   𝜎𝐹, where σ is the conductivity.  The conductivity of a 
single carrier is defined as    𝜎 = 𝑞𝑛𝜇, where q is the charge of the carrier, n is the number of carriers, and μ is the 
mobility. Since  the  conductivity  contains  all  the  information  about  the  material  response,  to  first  order,  Ohm’s  law  
defines a simple average relationship that connects the applied field to changes in the material behavior. The 
observed current however is due to many processes, linear and non-linear. There are a large number of mechanisms 
that can contribute to the observed current: Ohmic drift, polarization, spacecharge limited current (SCLC), hopping 
processes, diffusion, dispersion, radiation induced conductivity (RIC), secondary electron emission, (SEE) etc. We 
can write total current density as the sum of individual current densities as 

 
𝐽௧௢௧௔௟ = 𝐽ை௛௠௜௖ + 𝐽ௗ௜௙௙௨௦௜௢௡ + 𝐽ௗ௜௦௣௘௥௦௜௢௡ + ∑ 𝐽௜௡

௜ .  

 Each of these i processes can be categorized by considering whether they are the result of other fundamental 
processes or are fundamental.  If the process is one that involves no other process, hopping as an example, then it is 
fundamental in nature.  Processes that involve more than one fundamental process, secondary electron emission 
(SEE) as an example, are multi-component. In HDIM the processes of drift, diffusion, dispersion, and trapping are 
all dependent on carrier scattering, hopping or hopping-like interactions within the DOS. Radiation induced 
conductivity (RIC) and luminescence are generally multi-step processes that involve transitions from the conduction 
or shallow-trap-states to deep-states or the valence band. Processes like (SEE) and electrostatic breakdown; (ESD) 
are composites that involve deep trapping or distortion of the DOS due to high charge density or high field effects29-

33. 
 To understand how the current density equation can be studied across experimental systems all the currents that 
can occur in any arrangement of systems must be considered.  Figure 3 is a representation of all the currents 
densities that can be expected for an experimental configuration. For example, a simple parallel plate configuration 
in which the sample is placed between two electrodes and an external voltage is applied is found by setting 𝑉௘௫௧ =
𝑉௕ = 𝑉ௗ = 0, this is consistent with configuration (b) of Fig. 2. If the experimental configuration is that of a SEE 
chamber then all the current densities are needed, consistent with configuration (a) of Fig. 2. Note that in both 
configuration (a) and (b) there is a penetration depth R for charge. Having considered all the current densities and 
resulting potentials a macroscopic model that includes the complex disordered nature of the material is needed.   

B. Band structure and disorder 
 The most familiar picture of an insulator and its band structure is show in Fig 4 (a). In this picture many atoms 
are brought together and their bonding and anti-bonding  orbital’s  interact  causing discrete electron energy states of 
the individual atoms to form quasi-continuous bands separated by well-defined band gaps. The band gap is the 
energy range where no extended electron states exist (forbidden region) and in a perfect insulator no electrons or 
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Figure 3. Basic slab geometry of charge transport for an incident electron beam or parallel plate capacitor.  
Electron beam can be incident on a dielectric slab with a grounded lower surface and grounded or floating upper 
surface.   𝑅—range or penetration depth; D—sample thickness; 𝐹௨௣ and 𝐹ௗ௢௪௡—electric fields above and below 
embedded charge layer; J—current densities including injected beam current density, 𝐽௜௡, emitted current 
density,  𝐽௘௠௜௧ , current density through from upper surface,  𝐽௨௣, current density through lower grounded surface, 
𝐽ௗ௢௪௡ , injection current density,  𝐽௜௡௝, and net total current density out of the dielectric,  𝐽௢௨௧ = 𝐽௘௠௜௧ + 𝐽௨௣ + 𝐽ௗ௢௪௡; 
V—voltages including deposited layer voltage,  𝑉ௗ, surface voltage,  𝑉௦, bias voltage, 𝑉௕௜௔௦, external electrode  
voltage, 𝑉௘௫௧  , and electron beam voltage,  𝑉௕. 

z 
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carriers can exist. However, variations in the periodic order in crystals and to larger extent polymers, either spatial or 
energetic, cause extended states to become localized in space. The disorder results from concentrations of impurity 
atoms, the geometry of polymer chains, their impurities, and the general random nature of their polymeric structure. 
Further, the polymer chains do not lend themselves to the simplifications of a lattice construct and have a myriad of 
structural and internal degrees of freedom. Additionally, polar groups attached to the chains, cross linking and 
broken bonds have significant influence on carrier mobility26,27. In most cases these localized states occur in the 
forbidden gap and hence form trap states. Localized states within the band gap are separated from the extended 
states by a mobility edge, which for HDIM is an effective conduction band edge. This high level of disorder leads to 
a density of states (DOS), with complex energetic and positional dependencies within the band gap. The effects of 
disorder are depicted in Fig 4 (b) along with the mobility edge. Often in the literature the conduction band edge and 
valance band edge are confused with the mobility edge. The mobility edge is often at a different energy that is 
generally closer to the center of the band gap; notice also that the term band gap is no longer appropriate and one 
should really refer to this region as the localized state region. In order to provide a salient discussion for the 
connection between HDIM and charge transport a simplified model is used to describe the bang gap and transport 
states shown in Fig 4 (c). The DOS or trapping states are represented as a series of filled or empty circles and the 
level to which the band gap states are filled is given by 𝜀൫𝐹, 𝑇, 𝑡, 𝐷̇൯, referred to as the Fermi-level. A complete 
discussion of trap filling (thermalization) and response of the Fermi-level will not be presented here the interested 
reader should consult Ref 22. 
 Figure 5 shows an idealization of the effects of disorder on the DOS. Here N(ε) is the DOS as a function of 
energy and µμ(ε) is the mobility as a function of energy. The mobility is determined by wave function overlap. Thus, 
when N(ε) is such that wave function interaction is small the states in the gap become localized28. The DOS states 
are categorized into three regions, conduction, shallow, and deep. In conduction states the carriers move freely as 
N(ε) and µμ(ε) are high.  In the second region N(ε) is still fairly high but µμ(ε) begins to drop due to localization onset, 
thus this point is defined as the mobility edge. In the third region both N(ε) and µμ(ε) are low and states in the gap are 
localized. The measured current density often determined by interactions between conduction states and carriers 
trapped in the DOS. For example, carriers in trapped in localized states can escape by thermal excitation to the 
conduction band, (CB). Carriers in the mid to deep localized states only escape via four mechanisms; (a) thermally 
activated hopping (TAH)15, (b) variable range hopping (VRH)15,16, (c) radiation induced conductivity (RIC)26, (d) 
recombination22. Without radiation and for high temperature, we expect that the (TAH) mechanism will dominate as 
excitation from shallow traps near the mobility edge is possible. For much lower temperatures only (VRH) is 
possible, thus carriers proceed by hopping, (tunneling) between states whose position and energy dependent wave 
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functions have an appropriate amount of overlap. The range of the hop will change as a function of the energy and 
shape of the DOS, thus different regions of the DOS can act in different ways producing different behaviors. It is 
very important to point out that for very low temperatures (such as those spacecraft experience) VRH is a dominant 
mode of charge transport. It turns out that VRH can be modeled in a similar manor to TAH using similar transport 
equations. VRH and subsequent charge transport covers a large class of behaviors which will not be discussed here. 
The interested reader should see Ref 22 or Ref 41.   
 The dynamics of charge trapping, de-trapping, excitation, and recombination are governed by the type of DOS 
that forms in the bang gap. For example, the charge release time-scale is generally dependent of the energetic depth 
of potential wells formed as a result of disorder.  Figure 5 depicts a DOS with a changing shape. The key idea here is 
that the DOS can be modeled with functions of energy. The shape of the DOS affects the rate at which charge will 
be trapped or released, undergo recombination, and controls luminescent phenomena. Table 1 contains the most 

Figure 4.  Idealized disordered density of states and band gap model.   (a) Periodic Solids: As larger 
numbers of atoms are brought together their bonding and anti-bonding orbital's interact causing discrete 
electron energy states of the individual atoms to form quasi-continuous  bands  separated  by  well  defined  ‘band  
gaps’.   The   band   gap   is   an   energy   range   in   a   solid   where   no   electron   states   exist.   (b)   Disordered Solids: 
Variation in the periodic order in a crystal, either spatial or energetic, causes extended states to become 
localized in space.  In most cases these localized States will move into the forbidden band gap and hence form 
trap states.  Localized states within the band gap are separated from extended states by a mobility edge.(c) 
Simplified model: the extended states are depicted as simple regions and the DOS as a simple set of empty or 
filled states.  

(b) (c) 

(a) 
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common types of DOS used in calculating interactions and resulting behaviors. Each DOS model is characterized by 
an energy scaling or width factor, 𝜀଴௜  (where i is the type of DOS), and 𝜀଴௧  (the first moment, based on the centroid of 

the distribution, given by    ∫
ఌே(ఌ)ௗఌಮ

బ
∫ ே(ఌ)ௗఌಮ
బ

).  For example, 𝜀଴
௣  is the scaling energy for the power law DOS.   

 The interested reader may be concerned that the use of un-normalized DOS models will lead to erroneous values 
when performing calculations, which is correct, and unfortunately has occurred many times in the literature as many 
authors are concerned only with general behavior and not the magnitudes involved. The process of normalizing a 
given DOS is the same as for any such process; calculate the integral of the DOS distribution over the energetic 
interval that it spans, divide by the total DOS, and make sure you get one, i.e., ∫ ቀே(ఌ)

ே೟
ቁ 𝑑𝜀 = 1ఌ೓೔೒೓

ఌ೗೚ೢ
. This 

normalization is specific to the type of DOS and the region of energy that it spans; therefore, it should be calculated 
in each specific case! The normalization is not computed here, but the DOS models are provided in Table 1 along 
with a few representative centroid calculations; these are NOT complete centroid calculations. The reader is referred 
to Ref 23 for calculations of normalization and moments of the distributions in Table 1.   
 Given a description of the DOS how can the macroscopic behavior that is the measured current density, resultant 
electric field, or potential be calculated? In order to answer this question it is clear that the microscopic behavior in 
the DOS must be considered to obtain macroscopic results.  

C. Microscopic Transport 
 The microscopic description of charge transport, and thus the observed current or voltage is dependent on 
stochastic processes between individual atomic or molecular sites. These processes are driven with the energy 
supplied by the phonon spectrum, particle flux (where radiation is present) and electric field, F. It is then the 
interaction of atomic or molecular wave functions, effects of the applied field, N(ε), and µμ(ε) that determines the 

Figure 5. Composite density of states and mobility plot contrasted and mechanisms. Figure identifies the 
regions within the DOS that participate in specific temperature-dependent phenomena; this is contrasted with the 
resulting mobility.  Thermally activated hopping TAH controls the high-temperature behavior and variable range 
hopping (VRH) controls the low-temperature behavior. Typical band conduction begins at the mobility edge and 
increases with increasing energy; below the mobility edge (in the mobility gap) conduction proceeds by hopping. 
 

Band 
Tail 

Mobility 
Edge  𝜀ொ   

Mobility 
Edge 𝜀ொ   
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observed transport. Consider two atomic states 𝜂́ and 𝜂 one of which is occupied by a carrier (perhaps an electron), 
and the other which is empty.  In this case, there are two possibilities. First, the electron will escape via thermal 
excitation and is either recaptured or excited to the conduction states.  The second occurs when phonon contribution 
is small compared with the wave function   interaction  between   the   sites  and   the  charge  will   “hop”  between  states. 
The change in the probability for a given site 𝜂 to be occupied is given by the Pauli master equation, (PME) 
 

డ௣(ఎ,௧)
డ௧

=   ∑ ቀ𝑈ఎ́,ఎ𝑝(𝜂, 𝑡) − 𝑈ఎ,ఎ́𝑝(𝜂, 𝑡)ቁఎ́ . 

where 𝑝(𝜂, 𝑡) is the probability that an atomic state is occupied at time t and 𝑈ఎ,ఎ́ is the transition probability per 
unit time for    𝜂

௧௥௔௡௦
ሱ⎯⎯ሮ  𝜂́.  Many authors have shown the connection between the macroscopic phenomena resulting in 

and the microscopic (PME) or some variation of the (PME)30-32.   
 In principle the PME can be applied to any material as it is an atomistic picture. However, it is most useful in 
materials with low to modest disorder where estimation of the wave function interaction is more accurate.  In 
spacecraft materials—particularly polymeric insulators—we often encounter disorder that is too great for the PME 
to be useful in practice. Thus we rely on mean field approximations to estimate the results.  The current USUMPG 
models29,33 used to describe VRH conductivity15 are based on mean field approximation techniques34-40. It has been 
shown that the PME does yield macroscopic transport equations similar to those found for TAH, diffusion, 
dispersion, and drift. A comprehensive review is given by Ref 42. The mean field theories are adequate for 
describing the connection between the microscopic transport and macroscopic behavior. The development of a 
macroscopic description of charge transport theory with an average microscopic approach is needed.  To that end a 
review  of  Maxwell’s  equations  in  a  relevant  form  is  prudent. 

D. Macroscopic transport 
 The connection between microscopic average behavior and macroscopic measurable values must account for all 
the charge entering and leaving the system. Therefore, a discussion of macroscopic transport follows from 
Maxwell’s  equations  and  the charge continuity equation.   

 
                                                                             ∇ ∙ 𝑫 =   𝜌௖ (1) 

Table 1. Types of Densities of State.  The major types of DOS functions that are used in calculations for 
HDIM.  Each DOS is given in units of number per energy per length.  The scale factor determines the 
energy scale range of the DOS and the centroid gives the effective center of the DOS. 

Type of DOS 
Function 

DOS Expression  Scale Factor 
(Width) 

Centroid 
(Examples Only) 

a) Delta 𝑁(𝜀)   =   𝑁௧𝛿(𝜀଴௧ − 𝜀) 
 𝜀଴ீ → 0 𝜀଴௧   All intervals 

b) Constant 𝑁(𝜀)   = (  𝑁௧/  𝜀଴௖  ) 
 𝜀଴௖ 𝜀଴௧  ~

  ఌబ
೎

ଶ
   Finite interval 

c) Linear 
𝑁(𝜀) =   

𝑁௧

𝜀଴௟
ଶ ε 

 
𝜀଴௟  

𝜀଴௧  ~ ቀଶ
ଷ
ቁ 𝜀଴௟    Finite 

interval 

d) Power 𝑁(𝜀) =
𝑁௧

𝜀଴
௣ (𝜀/𝜀଴

௣)௉ 

 
𝜀଴
௣ 𝜀଴௧  ~ ቀ௉ାଵ

௉ାଶ
ቁ 𝜀଴

௣   Finite 
interval 

e) Exponential 

𝑁(𝜀)   = (𝑁௧/𝜀଴௘  )𝑒𝑥𝑝(−𝜀/𝜀଴௘) 

𝜀଴௘ ≡   𝑘௕𝑇଴௘ 
 

 

𝜀଴௘ 
(1/e width) 

𝜀଴௧  ~𝜀଴௘ 
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒  𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  𝑜𝑛𝑙𝑦 

f) Gaussian 
𝑁(𝜀) =

    𝑁௧

𝜀଴ீ√2𝜋
𝑒𝑥𝑝 ቀ−(−𝜀଴௧)ଶ/2𝜀଴ீ

ଶቁ 

 
𝜀଴ீ inϐinite 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  𝑜𝑛𝑙𝑦 

𝜀଴௧  
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                                                                              ∇ ∙ 𝑩 = 0 (2) 

                                                                          ∇ × 𝑭 =   − డ𝑩
డ௧

 (3) 

                                                                        ∇ × 𝐇 =    𝐉𝒄 +
ப𝐃
ப୲

  (4) 

                                                                  ∇ ∙ 𝐉𝒄 + S(𝐫, 𝐭) =   − ப஡೟೚೟
ப୲

 (5) 

 Here 𝜌௖ is the free charge density,  𝜌௧௢௧  is the total charge density,  𝜌௕  (shown below) is the bound charge density, 
D is the electric displacement field, B is the magnetic field, r is the three-dimensional position vector, 𝑆(𝒓, 𝑡) is the 
injected current that becomes either space charge or migrating trapped charge, and H is the magnetizing field. Only 
in rare cases is the effect of the magnetic field considered; thus, in general we concern ourselves only with Eq. (1) 
and Eq. (5). Note that inherent in these equations is the constitutive relation that relates the total charge density, 
displacement field and the polarization given by: 
 

                                                                          𝜌௧௢௧ =   𝜌௕ + 𝜌௖  (6) 

                                                                   𝑫 =  𝜖଴𝑭 + 𝑷 ≡ 𝜖଴𝜖୰𝑭  (7) 

                                                                           𝜌௕ =   −∇ ∙ 𝑷 (8) 

Here 𝜌௧௢௧ stands for the total charge, 𝜌௕  is the bound charge due to polarization, and P for polarization. 𝜖଴ and 𝜖୰ are 
the permittivity of free space and the relative permittivity, respectively.  Since the current is the sum of effects 
produced by all species of carriers, molecular, and atomic sites, the charge density can be written as 

 
                                                                              𝜌௜ = 𝑞௜𝑛௜. (9) 

Here i denotes the charge species, qi is the electronic charge per carrier, and ni is the charge carrier concentration. 
Note that we can refer here to charge in trapped states, bands, free charge, or even surface charge.  For example, 
consider a system where we have injected a known amount of electron charge per unit volume,  𝜌௧௢௧ .  Further assume 
that some of the charge resides in the CB and some in trapped states in the band gap; then we can write the charge 
density as  𝜌௧௢௧ =      𝜌௘ +   𝜌௧ or the number density as    𝑛௧௢௧ =      𝑛௘ +   𝑛௧.  
 The difficulty in determining the flavor of macroscopic equations to use is a reflection of the complexity of the 
material and its environment, boundary conditions, experimental setup, DOS models, and population statistics of the 
DOS and conduction band.  One simplification that is effective in reducing the complexity of working with these 
equations is to reduce the 3D expression to a 1D expression.  In addition, an approximation for the observed current 
is needed to describe how the charge concentrations change with distance and time.  By doing this, expressions for 
the resulting electric field or potential and their time dependence can be obtained. 

E. Trapped charge interactions 
 Consider Fig. 6, in which six transition processes are depicted, both as diagrams and mathematical models.  The 
basic picture of the band model described in Fig. 4 is retained in Fig. 6. Note that the DOS can be any of the DOS 
models described in Table 1.  For convenience, it will be assumed that the spatial dependence of the trapped carriers 
is negligible (i.e., the trap distribution is homogeneous and isotropic); as the transport equations are developed, it 
will become clear how to include additional dependencies, such as charge position within the material.  Each of the 
processes can be characterized by a product of the probability of occurrence, number of available states and number 
of carriers that can take part in the process. 
 The transition rate processes depicted in Fig. 6 are: (a) excitation by thermal or external sources (RIC) across the 
band gap, (b) trapping of carriers in extended states, (c) excitation (de-trapping) of trapped carriers, (d) 
recombination of carriers in extended states with immobile holes in the VB, (e) interstate transitions, and (f) 
recombination of carriers in deep trapped states with holes in the VB.  In process (a), thermal excitation across the 
large band gap in HDIMs is negligible and therefore, only external sources (excitation) are considered here.   
 The generation of carriers—specifically electrons—in the material, 𝐺௘௫(𝑧), due to an incident electron beam (or 
any external source), is a function of distance into the material. Beyond a penetration depth, zp, in the material 
excited electrons, carriers are no longer generated; but, charge carriers are deposited from the beam.  To distinguish 
these two processes, the number of electrons deposited per unit time is given by  𝐾(𝑧௣)43-50. These terms allow the 
model to specifically address the differences depicted in Fig. 2 (i), (ii), and (iii). Understanding the physics of the 
deposition and generation terms allows for the inclusion of SEE and RIC processes into out model.  
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  Thermal excitations (phonons) are considered only in process (c), whereas the release of phonons and photons 
are considered in processes (b), (d), and (f).  It should be noted that any process in which an electron liberates 
energy is a candidate for emission of light leading to processes such as induced luminescence and arc events. A 

Figure 6. The six easy pieces of transport in HDIM.  Free electrons are denoted by an empty circle, empty traps 
by a dash, and filled traps by a black circle. The vertical line of dark and open circles represent the distribution of 
filled and empty trap states. (a) Thermal processes or external irradiation that delivers energy sufficient to excite 
carriers across the band gap, creating holes in the valence band. (b) Carriers in the conduction band become trapped 
by localized states via thermalization (c) Carriers are re-excited into the conduction band from trapped states.  (d)  
Carriers in the conduction band recombine with a hole in the valence band.  (e) Low temperature transport; the CB 
is replaced by the effective transport energy (TE). (f)  Low-temperature recombination that limits the flow of 
carriers in the transport band.   
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discussion of the process (f) and the probability of this transition occurrence, 𝑃௧௥(𝜀) (which is very small), and the 
mathematical description of (e) are left for subsequent publication, as they apply only to low-temperature 
conductivity and represent VRH and applications of the PME, see discussion in Section IIIC.  The key piece of 
information to take away from processes (e) and (f) is that, they are governed by transition rates to and from trapped 
states.   
 Here a connection between microscopic transport behavior found in VRH processes and macroscopic transport 
as depicted in (a)-(d) is made. For VRH charge transport occurs in a narrow energy range centered around the 
transport energy (TE). Charges trapped in deep states hop to the transport states from the Fermi-level  𝜀ி.  Thus (e) 
suggests that deep states act as a trapped charge distribution and the TE is a kind of low mobility conduction band. 
This implies that if we develop a set of macroscopic transport equations for diagrams (a)-(d) we can apply the results 
to (e).  Note that the material parameters for VRH, such as the mobility, are not the same as their high temperature 
counter parts. The process depicted in (f) occurs only for very low temperatures and is not considered here. The 
interested reader should consult Ref 41.   
 Figure 6 and the resulting discussion provide a simple way to discuss interactions between a trapped charge 
distribution and conduction states. Therefore, using the ideas of Section III C,D, and E a description of charge 
transport for HDIM can be presented.   

F. Transport Equations 
 In this section a set of transport equations are developed using only drift and diffusion current densities and a set 
of equations describing trap limited transport for the RIC application.  This is done to provide a specific application 
of the theory but is not a complete development that can be applied to any system. For extensions of these ideas and 
applications of extended transport equations see Ref 22. Starting   with   Gauss’s   law    ∇ ∙ 𝑫 =   𝜌௖, the continuity 
equation    ∇ ∙ J + J୧୬୨ =   − ப஡౪౥౪

ப୲
  , an expression for the current density with both the drift and diffusion currents, and

 The processes in Fig. 6 represent all the interactions with disorder necessary for describing the transport of 
electrons in HDIM.  Thus, the sum of processes (transition rates) involved in a given application will yield the 
appropriate transport equations.  In addition to the changes in the relative concentration of electrons in the extended 
and localized states, a set of conservation equations that connect the total number of electron carriers in the material 
at any time, t, is needed: 

 
                                                               𝑛௧௢௧(𝑡) = 𝑛௘(𝑡) + 𝑛௧(𝑡),        10 

and the total number of electrons trapped in all the localized states at all possible trap depths and at some position, 
zp, is given by 

                                                         𝑛௧(t;   𝑧௣) = ∫ 𝑛௧൫𝜀, 𝑡;   𝑧௣൯  𝑑𝜀
ఌ೓೔೒೓
ఌ೗೚ೢ

 11 

,where 𝜀௟௢௪ and 𝜀௛௜௚௛ refer to the top and bottom of the DOS that contains the trapped electrons. 
 At this point we can look at a specific application to develop an expression for the transport equations.  Assume 
that electrons are excited from the VB to the CB, leaving holes in their absence, but that no deposition occurs.  Such 
behavior can be expected for penetrating radiation, such as in Fig. 2 (a) (iii).  Developing the trapping equations is 
now a simple matter of summing over the processes in Fig. 6 that relate the change in the number of electrons in 
extended and localized states. To obtain the time rate of change in the number of electrons in the CB due to 
interactions with disorder (trapping and release of electrons), we integrate the energy-dependent processes in Fig 6: 
(b), (c), and (d), then sum (a) - (d) - (b) + (c) to obtain,  

 
ௗ௡೐(௧)
ௗ௧

= 𝐺௘௫൫𝑡, 𝑧௣൯ − 𝛼௘௥𝑛௘(𝑡)[𝑛௘(𝑡) + 𝑛௧(𝑡)] − 𝛼௘௧  𝑛௘(𝑡)[𝑁௧ − 𝑛௧(𝑡)] + ∫ 𝛼௧௘(𝜀)𝑓(𝜀)𝑁௘𝑛௧(𝜀, 𝑡)𝑑𝜀
ఌ಴ಳ
ఌ೑
బ    12 

Here, for the first time, it has been explicitly suggested that the generating term  𝐺௘௫൫𝑡, 𝑧௣൯  depends on time which 
can result from the time dependence of incident charge, surface potentials resulting from trapped charge 
distributions etc.  The distribution function, 𝑓(𝜀),  is left in a general form and is not yet assumed to have a certain 
type of statistical nature, such as Fermi-Dirac or Maxwell-Boltzmann.  For the time rate of change in the number of 
trapped electrons,  𝑛௧(𝑡), we again perform integration over energy and do the sum over processes (b) - (c) to obtain 
the charge trapping equations developed in Fig. 6 we can write down a set of one dimensional non-liner differential 
transport equations that describe the nature of charge transport in space craft materials.   
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                                   ௗ௡೟(௧)
ௗ௧

=   𝛼௘௧  𝑛௘(𝑡)[𝑁௧ − 𝑛௧(𝑡)]   −   ∫ 𝛼௧௘(𝜀)𝑓(𝜀)𝑁௘𝑛௧(𝜀, 𝑡)𝑑𝜀
ఌ಴ಳ
ఌ೑
బ .  13 

 Without the explicit integration of the energy-dependent terms, the equations cannot be reduced further.  The 
energy dependence of the interaction coefficient is not well understood in HDIM and mention of it is sparse in the 
literature; it is, therefore, assumed that the interaction coefficient is a constant for this discussion.  The excitation 
from a trap state is governed by the distribution function, 𝑓(𝜀),  which, for the electron system, is most generally the 
Fermi-Dirac (FD) distribution.  The FD distribution will be approximated by the Boltzmann distribution (MB), i.e.., 
𝛼௧௘𝑁௘𝑓ெ஻(𝜀) =    𝜈଴𝑓ெ஻(𝜀) ≈ 𝜈଴𝑒𝑥𝑝 ቂ−

ఌ
௞்
ቃ.   

 Equations (12) and (13) can be greatly simplified by assuming that  𝛼௘௥  is equal to  𝛼௘௧. These two terms deal with 
(i) recombination of electrons in the CB to the VB holes created during generation and (ii) the trapping of electrons 
in the DOS, respectively.  Many authors have used this assumption, but with little or no justification22. It is possible, 
that since the electrons involved in these two processes always start in the CB, that the coefficients are determined 
predominantly by the properties of the CB, in which case the assumption is valid.   
 It is additionally assumed that the process (e) in Fig. 6 is only important at very low temperatures and that 
process (f) is negligible in the study of RIC. These assumptions are certainly not always true; however, many of the 
transport equations were developed for large fluence near room temperature and in semiconductor applications 
where (e) and (f) do not typically make large contributions to the observed macroscopic current. These assumptions 
have been noted here so that the reader will understand how the complete transport equations are related to the more 
common reduced set found in the literature. Keeping these assumptions in mind, we can write Eq. (12) and Eq. (13) 
as follows: 

 
                                ௗ௡೐(௧)

ௗ௧
= 𝐺௘௫ −   𝛼௘௥  𝑛௘(𝑡)(  𝑛௘(𝑡) + 𝑛௧(𝑡)) + ∫ 𝜈଴𝑒𝑥𝑝[−𝜀/𝑘௕𝑇]𝑛௧(𝜀, 𝑡)𝑑𝜀

ఌ಴ಳ
ఌ೑
బ , 14 

and 
                                           ௗ௡೟(௧)

ௗ௧
= 𝛼௘௧  𝑛௘(𝑡)[𝑁௧ − 𝑛௧(𝑡)] − ∫ 𝜈଴𝑒𝑥𝑝[−𝜀/𝑘௕𝑇]𝑛௧(𝜀, 𝑡)𝑑𝜀

ఌ಴ಳ
ఌ೑
బ .  15 

These two equations, together with the definition 𝑛௧௢௧(𝑡) = 𝑛௘(𝑡) + 𝑛௧(𝑡) are equivalent to the continuity equation.  
Note that spatial and time dependence have been neglected in the generating term  𝐺௘௫, and that the recombination 
term is given by    𝑅 =      𝛼௘௥  𝑛௘(𝑡)  𝑛௧௢௧(𝑡).  Since charges are excited homogeneously in the entire bulk the spatial 
dependence can be eliminated. Then using the continuity equation and inserting the recombination term gives 

  

                                           డ௡೟೚೟(௧)
డ௧

=   𝐺(𝑡) − 𝑅(𝑡) =   𝐺௘௫(𝑡) −   𝛼௘௥  𝑛௘(𝑡)  𝑛௧௢௧(𝑡). 16 

We can illustrate the connection between Eqs. (15) and (16) by adding Eq. (16) and Eq. (16) together—and recalling 
that when a trap distribution is present, we have   𝑛௧௢௧(𝑡) =   𝑛௘(𝑡) +   𝑛௧(𝑡)—to obtain 

 
               ௗ௡೐(௧)

ௗ௧
+ ௗ௡೟(௧)

ௗ௧
=    ௗ௡೟೚೟(௧)

ௗ௧
= 𝐺(𝑡, 𝑧)௘௫ −   𝛼௘௥  𝑛௘(𝑡)[  𝑛௘(𝑡) + 𝑛௧(𝑡)] + 𝛼௘௧  𝑛௘(𝑡)[𝑁௧ − 𝑛௧(𝑡)]. 17 

Equations (15) and (16) are the continuity equations with trapping, for this specific example.  The form of Eq. (17) 
is not the most general form.  Assuming some functional dependence of the DOS (and, therefore, the trapped states), 
one can write expressions for the filled trap state distributions𝑛௧(𝑡) =   ∫ 𝑛௧(𝜀, 𝑡)𝑑𝜀

ஶ
଴ .  Taking the derivative of Eq. 

(15) with respect to energy, including spatial dependence, and using the definitions for interaction coefficients and 
attempt to escape frequency discussed in Section 2.4, Eq. (2.6.7) can be written as: 
 

                                ௗ௡೟(ఌ,௧)
ௗ௧

=     𝛼௘௧𝑛௘(𝑡)[𝑁௧(𝜀) − 𝑛௧(𝜀, 𝑡)] −   𝛼௧௘𝑁௘𝑒𝑥𝑝 ቂ−
ఌ
௞்
ቃ 𝑛௧(𝜀, 𝑡).  18 

Equation (18) is finally the complete, one-dimensional, energy- and time-dependent trapping equation.  Many of the 
prolific authors in the field of charge transport have used some form of this equation to describe carrier interactions 
with the DOS in HDIM for radiation induced conductivity, charge dynamics in electron irradiated materials and 
electrets. Excellent representations of the application of Eq. (2.6.7) in one form or another is given by the following 
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list: non-penetrating radiation RIC51, non-penetrating radiation and parallel plate configurations52; non-penetrating 
radiation53-62 photo-excited RIC systems63; and multiple configurations41.   
 We now return to the transport equations developed used to describe drift and diffusion in simple crystalline 
systems and extend these processes to include the effects of charge trapping.  Using  Poisson’s  equation,    ∇ ∙ 𝑫 =   𝜌௖ , 
the continuity equation,     ∇ ∙ ൫Jେ + J୧୬୨൯ =   − ப஡౪౥౪

ப୲
  , ther trapping equatons, and an explicit definition for the 

polarization, displacement, and diffusion current densities the following general transport equations can be found.   
 

                                    𝐽௧௢௧(𝑧, 𝑡) =    𝑞௘𝑛௘(𝑧, 𝑡)𝜇௘𝐹(𝑧, 𝑡) + 𝑞௘𝐷
ௗ௡೟೚೟(௭,௧)

ௗ௭
+ 𝜖଴𝜖௥

డி(௭,௧)
డ௧

+ 𝐽௣(𝑡) 19 

                                                             ப
ப୸
𝐹(𝑧, 𝑡) =    𝑞௘𝑛௧௢௧/𝜖଴𝜖௥  20 

𝜕𝑛௧௢௧(𝑧, 𝑡)
𝜕𝑡

− 𝜇௘
𝜕
𝜕𝑧

[𝑛௘(𝑧, 𝑡)𝐹(𝑧, 𝑡)] − 𝑞௘𝐷
𝜕ଶ𝑛௘(𝑧, 𝑡)

𝜕𝑧ଶ
= 

                                =   𝐺(𝑧, 𝑡)௘௫ −   𝛼௘௥  𝑛௘(𝑧, 𝑡)𝑛௛(𝑧, 𝑡) + 𝛼௘௧  𝑛௘(𝑧, 𝑡)[𝑁௧(𝑧) − 𝑛௧(𝑧, 𝑡)] 21 

                                                   ௗ௡೓(௭.௧)
ௗ௧

= 𝐺(𝑧, 𝑡)௘௫ −   𝛼௘௥  𝑛௘(𝑧, 𝑡)𝑛௛(𝑧, 𝑡) 22 

                             ௗ௡೟(୸,ఌ,௧)
ௗ௧

=     𝛼௘௧𝑛௘(𝑧, 𝑡)[𝑁௧(z, 𝜀) − 𝑛௧(z, 𝜀, 𝑡)] −   𝛼௧௘𝑁௘𝑒𝑥𝑝 ቂ−
ఌ
௞்
ቃ 𝑛௧(z, 𝜀, 𝑡) 23 

 This set of equations covers a large class of carrier transport models in disordered materials whose applications 
range from Xerox copier element design and radiation effects in materials to descriptions of electron transport in 
power cable design64-69.  The complexity of these equations, even in one dimension, is quickly becoming apparent.  
Manipulation of these equations for a specific application MUST be done with care.   For examples of the 
application of these equations with spatial dependence see for penetrating radiation or RIC70-74 Fig. 2 (c); for 
nonpenetrating radiation52; RIC and nonpenetrating radiation75-83 (see Figs. 2 (a) and (b); and for parallel plate 
configurations84,85 (see Figs. 2 (c) and (d)).  The complexity of the transport equations will decrease as a result of 
relevant assumptions based on each specific application. 
 There are two more phenomena, space charge limited current (SCLC) and dispersion, which can be described 
using this formalism.  These are critical to more fully understand transport phenomena in HDIM.  These two 
phenomena, SCLC and dispersion, are omitted because both require the DOS interaction picture, transport equations 
as described above, and further mathematical detail to describe their behavior which is beyond the scope of this 
paper.  The interested reader should consult Ref 22.   
 It is critical to realize that the transport Esq. (19-23) cover both the charging of materials due to contacting 
electrodes, incident charged particle flux, incident photon fluxes, in addition to the decay of charge after the 
cessation of applied voltage(s) and incident particle flux.  An investigation of the expressions for the decay of 
charge, current density, and surface or contacting electrode(s) can be found in Ref 22 in addition to many of the 
aforementioned authors but will not be discussed further here.   

G. Injection of charge 
  A model of the interactions between the DOS in HDIM and macroscopic charge transport is only part of the 
story. Little consideration has been given to the generating term  𝐺(𝑧, 𝑡).  It is critical to realize that the generating 
term is a function of the electronic state of the material. For example in the case of SEE, as charge is deposited or 
removed, the surface potential will change and so will the landing energy of incident charge. The theoretical 
problem of charge injection can therefore be addressed in two parts.  First, we present a discussion of charge 
injection, that is the time evolution of the magnitude of the deposited charge. Second, we present a discussion of the 
depth to which charge will be injected, that is the location of the deposited charge layers as this changes with time.  
As outlined above, we will consider a simple parallel plate geometry system and then extend the discussion to 
injected charge configurations such as SEE. Taken together these describe nearly all the interface problems 
suggested by Fig. 2 and will allow for the final modification to the transport equations and our models. 

 
1. The Walden-Wintle Model of Charge Injection 

 The injection problem has been addressed by many investigators.86-92  The work of Wilcox (Ref 86) and Walden 
(Ref 92) provide excellent descriptions of the problems involved.  A very comprehensive, physically insightful, and 
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easily applied theory was developed by Walden and later modified by Wintle. This semi-phenomenological theory 
characterizes the injection current density as a function of time,   𝐽௜௡௝(𝑡),  at a metal-insulator interface.  The model 
presented  here  is  based  on  Walden’s  model,  as  modified  by  Wintle  who provided a simple (nearly universal) form of 
the injection current density.  Walden and Wintle showed for electrode injection that the behavior of   𝐽௜௡௝(𝑡)  depends 
on the type of injection mechanism at work [e.g., Fowler-Nordheim, Schottky injection, space charge limited 
injection, and various tunneling mechanisms] in addition to the trapped charge distribution.84,85  The model is 
extended to include electron beam injection here.24 In what follows, we give a brief outline of the derivation for the 
injection current density function. 
 Consider the electric field at the surface of the HDIM,  𝐹௦(𝑡), that must change as the trapped charge distribution 
builds up. We assume for simplicity that only electrons are injected into the material through a metal-insulator 
interface to a uniform depth,  𝑅; this is quite different from a simple capacitor model where we assume positive 
charges are at one side where the potential is high (from which the electric field extends) and negative charges at the 
other side (where the field lines terminate) where the potential is low. While this simple capacitor model is still 
useful, we now have an injected electron distribution at or near the interface of the material. Consider Fig. 7 in 
which the applied field,  𝐹଴, the surface field, 𝐹௦(𝑡), the field due to trapped charge, and the superposition of internal 
fields, 𝐹(𝑡),  are shown. This is consistent with Fig. 3 for the case where 𝐽௕ = 𝐽௘௠௜௧ = 0,    𝐽௨௣ = 𝐽௜௡௝, 𝑉௘௫௧ = 𝑉௕ =
0,and  𝐹଴  resutls from  𝑉௕௜௔௦. Note, that  𝐹(𝑡)  is different from the surface field, but the spatial dependence has been 
omitted for simplicity. At time, t = 0, 𝐹௦(𝑡) must be equal to the applied field, F0, but as time goes on  𝐹௦(𝑡)  must be 
reduced by the electric field due to the trapped charge distribution,   𝐹௧(𝑡). In a general way, we can write the 
following equation for the electric field at the surface 

 
                                                                        𝐹௦(𝑡) =   𝐹଴ − 𝐹௧(𝑡). 24 

 

Figure 7. Basic electronic and field configuration of the CVC measurement system. All of the electric fields in 
the system are shown, except the polarization field: applied field, 𝐹଴, field due the trapped charge 
distribution;  𝐹௧(𝑡), surface field, 𝑭𝒖𝒑 = 𝐹௦(𝑡)   =   𝐹଴ − 𝐹௧  (𝑡), 𝑭𝒅𝒐𝒘𝒏 = 𝐹଴ + 𝐹(𝑡), field at the ground plane, 𝐹଴; and 
the superposition of fields at intermediate points,  𝐹(𝑡). The battery and ground are shown for reference.  The range, 
R, that the electrons penetrate into the sample, the distance between the trapped charge distribution and the rear, 
electrode  𝑑 − 𝑅, and the sample depth, d, are also shown.         
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Since, in practice, we know the applied field, only  𝐹௧(𝑡)  is required to estimate this relation. From  Gauss’s  law,  Eq.  
(1), we can write 

 
                                                               ப

ப୸
𝐹௧(𝑧, 𝑡) =    𝑞௘𝑛௧(𝑧, 𝑡)/𝜖଴𝜖௥. 25 

If we assume the charge distribution at depth R is the product of a time-dependent function and a time-independent 
1D spatial function, which is uniform from  𝑧   =   0    (the collecting electrode at ground) to  𝑧   =    (𝑑 − 𝑅), then the 
spatial dependence of the trapped charge distribution can be approximated by a step function,  𝑛௧(𝑧, 𝑡) =
  𝑛௧(𝑡)𝜃൫𝑧 − (𝑑 − 𝑅)൯. Note that PEA measurements reveal that the spatial dependence in the z direction of the 
charge distribution is closer to a Gaussian or exponential distribution; extension of the uniform charge distribution 
approximation is not addressed here.  Under these conditions, we can integrate Eq. (25) with respect to z from  𝑧   =
  0  to  𝑧   =   𝑑 − 𝑅  to obtain an expression for the field due to the trapped charge distribution 

 
                                                            𝐹௧(𝑡) =   𝑞௘𝑛௧(𝑡)(𝑑 − 𝑅)/𝜖଴𝜖௥. 26 

Using Eqs. (24) and (26), a new equation for the electric field at the surface of the sample can be obtained 
 

                                                      𝐹௦(𝑡) =   𝐹଴ − 𝑞௘𝑛௧(𝑡)(𝑑 − 𝑅)/𝜖଴𝜖௥. 27 

Equation (27) gives us both the electric field at the surface of the sample and the potential at the surface of the 
sample, since    𝐹(𝑡) =   −∇ ∙ 𝑉(𝑡). Eq. (27) suggests that if all the charge were exactly on the surface of the sample 
(e.g., 𝑅   =   0) then there would be a trapped charge field.  This result is consistent with a DOS at (or near) the 
surface of the material acting to trap charge and create a counter field, 𝐹௧(𝑡); it is also consistent with the 
requirement that all the trapping occurs at or near the surface of the material (a result consistent with PEA 
measurements). Note also, that when  𝑅 ≥ 𝑑 for penetrating radiation, the field goes to  𝐹଴, suggesting that the charge 
distribution is outside of the material; this is the expected result. The field between the trapped charge distribution 
and the rear electrode is the applied field plus the field due to the trapped charge distribution and is the field that 
drives the current measured at the rear electrode. The current model can be improved by including, the spatial 
dependence of the electric field, with the inclusion of a spatially-dependent susceptibility or dielectric function to 
better model the spatial behavior at the surface and rear electrode. 
 Equation (27) gives a first—order approximation for the electric field at the surface of the material, which must 
be directly tied to the currents flowing in the sample.  For the configurations described by Fig 2 (b) and Fig. (7), we 
seek an expression for the current density measured at the rear electrode. We will use the theory of Walden and 
Wintle to develop an expression for the injection current density using Eq. (27). Walden addresses the problem of 
finding an expression for the surface potential based on the injection behavior of charge at the surface and 
subsequent trapping of that charge. We outline the derivation of Walden below.   
 Essentially, a relationship between the injection profile caused by the application of an electric field and the 
effects caused by the electronic nature of the metal—insulator interface combined with the electric field generated 
by the trapped charge given by Eq. (27) is required. First, consider how the electric field changes at the surface of 
the material, 

                                                          ௗிೞ(௧)
ௗ௧

=   − ௤೐(ௗିோ)
  ఢబఢೝ

ቂ ௗ
ௗ௧
𝑛௧(𝑡)ቃ. 28 

 The total charge that will pass through the surface to the rear electrode must be 𝑞௘𝑑𝑛(𝑡)/𝑑𝑡, where  𝑛(𝑡)  is the 
total number of electrons that passes through the surface as a function of time.  Recall that  𝑛(𝑡)  is the volume 
density of electrons and that the current density is defined as charge per unit area per unit time; with this in mind, we 
can write the current density that passes through the surface of the insulator as 𝐽௜௡௝(𝑡) =   −𝑞௘𝑑

ௗ௡(௧)
ௗ௧

  ; d is the depth 
of the sample as the current passing through the surface must be the current that will eventually traverse the sample. 
Equation (28) does not explicitly contain the total current, but it is quite clear that some fraction of the total current 

must be trapped in the insulator. Applying the chain rule to Eq. (28)., 
𝑑𝑛(𝑡)
𝑑𝑡

→ ቄ𝑑𝑛(𝑡)∙𝑑𝑛𝑡(𝑡)
𝑑𝑛𝑡(𝑡)∙𝑑𝑡

ቅ,  and Eq. (28) and the 

relation for the current density at the interface, taken together become 
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                                                        ௗிೞ(௧)
ௗ௧

=   − ௤೐ௗభ
  ௗఢబఢೝ

𝐽௜௡௝(𝑡)
ௗ௡೟(௧)
ௗ௡(௧)

. 29 

 An expression for the change in the trapped charge distribution to the total charge, ௗ௡೟(௧)
ௗ௡(௧)

,  is needed. This is a 
very useful relation in of itself.  For example, in the secondary electron emission chamber, the USUMPG can 
measure the total charge, surface injection current density, and the resulting surface potential to determine the 
behavior of the injection current and ratio of trapped to total charge; an extended discussion of the relationship 
between Eq. (29), surface potential, and secondary electron emission is given in Ref 22. Equation (29) is used below 
to directly tie electron beam injection modes to the Walden-Wintle formalism. 
 Walden makes an experimentally based phenomenological assumption to extend Eq. (29); the form of the ratio 
of total electrons to trapped electrons is assumed to be a power law of the injection current density, 𝐽௜௡௝(𝑡),  to the 
initial current density, J0, of the uncharged sample. Using this assumption, one gets 

 

                                                                  ௗ௡೟(௧)
ௗ௡(௧)

=    ቀ
௃೔೙ೕ(௧)

௃బ
ቁ
௡ିଵ

. 30 

Equation (30) is a simple power law relationship in which total trapping is given when  𝑛   = 1  and partial trapping 
for  𝑛 > 1; increasing n implies stronger trapping. A detailed analysis of the physical roots of Eq. (30) and its 
validity have been given in Ref  91.  Using Eqs. (28) and (30) an expression that describes the relationship between 
the trapped-electron distribution-dependent electric field, the injection current at the surface, and time is found to be 

                                                       𝑡 = − ఢబఢೝௗ
(ௗିோ)௃బ

∫ ቀ
௃೔೙ೕ(ிሖೞ)

௃బ
ቁ
ି௡

𝑑𝐹ሖ௦
ிೞ(௧)
ிೞ(଴)

.  31 

 Equation (31)  is  Walden’s  central  result;;  it  allows  the  time  dependence  of  any  surface  field-dependent function 
to be found. Walden explores four major types of electrode injection behavior describe in terms of the dependence 
of injection current on surface field: (i) Pooler-Frenkle, (ii )Fowler-Nordheim, (iii) pure exponential, and (iv) power 
law. Table 2 summarizes the mathematical relations for each of the injection behaviors.  Wintle (Ref 90) has 
explored these injection types and found essentially that all yield a similar form for   𝐽௜௡௝(𝑡). As an example, the 
simplest derivation for the current density at the surface is found by using the power law form of     𝐽௜௡௝൫𝐹ሖ௦൯/𝐽଴   =
(𝐹௦(𝑡)/𝐹଴)௣ with p as constant greater than one. Using this power law form and Eq. (31), the following form for the 
injection current density is easily found to be 

 

                                                        𝐽௜௡௝(𝑡) = 𝐽଴(1 + 𝑡/𝜏௢௡௦௘௧)
ି ೛
೙೛షభ.  32 

Remember that this is the injected current density, not the measured current density at the rear electrode. Further, 
this expression relates only to systems with a power law like injection behavior and where the injection current 
density is known. The product of   𝑛𝑝 ≥ 1 is always greater than or equal to one since—by definition—both are 
independently greater than or equal to one. The variable, 𝜏௢௡௦௘௧,  is a characteristic onset time for the injection current 
density type, not to be confused with a decay time or  𝜏௧௥௔௡௦௜௧ .  In practice, the onset time describes the time at which 
the current density at the metal-HDIM interface will begin to diminish due to trapping processes and field effects. 
 Wintle generalizes the resulting injection current density at the interface, providing a simple model, which can 
be used to overcome the coupling between bulk trapping and the resulting injection current density without a 
detailed consideration of the metal insulator interface effects. It turns out, for most injection phenomena—when 
moderate to strong trapping is considered—the injection current density can be well characterized by  

 
                                                  𝐽௜௡௝(𝑡) = 𝐽଴(1 + 𝑡/𝜏௢௡௦௘௧)ି௠ + 𝐽௦௔௧.  33 

Here, J0 is the initial injection current density at time t = 0,    𝐽௦௔௧  is the equilibrium injection current density as some 
time, t >>  𝜏௢௡௦௘௧ , and m is a generalized power that is dependent on the strength of the trapping of injected electrons 
[see Eq. (30)] and the strength of the field-dependent injection rate [see Eq. (31)] (to   relate  Wintle’s   results   to  
Walden’s  formalism,  note  𝑚 ≡ 1/𝑛). For HDIM,  𝐽௦௔௧  will not be observed until the equilibrium current occurs. The 
expression of the injection current given by Eq. (33) is easily applied to capacitor type models in which there are 
injecting electrodes given by Fig 2. (b). 22 
 Using the transport equations to develop a simple model for the charging of an insulator due to injected electrons 
can now be approached. Equation (23) provides a direct connection between the injection current density and the 
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trapped charge distribution. For simplicity the spatial and thermal dependence in Eq. (23) are ignored and a 
relationship between the interaction coefficient, number of electrons in the CB, and the injected current density is 
given by 𝛼௘௧𝑛௘(𝑡) =    𝑠௖𝐽௜௡௝(𝑡)/𝑞௘. Using these assumptions Eq. (23) becomes 

 
                                                            ௗ௡೟(௧)

ௗ௧
= ௦೎௃ೞ(௧)

௤೐
[𝑁௧ − 𝑛௧(𝑡)].  34 

 Equation (34) is a differential equation that predicts the change in the trapped charge distribution,  𝑛௧(𝑡), as a 
function of time, total DOS,  𝑁௧, and a surface injection current density,   𝐽௜௡௝(𝑡). This equation has been used by 
many authors to investigate a wide array of charging and ESD phenomena. A few key authors are listed for the 
interested reader: electron emission,43,52,94,95 capacitive methods;88 capacitive methods and ESD;87 charging by 
radiation,18 impact ionization and transport;96 capture and emission;97 ESD and charge trapping;98 trapping and de-
trapping dynamics;98 and photoconduction.99  Equation (34) can be solved to obtain an expression for the current 
density at the rear electrode and surface potential due to injection for the predicted trapped charge distribution: 
 

                              𝑛௧(𝑡) = 𝑁௧𝑒𝑥𝑝 ൤
ି௦೎ ∫ ௃೔೙ೕ(௧ሖ)ௗ௧ሖ

೟
బ
௤೐

൨ ∫ 𝑒𝑥𝑝 ቈ
ି௦೎ ∫ ௃೔೙ೕ(௧ሚ)ௗ௧ሚ

೟ሖ
బ
௤೐

቉ ௦೎
௤೐
𝐽௜௡௝(𝑡́)𝑑𝑡́

௧
଴ .  35 

Equation (35) describes the number of trapped electrons as a function of time that results from some injection 
current density and DOS. In order to solve this equation, one needs an expression for the injection current density, 
  𝐽௜௡௝(𝑡).   

Injection Barrier Type Injection Current,  Jinj(F) Time Constant, Wo 
Surface Electrode Injection   
Poole-Frenkel  
(Schottky/thermionic emission) 𝐶1 𝐹𝑠𝑒(𝐹𝑠+𝐹𝑐1)1/2  ൤

𝑛1𝜖𝑜𝜖𝑟𝑑
 𝐽0(𝑑 − 𝑅)൨  2 ൬𝑉𝑠

𝑑
൰

1/2
𝐹𝑐1

1/2 

Fowler-Nordhiem  
(Tunneling-type field emission) 𝐶2 𝐹𝑠2𝑒−(𝐹𝑐2/𝐹𝑠) ൤

𝑛2𝜖𝑜𝜖𝑟𝑑
 𝐽0(𝑑 − 𝑅)൨  ൬𝑉𝑠

𝑑
൰

2
𝐹𝑐2

−1 

Simple exponential 𝐶3 𝑒(𝐹𝑠/𝐹𝑐3) ൤
𝑛3𝜖𝑜𝜖𝑟𝑑

 𝐽0(𝑑 − 𝑅)൨  𝐹𝑐3 

Constant  
(Exponential with Fc→f) 𝐶4 Wo→f 

Power law p>>1 𝐽0(𝐹𝑠/𝐹𝑐5)𝑝  ൤
𝑛5𝜖𝑜𝜖𝑟𝑑

 𝐽0(𝑑 − 𝑅)൨   1
𝑝
൬
𝑉𝑠
𝑑
൰ 

Electron Beam Injection   
Penetrating beam 0 Wo→f 
Positive Charging  
(Total Yield<1) 𝐽𝑜[1 − 𝑌𝑜(𝜀𝑏)] 𝑒−(𝐹𝑠/𝐹𝑐6) ቈ

𝑛6𝜖𝑜𝜖𝑟𝑑
 𝐽0[1 − 𝑌𝑜(𝜀𝑏)](𝑑 − 1

2𝑅)቉  𝐹𝑐6 

Negative Charging  
(Total Yield<1) 𝐽𝑜 ൝1 − 𝑌𝑜(𝜀𝑏) ൥𝜒

2ൣ3𝐹𝑠൫𝑑 − 1
2𝑅൯𝑞𝑒 + 𝜒൧

ൣ3𝐹𝑠൫𝑑 − 1
2𝑅൯𝑞𝑒 + 𝜒൧3 ൩ൡ  Numerical solution required 

 

Table 2.  List of injection barrier types.  Five major types of injection barriers for electrode injection 
(Walden, 1972) and three types of electron beam injection (Wilson, 2013) are listed.  𝐹௦ is the instantaneous 
field at the injection electrode or charge layer.   𝐹௖௜ are scaling fields and 𝐶௜ and 𝑛௜ are constants, unique for 
each model and material. 𝑝 is a power law constant and 𝜒 is the Electron affinity. 𝑌௢(𝜀௕) is the initial 
(uncharged) total electron yield, 𝑅(𝜀௕) is the range, 𝑑 is the sample thickness, and 𝑉௦ is the surface bias 
voltage. 
  

JR


JR


JR
Paper No. AIAA-2013-2827               5th AIAA Atmospheric and Space Environments Conference              San Diego, CA, June 24-27, 2013



 
American Institute of Aeronautics and Astronautics 

 
 

22 

 The first step in creating a complete description of the charge build up that includes dispersive behavior is to 
extend Eq. (34) to include the thermal energy dependence. This is easily done using the transport equations Eqs. (16) 
and (15) 

 
                                ௗ௡೟(௧)

ௗ௧
=

௦೎௃೔೙ೕ(௧)

௤೐
[𝑁௧ − 𝑛௧(𝑡)] −   𝜈௧௘ ∫ 𝑒𝑥𝑝 ቂ−

ఌ
௞್்

ቃ 𝑛௧(𝜀, 𝑡)𝑑𝜀.    36 

In Eq. (36), 𝑁௧ =   ∫𝑁௧(𝜀)𝑑𝜀 is the total DOS and   𝜈௧௘ is a factor that describes the attempt-to-escape frequency of a 
charge trapped in the DOS. The last term on the RHS determines the release rate of trapped electrons at a specific 
energy integrated over the width of the DOS distribution. Inclusion of this term is equivalent to having a spread in 
the release times of the trapped electrons (i.e., there is a dispersion in the release times and, therefore, the electron 
transport). When dispersive transport is significant the inclusion of the last term is necessary. In general, dispersive 
transport occurs on timescales much longer than are required to charge up the sample in many typical experiments..  
 Equation. (33) can be extended to include experimental configurations in which the charge is injected by means 
of an charged particle beam (see Fig 2). The meaning of   𝐽଴  for charged beam injection is not the same as it is for 
electrode injection. For charge beam injection, the number of electrons injected into the sample is proportional to the 
number of electrons from the incident electron beam, but this must be corrected to include the effects of electron 
emission and reattraction of electrons to a charged surface through a charge dependant electron yield, 𝑌௢. When 
nearly all the electrons are injected into or pass though the sample the yield is zero, and for the case where as many 
electrons are emitted as incident on the sample the yield is one. That is, for charge beam injection the initial current 
density must be scaled by the total electron yield.25 

  In   terms  of  Walden’s   formalism  for  charge   injection  (refer to Eq. (30) for electron beam injection with no 
emission, [𝑑𝑛𝑡 𝑑𝑛⁄ ] = 1 corresponds to a non-penetrating beam and  [𝑑𝑛𝑡 𝑑𝑛⁄ ] = 0 corresponds to a penetrating 
beam.  In general for emission, the incident charge density is equal to the trapped charge density minus the emitted 
charge density; that is in terms of yield 
 

         ቂ𝑑𝑛𝑡 𝑑𝑛ൗ ቃ = [1 − 𝑌𝑜(𝑡; 𝐸𝑏)]              37 
 
and from Eq. (30) the instantaneous injection current is  
 
                                                    𝐽𝑖𝑛𝑗(𝑡) = 𝐽𝑜[1 − 𝑌𝑜(𝑡; 𝐸𝑏)]                38 
 
with m=½.  Also note that for Y>1, the injection current has the opposite sign of the initial current, as should be the 
case.   
 As a first order approximation, we assume a static electron emission independent of time and accumulated 
charge.  Then   𝐽଴ →    𝐽௕  (1 − 𝑌௢), where 𝐽௕  is the current density of the incident electron beam. The saturation current 
has a similar meaning in this context but typically will occur on much shorter time scales. Making the correction to 
the injection current density function, Eq. (33), for static emission becomes 

 
                                                    𝐽௦(𝑡) = 𝐽௕  (𝑌௢ − 1) ቀ1 + ௧

ఛ೚೙ೞ೐೟
ቁ
ି௠

+ 𝐽௦௔௧ → 𝐽௕  ൫𝜎௬௘௜௟ௗ − 1൯ + 𝐽௦௔௧ . 39 

 For the dynamic emission model with yield dependant on accumulating charge in the negative charging 
region where 𝜎௬௘௜௟ௗ < 1, based on Thomson47 and  Hoffmann’s18,25  model for yield as a function of accumulated 
charge,  
 
                                                   𝐽𝑖𝑛𝑗(𝑡) = 𝐽𝑜  {[1 − 𝑌(𝐸𝑏)]𝑒−(𝑡/𝜏𝑜𝑛𝑠𝑒𝑡)}               40 
where  

                                                       𝜏௢௡௦௘௧ = ൤ ௡లఢ೚ఢೝௗ
  ௃బ[ଵି௒೚(ఌ್)](ௗି

భ
మோ)

൨   𝐹௖଺             41 

 
 For the dynamic emission model with yield dependant on accumulating charge in the positive charging 
region where 𝜎௬௘௜௟ௗ > 1, based on Wilson114 and  Hoffmann’s18,25  model for yield and charge re-attraction as a 
function of accumulated charge,  
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                                                    𝐽𝑖𝑛𝑗(𝑡) = 𝐽𝑜 ቊ1 − 𝑌𝑜(𝜀𝑏) ቈ
𝜒2ൣ3𝐹𝑠൫𝑑−

1
2𝑅൯𝑞𝑒+𝜒൧

ൣ3𝐹𝑠൫𝑑−
1
2𝑅൯𝑞𝑒+𝜒൧

3 ቉ቋ             42 

 
where the term in square brackets is the ratio of emitted secondaries reattracted to the positively charged surface to 
the total number of secondaries emitted.  Table 2 summarizes the mathematical relations for charge beam injection 
behaviors. 
 The interested reader should consult (Ref 90) and (Ref 92) for a complete development of all the ideas discussed 
in this section. These results must be worked out in more detail for each type of metal-insulator interface, applied 
field, temperature dependence, and type of injection mechanism.  For each specific application and experimental 
configuration, it is critical that the use of Eq. (30) be validated and understood before the application of the theory to 
develop a complete picture of the injection current density dependence on the applied field, electric field due to the 
trapped charge distribution, and time. With that said, Eq. (33) has been applied successfully in a number of 
experimental trials;86,88,90-92 note, however, that (Ref 88) uses a physically unjustified form of the equation. 

 
2. Injection Range 
 In our development of Eq. (27) an injection range was suggested for contacting electrodes. This value is so small 
compared to the sample thickness for typical electrode injection configurations as to be considered negligible. 
However, for charged beam injection this is not the case.  The total electron yield,  𝜎𝑦𝑒𝑖𝑙𝑑(𝜀, 𝑡), is a function of 
incident beam energy and therefore the penetration depth of an incident charged particle into the sample, which can 
be appreciable compared with d at higher energies.. A study of the range as a function of incident beam energy is 
therefore critical for our understanding of SEE and related phenomena. The range, R(𝜀 inc), or maximum distance an 
electron of a given incident energy can penetrate through a material before all kinetic energy is lost and the electron 
comes to rest, is a common way to parameterize electron interactions with materials. The energy-dependant range is 
commonly used to predict the charge distribution of deposited electrons in materials and to model SEE.  It is also 
used to predict the distribution of energy deposited by incident electrons as they traverse a material; this distribution 
is further used to model RIC. As noted above (see Fig. 2), the ratio of the range to sample thickness determines the 
type of experimental configuration.  This in turn guides the choice of appropriate simplifying approximations to use 
and the subsequent development of the appropriate transport equations for a wide array of conducting, 
semiconducting and insulating materials with a minimal number of fitting parameters. 
 The desired range expression can be developed by merging well known semi-empirical models for the 
interaction of electrons with materials in different energy regimes, employing the continuous-slowing-down 
approximation (CSDA). In the CSDA, the rate of energy loss, 𝑑𝜀 𝑑𝑧⁄  (or total stopping power, S), at every position 
along the penetration path is assumed constant; variations in energy-loss rate with energy, 𝜀, or penetration depth are 
neglected. For a given incident energy, 𝜀inc, the CSDA range is obtained by integrating total stopping power over the 
full penetration depth100,101 such that 

 
                                                                𝜀௜௡௖ =   ∫ (𝑑𝜀 𝑑𝑧⁄ )ோ(ఌ೔೙೎)

଴ 𝑑𝑧 43 

In  the CSDA with a constant energy-loss rate, 
 

                                                  𝑑𝜀 𝑑𝑧ൗ ≡ 𝑆஼ௌ஽஺(𝜀௜௡௖) =
𝜀௜௡௖

𝑅ൗ = 𝜀̅
𝜆̅ൗ = 𝜀௠௜௡

𝜆௠௜௡
ൗ  44 

Here 𝜀  ̅is equal to mean energy lost per collision occurring at mean free path 𝜆̅ ≡ 𝜆ூெி௉(𝜀)̅, and 𝜀min is the energy at 
the minimum in the inelastic mean free path curve at 𝜆௠௜௡ ≡ 𝜆ூெி௉(𝜀௠௜௡), Ref 104.  
 At higher incident energies, the non-relativistic Bethe-Joy range expression based on the Bethe stopping power 
formula105 has been extended by Joy and Luo106 and Tanuma107 to provide good semi-empirical models for the 
range.  Tabulated values of the electron ranges at high energies using the CSDA can be found in the NIST ESTAR 
database108 spanning incident energies from 𝜀  𝐻𝐼~20  𝑘𝑒𝑉 up to ~1  𝐺𝑒𝑉. Computer models such as SREM109,110 and 
NUMIT2111,112 provide simulations of the range and the spatial distribution of electrons deposited within the 
material.  However, it is important to be able to extend range models to lower incident energies. Use of the CSDA 
and models and measurements of the inelastic mean free path (IMFP) provide a means to do this. The NIST IMFP 
database113 has tabulated values and semi-empirical fits for the IMFP104  , which are valid for energies from ~30 eV 
to 𝜀LO~1 keV. 
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 Wilson and Dennison44,114 used the CSDA, to develop an empirical fit to the range with a continuous, simple, 
composite, analytic formula—with a single free parameter, termed the effective number of valence electrons, 
𝑁௏

௘௙௙—to approximate the range (10-9 m to 10-2 m) over an extended energy span (<10 eV to >10 MeV).  Agreement 
with available databases of electron interactions are within <20% for a broad set of conducting, semiconducting, and 
insulating materials. The problem was broken into three parts according to energy of the incident electron: a high 
energy range for 𝜀inc>  𝜀LO≡1  keV;;  a  mid-energy range for 𝜀<̅  𝜀 inc<  𝜀 LO; and a low energy range for energies 𝜀 inc<𝜀 .̅  
The final result is a continuous composite analytic approximation to the range, spanning from <10 eV to >10 MeV: 

 

                         𝑅൫𝜀௜௡௖; 𝑁௏
௘௙௙൯ =   

ተ

ተ
ൣ𝜀௜௡௖ 𝜀 ̅ൗ ൧ ቈ𝜆ூெி௉  (𝜀)̅

൫ଵି௘షభ൯

ቀଵି௘షഄ೔೙೎ ഄത⁄ ቁ
቉ ൫1 − 𝑒ିఌ೔೙೎ ఌത⁄ ൯ିଵ ; 𝜀௜௡௖ < 𝜀̅

ൣ𝜀௜௡௖ 𝜀 ̅ൗ ൧  𝜆ூெி௉(𝜀௜௡௖)  ൫1 − 𝑒ିఌ೔೙೎ ఌത⁄ ൯ିଵ ; 𝜀 ̅ ≤ 𝜀௜௡௖ ≤ 𝜀ுூ

𝑏  𝜀௜௡௖௡ ቈ1 − ൤1 + ൬ఌ೔೙೎ ேೇ
೐೑೑⁄

௠೐௖మ
൰൨

ିଶ

቉ ; 𝜀௜௡௖ > 𝜀ுூ
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 The high energy term takes the form of numerous power law models of the stopping power that have been 
developed  with   0.35≤n≤0.67   (Reimer, 2000);;   physical   constraints   require   0≤n≤1.      The   non-relativistic Bethe-Joy 
range expression based on the Bethe stopping power formula105 has been extended by Joy and Luo106 and 
Tanuma107, with the addition of a fixed empirical constant, k=0.8. This is used to fit the data up to ~105 eV, above 
which a relativistic correction44 becomes significant115. The stopping power exponent  𝑛 and proportionality 
constant  𝑏  can be expressed in terms of  𝑁௏

௘௙௙  by matching the slope and magnitude of the approximate power law 
formula, to the Bethe-Joy and mid-energy range expression, respectively.  This leads to an expression for the 
stopping power exponent 

 

                                    𝑛൫𝑁௏
௘௙௙; 𝜌௠,𝑀஺, 𝜀௚௔௣൯ = 𝑙𝑛 ൞

  ௟௡൥ට೐
మ൭

ഄಹ಺/ಿೇ
೐೑೑

ഄത ା௞൱൩

௟௡൥ට೐
మ൭

ഄಽೀ/ಿೇ
೐೑೑

ഄത ା௞൱൩
ൢ ቈ𝑙𝑛 ቂఌಽೀ

ఌಹ಺
ቃ቉
ିଵ
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The magnitude of the high energy range expression, Eq. (45), is normalized to the mid-energy expression at ELO, by 
setting  

                                                 𝑏(𝑁௏
௘௙௙; 𝜌௠,𝑀஺, 𝜀௚௔௣)=  

ఌಽೀభష೙    ఒ  ഥቀଵି௘షഄಽೀ ಶഥ⁄ ቁ
షభ

ఌത  ቌ቎ଵି൥ଵା൭
ഄಽೀ ಿೇ

೐೑೑⁄

೘೐೎మ
൱൩

షమ

቏ቍ
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Direct extrapolation of the range from the ESTAR data to lower energies is not valid for energies comparable to 
the atomic electronic structure, typically a few keV and below, because the discrete energy nature of the collisions 
becomes important. However, a simple extension of the CSDA to lower energies can relate the range to the electron 
IMFP104.  The stopping power in Eq. 40 is assumed equal to the total energy lost (𝜀 inc) divided by the total distance 
traveled (range, R(Einc)). This is set equal to the mean energy lost per collision, 𝐸ത, divided by the mean distance 
traveled per collision all times the probability that a collision occurs, ൫1 − 𝑒ିோ ఒഥ⁄ ൯=൫1 − 𝑒ିఌ೔೙೎ ாത⁄ ൯. For 𝜀>̅  𝜀inc>  𝜀HI, 
λIMFP(𝜀inc) is assumed to be given by the TPP-2M formula used in conjunction with the NIST IMFP database113: A 
reasonable approximation for 𝐸ത is the geometric mean of the effective plasmon energy, 𝜀௣

௘௙௙, and the bandgap 
energy103, Egap, times an empirically determined factor102 of 2.8: 

 

                         𝜀 ̅ = 2.8 ቂ൫𝜀௣
௘௙௙൯

ଶ
+ ൫𝜀௚௔௣൯

ଶቃ
ଵ/ଶ

= 2.8 ቂħଶ൫𝑁௏
௘௙௙𝑁஺𝜌௠𝑞௘ଶ 𝑚௘𝜀଴𝑀஺ൗ ൯ + ൫𝜀௚௔௣൯

ଶቃ
ଵ/ଶ
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qe and me are the electron charge and rest mass, ħ   is   the   reduced  Planck’s   constant,   ε0 is the permittivity of free 
space, NA as  Avogadro’s  number,  MA is the atomic weight, and ρm is the mass density.  While 𝜀gap may be considered 
an additional fitting parameter for semiconductors and insulators, its effect on R is minimal, causing primarily a 
vertical shift in the range curve within 2% using acceptable band gap energies. Thus, 𝜀gap can be treated essentially 
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as an additional tabulated material constant—such as MA and ρm are—derived from independent optical 
measurements. 

To calculate the range for 𝜀inc<𝜀 ,̅ we assume in the CSDA that: (i) the energy lost per low energy collision is 
constant and equal to the mean excitation energy, 𝜀;̅ (ii) the IMFP is constant and equal to the IMFP at the mean 
energy loss or λIMFP(𝜀)̅=  𝜆̅; and (iii) the probability that an electron undergoes one such inelastic collision falls off as 
𝑅 𝜆̅⁄ ൫𝑒ିோ ఒഥ⁄ ൯=𝜀௕ 𝜀 ̅⁄ ൫𝑒ିఌ್ ఌത⁄ ൯. This simple, mean-field, low energy approximation avoids the unusual asymptotic 
behavior exhibited by the TPP-2M expression at energies below 𝜀 ,̅ Ref 113. The resulting expression is consistent 
with a universal curve of electron IMFP versus kinetic energy117 observed for a wide range of materials118, that is 
consistent with a simple free electron gas model of valence electrons in the material116. 
 Figure 8 show best fits to data for the conductor Au and insulator Kapton. This new model provides a final piece 
to complete the extension of the transport equations to electron beam injection experimental systems described in 
Fig 2.   
 Given an outline of the conduction processes, band structure, microscopic and macroscopic transport, transport 
equations, and the extension of the trap controlled transport equations to include injection of charged carriers into 
the material we now present an application of the theory that connects these ideas to surface potential models for 
secondary electron beam injection. 

IV. Surface Potential Models 
 The experimental configurations outlined in Fig. 2 have the injection current  (𝐽௕)  and beam energy  (𝐸௕)  or 
electrode voltage  (𝑉௕௜௔௦)  as inputs.  The measured responses to be modeled here are the various output currents and 
the surface voltage  (𝑉௦)  shown in the generalized experimental configuration24,44 shown in Fig. 3.  We assume a 
simple dielectric slab or parallel plate capacitor geometry with a dielectric material of thickness, 𝑑, above a 
grounded rear electrode.  This assumption follows for thin film samples and charged-particle-beams whose cross 
sectional area is approximately the sample area if the lateral extent of the deposited charge layers is uniform and is 
much larger than  𝑑, so edge effects and fringing fields can be neglected.  Under this assumption, the charge 
deposited can be thought of as a simple planar sheet, which leads to a 1D model of electric transport.   
 Sim22, Hodges24, and Wilson44 use the general geometry in Fig. 3 to develop detailed explicit equations for the 
electric field and electric potential everywhere inside the dielectric, as well as the surface voltage, grounded rear 
electrode current, front electrode current, and emission current by modeling the system in terms of the superposition 
of uniform electric fields extending in both directions produced by a series of 2D charge plane double layers.  They 
consider successively more complex models, beginning with no charge emission and no charge redistribution or 
dissipation through conduction.  Cases for static, dynamic and general emission through  𝐽௘௠௜௧  are then considered.  
Finally, charge dissipation is incorporated through a potentially time-dependant expression for the conductivities 
above  (0 < 𝑧 < 𝑅)  and below (𝑅 < 𝑧 < 𝐷)  the embedded charge layer (𝜎௨௣(𝑡)  𝑎𝑛𝑑  𝜎ௗ௢௪௡(𝑡) , respectively). Cases 
are considered for: (i) no dissipation (zero conductivites), (ii) static dissipation (time-independent conductivities), 
(iii) dynamic charge dissipation (time-dependent conductivities and the additional possibility of the motion of the 
planar embedded charge layer, and (iv) dynamic charge dissipation with more general time-dependant conduction 
that allows for the evolution of the spatial distribution of the embedded charge. They found that 

Figure 8. Comparison of range formula with known data. Comparison of the range formula for (a) Au with Nv = 
12.0 . and (b) polyimide (KaptonTM) with Nv=4.1.   

(a) (b) 
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Vd(t) = 𝑉௜௡௝(t) ቀ
୲
ఛ೚
ቁ ቄ1 + ቂఙೠ೛(୲)

ఌ౥ఌ౨
ቀd-R(Eb)

R
ቁ + ఙ೏೚ೢ೙(୲)

ఌ౥ఌ౨
  ቃ tቅ

ିଵ
  (upper and lower grounded surfaces) ,     49 

𝑉௦(𝑡) = 𝑉௜௡௝(t) ቀ
୲
ఛ೚
ቁ ቄ1 + ቂఙ೏೚ೢ೙(୲)

ఌ౥ఌ౨
  ቃ tቅ

ିଵ
 (lower grounded surface)     50 

with the expression modified to include dissipation as 

  𝑉௜௡௝(t)=  

⎩
⎪
⎪
⎪
⎨

⎪
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⎪
⎧V  inj

ne= Joഥ
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d
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V  injse = Joഥ

σo
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 The above model for Fig. 3 makes direct ties to models based on double layers, with a time varying position for 
the embedded layer which is essentially the dynamic double layer model (DDLM) proposed by Melchinger and 
Hofmann120, Cazaux121 and Meyza122 [and employed and extended by Thomson47, Hoffmann25 and Wison123 of the 
USU MPG] to describe the charge dependence of electron emission in HDIM in terms of charge distributions in the 
region 0>z>R.  The DDLM adds two additional charge layers: one to compensate for secondary electron emission at 
z=0, and another to account for secondary electrons reattracted to a positively charged dielectric of at a depth  𝜆ௌா/2, 
where  𝜆ௌா  is equal to the average inelastic mean-free path of the secondary electrons. Refer to Ref 22 for further 
details. 
 

V. Conclusion and Future work 
 The unified set of dynamic equations developed to describe the spatial and time-dependent voltage, electric 
fields, and currents can be applied to a broad range of electron transport experiments conducted in parallel plate 
geometry. This approach allows for the modeling of measurements for constant voltage (CVC), time-of-flight 
(TOF), radiation induced conductivity(RIC), surface voltage accumulation and decay (SVP); electrostatic discharge 
(ESD), and electron emission (SEE) for evolving electron transport, and related phenomena in HDIM over large 
ranges of time, electric field, temperature, absorbed dose, and adsorbed dose rate. A discussion of extensions to 
electroluminescence and AC conductivity have not been presented as the extension of the ideas presented here are 
beyond the scope of this paper. Key elements are the broad applications of the theoretical framework outlined in 
terms of injected charge and its effects on surface deposition, bulk deposition, and penetrating radiation for pulsed, 
stepped and periodic applied voltages/charge from either surface electrodes or electron beams. In particular the 
inclusion of dynamic charging, energy-dependent range theory, a comprehensive description of the DOS, and mean-
field-trapped-controlled transport provide a simple and effective way to model the response of HDIM to conditions 
encountered in spacecraft operation. 
 This approach provides for the coupling of current USU MPG data, from several experimental systems, into a 
consistent complete picture of the physical processes.,22-25,125, For each of the experimental systems there are simple 
analytical approximations to the transport equations that hold under specific circumstances.22-25 However, it has 
become clear that a consistent numerical implementation of the transport equations is required for a detailed 
universal description of observed behavior. It should be noted that a single theoretical model does describe many 
types of material response under many types of stimulus. A single numerical model can be constructed to predict 
material response simply by describing its physical parameters and environmental conditions. Major strides in this 
numerical effort have been made by Griseri49 and Laurant125 in conjunction with pulsed electro-acoustic (PEA) 
measurements.  
 Using a consisted theoretical picture, multiple materials, current data in the literature, and current data from the 
USU MPG across multiple experimental systems will provide a consistent study of HDIM their material parameters 
and spacecraft charging.  

JR


JR
Paper No. AIAA-2013-2827               5th AIAA Atmospheric and Space Environments Conference              San Diego, CA, June 24-27, 2013



 
American Institute of Aeronautics and Astronautics 

 
 

27 

VI. Acknowledgments 
 We gratefully acknowledges the contributions to this body of work by the members of the Utah State University 

Materials Physics group over the last two decade, including Jerilyn Brunson, Justin Dekany, Jodie Corbridge 
Gillespie, Steven Hart, Ryan Hoffmann, Josh Hodges, Amberly Evans Jensen, Neal Nickles, Jennifer Albertsen 
Roth, Clint Thomson, and Greg Wilson who all made major contributions to this work. 

VII. References 
 
 
1. Mandell, M., Katz, I., and Hilton, M. "NASCAP-2K Spacecraft Charging Models: Algorithms and Applications, in 2001: 

A  Spacecraft  Charging  Odyssey,"  Proceed.  of  the  7th  Spacecraft  Charging  Technology  Conf.,  23“27  April,  2001,  p.  499-507. 
2. Hastings, D., and Garrett, H. Spacecraft-Environment Interactions: Cambridge Atmospheric and Space Science Series, 

1996. 
3. Novikov, L. S., Mileev, V. N., Voronina, E. N., Galanina, L. I., Makletsov, A. A., and Sinolits, V. V. "Radiation effects 

on spacecraft materials," Poverkhnost, No. 3, 2009, pp. 32-48. 
4. Griseri, V., Perrin, C., Fukunaga, K., Maeno, T., Payan, D., Levy, L., and Laurent, C. "Analysis of electron behavior in 

polymeric films during electronic irradiation," Electrical Insulation and Dielectric Phenomena, 2005. CEIDP'05. 2005 Annual 
Report Conference on, 2005, pp. 645-648. 

5. Dennison, J. R., Brunson, J., Swaminathan, P., Green, N. W., and Frederickson, A. R. "Methods for high resistivity 
measurements related to spacecraft charging," IEEE Transactions On Plasma Science Vol. 34, No. 5, Pt. 2, 2006, pp. 2191-2203. 

6. Garrett, H. B., I. Jun, A. A. Shapiro,. "Interstellar Space Missions: Ultra-Reliability Requirements and Engineering 
Issues," 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2007. 

7. Dennison, J.R. "Interaction of the Space Environment with Spacecraft Materials," Invited Seminar. Alcatel Space 
Facility, Cannes, France, 2004. 

8. Dennison, J.R., Chang, W.-Y., Nickles, N., Kite, J., Thomson, C. D., Corbridge, J., and Ellsworth, C. " Electronic 
Properties of Materials with Application to Spacecraft Charging." Published by NASA electronically at URL: 
http://see.msfc.nasa.gov/scck/ 2002, p. the work is comprised of 16 individual Materials Reports with a combined length of 672 
pages. 

9. Dennison, J.R., Chang, W.-Y., Nickles, N., Kite, J., and Thomson, C. D. ""Electronic Properties of Materials with 
Application to Spacecraft Charging"," Final Report Part 1: Instrumentation; Methods and Analysis NASA. 

10. Davies, R., and Dennison, J.R. "Evolution of Secondary Electron Emission Characteristics of Spacecraft Surfaces," 
Journal of Spacecraft and Rockets Vol. 34, 1997, pp. 571-573. 

11. Dennison, J.R., Thomson, C., and Sim, A. "The effect of low energy electron and UV/VIS radiation aging on the electron 
emission properties and breakdown of thin-film dielectrics," Proceedings of the 8th 2004 IEEE Dielectrics and Electrical 
Insulation Society (DEIS) International Conference on Solid Dielectrics (ICSD). Vol. 2, Piscataway, NJ, 2004, pp. 967-971. 

12. Sim, A. Dennison, J.R., and Thomson, C. "Evolution of the Electron Yield Curves of Insulators as a Function of 
Impinging Electron Fluence and Energy," Proceedings of the 9th Spacecraft Charging Technology Conference. Epochal Tsukuba, 
Japan, 2005, p. 19. 

13. Abbott, J., and Dennison, J.R. "Methods for Determining Crossover Energies in Insulating Materials," Utah State 
University Student Showcase. Logan, UT, 2005. 

14. Kite, J., Dennison, J. R., “Change, W. Y., and Davies, R. E. "Effects of Evolving Surface Contamination On Spacecraft 
Charging," American Physical Society Four Corner Sectional Meeting. Fort Collins, CO, 2000. 

15. Dennison, J.R., Sim, A., Brunson, J., Steven Hart, Jodie Gillespie, Justin Dekany, Charles Sim and Dan Arnfield, 
“Engineering  Tool   for  Temperature,  Electric Field and Dose Rate Dependence of High Resistivity Spacecraft Materials Paper 
Number,”  AIAA-2009-0562, Proceedings of the 47th American Institute of Aeronautics and Astronautics Meeting on Aerospace 
Sciences, 2009. 

16. Dennison, J.R., J. B., Prasanna Swaminathan, Nelson Green, and Frederickson, A. R. "Methods for Resistivity 
Measurements Related to Spacecraft Charging," IEEE Transaction on Plasma Science Vol. 34, No. 5, 2006, pp. 2191-2203. 

17. Brunson, J. "Measurement of Charge Decay Time and Resistivity of Spacecraft Insulators Using Charge Storage Method 
and Application to Theoretical Modeling of Charging Behavior of Insulators," Physics. Vol. PhD, Utah State University, Logan, 
UT, 2009, p. 215. 

18. Hoffmann, R., Dennison, J.R., Albretsen, J.,. "Flux and Fluence Dependence of Electron Emission for High-yield, High-
resistivity Materials: Implications for Spacecraft Charging," Proceedings of the 47th American Institute of Aeronautics and 
Astronomics Meeting on Aerospace Sciences. 2009, pp. AIAA-2009-0348. 

19. Swaminathan, P., "Measurement of Charge Storage Decay Time and Resistivty of Spacecraft Insulators," Electrical 
Engineering. Vol. MS, 2004. 

20. Fredrickson, A., and Dennison, J.R. "Measurement of conductivity and charge storage in insulators related to spacecraft 
charging," IEEE Transactions on Nuclear Science Vol. 50, No. 6, 2003, pp. 2284-2291. 

21. Dennison, J.R., Jodie   Gillespie,   Joshua   Hodges,   RC   Hoffmann,   J   Abbott,   Alan  W.   Hunt   and   Randy   Spalding,   “Radiation   Induced  
Conductivity of Highly-Insulating  Spacecraft  Materials,”  in  Application  of  Accelerators  in  Research  and  Industry,  American Institute of Physics 

JR


JR
Paper No. AIAA-2013-2827               5th AIAA Atmospheric and Space Environments Conference              San Diego, CA, June 24-27, 2013



 
American Institute of Aeronautics and Astronautics 

 
 

28 

Conference Proceedings Series, Vol. 1099, ed. Floyd D. McDaniel and Barney L. Doyle,(American Institute of Physics, Melveille, NY, 2009), 
pp. 203-208. 

22. Sim, A., "A unified model of Charge Transport in Insulating Materials." Ph.D Dissertation, Utah State University, 
Physics Dept, Logan, UT, 2013. 

23. Gillespie,   J.,   “Measurements   of the Temperature Dependence of Radiation Induced Conductivity in Polymeric 
Dielectrics”,  M.S.  Thesis,  Utah  State  University, Physics Dept , Logan, UT, 2013. 

24. Hodges, J. L. "In Situ Measurements of Electron Beam Induced Surface Voltage of Highly Resistive Materials," Physics. 
M.S., Utah State University, Logan, 2012 

25. Hoffmann, R. "Electron-Induced Electron Yields of Uncharged Insulating Materials” Physics. Vol. M.S., Utah State 
University Logan, UT 2010, p. 183. 

26 Dennison, J.R., Gillespie, J., Hodges, J., Hoffmann, R. C., Abbott, J., Hart, S., and Hunt, A. W. "Temperature Dependence 
of Radiation Induced Conductivity in Insulators," Submitted IEEE Transactions on Plasma Science Vol. NA, No. NA, 2008. 

27. Wintle, H. J. "Charge Motion in Technical Insulators: Facts, Fancies and Simulations," IEEE Transactions on Dielectrics 
& Electrical Insulation Vol. 10, No. 5, 2003, p. 16p. 

28. Anderson, P. W. "Absence of diffusion in certain random lattices," Physical Review Vol. 109, 1958, pp. 1492-1505. 
29. Dennison, J. R., and Brunson, J. "Temperature and electric field dependence of conduction in low-density polyethylene," 

IEEE Transactions on Plasma SCIENCE Vol. 36, No. 5, Pt. 2, 2008, pp. 2246-2252. 
30. H. Bässler. "Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study," physica status 

solidi (b) Vol. 175, No. 1, 1993, pp. 15-56. 
31. Mott, N. F. "Transport in Disordered Materials," Physical Review Letters Vol. 31, No. 7, 1973, p. 466. 
32. Montanari, G. C., Mazzanti, G., Palmieri, F., Motori, A., Perego, G., and Serra, S. "Space-charge trapping and 

conduction in LDPE, HDPE and XLPE," Journal of Physics D Applied Physics Vol. 34, No. 18, 2001, pp. 2902-2911. 
33. Rose, A. "Space-Charge-Limited Currents in Solids," Physical Review Vol. 97, No. 6, 1955, p. 1538. 
34. Schmidlin, F. W. "Kinetic theory of hopping transport. I. The formalism and its relationship to random walks," 

Philosophical Magazine B Physics of Condensed Matter Statistical Mechanics, Electronic, Optical and Magnetic Properties Vol. 
41, No. 5, 1980, pp. 535-70. 

35. Wintle, H. J. "Charge motion and trapping in insulators: surface and bulk effects," Electrical Insulation, 1998. 
Conference Record of the 1998 IEEE International Symposium on. Vol. 1, 1998, pp. 1-11 vol.1. 

36. Böttger, H., and Bryksin, V. V. Hopping conduction in solids. Deerfield Beach, FL: VCH, 1985. 
37. Apsley, N., and Hughes, H. P. "Temperature and field-dependence of hopping conduction in disordered systems," 

Philosophical Magazine Vol. 30, No. 5, 1974, pp. 963-72. 
38. Wintle, H. J. "Basic physics of insulators," IEEE Trans. Electr. Insul. Vol. 25, No. 1, 1990, pp. 27-44. 
39. Ambegaokar, V., Halperin, B. I., and Langer, J. S. "Hopping Conductivity in Disordered Systems," Physical Review B 

Vol. 4, No. 8, 1971, p. 2612. 
40. Miller, A., and Abrahams, E. "Impurity conduction at low concentrations," Phys. Rev. Vol. 120, 1960, pp. 745-55. 
41. Baranovskii, S., and Rubel, O. "Charge transport in disordered materials," Springer Handb. Electron. Photonic Mater., 

2006, pp. 161-186. 
42. Schmidlin, F. W. "Theory of trap-controlled transient photoconduction," Physical Review B Solid State Vol. 16, No. 6, 

1977, pp. 2362-85. 
43. Cornet, N., Goeuriot, D., Guerret-Piecourt, C., Juve, D., Treheux, D., Touzin, M., and Fitting, H.-J. "Electron beam 

charging of insulators with surface layer and leakage currents," Journal of Applied Physics Vol. 103, No. 6, 2008, p. 064110. 
44. Wilson, G., and Dennison, J. R. "Approximation of Range in Materials as a Function of Incident Electron Energy," 

Plasma Science, IEEE Transactions on Vol. 40, No. 2, 2012, pp. 305-310. 
45. Fitting, H. J., Glaefeke, H., and Wild, W. "Creation energies for secondary electrons," Kristall und Technik Vol. 14, No. 

3, 1979, pp. K13-K17. 
46. Davies, R. E., and Dennison, J. R. "Effects of the Evolution of Spacecraft Surfaces on Secondary Electron Emission and 

Spacecraft Charging," 6th Spacecraft Charging Technology Conference. Air Force Research Laboratory Science Center, 
Hanscom Air Force Base, MA, 1998. 

47. Thomson, C. "Measurements of the Secondary Electron Emission Properties of Insulators," Physics. Vol. PhD, Utah 
State University, Logan, UT, 2004. 

48. Clerc, S., Dennison, J. R., Hoffmann, R., and Abbott, J. "On the Computation of Secondary Electron Emission Models," 
IEEE Transactions on Plasma Science Vol. 34, 2006, p. 7p.  

49. Dennison, J. R., Brunson, J., Swaminathan, P., Green, N. W., and Robb Frederickson, A. "Methods for High Resistivity 
Measurements Related to Spacecraft Charging," IEEE Transactions on Plasma Science Vol. 34, 2006, p 13. 

50. Kite, J. "Secondary Electron Production and Transport Mechanisms by Measurement of Angle-Energy Resolved Cross 
Sections of Secondary and Backscattered Electron Emission," Physics. Vol. PhD, Utah State University, Logan, UT, 2007. 

51. Arkhipov, V. "Radiation-induced conductivity and charge storage in irradiated dielectrics," Journal of Applied Physics 
Vol. 26, 1993, pp. 1298-1300. 

52. Sessler, G. Electrets: Springer-Verlag, 1987 
53. Gross, B. Charge Storage in Solid Dielectrics, 1964. 
54. Gross, B. "Charge storage and transport in solid dielectrics. (The case of irradiated polymers)," Annual Report - 

Conference on Electrical Insulation and Dielectric Phenomena, 1978, pp. 55-70. 

JR


JR
Paper No. AIAA-2013-2827               5th AIAA Atmospheric and Space Environments Conference              San Diego, CA, June 24-27, 2013



 
American Institute of Aeronautics and Astronautics 

 
 

29 

55. Gross, B. "Radiation-induced charge storage and polarization effects [in dielectrics]," Topics in Applied Physics Vol. 33, 
No. Electrets, 1980, pp. 217-84. 

56. Gross, B., and Nablo, S. V. "High potentials in electron-irradiated dielectrics," Journal of Applied Physics Vol. 38, No. 5, 
1967, pp. 2272-5. 

57. Gross, B., and Nunes de Oliveira, L. "Transport of excess charge in electron-irradiated dielectrics," Journal of Applied 
Physics Vol. 45, No. 11, 1974, pp. 4724-9. 

58. Gross, B., Giacometti, J. A., and Ferreira, G. F. L. "Charge storage and transport in electron-irradiated and corona-
charged dielectrics," IEEE Transactions on Nuclear Science Vol. NS28, No. 6, 1981, pp. 4513-22. 

59. Gross, B., Faria, R. M., and Ferreira, G. F. L. "Radiation-induced conductivity of Teflon irradiated by x rays," Journal of 
Applied Physics Vol. 52, No. 2, 1981, pp. 571-7. 

60. Gross, B., and Perlman, M. "Short-Circuit Currents in Charged Dielectrics and Motion of Zero-Field Planes," Journal of 
Applied Physics Vol. 43, 2003, p. 853. 

61. Giacometti, J. A., Ferreira, G. F. L., and Gross, B. "Negative charge transport in fluoroethylenepropylene by the constant 
current method," Physica Status Solidi A: Applied Research Vol. 88, No. 1, 1985, pp. 297-307. 

62. Gross, B., and de Oliveira, L. "Transport of excess charge in electron-irradiated dielectrics," Journal of Applied Physics 
Vol. 45, 2003, p. 4724. 

63. Kastner, M. A., and Monroe, D. "The relationship between transient and steady-state photoconductivity in amorphous 
semiconductors," Sol. Energy Mater. Vol. 8, No. 1-3, 1982, pp. 41-52. 

64. Pai, D., and Springett, B. "Physics of electrophotography," Reviews of Modern Physics Vol. 65, No. 1, 1993, pp. 163-
211. 

65. Rose, A. "An Outline of Some Photoconductive Processes," RCA Review Vol. 12, 1951, pp. 362-414. 
18. Fowler, J. "X-Ray Induced Conductivity in Insulating Materials," Proceedings of the Royal Society of London. Series A, 

Mathematical and Physical Sciences (1934-1990) Vol. 236, No. 1207, 1956, pp. 464-480. 
66. Arkhipov, V. I., Vannikov, A. V., Mingaleev, G. S., Popova, Y. A., Rudenko, A. I., Saenko, V. S., and Tyutnev, A. P. 

"Transient Photocurrent Due to Step-Function Excitation in Disordered Materials - Computer-Simulation and Analytical 
Treatment," Journal of Physics D-Applied Physics Vol. 17, No. 7, 1984, pp. 1469-1475. 

67. Arkhipov, V. I. "Kinetics of pair recombination in amorphous materials," Fizika i Tekhnika Poluprovodnikov (Sankt-
Peterburg) Vol. 20, No. 3, 1986, pp. 556-8. 

68. Tiedje, T. "A physical interpretation of dispersive transport in disordered semiconductors," Solid State Communications 
Vol. 37, 1980, pp. 49-52. 

69. Mott, N. F. "Electronic processes in glasses," 1977, pp. 101-7. 
70. Rudenko, A. I., and Arkhipov, V. I. "Drift and diffusion in materials with traps. I. Quasiequilibrium transport regime," 

Philosophical Magazine B Physics of Condensed Matter Statistical Mechanics, Electronic, Optical and Magnetic Properties Vol. 
45, No. 2, 1982, pp. 177-87. 

71. Arkhipov, V. I., Gromov, V. V., Mamonov, M. N., Rozno, A. G., and Rudenko, A. I. "Gamma-ray electrification of 
dielectrics," Atomnaya Energiya Vol. 62, No. 2, 1987, pp. 134-6. 

72. Arkhipov, V. I., Nikitenko, V. R., and Rudenko, A. I. "Nonequilibrium photodielectric effect in disordered materials," 
Fizika i Tekhnika Poluprovodnikov (Sankt-Peterburg) Vol. 22, No. 3, 1988, pp. 544-7. 

73. Arkhipov, V. I., and Nikitenko, V. R. "Langevin-recombination-controlled explosive kinetics of electroluminescence in 
organic semiconductors," Semiconductors (Translation of Fizika i Tekhnika Poluprovodnikov (Sankt-Peterburg)) Vol. 33, No. 8, 
1999, pp. 862-864. 

74. Weaver, L., Shultis, J., and Faw, R. "Analytic solutions of a model for radiation-induced conductivity in insulators," 
Journal of Applied Physics Vol. 48, 1977, p. 2762. 

75. Tyutnev, A. P., Vannikov, A. V., Saenko, V. S., Likhovidov, V. S., and Pozhidaev, E. D. "Electrical-Conductivity of 
Films of Polyvinylcarbazole Induced by Electron-Bombardment," High Energy Chemistry Vol. 16, No. 6, 1982, pp. 386-390. 

76. Tyutnev, A. P., Saenko, V. S., Vannikov, A. V., and Mingaleev, G. S. "Radiation-Induced Conductivity in Polyethylene," 
Physica Status Solidi a-Applied Research Vol. 78, No. 2, 1983, pp. 689-696. 

77. Tyutnev, A. P., Saenko, V. S., Valetskii, P. M., Kim, V. A., Safonov, G. P., Pozhidaev, Y. D., Vinogradova, S. V., and 
Korshak, V. V. "Electrical Phenomena under the Effect of Low-Energy Electrons on Polyarylates," Vysokomolekulyarnye 
Soedineniya Seriya A Vol. 25, No. 4, 1983, pp. 856-861. 

78. Tyutnev, A. P., Saenko, V. S., Dunaev, A. F., Pozhidaev, E. D., and Vannikov, A. V. "Temperature-Dependence of 
Transient Radiation-Induced Conductivity in Polymers," Physica Status Solidi a-Applied Research Vol. 85, No. 2, 1984, pp. 591-
602. 

79. Tyutnev, A. P., Abramov, V. N., Saenko, V. S., Dubenskov, P. I., Vannikov, A. V., and Pozhidaev, E. D. "Radiation-
Induced Conductivity in Foamed Dielectrics," Physica Status Solidi a-Applied Research Vol. 88, No. 2, 1985, pp. 673-680. 

80. Tyutnev, A. P., Vannikov, A. V., and Saenko, V. S. "Radiation-Dielectric Effect in Polymers," Vysokomolekulyarnye 
Soedineniya Seriya B Vol. 27, No. 2, 1985, pp. 98-103. 

81. Tyutnev, A. P., Ikhsanov, R. S., Saenko, V. S., and Pozhidaev, E. D. "A theoretical description of geminal recombination 
and radiation-pulse-induced electric conduction in polymers in the approximation of probability of survival of ionic pairs," 
Russian Journal of Physical Chemistry B Vol. 1, No. 6, 2007, pp. 661-669. 

82. Dunaev, A. F., Tyutnev, A. P., Saenko, V. S., Makeev, S. N., Filatov, N. I., and Pozhidaev, E. D. "Pulsed Reactor 
Induced Conductivity in Polymers," Physica Status Solidi a-Applied Research Vol. 130, No. 2, 1992, pp. 391-396. 

JR


JR
Paper No. AIAA-2013-2827               5th AIAA Atmospheric and Space Environments Conference              San Diego, CA, June 24-27, 2013



 
American Institute of Aeronautics and Astronautics 

 
 

30 

83. Arkhipov, V. I., Nikitenko, V. R., and Tyutnev, A. P. "Radiation-induced dielectric effect in polymers," Chemical 
Physics Reports Vol. 16, No. 2, 1997, pp. 301-309. 

84. Dissado, L. A., and Fothergill, J. C. Electrical degradation and breakdown in polymers. London: P. Peregrinus, 1992. 
85. Dissado, L. A., Griseri, V., Peasgood, W., Cooper, E. S., Fukunaga, K., and Fothergill, J. C. "Decay of space charge in a 

glassy epoxy resin following voltage removal," IEEE Trans. Dielectr. Electr. Insul. Vol. 13, No. 4, 2006, pp. 903-916. 
86. Wilcox, P. "A Dielectric Loss Model Based on Interfacial Electron Tunneling," Canadian Journal of Physics Vol. 50, 

1971. 
87. Liufu, D., Wang, X. S., Tu, D. M., and Kao, K. C. "High-field induced electrical aging in polypropylene films," Journal 

of Applied Physics Vol. 83, No. 4, 1998, pp. 2209-2214. 
88. Kao, K. C., ed. Dielectric Phenomena in Soilds: Elsevier Academic Press, 2004. 
89. Toomer, R., and Lewis, T. J. "Charge trapping in corona-charge polyethylene films," Journal of Physics D: Applied 

Physics Vol. 13, No. 7, 1980, p. 1343. 
90. Wintle, H. J. "Absorption currents and steady currents in polymer dielectrics," J. Non-Cryst. Solids Vol. 15, No. 3, 1974, 

pp. 471-486. 
91. Wintle, H. J. "Time dependent photocurrents in polyethylene," J. Polym. Sci., Polym. Phys. Ed. Vol. 12, No. 10, 1974, 

pp. 2135-51. 
92. Walden, R. H. "A Method for the Determination of High-Field Conduction Laws in Insulating Films in the Presence of 

Charge Trapping," J. Appl. Phys Vol. 43, No. 3, 1971. 
93. Fothergill, J. C., ed. Space Charge in Solid Dielectrics: The Dielectrics Society, 1998. 
94. Touzin, M. "Electron beam charging of insulators: A self-consistent flight-drift model," Journal of Applied Physics Vol. 

99, 2006. 
95. Fitting, H. J. "Time-dependent start-up and decay of secondary electron emission in dielectrics," Journal of Applied 

Physis Vol. 108, 2010. 
96. Avini, E. "Trap generation and occupation in stressed gate oxides under spatially variable oxide electric field," Applied 

Physics Letters Vol. 51, No. 22, 1987. 
97. DiMaria, D. J. "Capture and emission of electrons at 2.4-eV-deep trap level in SiO2 films," Physical Review B Vol. 11, 

No. 12, 1975. 
98. Nissan-Cohen, Y. "Trap generation and occupation dynamics in Si02 under charge injection stress," J. Appl. Phys Vol. 

60, No. 6, 1986. 
99. Orenstein, J., and Kastner, M. A. "Thermalization and recombination in amorphous semiconductors," Solid State 

Commun. Vol. 40, No. 1, 1981, pp. 85-9. 
100. Reimer, L. "Scanning electron microscopy: physics of image formation and microanalysis," Measurement Science and 

Technology Vol. 11, 2000, p. 1826. 
101. Spencer, L. "Theory of electron penetration," Physical Review Vol. 98, No. 6, 1955, pp. 1597-1615. 
102. Alig, R., and Bloom, S. "Electron-hole-pair creation energies in semiconductors," Physical Review Letters Vol. 35, No. 

22, 1975, pp. 1522-1525. 
103. Pines, D. Elementary excitations in solids: lectures on protons, electrons, and plasmons: Westview Press, 1999. 
104. Tanuma, S., Powell, C. J., and Penn, D. R. "Calculations of Electron Inelastic Mean Free Paths (IMFP's) VI. Analysis of 

the Gries Inelastic Scattering Model and Predictive IMFP Equation," Sur. Inter. Anal. Vol. 25, No. 25, 1997. 
105. Bethe, H., and Heitler, W. "On the Stopping of Fast Particles and on the Creation of Positive Electrons," Proceedings of 

the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character Vol. 146, No. 856, 1934, 
pp. 83-112. 

106. DC, Joy., and S., Luo. "An empirical stopping power expression for low energy electrons," Scanning Vol. 11, No. 176, 
1989. 

107. Tanuma, S., Powell, C., and Penn, D. "Calculations of stopping powers of 100 eV to 30 keV electrons in 10 elemental 
solids," Surface and Interface Analysis Vol. 37, No. 11, 2005, pp. 978-988. 

108. National Institute of Standards and Technology, 2010, "ESTAR, Stopping Power and Range Tables for Electrons," 
(http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html). 

109. Ziegler,   J.F.,   “RBS/ERD   simulation   problems:   Stopping   powers,   nuclear   reactions   and   detector   resolution,”  
Nuclear Instruments and Methods B 132 (1997) 377-390. 

110. Rodgers, D. J.; Ryden, K. A.; Wrenn,  G.  L.;;  Lévy,  L.;;  Sørensen,  J.  “Fitting  of  material  parameters  for  DICTAT  internal  
dielectric  charging  simulations  using  DICFIT,”  Proc.  9th  Intern.  Symp.  on  Materials  in  a  Space  Environment,  16-20 June 2003, 
Noordwijk, The Netherlands. Compiled by K. Fletcher. ESA SP-540, Noordwijk, Netherlands: ESA Publications Division,. 2003, 
p. 609 – 613.  

111. Kim,  W.  “NUMIT  2.0:  The  Official  Release  of  the  JPL's  Internal  Charging  Code,”  Proceedings  of  the  12th  Spacecraft  
Charging Technology Conference, (Kitakyushu, Japan, May 14-18, 2012). 

112. Beecken,   B.P.   and   B.M.  Wallin,   “Modeling   of   Deep-dielectric Spacecraft Charging in Realistic Environments with 
NUMIT2,”  Paper  AIAA-2011,  Proc. of 49th AIAA Meeting on Aerospace Sci., Orlando, FL, 2011. 

113. National Institute of   Standards   and   Technology,   2010,   “NIST   Electron   Inelastic-Mean-Free-Path Database: Version 
1.1,”  (http://www.nist.gov/data/nist71.htm). 

114. Wilson,  G.,  “Models  and  Measurements  of  Electron  Ranges  at  Low  and  Intermediate  Energies,”  MS  Thesis,  Utah  State  
Univ., Logan, UT, August 2013. 

http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
JR


JR


JR
Paper No. AIAA-2013-2827               5th AIAA Atmospheric and Space Environments Conference              San Diego, CA, June 24-27, 2013

http://www.nist.gov/data/nist71.htm


 
American Institute of Aeronautics and Astronautics 

 
 

31 

115. Evans, R. D. "The Atomic Nucleus," Internat. Ser. In Pure and Appl. Phys., McGraw-Hill, New York, 1955. 
116. Pines, D., Elementary Excitations in Solids, Addison-Wesley, Reading, MA. , 1963 
117. Zangwill, A. Physics at surfaces. Cambridge, MA: Cambridge Univ Pr, 1988. 
118. Somorjai, G. Chemistry in Two Dimensions. Ithica: Cornell Press, 1981. 
119. Penn, D. "Electron mean free paths for free-electron-like materials," Physical Review B Vol. 13, No. 12, 1976, pp. 

5248-5254. 
120. Melchinger, A., and Hofmann, S., "Dynamic Double Layer Model: Description of Time Dependent Charging 

Phenomena in Insulators under Electron Beam Irradiation," J. Appl. Phys. 78, 6224, 1995. 
121. Cazaux, J. "Some considerations on the secondary electron emission, d, from e irradiated insulators," Journal of Applied 

Physics Vol. 85, 1999, p. 1137. 
122.  Meyza, X., Goeuriot, C., Guerret-Piecourt,  D., Treheux, and H. Fitting, "Secondary Electron Emission and Self-

Consistent Charge Transport and Storage in Bulk Insulators: Application to Alumina," J. Appl. Phys. 94, 5384, 2003. 
123.  Wilson, G., Evans, A., Dekany, J.,  “Charging  Effects  of  Multilayered  Dielectric  Spacecraft  Materials:  Surface  Voltage,  

Discharge  and  Arcing,”  IEEE Trans. on Plasma Sci., 2013, in press. 
124.   Justin   Dekany,   Alec   M.   Sim,   Jerilyn   Brunson,   and   JR   Dennison,   “Electron   Transport   Models   and   Precision  

Measurements  in  a  Constant  Voltage  Chamber,”  IEEE  Trans.  on  Plasma  Sci.,  2013,  in  press. 
125. Laurent, C. "Charge dynamics in polymeric materials and its relation to electrical ageing," Electrical Insulation and 

Dielectric Phenomena (CEIDP), 2012 Annual Report Conference on. pp. 1-20. 
 

JR


JR
Paper No. AIAA-2013-2827               5th AIAA Atmospheric and Space Environments Conference              San Diego, CA, June 24-27, 2013


	Comprehensive Theoretical Framework for Modeling Diverse Electron Transport Experiments in Parallel Plate Geometries
	Recommended Citation

	Preparation of Papers for AIAA Technical Conferences

