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ABSTRACT 

 

 

Analysis of the Effectiveness of Bridges with Partial Isolation 

 

 

by 

 

 

Wenying Hu, Master of Science 

 

Utah Sate University, 2008 

 

 

Major Professor: Dr. Keri L. Ryan 

Department: Civil and Environmental Engineering 

 

 

A special class of seismically isolated bridges shares a common feature in that 

both ends of the superstructure are restrained and isolators over the columns of bridge 

uncouple the superstructure from the ground motions. They are defined as partial 

isolation bridges. From measured acceleration responses, effectiveness of full seismic 

isolation had been confirmed widely. However, the seismic isolation behavior in the 

partial isolation has not been widely observed.  

The effectiveness of partial isolation is evaluated in this study.  The static design 

procedures for linear and nonlinear partially isolated bridges are developed. Results from 

the static analysis of linear and nonlinear partially isolated bridges, compared with  

conventional and fully isolated bridges, demonstrate that the effectiveness of nonlinear 

partial isolation is close to full isolation for reducing the yield force and displacement of 

the columns in some parameter ranges. However, increased seismic demands on the 

abutment displacement in the bridge are observed. Nonlinear time history analyses of the 

different bridge models under earthquake excitations are carried out to investigate the 
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accuracy of the design procedure for nonlinear partial isolation. In addition, an example 

shows the application of nonlinear partial isolation to a practical bridge. 

(70 pages) 
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CHAPTER 1 

 INTRODUCTION 

 

 

Seismic isolation is a response modification technique that reduces the effects of 

earthquakes on bridges and other structures. Isolation physically uncouples a bridge 

superstructure from the horizontal components of earthquake ground motion, leading to a 

substantial reduction in the force demands generated by an earthquake. Improved 

performance is therefore possible for little or no extra cost, and older, seismically 

deficient bridges may not need strengthening if treated in this manner. Uncoupling is 

achieved by interposing mechanical devices with very low horizontal stiffness between 

the superstructures (deck and girders) and substructures (columns and abutments). These 

devices are called seismic isolation bearings or simply isolators. Thus, when an isolated 

bridge is subjected to an earthquake, the deformation is concentrated in the isolators 

rather than the substructure elements. This greatly reduces the seismic forces and 

displacements transmitted from the superstructure to the substructures. 

A seismic isolator possesses the three important characteristics: First, flexibility 

of the isolator will lengthen the period of vibration of the bridge to reduce seismic forces 

in the substructure. Second, energy dissipation limits displacements between the 

superstructure above the isolator and substructure below. Third, adequate rigidity is 

provided for service loads while accommodating environmental effects (Buckle et al., 

2006b). 

Figure 1.1 illustrates the effects of flexibility and damping of the isolator on the 

seismic forces. The solid and dashed curves represent the 5 percent- and 30 percent - 
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Figure 1.1 Effects of isolator on the bridge response  

(Buckle et al., 2006a Figure 1-2). 

 

 

damped (AASHTO, 1999) acceleration response spectra respectively, for stiff soil 

conditions (Soil Type П). The increased level of damping, due to the energy dissipated by 

the isolation system, leads to a further reduction in the seismic forces. It is seen that 

period shift, or increased flexibility of the system, allows for a reduction in the spectral 

acceleration on the order of 60 percent, and additional reduction is possible by increasing 

the overall damping of the system from 5% to on the order of 30%. 

Normally isolators are located at the top of all columns/abutments to separate the 

substructure from the deck at every location. This "fully-isolated" approach is widely 

accepted in the United States. Over 200 isolated bridges in the United States are currently 

completed or under construction. In 1988, the Eel River Bridge in Humboldt County, 

California, was isolated using lead-rubber bearings, very flexible elastomeric bearings 

with a lead core press fit in the center to increase the dissipation of energy during lateral 

displacements, and thus improve the performance of the bridge. This bridge experienced 
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accelerations of 0.55g in the 1992 Petrolia Earthquake, in which it displaced 9 inches 

laterally and sustained no damage (Lee, Kitane and Buckle, 2001). The Benicia-Martinez 

Bridge in Carquinez Straits, San Francisco Bay consists of seven 528-foot spans which 

provide 138 feet of vertical clearance, carrying three lanes of traffic in the southbound 

direction. The bridge opened in 1962 and was retrofitted in 1998 with the friction 

pendulum system, which consists of spherical bearings with spherical sliding interfaces 

(Buckle et al., 2006a). 

Another approach that has been applied in a more limited context under special 

design circumstances is partial isolation. The Bai-Ho Bridge is completely isolated only 

in the longitudinal direction, while it is partially isolated in the transverse direction. Shear 

keys and specially designed steel rods were provided on the abutment to restrict the 

transverse movement of the superstructure (Shen et al., 2004). The Marga-Marga Bridge, 

the first bridge built in Chile with seismic bearings, is located at Viña del Mar in a high 

seismic risk area. The bridge consists of a single continuous 383 m superstructure 

supported on 36 high-damping rubber bearings that rest on two abutments and seven 

piers. At the abutments, isolation was provided only in the longitudinal direction. In the 

transverse direction, steel plate stoppers were provided to restrict motion. Transverse and 

longitudinal motions are allowed at piers, although an additional safety concrete stopper 

was provided in the transverse direction (Boroschek, Moroni and Sarrazin, 2003). 

  Here we refer to partial isolation as using isolators over part of the bridge. That is, 

isolation devices are installed at the intermediate piers, bents or columns to separate the 

bridge mass from the columns, while the connections of the deck to the abutments remain 

fixed or integral. The Utah Department of Transportation has made the strategic decision 
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to investigate the use of partial isolation as a routine design practice to limit the column 

forces. The partial isolation approach can be applied in any scenario by installing 

isolators at the columns that will redistribute force to the abutments from the columns and 

thereby limit column force demands. 

The partial isolation system may be considered economical if it leads to a period 

shift that reduces the overall force demands on the bridge and does not increase force 

demands of the abutments. However, potential drawbacks to the approach include limited 

engagement of the isolators or overly large displacement demands at the abutments. 

These considerations lead to an overall question: can the partial isolation be applied as a 

cost-effective design approach relative to the conventional design?  

The overarching objective of this research is to determine whether, or in what 

situations, partial isolation is effective in reducing overall forces and displacement 

demands on the bridge. The specific objectives of this study include: (1) develop a static 

design procedure for the partial isolation; (2) compare column design force and column 

displacement demand in conventional, fully isolated and partially isolated bridges to 

determine relative effectiveness of partially isolated bridges; (3) verify the accuracy and 

statistical reliability of the static analysis procedure for partial isolation by response 

history analysis; and (4) demonstrate the approach on a representative bridge in the state 

of Utah. 
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CHAPTER 2 

MODEL DESCRIPTION AND PARAMETER STUDY 

 

 

2.1 Simplified Bridge Models 

 

 

During this research, a simplified bridge model is developed for seismic analysis 

to provide a generalized model of the true bridge behavior. The properties of the 

simplified bridge can easily be adjusted to match target spectral design criteria.  In the 

following sections, three models are described which are conventional, fully-isolated and 

partially isolated bridge models 

 

2.1.1 Conventional bridge model 

 

The bridge superstructure is assumed to move as a rigid body under seismic loads. 

This assumption can be later relaxed to test the applicability of the results to more 

realistic bridge models. . The columns and abutments are considered as the substructure 

elements in these simple models. In the seismic response analysis of bridges, the 

substructure elements are critical to provide gravity and earthquake force transfer to the 

ground and ground motion input to bridge superstructure  Thus, the conventional bridge 

model (Figure 2.1) consists of a rigid deck with weight W supported by one or more 

columns with total stiffness Kc and end abutments with stiffness Ka. The natural period of 

the bridge vibrating in its linear elastic range is calculated from the total stiffness of the 

bridge (KFB=Kc+Ka): 

2n

FB

W
T

K g
π=                                                     (2.1) 
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Both the columns and abutments are assumed to have elastic-perfectly plastic 

force deformation relations (Figure 2.2) with yield force Fy,c and Fy,a , and design 

displacements uc and ua for columns and abutments. 

 

 

Rigid Deck

(Weight=W)

Ka/2
Ka/2

Kc

KFB=Kc+Ka
 

Figure 2.1 Conventional bridge model. 

  

 

Figure 2.2 Column or abutment force/deformation relation. 
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2.1.2 Fully isolated bridge model 

 

The fully isolated bridge is a conventional bridge with isolators placed on the top 

of every column or abutment so that the entire bridge mass is isolated or decoupled from 

the ground. The total stiffness Kiso is distributed to the isolators above the columns (Kiso,c) 

and abutments (Kiso,a ) in proportion to their stiffness (Figure 2.3).  

The period of the isolator vibrating in its linear elastic range is calculated from the 

total stiffness of the isolators: 

gK

W

iso
T

iso

π2=                                                  (2.2) 

The force-deformation relation of the isolator is assumed to be linear with design 

displacement uiso for the fully isolated bridge (Figure 2.4). This assumption applies to 

both linear devices, such as elastomeric bearings, and nonlinear devices, such as lead-

rubber bearings or friction pendulum isolators, that are treated by equivalent-linear 

representation.  

 

 

Figure 2.3 Fully isolated bridge model. 
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Figure 2.4 Linear isolator capacity curve. 

 

 

2.1.3 Partially isolated bridge model 

 

A partially isolated bridge is a conventional bridge with isolators placed on the 

top of the columns while the abutments remain fixed. Only the columns are decoupled 

from the ground, and in contrast to a fully isolated bridge, the stiffness of the isolator 

elements acts only at the columns (Figure 2.5). 

 

Figure 2.5 Partially isolated bridge model. 
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Two types of isolators are considered in this study: an equivalent linear isolator 

with the same properties as for the fully isolated bridge (Figure 2.4); and a nonlinear 

isolator with elastic-perfectly plastic force-deformation characteristics. The properties of 

the bilinear spring (initial stiffness k1, yield force Fy,iso) are chosen  by matching the 

properties of an equivalent linear system (effective stiffness  Kiso) at the design  

displacement (Figure2.6). This behavior can be provided by a simple teflon slider.  

Sliders are often used in combination with other isolation devices, but are rarely used 

alone due to the absence of a restoring force (Tsopelas and Constantinou, 1997).  For 

partial isolation, the abutment stiffness will provide a realistic limit on the overall 

displacement of the bridge, and sliders can be used without the risk of excessively large 

displacements. The yield displacement uy,iso  of the sliding isolator is assumed to range 

from 0.1 cm-0.25 cm. 

 

 

Figure 2.6 Nonlinear isolation capacity curve. 

 



 

 

10 

2.2 Parameter Study 

 

 

A parametric study is conducted to compare the response of conventional, fully 

isolated and partially isolated bridges over a wide range of bridge parameters described in 

the general bridge model of the previous section.  Independent parameters are hereby 

identified and varied over the ranges indicated. 

 The natural period Tn of a conventional bridge before isolation is applied 

(Equation (2.1)) is varied from 0 to 1 with distinct values of [Tn = 

0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]. This range includes UDOT’s typical short span 

highway bridges that are likely candidates for partial isolation. The isolation period Tiso 

takes on values of 1, 2, 2.5, 3, 3.5, 4 sec, where conventionally the longer isolation period 

leads to a greater isolation effect. The damping ratios of the linear isolator ζiso are chosen 

as 5%, 10%, 20%, and 30%, while the damping ratio of an elastic-perfectly plastic 

isolator will be shown to be constant. 

Two parameters are defined that quantify the distribution of stiffness and strength 

to the columns and the abutments:  

ac

c
k

KK

K

+
=α                                                   (2.3) 

aycy

cy

F
FF

F

,,

,

+
=α                                                (2.4) 

 αk is the column stiffness ratio, or ratio of the column stiffness to the total bridge 

stiffness, and αF is the column strength ratio, or ratio of the column strength relative to 

the total bridge strength.  The value of αk is assumed to vary essentially from 0 to 1, 

taking on distinct values [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], and αF is assumed to 
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equal αk.. Table 2.1 lists the parameters that apply to each bridge model (conventional, 

fully isolated, and partially isolated). 

 

Table 2.1 List of parameters for each bridge model 

 
Conventional  bridge Fully isolated bridge Partial isolated bridge 

αk αk αk 

αF αF αF 

ζ ζ ζ 

- ζiso ζiso 

- ζeff ζeff 

W W W 

Tn Tiso Tiso 

B B B 

- Beff Beff 

Kc Kc Kc 

Ka Ka Ka 

- Kiso Kiso 

- Kiso,c - 

- Kiso,a - 

Fy,c Fy,c Fy,c 

Fy,a Fy,a Fy,a 

uc uc uc 

ua ua ua 

- uiso uiso 

F F F 

Fy Fy Fy 

KFB KFB KFB 

D D D 

- Keff Keff 
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CHAPTER 3 

STATIC EVALUATION PROCEDURE 

 

 

In this chapter, static evaluation procedures for linear and nonlinear partially 

isolated bridge are developed to be consistent with evaluation procedures for 

conventional and fully isolated bridge models.  

 

3.1 Design Response Spectrum 

 

 

3.1.1 Response spectrum for conventional bridge 

For static evaluation, a design spectrum is calculated assuming a bridge located in 

Salt Lake City, Utah (zip code: 84040), on soil site class D. The spectral acceleration 

coefficients, based on a 2500 year return period motion (or 2% probability of exceedance 

in 50 years) are given in the table below (Table 3.1).  

For the conventional bridge, the seismic base shear, F, in each direction is 

determined according to (AASHTO, 2002): 

F = CsW                                                            (3.1)  

Cs = A

T

AS

n

5.2
2.1

3

2
≤                                                  (3.2) 

where Cs is the seismic response coefficient, A is the peak spectral response acceleration  

 

parameter (A = 0.4FvSs), and S is the site coefficient. For the Salt Lake City location, 

A=0.549 and S= 1.5 for Site class П. 

 

 

 

 

 



 

 

13 

Table 3.1 Spectral acceleration coefficient for the special site 

 

Ground motions(TR) Ss (g) Fv S1 (g) Fa 

2500years 1.364 1.0 0.569 1.5 

 

 

3.1.2 Response spectrum for isolated bridge 

 

According to current bridge codes, the design spectrum for isolated bridges differs 

from that of conventional bridges.  The design spectrum is specified in terms of a design 

displacement D rather than spectral acceleration, which is a function of the effective 

period Teff  and damping ratio ζiso of the bridge.  According to AASHTO (1999): 

         D=10 A Si Teff / Biso   (inches)                                          (3.3)     

where   

Teff= effgKW /2π                                                   (3.4) 

Biso is a damping factor that depends on the damping ratio ζiso, A is the acceleration 

coefficient for the site, and Si is the site coefficient for isolated structure.  In this study, 

the acceleration coefficient A (which represents peak ground acceleration) is replaced by 

the 1.0 second period spectral acceleration coefficient S1 (Buckle et al., 2006a). 

The total lateral force in the system can be estimated from the displacement D 

according to: 

 F= KeffD                                                          (3.5) 

For this location assuming site class III, the soil coefficient Si = 2.0 and S1= 

0.569.  Note that this value is larger than the soil coefficient for a comparable 

conventional bridge and accounts for long period spectral amplification in soft soils.   

The design spectra for conventional and isolated bridges for the site are compared 

in Figure 3.1.   
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Figure 3.1 Response spectrums for the bridges with different bases.  

 

 

The spectrum for conventional bridges exceeds that for isolated bridges in the 

long period range because T is taken to the power of 2/3. The spectrum of Figure 3.1 is 

for 5% damping and spectral accelerations for other values of damping are found by 

dividing by the appropriate damping factor. 

 

3.2 Static Design and Analysis Equations 

 

 

3.2.1 Conventional bridge 

The response modification factor (R) is used to calculate the design force from the 

elastic force demand. The response modification factor contains two components 

(Constantinou and Quarshie, 1998):  

oRRR ⋅= µ                                                           (3.6) 
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where µR  is ductility-based portion of the factor and oR is overstrength factor.  The  

ductility-based portion µR  is the result of inelastic action in the structural system. The  

overstrength factor oR is the result of reverse strength that exists between the design  

force and actual yield force of the system (Constantinou and Quarshie, 1998). Since the  

capacity of the columns or abutments to resist lateral loads is idealized as elastic- 

perfectly plastic for the conventional bridge, only µR is considered. Normally R values  

range from 2 to 5 for substructures (columns and abutments) (AASHTO, 1999), and a  

typical value of oR is 1  to 1.67.  Thus, µR =3 is assumed for this study, consistent with  

R=5 and oR =1.67. 

Based on the known weight W, the assumed natural period of the bridge Tn, the  

5% damped design spectrum Sa, and an assumed R-factor, the stiffness KFB and design  

base shear F (Equations (3.1) and (3.2)) can be estimated. 

KFB= 

2
2










nTg

W π
                                                      (3.7) 

Assuming a column strength ratio αk, the column stiffness Kc and the abutment 

stiffness Ka are calculated from the total stiffness KFB according to: 

Kc= KFB αk                                                                                     (3.8) 

Ka = KFB (1-αk)                                                                               (3.9) 

The design base shear of the whole bridge Fy is calculated from the elastic base 

shear F and force reduction R. 

Fy = 
R

F
                                                           (3.10) 
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Assuming a column strength ratio αF, the column yield force Fy,c and the 

abutment yield force Fy,a are calculated from the total yield force Fy according to: 

Fy,c = FyαF                                                                                    (3.11) 

Fy,a = Fy (1-αF)                                                     (3.12) 

The displacement demand D is determined from the design spectrum, but an 

adjustment may be required to account for the overall nonlinear response of the bridge.  

A transition period T* is defined:  

T* = 1.25Ts                                                    (3.13) 

where Ts is the end of the flat part of the response spectrum, valued at 0.6261 second for 

the conventional bridge design spectrum (Figure 3.1).  If Tn > T*, the equal displacement 

rule applies and the actual displacement is assumed to be the same as the linear 

displacement.   

D = 
FBK

F
 = 

g

nTSC

24

2

π
                                             (3.14) 

If Tn < T*, an increase in D is calculated according to the following equations 

(Friedland, Mayes, and Bruneau, 2001):  

D= [(1-1/R) T*/Tn+1/R]
FBK

F
=

g

TC nS

2

2

4π
  [(1-1/R) T*/Tn+1/R]            (3.15) 

The column and abutment displacements of the conventional bridge are identical 

to the total bridge displacement.  
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uc = ua = D                                                        (3.16) 

 

3.2.2 Fully isolated bridge 

 

By simple analysis, Constantinou and Quarshie (1998) showed that the 

effectiveness of the isolation system diminishes and larger displacement demands are 

imposed on the substructure when the inelastic action commences in the substructure for 

the isolated bridge. Therefore, the allowable R-factors were reduced to the range of 1.5 to 

2.5 (AASHTO, 1999), which implies that µR is between 1 and 1.5. In this study, µR is 

assumed to be 1.   

Since both the bridge and isolation system are assumed to remain elastic, the 

effective stiffness is computed as the stiffness of the bridge and the isolation system 

acting in series.  

Keff =  
 iso

 iso

K+FB

FB

K

KK
                                                (3.17) 

The stiffness of the substructure ( FBK ) is calculated from Equation (3.7) and Kiso is 

computed from an assumed isolation period according to: 

Kiso= 

2
2










isoTg

W π
                                                      (3.18) 

The isolator stiffness is distributed to the columns and abutments in proportion to their 

stiffness: 

Kiso, c = Kiso αk                                                                                     (3.19) 

Kiso,a = Kiso (1-αk)                                                                                   (3.20) 

The displacement demand D, elastic strength F and yield force Fy can be 

calculated from Equations (3.3-3.5) and Equation (3.10), where the effective damping 
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ratio of the bridge is assumed to equal the damping ratio of the isolation system.  The 

yield force Fy is simply equal to the elastic strength F, and is distributed to the columns 

and abutments in proportion to their strengths (Equations (3.11) and (3.12)). Since the 

isolation system and bridge substructure act in series, the displacement demand D is 

distributed to the isolators and substructures in proportion to their flexibilities. 

uiso =
 iso

F

K
                                                      (3.21) 

uc = ua=
 FB

F

K
                                                     (3.22) 

 

3.2.3 Partially isolated bridge.  

 

As described earlier, two different types of isolation systems are considered for 

partially isolated bridges. The isolation systems lead to very different dynamic behaviors 

and thus use different analysis procedures. 

3.2.3.1 Linear isolation system. If the bridge is partially isolated with linear 

devices, the performance of the columns will degrade once their elastic limit has been 

reached and larger displacement demands will be imposed on the substructure. Therefore, 

similar to the philosophy for fully isolated bridges, Rµ=1 is selected to limit inelastic 

demands to the columns, and the bridge is analyzed using the design spectrum for the 

isolated bridge (Equation (3.3)), with the exception that the spectral acceleration should 

not exceed the constant short period acceleration of the spectrum for the conventional 

bridge if the period shift is not large enough to force the bridge into the constant velocity 

region of the spectrum.  
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The total stiffness ( FBK ) and its distribution to the columns and abutments (Kc, 

Ka) is determined as for the conventional bridge (Equations (3.7) - (3.9)) assuming a 

natural period Tn.  The stiffness of the isolator on the top of the columns is based on the 

isolation period (Tiso) and the fraction of total bridge stiffness carried by the columns (αk): 

Kiso = k

isoTg

W
α

π
2

2








                                               (3.23) 

The effective stiffness is calculated by adding the composite stiffness of the 

column\isolator unit and the abutment stiffness Ka. 

Keff = 
isoc

isoc

KK

KK

+
 + Ka                                                                          (3.24) 

Teff is calculated from Keff (Equation (3.4)). 

To apply the static procedure, an appropriate damping ratio for the entire bridge 

must be selected. Because full isolation is not observed, it is unconservative to assume 

that the damping ratio equals the effective damping of the isolation system. Similar to 

fully isolated bridge, the contribution of damping from the columns and abutments is 

ignored. The effective damping ratio for the whole bridge is decreased by the column 

stiffness ratio, which represents the fraction of the bridge to which the isolator stiffness is 

applied, and adjusted for the modified effective period relative to the isolation period.   

ξeff = 








iso

eff

kiso
T

T
αξ                                              (3.25) 

However, the effective damping ratio is assumed not to fall below 5%, since the damping 

ratio in the conventional bridge must be a lower bound to the damping ratio of the bridge 

with any type of protective devices. The damping factor Biso is determined based on ξeff  
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Table 3.2 of Buckle et al., 2006a) and the displacement demand D from Equation(3.2). 

The force demand F is computed assuming linear elastic response. (Equation (3.5)) 

Since the columns remain elastic under the design motion, the total displacement 

demand D is distributed to the isolators and columns in proportion to their stiffness: 

uiso = 

c

iso

K

K

D

+1

                                                     (3.26) 

uc = D- uiso                                                       (3.27) 

The abutments see the entire displacement: 

ua = D                                                              (3.28) 

The yield force of columns and abutments (Fy,c, Fy,a) are calculated by the same 

procedure as for the fully isolated bridge (Equations(3.10) - (3.12)). 

3.2.3.2 Nonlinear isolation system. The main benefit of using isolation devices 

with elastic-perfectly plastic behavior, such as sliding isolators, is that the isolators can be 

designed to yield first, thus keeping the columns elastic. As a result, it is not necessary to 

design the entire bridge to remain elastic to see improved column forces, and a bridge 

force reduction factor Rµ=3 is imposed, as in the conventional bridge. 

The yield force of the column is assumed to be 10% greater than the yield force of 

the isolator, as a factor of safety against yielding. 

Fy,c=1.1Fy,iso                                                                                   (3.29) 

The parameters Kiso, Ka, Kc,, Keff ,Teff  are calculated according to the procedure for 

the partially isolated bridge with linear isolator (Equations (3.23)-(3.24) and (3.8)-(3.9)). 

Because the bridge is not isolated in a conventional sense, the conventional AASHTO 
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spectrum is used (Equations (3.1) and (3.2)) with Teff instead of Tn and the design base 

shear Fy is calculated using the procedure for conventional bridge (Equation (3.10)) 

Since the goal is to reduce demands on the columns compared to a conventional 

bridge, the abutments are assumed to have the same yield force as in the conventional 

bridge, and all reductions in force demand that may result from partial isolation are 

passed to the columns: 

Fy,a =Fy,a(con)                                                       (3.30) 

Fy,iso=Fy-Fy,a                                                        (3.31) 

The total bridge displacement is calculated by the same procedure as for the conventional 

bridge, which assumes displacement amplification in the short period range (Equations 

(3.14) and (3.15)). Since the columns do not yield when the isolators yield: 

uc = 
,y iso

c

F

K
                                                         (3.32) 

uiso= D- uc                                                                                    (3.33) 

The abutment displacement equals the total bridge displacement. 

ua = D                                                           (3.34) 

The spectral displacement D is a function of the bridge damping ratio, which is 

calculated from the effective damping in the isolator.  The effective damping ratio of the 

elastic-perfectly plastic isolator is calculated by equating the energy dissipation of the 

hysteretic loop with the energy dissipated in viscous damping (Figure 3.2) (Chopra, 

2000). 

The damping ratio of the elastic-perfectly plastic isolator is given by: 

πππ
ς

2

2

1

4

4

1

4

1

,

, ===

isoisoy

isoisoy

s

D

uF

uF

E

W
 = 0.63                            (3.35) 
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Figure 3.2 Definition of energy dissipation WD and strain energy Es for nonlinear 

                         isolator. 

 

where Es is the strain energy and WD is the energy dissipated in one hysteresis cycle.  The 

damping ratio of isolation devices is calculated to be 63% and independent of 

displacement when the devices are elastic-perfectly plastic. A similar procedure is used to 

estimate the effective damping ratio of the whole bridge, whereby strain energy Es of the 

whole bridge replaces that of the elastoplastic device.  

Es, bridge = Fua / 2                                                       (3.36)  

ξeff = 
















a

isoy

uF

F
iso, u2

π
                                              (3.37) 
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The linear elastic strain energy is used, which will lead to a conservative estimate 

of the damping ratio.  Again, ξeff  is constrained to be at least 5% such that it does not fall 

below the damping ratio in a conventional bridge. 

Note that the procedure to calculate ξeff  is iterative because the forces and 

displacements depend on ξeff . An initial damping ratio of 5% is assumed and the 

procedure is terminated after one iteration.  Table 3.2 summarizes the equations used to 

evaluate the bridges with different base conditions. 

Increased energy dissipation is an important part of the seismic isolation concept. 

Figure 3.3(a), (b), (c) and (d) show the effective damping ratios computed from 

Equations (3.25) and (3.37) as a function of αk and Tn for linear and nonlinear partial 

isolation. From these figures, the effective damping ratio is observed to be 5% when αk is 

very small. The effective damping ratio of linear partial isolation increases with 

increasing αk and increasing Tn but decreases when Tiso increases. The effective damping 

ratio of nonlinear partial isolation increases when αk increases and decreases when Tn 

increases, expect in short period range which is the constant acceleration part of the 

spectrum. However, the isolation period does not much influence the effective damping 

ratio for nonlinear partial isolation compared with linear partial isolation.  The partial 

isolation is expected to be most effective when the effective damping ratio is 

substantially larger than 5%. 
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Table 3.2 Summary of static procedure 

Partial  Isolation 

Conventional Full Isolation 

Linear nonlinear 

R=3 R=1 R=1 R=3 

KFB= 

2
2










nTg

W π
 KFB= 

2
2










nTg

W π
 KFB= 

2
2










nTg

W π
 KFB= 

2
2










nTg

W π
 

Kc= KFB  αk Kc= KFB  αk Kc= KFB  αk Kc= KFB ×  αk 

Ka= KFB (1-αk) Ka= KFB (1-αk) Ka= KFB (1-αk) Ka= KFB (1-αk) 

- Kiso= 

2
2












isoTg

W π
 Kiso = k

isoTg

W
α

π
2

2








 Kiso = k

isoTg

W
α

π
2

2








 

- ξeff = isoξ  ξeff = 










isoT

effT
kisoαξ  ξeff = 





















auF

isoyF isou,2

π
 

- Keff =  
 isoK

 iso

+FBK

KFBK
 Keff = 

isoKcK

isoKcK

+
 + Ka Keff = 

isoKcK

isoKcK

+
 + Ka 

- Teff =
geffK

W
π2  Teff =

geffK

W
π2  Teff =

geffK

W
π2  

D =  

g

nTSC

24

2

π
( Tn > T* ) or 

g

nTSC

24

2

π
 * [(1-1/R) T*/T+1/R] 

 ( Tn < T* ) 

D=10 Si S1 Teff / Biso D=10 Si S1 Teff / Beff 

D =  

g

nTSC

24

2

π
( Tn > T* ) or 

g

nTSC

24

2

π
 * [(1-1/R) T*/T+1/R]  

( Tn < T* ) 

Cs = A

nT

AS
5.2

3/2

2.1
≤ , 

F = CsW 

F= KeffD F= KeffD 
Cs = A

effT

AS
5.2

3/2

2.1
≤ , 

F = CsW 

Fy = 
R

F
 Fy = 

R

F
 Fy = 

R

F
 Fy = 

R

F
 

Fy,a = Fy (1-αF) Fy,a = Fy (1-αF) Fy,a = Fy (1-αF) Fy,a =Fy,a(con) 

- - - Fy,iso=Fy-Fy,a 

Fy,c = FyαF Fy,c = FyαF Fy,c = FyαF Fy,c=1.1Fy,iso 

- uiso =
 isoK

F
 

uiso = 

cK

isoK

D

+1

 
uiso= D- uc 

uc =D uc = F/ KFB uc = D- uiso uc =Fy,iso/Kc 

ua = D ua=F/ KFB ua = D ua = D 
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Figure 3.3(a) - (d) Comparison of ζeff for linear and nonlinear partial isolations. 
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CHAPTER 4 

EVALUATION OF PARTIAL ISOLATION BASED ON STATIC ANALYSIS 

 

 

In this section, the linear and nonlinear partial isolation approaches are evaluated 

in their ability to reduce column displacement and force demands relative to a 

conventional bridge and a fully isolated bridge for a wide range of bridge parameters. 

Abutment displacement demands are expected to increase with partial isolation, but must 

be limited to reasonable values. Throughout this chapter, the demands in the fully and 

partially isolated bridge, computed from the static equations developed in Chapter 3, are 

presented in normalized from relative to the demands in a conventional bridge. However, 

to provide some perspective, Figure 4.1(a)-(d) show the absolute values of the 

displacement and force demands of the column and abutment, varying with the 

substructure period (Tn) when αk=0.7 and Tiso=3 sec for different bridge models.  

Figures 4.2 and 4.3 illustrate the column displacement ratios of different. isolation 

approaches relative to conventional bridge ( uc / uc,con ) , considering variation of αk 

(Figure 4.2) and Tn (Figure 4.3).  The column displacement trends as a function of αk are 

similar for full isolation (Figure 4.2(a)) and linear partial isolation (Figure 4.2(b)): the 

column displacement ratio is essentially independent of the column stiffness distribution 

αk and decreases with increasing isolation period Tiso, but converges to a lower bound as 

the isolation period becomes very large. The column displacement reduces a lot 

compared to a conventional bridge.  

For nonlinear partial isolation the column displacement demand ratio ( uc / uc,con )  

(Figure 4.2(c)), decreases sharply with increasing αk  and is not very sensitive to the 

isolation period.  Increasing column participation (αk) causes the effective period to 
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increase for nonlinear partial isolation, which reduces the yield force and hence the 

column displacements since the columns remain elastic. Nonlinear partial isolation is not 

effective to improve the performance of bridges with very low column stiffness.  Thus in 

this study, small column participation (αk< 0.2) and low natural periods (Tn<0.2) are not 

discussed.   
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Figure 4.1(a) - (d) Comparison of force and displacement demands for different bridges. 
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For a specified αk =0.7 and Tiso=3 sec, increasing the isolation damping ratio ζiso 

further lowers the column displacements of a fully isolated bridge (Figure 4.3(a)), but has 

little influence on the column displacements for linear partial isolation (Figure 4.3(b)). 

Increasing Tn causes the column displacement ratio to increase for both full and linear 

partial isolation but still remain well less than 1. 

For nonlinear partial isolation (Figure 4.3(c)), the column displacement ratio  

decreases a little bit in the region Tn <0.4, then increases beyond Tn = 0.6 sec. In the low 

period region ( T< T*), the effective period of nonlinear partial isolation is larger than the 

natural period of the conventional bridge, so the column displacement demands for 

nonlinear partial isolation increase more slowly than for a conventional bridge. 
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Figure 4.2 (a) - (c) uc / uc,con vs. αk for different isolation systems. 

 

 



 

 

29 

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
n
 (sec)

u
c
 /

 u
c
,c

o
n

(a) Full (αk
=0.7, T

iso
=3 sec)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
n
 (sec)

(b) Linear partial (αk
=0.7, T

iso
=3 sec)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
n
 (sec)

(c) Nonlinear partial (αk
=0.7, T

iso
=3 sec)

conventional

ζ
iso

=5%

ζ
iso

=10%

ζiso
=20%

ζiso
=30%

conventional

nonlinear

 

Figure 4.3 (a) - (c) uc / uc,con vs. Tn for different isolation systems. 

 

Overall, the column displacement demand uc is very small compared with a 

conventional bridge for both partial isolation approaches assuming the columns have 

substantial stiffness participation (αk =0.7). For linear partial isolation, the isolation and 

substructure periods determine the reduction in column displacement, while for nonlinear 

partial isolation, the column stiffness ratio (αk) determines the reduction of column 

displacement. In general, partial isolation is as effective as full isolation in reducing 

column displacement demands. 

Figures 4.4 and 4.5 present the column yield force relative to conventional bridge 

(Fy,c / Fy,c(con)) for the various isolation approaches.  While full isolation generally reduces 

the column force demand below that of a conventional bridge unless the period shift is 

insufficient (Figure 4.4(a)), linear partial isolation is ineffective in reducing the force 
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demand in the columns below that of a conventional bridge over any range of parameters 

(Figure 4.4(b), 4.5(b)). The column yield force ratio decreases with increasing isolation 

period and with increasing effective damping ratio, but the column yield force ratio is 

never less than 1. The main reason is that the period shift and increase in damping of 

partial isolation is modest compared to full isolation.  Thus, the decrease in force demand 

due to modification of system properties can never overcome the substantial increase 

associated with decreasing R from 3 to 1, as assumed for linear partial isolation. 

For nonlinear partial isolation the force demand in the columns are reduced 

effectively when αk > 0.4 (Figure 4.4(c)), and when  Tn > 0.3sec for Tiso= 3sec (Figure 

4.5(c)).  Nonlinear partial isolation is more effective in reducing column displacements 

since it uses the same force reduction factor as a conventional bridge and benefits 

positively from slight changes in stiffness and damping. 
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Figure 4.4 (a) - (c) Fy,c / Fy,c(con) vs. αk for different isolation systems.  
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Figure 4.5 (a) - (c) Fy,c / Fy,c(con) vs. Tn for different isolation systems.  

 

Figure 4.6 (a)-(c) and Figure 4.7 (a)-(c) illustrate the abutment displacement 

demands of fully and partially isolated bridges relative to the conventional bridge (ua/ 

ua,con) for various parameters. For the fully isolated bridge, the abutment displacement is 

identical to the column displacement, and decreases substantially compared to a 

conventional bridge (Figure 4.6(a), 4.7(a)). However, the abutment displacement ua in a 

partially isolated bridge always exceeds that of a conventional bridge, for all values of αk 

(Figure 4.6 (b), (c)) and Tn (Figure 4.7 (b), (c)). This behavior is expected, since partial 

isolation is increasing the overall displacement demands of the bridge. The acceptable 

abutment displacement or ductility demand under this approach is at the discretion of the 

designer, but very large demands, on the order of 2-3 times larger than in a conventional 

bridge, are probably unacceptable.  
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Abutment displacement ratio ua/ ua,con for both linear and nonlinear partial 

isolation increases with increasing αk for a fixed Tiso and also increases with increasing 

Tiso for a fixed αk.  Tiso=1 sec is very effective in limiting the abutment displacements; for 

periods Tiso>2 sec the effect of the period is small. 

Overall the abutment displacement ratio is generally larger for linear isolation 

than nonlinear isolation because it has a smaller effective damping ratio (Figure 3.4). 

Appropriately, increasing the effective damping ratio reduces the displacement demand 

of the abutment, but the overall increase in bridge displacement that underlies the concept 

of response modification using isolation devices is inevitably passed to the abutments if 

they are not isolated.  
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Figure 4.6 (a) - (b) ua/ ua,con vs. αk for different isolation systems. 
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Figure 4.7 (a) - (c) ua/ ua,con vs. Tn for different isolation systems. 

 

Finally, Figures 4.8 and 4.9 present the force demands of the abutments relative to 

a conventional bridge (Fy,a / Fy,a(con)) for different isolation options.  Since the distribution 

of abutment forces is unaffected by full isolation, the abutment force ratio of the fully 

isolated bridge is identical to the column force ratio of the fully isolated bridge (Figure 

4.8(a), 4.9(a) vs. Figure 4.4(a), 4.5(a)). For linear partial isolation, the force demands of 

the abutments are not reduced below the force demands of the conventional bridge over 

any range of parameters. The abutment force decreases as the stiffness and strength 

distribution shifts from the abutments to the columns (αk increases) (Figure 4.8(b)). The 

abutment force decreases rapidly with increasing period up to about Tn =0.5 sec, and then 

decreases more moderately thereafter (Figure 4.9(b)). The yield force of the abutment for 

nonlinear partial isolation is the same as that of a conventional bridge as imposed by the 

design procedure (Figure 4.8(c) and Figure 4.9(c)). 
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In summary, Figures 4.1-4.9 have shown that a linear partial isolation is not an 

effective strategy because it generally increase force demands in both the columns and 

abutments.  On the other hand, nonlinear partial isolation can be effective to reduce the 

force and displacement demands of the columns and abutments in certain parameter 

ranges. For larger αk (>0.5) and larger Tn (>0.4sec), the effectiveness of nonlinear partial 

isolation is close to full isolation for reducing the yield force and displacement of 

columns. However, the displacement demands of the abutments in the partial isolation 

can not be reduced.  While the isolation period has little influence on column 

displacements and forces, a smaller isolation period may be an effective strategy to 

minimize abutment displacements. 
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Figure 4.8(a) - (c)  Fy,a / Fy,a(con) vs. αk for different isolation systems. 
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Figure 4.9(a) - (c) Fy,a / Fy,a(con) vs. Tn for different isolation systems. 

 

Partial isolation may be viewed as being effective if the performance of the 

columns is viewed as being more critical to the life safety of the bridge; that is, a bridge 

is unlikely to collapse due to abutment failure. The strategy of nonlinear partial isolation 

is investigated further through response history analysis. 
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CHAPTER 5 

VERIFICATION BY RESPONSE HISTORY ANALYSIS 

 

 

In this chapter, the peak response of partially isolated bridges is computed by time 

history analysis using OPENSEES, and compared to the response using static analysis, as 

validation of the simplified static evaluation procedure for nonlinear partial isolation.  

Time history analysis results are compared to static analysis results for conventionally 

and fully isolated bridges as well. 

 

5.1 Ground Motions to Simulate the Design Spectrums 

 

Ground motions are selected to be representative of the design spectrum used for 

conventional and isolated bridge (Figure 3.1). Spectrum-compatible time histories may be 

generated by scaling recorded ground motions of past earthquakes such that their spectra 

closely match the design spectral amplitude for the site at a given natural period. An 

ensemble of 20 motions has been selected for this study, which were originally generated   

for the SAC Steel project. The motions represent a 2% in 50-year probability of 

exceedance for the Los Angeles region, which is seismically similar to Salt Lake City.  

The median displacement spectrum of the SACLA 2 in 50 ensembles is plotted along 

with the design spectrum for conventional (Figure 5.1 (a)) and isolated bridges (Figure 

5.2 (a)). 

Based on the difference between the design and SAC LA displacement spectrum 

(Figure 5.1 (b) and Figure 5.2(b)), the motions are scaled by a period dependent 

amplification factor (Table 5.1) so that the median spectrum of the ground motion 

histories matches the design spectral displacement for each natural period. 
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Figure 5.1(a) and (b) Comparison of median spectrum and conventional design spectrum. 
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Figure 5.2(a) and (b) Comparison of median spectrum and isolated design spectrum. 
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Table 5.1 Amplification factor for different base conditions 

Amplification factor 
Period (sec) 

conventional isolated 

0.1 1.1589 - 

0.2 0.96425 - 

0.3 0.7538 - 

0.4 0.8072 - 

0.5 0.81892 - 

0.6 0.77958 - 

0.7 0.70862 - 

0.8 0.66952 - 

0.9 0.70237 - 

1 0.77657 0.9182 

1.1 0.79055 0.90551 

1.2 0.74664 0.83076 

1.3 0.70061 0.75902 

1.4 0.69642 0.73607 

1.5 0.71009 0.73346 

1.6 0.71158 0.71935 

1.7 0.72758 0.72082 

1.8 0.75934 0.73809 

1.9 0.77715 0.7419 

2 0.79554 0.74659 

2.1 0.82724 0.76381 

2.2 0.86286 0.78444 

2.3 0.89873 0.80503 

2.4 0.92829 0.81979 
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Table 5.1 (continued) 

 
2.5 0.9473 0.82528 

2.6 0.96399 0.82891 

2.7 0.97739 0.82992 

2.8 0.9979 0.83713 

2.9 1.0262 0.85086 

3 1.0655 0.87355 

3.1 1.1154 0.90452 

3.2 1.1667 0.93616 

3.3 1.2214 0.96998 

3.4 1.2673 0.99648 

3.5 1.3071 1.0179 

3.6 1.354 1.0446 

3.7 1.4072 1.0757 

3.8 1.4521 1.1002 

3.9 1.488 1.1177 

4 1.5201 1.1323 

 

 

5.2 OPENSEES Model Description for History Analysis 

 

A simple mass-spring model of each bridge is developed in OPENSEES for 

response history analysis. For each bridge, the total mass of the bridge is lumped on top 

of a spring assemblage that represents the particular combination of column, abutment, 

and isolator elements. 

For the conventional bridge, two springs are assembled in parallel to represent the 

substructure (column and abutment) and a linear dashpot that provides 5% damping  
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(Figure 5.3). The substructure spring has elastic-perfectly plastic behavior as provided by 

the material model.  

For the fully isolated bridge, a spring representing the isolation system is 

assembled in series with the spring assemblage representing the conventional bridge 

(Figure 5.4). The isolation spring is linear which also represents the damper of the 

isolator (ζ=5%, 10%, 20%, 30%), while the substructure element is elastic-perfectly 

plastic. As before, an additional linear dashpot is added to the substructure to represent 

the 5% viscous damping. 

 

M

5% Damping element Substructure element

 

Figure 5.3 Model of conventional bridge. 

 

Figure 5.4 Model of full isolation system. 
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Figure 5.5 Model of nonlinear partial isolation system. 

 

For the nonlinear partially isolated bridge, springs representing the isolator and  

 

column are assembled in series, and in parallel with the abutment (Figure 5.5). Because  

 

the yield force of the column is 10% greater than the yield force of the isolator, the  

 

column can never yield and is kept elastic in this model. The spring representing the  

 

isolation system and the abutment are elastic-perfectly plastic. A linear dashpot is again  

 

added to the whole bridge to represent the 5% viscous damping. 

 

 

5.3 Comparison of the Results for the Static and History Analysis 

 

Response history analysis to the SAC LA ensemble of motions scaled as 

described previously is performed for each of the bridges. The peak deformation and 

force in each element for each ground motion is recorded. The peak response x  is 

generated by computing the geometric mean on the individual observations xi: 

exp( ln( ) / 20)i

i

x x= ∑                                                (5.1) 

In this section, resulting displacement demands from the static (uc or ua) and  

response history analysis (uc,h or ua,h) are compared. These comparisons indicate  
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the accuracy of the static analysis for different bridge models. The static and history  

analysis results are compared for conventional and isolated bridges as a reference for  

interpreting the comparable comparisons for partially isolated bridges. 

For a conventional bridge, the displacement estimated by static analysis is  

generally reasonably accurate, i.e. for Tn> 0.4sec the static displacement is within 20% of  

the median displacement determined by history analysis (Figure 5.6).  Certainly, the  

equations that account for strength and ductility (Equation (3.10)) have been well  

established. 

The static analysis method appears to be very unconservative for a fully isolated 

bridge (Figure 5.7), especially for long isolation periods or short superstructure periods 

where isolation is expected to reduce displacement demands to essentially zero.  
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Figure 5.6 Comparison of the static and response analysis for conventional bridge. 
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The observed behavior is a result of substructure yielding that is not accounted for 

in the static analysis.  Since the motions have been scaled to match the design spectrum 

on average, substructure yielding is expected to occur approximately 50% of the time 

(whenever the ground motion exceeds the design spectrum). 

Compared to full isolation, static analysis of partially isolated bridge gives much 

better results over a large range of parameters. The ratio of abutment displacements 

determined by static analysis and history analysis (ua /ua,h)  varies from 0.8 to 2.6 (Figure 

5.8(a) and (b)). When the column stiffness ratio (αk) is greater than 0.4 or Tn is greater 

than 0.4 sec, which represents the parameter range where partial isolation is most 

effective, the ratio is close to 1. The ratio of column displacements determined by static 

analysis and history analysis (uc /uc,h) varies from 0.7 to 1 (Figure 5.8(c) and (d)).  Thus, 

column displacements estimated by static analysis are more accurate for partial isolation 

than for full isolation, but still tend to be unconservative compared to a history analysis. 
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Figure 5.7 Comparison of the static and response analysis for fully isolated bridge. 
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Figure 5.8 (a)-(d) Comparison of static and response analysis for partial isolated bridge. 
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In summary, we conclude that the static analysis procedure developed here for 

partially isolated bridges is more accurate than the established procedure for fully isolated 

bridge but not as accurate as the established procedure for conventional bridges. Because 

a procedure has not completely been established for partially isolated bridge, the 

evaluation procedure proposed here should be used for preliminary evaluation only.  
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CHAPTER 6 

PRACTICAL EXAMPLE 

 

 

6.1 Properties and Modeling of the Conventional Bridge 

 

In this chapter, a representative bridge in the state of Utah is chosen to 

demonstrate the partial isolation approach developed in the previous chapters. 

The bridge is a hypothetical 2-span continuous reinforced concrete that is 

representative of a typical freeway overcrossing. Each span is 130 ft and the length of the 

whole bridge is 260 ft. The superstructure consists of an 7.5” thick (46’-10” wide) 

reinforced concrete slab supported on four rectangular reinforced concrete girders spaced 

at 10’- 8”. The total weight of the superstructure is 3318 kips. The superstructure is fixed 

in the transverse direction and in the longitudinal direction at each of the two piers.  The 

abutments are integral. The center pier is a two-column bent with identical 4’ diameter 

circular reinforced concrete columns.  Each column is fixed (Figure 6.1). 

 

 

Figure 6.1 Two spans bridge model. 
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The stiffness and strength of the abutments are estimated based on the passive 

pressure of the surrounding soil. The soil type in this problem is close to sand; thus 2H/3 

is used for passive pressure.  The effects of the piles beneath the abutment are also 

included in abutment stiffness, which leads to: 

pppp CNLHpP ... +=                                                  (6.1) 

where Pp is the total lateral capacity of the abutment-pile system, H is the height of the 

abutment, pp is the passive pressure, L is the width of the backwall, Np is the number of 

piles, and Cp is the capacity of each pile. The piles are assumed to yield when the soil 

reaches its passive pressure.  The displacement at which soil reaches to its passive 

pressure is called mobilization displacement, recommended to be 0.02H (Buckle et al., 

2006b).  Thus, the effective stiffness is: 

 
H

P
K

p

eff
02.0

=                                                      (6.2) 

For this bridge, the width of the backwall L is 46’10’’, the height of abutment H is 

6 ft, and the capacity of each pile is 40 kips. When the bridge moves longitudinally, one 

abutment is in compression and the other is in tension. The compression and tension 

capacity of each abutment-pile system in the longitude direction is  

pppcomlongp CNLHpP ...__ +=  

                                                  = 404)63/2(68333.46 ⋅+⋅⋅⋅     

                                       = 1284 kips                                                         (6.3) 

pptenlongp CNP .__ = =160 kips                                            (6.4) 

10700
602.0

1284
__ =

⋅
=comlongaK  kips/ft                                       (6.5) 
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3.1333
602.0

160
__ =

⋅
=tenlongaK  kips/ft                                       (6.6) 

A similar procedure is applied in the transverse direction, but the transverse 

stiffness of the abutment is provided by wing walls.  It is proposed to take the effective 

width as the length of the wing walls multiplied by a factor of 8/9 to account for 

differences in participation of both wing walls (Priestley, Seible and Calvi, 1996). Given 

a wingwall width of 15 ft, the compression capacity of each abutment-pile system in the 

transverse direction is  

kipsP wingwallp 320156
9

8

3

2 2 =⋅⋅⋅=                                   (6.7) 

kipsP pilesp 160404 =×=                                          (6.8) 

transpP _ =320+160 = 480 kips                                          (6.9) 

ftkipsK transa /4000
602.0

480
2/_ =

⋅
=                                   (6.10) 

The assumed column diameter is 4 ft and the height is 15 ft. A 1% steel ratio is  

assumed, and typically large reinforcement bars (#9 or #11) are selected.  Based on these 

parameters, the gross area of each column is 22 4
44

ππ
=D =12.5664 ft

2
, the area of the 

steel is
22

0956.18125664.05664.1201.0 inft ==⋅ .  Assuming #11 bars (with area =  

1.56 in
2
), 12 bars are needed for each column.  

Ultimate moment capacities for the columns are obtained from the computer  

generated column interaction diagrams.  Moment capacities depend on axial loads while  

axial loads in turn depend on moment capacities.  The shear force Vn sustained by each  

column is given by: 

H

M
V n

n =
                                                             (6.11) 
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where H is the height of the column, assuming 15ft, Mn is the moment capacity on one  

side of column. Wherein the total dead load of the deck is 3318.2 kips, each column  

carries about 531.3 kips axial load. Determined from computer analysis, the capacity of  

each column (Mn) is about 27648 kips.in. From Equation 45, the shear force of each  

column Vn=153.6 kips, so the corresponding total yield force of the columns is Fy,c =  

2Vn=307.2 kips. 

The effective flexural rigidity of a severely cracked structural concrete column 

(Buckle et al., 2006b) is:  

Y

n
effc

DM
IE

ε2

'
=                                                       (6.12) 

where 'D  is the distance between outer layers of longitudinal reinforcement, and  

syy Ef /=ε  is the yield strain of steel reinforcement.  

'D =48-3-1= 44 in                                                     (6.13) 

 

ksif y 36=                                                            (6.14) 

0012.030000/36 ==yε                                               (6.15) 

8100688.5
0012.02

4427648
×=

⋅
⋅

=effc IE                                  (6.16) 

The stiffness of each column is: 

  ftkipsinkips
L

IE
K

effc

c /12516/1043
12

2/
3

===                          (6.17) 

The total stiffness (K), stiffness and yield force distribution of columns, 

displacement and period of the whole bridge (Tn) in both directions should be: 
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ftkipsKKK
comlongatenlongalonga /3.120333.133310700

_____ =+=+=                 (6.18) 

ftkipsKKK
longaclong /370653.120332*12516

_
=+=+=                  (6.19) 

ftkipsKKK
transactrans /330322)400012516(

_
=⋅+=+=                    (6.20) 

6754.037065/212516/_ =⋅== longclongk KKα                               (6.21) 

7578.033032/212516/_ =⋅== transctransk KKα                               (6.22) 

kipsPPF tenlongpcomlongplongay 14441601284_____, =+=+=                 (6.23) 

kipsPF transptransay 9602 __, ==                                           (6.24) 

2985.0)14444.614/(4.614)/( _,,,_ =+=+= longaycycylongF FFFα              (6.25) 

3902.0)9604.614/(4.614)/( _,,,_ =+=+= transaycycytransF FFFα             (6.26) 

sec3315.02_ ==
long

longn
K

m
T π                                                (6.27) 

sec3509.02_ ==
long

transn
K

m
T π                                                (6.28) 

inchulong 857.2=                                                             (6.29) 

inchutranss 055.3=                                                            (6.30) 

Based on the previous calculations, 3D renderings of the bridge model, created 

using the SAP2000 software, are shown in Figure 6.2.  

Three uncoupling springs represent each abutment elements: tension capacity is  

 

1284 kips and compression capacity is 160 kips, yield displacement is 0.12 ft for  
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horizontal translate spring in longitude direction; in the transverse direction both tension  

 

and compression capacity is 480 kips, and yield displacement is also 0.12 ft; the rotation  

 

spring about the vertical direction should be longKL )12/( 2 , and L is the width of the back  

 

wall. Here the spring about vertical direction is assumed be linear 731120 kips.ft.  

 

The deck is rigid compared with the substructures. By static analysis, the total 

weight of this conventional bridge (W) is 3318 kips. By eigenvalue analysis using 

SAP2000, the natural period is 0.37216 sec in the longitude direction, and 0.39523 

second in the transverse direction, which are slightly longer than the periods estimated by 

hand calculations. The maximum displacement of the substructure estimated according to 

the updated periods is 2.756 inches in the longitude direction and 3.147 inches in the 

transverse direction, which represents only a minor change. 

 

 

Figure 6.2 SAP2000 model of the conventional bridge. 

 

 

 

 



 

 

52 

6.2 Modeling and Analysis of the Nonlinear Partially Isolated Bridge 

 

 

Next, nonlinear partial isolation is applied to this existing bridge model by adding 

isolators at the abutments, and the bridge is analyzed by response history analysis using 

SAP 2000.  The response history analysis of the partially isolated bridge using a more 

realistic model provides an additional check of the results computed by static analysis.   

Table 6.1 shows the properties of the partially isolated bridge based on the static 

design procedure of nonlinear partial isolation.  

 

Table 6.1 Properties of nonlinear partially isolated bridge 

 

Direction 
Parameters 

Longitude Transverse 

Tn (sec) 0.37216 0.39523 

kα  0.591 0.693 

Tiso (sec) 3 3 

Teff (sec) 0.575 0.700 

ζeff (%) 5 6.808 

Fy,  (kips) 1916.231 1450.92 

Fy,a  (kips) 1444 960 

ua (inch) 5.284 6.287 

Fy,iso  (kips) 472.231 490.92 

uiso  (inch) 5.61 5.961 

Fy,c  (kips) 519.455 540.012 

uc (inch) 0.326 0.326 

 



 

 

53 

The periods Tn and column stiffness ratios kα  represent the updated values from 

eigenvalue analysis of the conventional bridge.  An isolation period of Tiso = 3 seconds 

is assumed, and the effective periods are estimated by hand calculation 0.644 sec in the 

longitudinal direction and 0.782 seconds in the transverse direction.  The required isolator 

yield force Fy,iso  is computed by subtracting Fy,a  for the conventional bridge from the new 

Fy.   

The SAP2000 model of the partially isolated bridge is created by adding elastic 

plastic springs between the superstructure and columns to represent the isolators (Figure 

6.3). Because the isolator is a bidirectional coupled element with the same yield force in 

each direction, we select the isolator properties based on the larger value Fy,iso = 490.92 

kip in the transverse direction, which ensures that a force reduction factor of no more 

than 3 in each direction. The yield force of each isolator is 245.46 kips and yield 

displacement is 0.1 cm. The column element is assigned to be elastic since the column is 

guaranteed not to yield. The coefficient of friction of the elastic plastic slider is µ= 

Fy,iso/Wiso =245.46/531= 0.4, which may be higher than a typical slider can provide.  

Figure 6.4 illustrates representative force-deformation behavior of the isolator element, 

where the bidirectional coupling is apparent through the circular interaction surface 

shown in the plot of Fx versus Fy. 

The bridge is analyzed again using the SACLA 2 in 50 suites of motions, which 

are now grouped into ten orthogonal pairs.  A single scale factor (0.793) is applied to the 

entire set of motions, which is determined by minimizing the least square difference of 

the median spectrum and the design spectrum over the period range of 0.1 to 3 seconds.  
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A single scaling factor is chosen, rather than a period dependent scaling factor, because 

the actual period of the bridge is more complex to determine. 

Figure 6.4 illustrates representative force-deformation behavior of the isolator 

element, where the bidirectional coupling is apparent through the circular interaction 

surface shown in the plot of Fx versus Fy. 

Table 6.2 lists the maximum isolator, abutment and column displacements for 

each pair of motions, and also tabulates the median values. For the partially isolated 

bridge, the median displacements of isolator and abutment are larger than those predicted 

by static analysis, and the median displacements of column are smaller. Comparing with 

the SAP2000 results of conventional bridge, the displacement of abutment increases and 

the displacement of column decreases, which are consistent with the static design 

procedures. 

 

 
 

Figure 6.3 SAP2000 model of the partially isolated bridge. 

 

 

 



 

 

55 

 

 

Figure 6.4 Force deformation capacity curve of isolator resulting from SAP2000. 

 

Table 6.2 Results of SAP2000 analysis for the partially isolated bridge 

 

uiso (inch) uc (inch) ua (inch) 

motion longitude transverse longitude transverse longitude transverse 

1 17.88 10.71 0.13 0.13 17.87 10.59 

2 2.12 4.28 0.13 0.13 2.133 4.28 

3 8.827 11.02 0.13 0.13 8.837 10.88 

4 6.716 6.38 0.13 0.13 6.725 6.352 

5 2.454 5.04 0.13 0.13 2.455 5.034 

6 5.515 10.66 0.13 0.13 5.524 10.44 

7 3.201 5.15 0.13 0.13 3.21 5.128 

8 11.71 11.4 0.13 0.13 11.72 11.4 

9 5.433 13.24 0.13 0.13 5.424 13.29 

10 1.916 4.6 0.13 0.13 1.925 4.678 

average 6.5772 8.248 0.13 0.13 6.5823 8.2072 
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Because the column force demands are reduced through partial isolation, the 

bridge columns should be redesigned to see a savings in material costs and also 

foundation demands.  Because a redesign of the columns would affect their stiffness, 

iteration would be required to determine the final response of the bridge.  This design 

iteration is not performed here.  
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CHAPTER 7 

CONCLUSION 

 

 

This study to evaluate the effectiveness of the partial isolation in the bridges has led 

to the following conclusions: 

1. In the static analysis of partial isolation systems, two kinds of isolation systems 

were proposed: linear and nonlinear isolations. Although linear partial isolation 

reduces the displacement demand of the columns, the force demands of the 

columns and abutments are always increased due to the smaller force reduction 

factor. Nonlinear partial isolation effectively reduces the displacement demand of 

the columns and for some parameters the force demand of the columns can also 

be reduced. In addition, the force demand of the abutments is the same as for a 

conventional bridge, leading to higher abutment ductility demands. Nonlinear 

partial isolation is an effective technique that can be considered if lowering 

columns demands is a high priority, and some performance in the abutments can 

be sacrificed. 

2. Full isolation is a very useful way to reduce the effect of the earthquake and 

accepted widely. Nonlinear partial isolation was shown to perform as effectively 

as full isolation to reduce the demand of the columns when the natural period of 

the substructure and the column stiffness ratio are large. For retrofit applications 

where the abutment connections are integral, making full isolation impractical, 

partial isolation may be a cost effective way to reduce the demands on the 

columns. 
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3. Compared to a fully isolated bridge, the partially isolated bridge performance is 

not that sensitive to the isolation period. A very large isolation period does not 

improve the performance of the bridge, where a smaller isolation period limits 

abutment displacement demands. 

4. The partial isolation system cannot effectively reduce the displacement demand of 

the abutments under any circumstances. Thus, improvement of the ductility 

capacity of the abutments is an added consideration. 

5. Response history analysis in OPENSEES induced similar response of the bridge 

as predicted by static analysis to the design spectrum. From the results of the time 

history analysis, the static analysis procedure for nonlinear partial isolation is a 

reliable first approximation.  

One of the key questions this study has tried to solve is if the partial isolation 

technique is an effective way to improve the response of the bridge during an estimated 

earthquake. 

Requiring the isolation devices in partial isolation to elastic-plastic guarantees 

reduced yield force and displacement of the columns. These types of devices are not 

preferred for full isolation, because the displacement demands are large and uncertain, 

but the abutment stiffness limits the displacement demands for a partially isolated bridge. 

Unfortunately, the approach causes excessive ductility demand of the abutments, which is 

a challenge to be dealt with for realistic application. The information in this study is a 

starting point for future investigation to apply the concept to more realistic bridges with 

complex abutment and foundation force- deformation behavior, as well as 

transverse/longitudinal effects. 



 

 

59 

REFERENCES 

 

 

AASHTO. 1999. Guide specifications for seismic isolation design, second edition, 

American Association of State Highway and Transportation Official, 

Washington, D. C. 

 

 AASHTO. 2002. Standard specifications for highway bridges. American Association of 

State Highway and Transportation Official, Washington, D. C. 

 

Boroschek, R. L., María O. Moroni, and Mauricio Sarrazin. 2003. Dynamic 

characteristics of a long span seismic isolated bridge. Engineering Structures 25 

(12): 1479-1490. 

 

Buckle, I.G., Michael C. Constantinou, Mirat Diclli, and Hamid Ghasemi. 2006a. Seismic 

isolation of highway bridges. MCEER Publications, State University of New 

York, Buffalo. 171 p. 

 

Buckle, I., Iran Friedland, John Mander, Geoffrey Martin, Richard Nutt, and Maurice 

Power. 2006b. Seismic retrofitting manual for highway structures: Part 1-bridges.   

MCEER Publications, State University of New York, Buffalo. 583 p. 

 

Chopra, A. K. 2000. Dynamics of structures: Theory and applications to earthquake 

engineering. Second ed. Prentice Hall, Upper Saddle River, NJ. 844 p.   

 

Constantinou, M. C., and Joseph K. Quarshie. 1998. Response modification factors for 

seismically isolated bridges.  MCEER Publications, Buffalo, 92 p. 

 

Friedland, I. M., Ronald L. Mayes, and Michel Bruneau. 2001. Recommended changes to 

the AASHTO specifications for the seismic design of highway bridges. Report on 

Progress and Accomplishments: 2000-2001. MCEER Publications, State 

University of New York, Buffalo. P. 41-50. 

 

Lee, G. C., Yasuo Kitane, and Ian G. Buckle. 2001. Literature review of the observed 

performance of seismically isolatedBridges. Report on Progress and 

Accomplishments: 2000-2001, MCEER Publications, State University of New 

York, Buffalo. P. 51-61. 

 

Priestley, M.J.N. F., Seible, and G.M. Calvi. 1996.  Seismic design and retrofit of 

bridges. John Wiley & Sons, Inc.,  New York, 686p. 

 

Shen, J., Meng-Hao Tsai, Kuo-Chun Chang,  and George C. Lee.  2004. Performance of 

a seismically isolated bridge under near-fault earthquake ground motions.  

Journal of Structure Engineering, 130(6): 861-868. 

 



 

 

60 

Tsopelas, P., and Michael C. Constantinou. 1997. ASCE study of elastoplastic bridge 

seismic isolation system. Journal of Structure Engineering, 123(4): 489-498.  

 


	Analysis of Effectiveness of Bridges with Partial Isolation
	Recommended Citation

	Microsoft Word - 133197-1217354484-Wenying_thesis_final.doc

