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Abstract—A simple composite analytic expression has been 

developed to approximate the electron range in materials.  The 
expression is applicable over more than six orders of magnitude 
in energy (<10 eV to >10 MeV) and range (10-9 m to 10-2 m), with 
uncertainty of ≤20% for most conducting, semiconducting and 
insulating materials.  This is accomplished by fitting data from 
two standard NIST databases [ESTAR for the higher energy 
range and the electron IMFP (Inelastic Mean Free Path) for the 
lower energies]. In turn, these data have been fit with well-
established semi-empirical models for range and IMFP that are 
related to standard materials properties (e.g., density, atomic 
number, atomic weight, stoichiometry, band gap energy). Simple 
relations between the IMFP and the range, based on the 
continuous-slow-down approximation, are used to merge results 
from the two databases into a composite range expression. A 
single free parameter, termed the effective number of valence 
electrons per atom Nv, is used to predict the range over the entire 
energy span. 
 

Index Terms—range, inelastic mean free path, electron 
scattering, spacecraft charging 
 

NOMENCLATURE 
 

b Stopping power proportionality constant. 
c Speed of light in vacuu. 
CSDA Continuous Slow Down Approximation. 
𝐷̇  Dose rate. 
𝐸� Mean energy lost per collision. 
Eb Electron beam energy. 
Egap Band gap energy. 
EHI, ELO Energies to determine n from the Bethe-Joy 

formula range extremes for NIST databases. 
Emin Energy at the minimum in the mean free 

path curve. 
Emax Energy at maximum secondary electron 

yield, δmax. 
Ep

eff Effective plasmon energy. 
ħ Reduced Planck’s constant. 
Jb Electron beam current density. 
k Empirical constant in the Bethe Joy formula. 
kRIC RIC proportionality constant. 
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MA Atomic weight. 
me Electron rest mass. 
n Stopping power exponent. 
NA Avogadro’s number. 
𝑁𝑉
𝑒𝑓𝑓 Effective number of valence electrons. 

qe Electron charge. 
R Electron range (penetration depth). 
RIC Radiation induced conductivity. 
SCSDA Electron stopping power in CSDA. 
v Electron velocity. 
ZA Atomic number. 
𝛽, 𝛾,𝐶,𝐷,𝑈 Coefficients used in the TPP-2M formula.  
δmax Maximum secondary electron yield. 
ΔSE Secondary electron yield. 
Δ RIC power exponent. 
𝜀0 Permittivity of free space. 
𝜆̅ Inelastic mean free path at 𝐸�. 
𝜆𝑆𝐸 Secondary electron inelastic mean free path. 
𝜆𝐼𝑀𝐹𝑃 Inelastic mean free path. 
λmin Inelastic mean free path at Emin. 
ρm Mass density. 
σRIC Radiation induced conductivity. 
 

I. INTRODUCTION 
he range, R, or maximum distance an electron of a given 
incident energy can penetrate through a material before all 

kinetic energy is lost and the electron comes to rest, is a 
common way to parameterize electron interactions with 
materials.  The range is used in spacecraft charging 
calculations to predict the charge distribution of deposited 
electrons in materials and to model secondary and 
backscattered electron emission.  It is also used to predict the 
distribution of energy deposited by incident electrons as they 
traverse a material; this distribution is further used to model 
radiation induced conductivity.  It is therefore important for 
spacecraft charging models to have a realistic, reasonably 
accurate, and efficient expression to predict the approximate 
range of electron energies commonly encountered in space 
plasma fluxes, from ~10 eV to ~10 MeV.  The expression 
needs to be readily implemented for a wide array of 
conducting, semiconducting and insulating spacecraft 
materials with a minimal number of fitting parameters. 
 The Lichtenberg tree in Fig. 1 offers dramatic visual 
evidence of the validity of the range of electrons in a material.  
The white line seen at the center of the side view results from 
melting of the PMMA plastic target during discharge, as 
electrons deposited in a narrow distribution at a depth of R≈3 
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mm by a monoenergetic ~1 MeV electron beam are released. 

II. THEORY 
The desired range expression can be developed by merging 

well known semi-empirical models for the interaction of 
electrons with materials in different energy regimes by 
employing the continuous-slowing-down approximation 
(CSDA). In the CSDA, the rate of energy loss, 𝑑𝐸 𝑑𝑧⁄  (or 
total stopping power, SCSDA), at every position along the 
penetration path is assumed constant; variations in energy-loss 
rate with energy, E, or penetration depth, z, are neglected. For 
a given incident energy, Eb, the CSDA range is obtained by 
integrating total stopping power over the full penetration depth 
such that 𝐸𝑏 =  ∫ (𝑑𝐸 𝑑𝑧⁄ )𝑅(𝐸𝑏)

0 𝑑𝑧 [1, 2]. 
In  the CSDA with a constant energy-loss rate, 
 

  𝑑𝐸
𝑑𝑧

≡ 𝑆𝐶𝑆𝐷𝐴(𝐸𝑏) = 𝐸𝑏
𝑅� = 𝐸�

𝜆�� = 𝐸𝑚𝑖𝑛
𝜆𝑚𝑖𝑛� (1) 

 
Here 𝐸�  is equal to mean energy lost per collision occurring at 
mean free path  𝜆̅ ≡ 𝜆𝐼𝑀𝐹𝑃(𝐸�), and Emin is the energy at the 
minimum in the inelastic mean free path curve at 
λmin≡λIMFP(Emin). A reasonable approximation for 𝐸� is the 
geometric mean of the effective plasmon energy and the 
bandgap energy, Egap, times an empirically determined factor 
of 2.8 [3]: 

 

 𝐸� = 2.8 ��𝐸𝑝
𝑒𝑓𝑓�

2
+ �𝐸𝑔𝑎𝑝�

2�
1/2

          (2) 
 
The effective plasmon energy, 𝐸𝑝

𝑒𝑓𝑓 ,  for an arbitrary atomic 
or molecular material is defined in analogy with the bulk free-
electron plasma energy for conductors—which is proportional 
to the square root of the number of valance electrons per atom 
or molecule—as   

 𝐸𝑝
𝑒𝑓𝑓 = ħ�𝑁𝑉

𝑒𝑓𝑓𝑁𝐴𝜌𝑚𝑞𝑒2 𝑚𝑒𝜀0𝑀𝐴� �
1 2⁄

        (3) 
 
Following the analogy, the free parameter 𝑁𝑉

𝑒𝑓𝑓 is termed the 
effective number of valence electrons per atom, as discussed 
further below.  Here qe and me are the electron charge and rest 
mass, ħ is the reduced Planck’s constant, ε0 is the permittivity 
of free space, NA is Avogadro’s number, MA is the atomic 
weight, and ρm is the mass density [4]. 

Tabulated values of the electron ranges at high energies 
using the CSDA can be found in the NIST ESTAR database 
spanning incident energies from EHI~20 keV to ~1 GeV [5].   

The CSDA can also be applied to lower energy ranges.  The 
NIST electron inelastic mean free path (IMFP) database [6] 
has tabulated values and semi-empirical fits for the IMFP—
which is closely related to the range as shown below—which 
are valid for energies from ~30 eV to ELO~1 keV.   

Thus, in order to create an analytic expression for the full 
span of desired energies, the problem can be broken into three 
parts according to energy of the incident electron: a high 
energy range for Eb>ELO≡1 keV; a mid-energy range for 
𝐸�<Eb<ELO; and a low energy range for energies Eb<𝐸�. 

A. High Energy Range 
Range values at high energy are tabulated in the NIST 

ESTAR database [5].  The non-relativistic Bethe-Joy range 

Fig. 2. Comparison between the standard power law and the relativistic 
power law for Al. The relativistic power law allows approximations for 
energies up to 10 MeV with percent errors ~20%.  
 

Fig. 3. Comparison between several range approximations and the data 
from the ESTAR database for Al [4]. The IMFP data for Al are also 
plotted, along with the TPP-2M IMFP formula for  λIMFP(E) [5].  
 

Fig. 1. Front (Left) and side (Right) views of a Lichtenberg discharge 
tree. The white line (Right) indicates the narrow distribution of deposited 
charge from a ~1 MeV electron beam at R≈3 mm in a PMMA sample.  
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expression based on the Bethe stopping power formula [7] has 
been extended to lower energies by Joy and Luo [8] and  
Tanuma [9], with the addition of a fixed empirical constant, 
k=0.8 and by replacing the mean excitation energy, J, in the 
Bethe expression with a closely related empirical parameter, 
Jexp.  The resulting Bethe-Joy-Luo expression 
 

 𝑅𝐵𝐽𝐿(𝐸𝑏) = � (4𝜋𝜖0)2𝑀𝐴
2𝜋𝑞𝑒4𝑍𝐴𝜌𝑚

� 𝐸𝑏2 �𝑙𝑛 ��
𝑒
2
� 𝐸𝑏
𝑁𝑉
𝑒𝑓𝑓𝐸�

+ 𝑘���
−1

  (4) 

 
is used to fit the data up to ~105 eV, above which a relativistic 
correction becomes significant [10]. ZA is the atomic number 
and we have replaced the Joy-Luo empirical parameter Jexp 
with our empirical parameter  𝑁𝑉

𝑒𝑓𝑓𝐸�.  A relativistic extension 
of this equation is 
 

 𝑅𝐵𝐽𝐿𝑟𝑒𝑙 (𝐸𝑏) =
�

(4𝜋𝜖0)2𝑀𝐴
2𝜋𝑞𝑒4𝑍𝐴𝜌𝑚

� 𝐸𝑏 𝑚𝑒𝑐2
2  �1−�1+

𝐸𝑏
 𝑚𝑒𝑐2

�
−2
�

⎩
⎪
⎨

⎪
⎧

𝑙𝑛

⎩
⎪
⎨

⎪
⎧�𝑒2𝑚𝑒𝑐2�1−�1+

𝐸𝑏
 𝑚𝑒𝑐2

�
−2

�

𝐸 � �1+
𝐸𝑏

 𝑚𝑒𝑐2
�
−2 +𝑘

⎭
⎪
⎬

⎪
⎫

−�1−�1+
𝐸𝑏

 𝑚𝑒𝑐2
�
−2
�

⎭
⎪
⎬

⎪
⎫

  (5) 

 
A common approximation for R(Eb) for ~1 keV<Eb<50 keV 

is a simple power law formula, with a stopping power 
exponent n;   

𝑅𝐻𝐸(𝐸𝑏) =
𝑁𝑉
𝑒𝑓𝑓� 12𝑚𝑒𝑣2�
𝑑𝐸 𝑑𝑥⁄ = 𝑏′ 𝐸𝑏1+𝑛  

                         with 𝑆 ≡ 𝑑𝐸 𝑑𝑥⁄ ∝ 𝐸𝑏−𝑛   (6) 
 
where in the non-relativistic limit, the incident free electron 
energy is 𝐸𝑏 = 𝑞𝑒𝑉 = 𝑁𝑉

𝑒𝑓𝑓 �1
2
𝑚𝑒𝑣2�. In general, physical 

constraints require 0≤n≤1 [1]. Numerous power law models 
have been developed for different classes of materials, with 
0.35≤n≤0.67 [1 and references therein]. Indeed, Eq. (4)—in 
the limit where the ln(Eb) term is negligible—reduces to a 
limiting-case Thomson-Whiddington n=1 power law 
dependence [11]. 

A simple power law approximation applicable to higher 
incident energies is found by inserting the relativistic velocity  

equation  𝑣2 = 𝑐2 �1 − �1 + 𝐸
 𝑚𝑒𝑐2

�
−2
� into Eq. (6): 

 

𝑅𝐻𝐸𝑟𝑒𝑙(𝐸𝑏) = 𝑏 𝐸𝑏𝑛 �1− �1 + � 𝐸𝑏
𝑁𝑉
𝑒𝑓𝑓𝑚𝑒𝑐2��

−2
�    (7) 

 
Above ~10 MeV (higher energies for lower ZA materials), total 
bremstrahlung radiation energy losses—proportional to E2 
using the Kramers efficiency relation—dominate energy 
losses due to collisions. Figure 2 shows the fit to tabulated 

Fig. 4.  Graphs showing the variation of the range expression for Al, as a function of the single fitting parameter  𝑁𝑉
𝑒𝑓𝑓 . For graphs (a) through (d),  

𝑁𝑉
𝑒𝑓𝑓= 1, 5 (best fit), 10 and 18, respectively.   

 
 

(b) 
 

(c) (d) 

(a) 
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data for Al from the ESTAR database, using both non- 
relativistic and relativistic power law expressions, Eqs. (6) and 
(7), respectively.  Figure 3 shows fits to the Al data using 
several range approximation formulas. 

The stopping power exponent n and proportionality constant 
b can be expressed in terms of 𝑁𝑉

𝑒𝑓𝑓 by matching the slope and 
magnitude of the approximate power law formula, Eq. (6) or 
(7), to the Bethe-Joy-Luo and mid-energy range expressions, 
respectively. n  is determined by requiring that the slope of the 
range power law from Eq. (6) for RHE(E) matches the Bethe-
Joy-Luo formula—Eq. (4)—at two non-relativistic energies, 
ELO and EHI, in the regime where both expressions give 
reasonable results. EHI≡20 keV is the lower energy at which 
data are available for all materials in the ESTAR database and 
ELO≡1 keV is the upper energy at which data are available for 
all materials in the IMFP database.  This leads to an 
expression for the stopping power exponent 
 
𝑛�𝑁𝑉

𝑒𝑓𝑓; 𝜌𝑚,𝑀𝐴,𝐸𝑔𝑎𝑝� = 

    �𝑙𝑛 �
 𝑙𝑛��𝑒 2 � �𝐸𝐻𝐼 𝑁𝑉� +𝑘��

𝑙𝑛��𝑒 2 � �𝐸𝐿𝑂 𝑁𝑉� +𝑘��
� �𝑙𝑛 �𝐸𝐿𝑂

𝐸𝐻𝐼
��
−1

+ 1�   (8) 

 
The magnitude of the high energy range expression, Eq. (7), is 
normalized to the mid-energy expression—Eqs. (10) and (11) 
developed in Section B—at ELO, by setting  

𝑏(𝑁𝑉
𝑒𝑓𝑓; 𝜌𝑚,𝑀𝐴,𝐸𝑔𝑎𝑝)= 

𝐸𝐿𝑂1−𝑛  𝜆𝐼𝑀𝐹𝑃 (𝐸𝐿𝑜)�1−𝑒−𝐸𝐿𝑂 𝐸�⁄ �
−1

𝐸� ��1−�1+�𝐸𝐿𝑂/𝑁𝑉
𝑚𝑒𝑐2

��
−2
��

  

                       (9) 
 
Note that the only free parameter in Eqs. (8) and (9) is 𝑁𝑉

𝑒𝑓𝑓, 
along with 𝐸� which is expressed in terms of 𝑁𝑉

𝑒𝑓𝑓 and the 
band gap energy, Egap in Eq. (1).  

B. Mid-Energy Range 
Direct extrapolation of the range from the ESTAR data to 

lower energies is not valid for energies comparable to the 
atomic electronic structure, typically a few keV and below, 
because the discrete energy nature of the collisions becomes 
important. However, a simple extension of the CSDA to lower 
energies can relate the range to the electron IMFP, where 

 
𝑑𝐸
𝑑𝑧

= 𝐸𝑏
𝑅(𝐸𝑏)� = �𝐸� 𝜆𝐼𝑀𝐹𝑃(𝐸𝑏)� � �1 − 𝑒−𝐸𝑏 𝐸�⁄ �     (10) 

 
Here the stopping power is again assumed equal to the total 
energy lost (incident energy, Eb) divided by the total distance 
traveled (range, R(Eb)). This is set equal to the mean energy 
lost per collision, 𝐸�, divided by the mean distance traveled per 
collision all times the probability that a collision occurs, 

(c) 
Fig. 5. (a) Comparison of the range formula for SiO2 with 𝑁𝑉

𝑒𝑓𝑓= 6.0 . (b) Residual plot of SiO2 range data in Fig 5. (c) Comparison of the range formula 
for Kapton with 𝑁𝑉

𝑒𝑓𝑓=2.  (d) Comparison of the range formula for Al2O3 with 𝑁𝑉
𝑒𝑓𝑓=5.0. 

 
 
 

(b) 
 

(a) 

(d) 
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�1 − 𝑒−𝑅 𝜆�⁄ �=�1 − 𝑒−𝐸𝑏 𝐸�⁄ �.  For 𝐸�>Eb>EHI, λIMFP(Eb) is 
assumed to be given by the TPP-2M formula [12] used in 
conjunction with the NIST IMFP database [6]: 
 
𝜆𝐼𝑀𝐹𝑃(𝐸) = 𝐸�𝐸𝑝

𝑒𝑓𝑓�
−2

[𝛽𝑙𝑛(𝛾𝐸) − 𝐶𝐸−1 + 𝐷𝐸−2]−1    (11) 
 
where  𝛽 ≡ [−0.1 + 2.783𝐸�−1 + 0.069𝜌𝑚0.1] (𝑒𝑉Å)−1 (12) 
    𝛾 ≡ �0.191 𝜌𝑚

−1 2⁄ � (𝑒𝑉−1) 
    𝐶 ≡ [1.97 − 0.91 𝑈] (Å−1)  
    𝐷 ≡ [53.4 − 20.8 𝑈] (𝑒𝑉 Å−1) 
    𝑈 ≡ �𝑁𝑉

𝑒𝑓𝑓𝜌𝑚� / 𝑀𝐴 (𝑐𝑚−3) 
 
Because of the shallow core levels (generally with binding 
energies <30 eV) that may contribute significant intensity to 
the energy-loss function, there arises an ambiguity in the 
choice of the value of the number of valence electrons [12]. 
Powell et al. used the bulk free-electron plasma energy value 
for 𝑁𝑉

𝑒𝑓𝑓in Eq. (12) for elemental conductors, and obtained 
good agreement with optical absorption and inelastic electron 
scattering data which are often described in terms of a 
parameter termed the “effective number of electrons per atom” 
[9,12,13].  Powell et al. also found good agreement for studies 
of other materials, including, semiconductors, insulators, and 
organic and inorganic compounds, by determining the 
parameter 𝑁𝑉

𝑒𝑓𝑓 from sum rule considerations of the scattering 
contributions from electrons in particular atomic shells or 
subshells [9,12,13].  There are extensive discussions on the 
best way to approximate these fitting parameters, based solely 
on materials properties [8,12,14].  Gries used an alternate 
approach to model the IMFP, based on empirical fits and an 
“effective Z parameter”, Z*, described as the “nominal 
effective number of interaction-prone electrons per atom” 
[14]; note, however, that Tunuma, Powell and Penn took 
exception to the physical interpretation of this fitting 
parameter [12]. 

IMFP data from the NIST database [6] (see thick blue 
dashed curves in Figs. 3, 4 and 5) were fit well over the mid-
energy range using the TPP-2M  model given by Eqs. (11) and 
(12) with 𝑁𝑉

𝑒𝑓𝑓determined by fits to the ESTAR database [5] 
through Eqs. (8) and (9) (see thin dashed green curves in Figs. 
3, 4 and 5).  Once again, by using the proposed TPP-2M 
equations of Tanuma inserted into Eq. (10), the only free 

parameter for the mid-energy range expression is 𝑁𝑉
𝑒𝑓𝑓, along 

with the materials constants Egap,  MA, and ρm through 𝐸� .  
While Egap may be considered an additional fitting parameter 
for semiconductors and insulators, its effect on R is minimal, 
causing primarily a vertical shift in the range curve within 2% 
using acceptable band gap energies. Thus, Egap can be treated 
essentially as an additional tabulated material constant—such 
as MA and ρm are—derived from independent optical 
measurements. 

C. Low Energy Range 
To calculate the range for Eb<𝐸� , we assume in the CSDA 

that: (i) the energy lost per low energy collision is constant 
and equal to the mean excitation energy, 𝐸� ; (ii) the IMFP is 
constant and equal to the IMFP at the mean energy loss or 
λIMFP(𝐸�)= 𝜆̅; and (iii) the probability that an electron 
undergoes one such inelastic collision falls off as 
𝑅 𝜆̅⁄ �𝑒−𝑅 𝜆�⁄ �=𝐸𝑏 𝐸�⁄ �𝑒−𝐸𝑏 𝐸�⁄ �.  This simple low energy 
approximation avoids the unusual asymptotic behavior 
exhibited by the TPP-2M expression at energies below 𝐸�  that 
is evident in the thin dashed green curves in Figs. 3, 4, and 5.  
The resulting expression is consistent with a universal curve of 
electron IMFP versus kinetic energy [15] observed for a wide 
range of materials [16], that is consistent with a simple free 
electron gas model of valence electrons in the material [17]. 

D. Composite Range Function 
The final result is a continuous composite analytic 

approximation to the range, spanning from <10 eV to >10 
MeV, with a single fitting parameter, 𝑁𝑉

𝑒𝑓𝑓: 
 
𝑅 �𝐸𝑏;𝑁𝑉

𝑒𝑓𝑓� =  

   

�

�
�𝐸𝑏
𝐸�
� �𝜆𝐼𝑀𝐹𝑃 (𝐸�) �1−𝑒−𝐸� 𝐸�⁄ �

�1−𝑒−𝐸𝑏 𝐸�⁄ �
� �1 − 𝑒−𝐸𝑏 𝐸�⁄ �

−1
;𝐸𝑏 < 𝐸�

�𝐸𝑏
𝐸�
� 𝜆𝐼𝑀𝐹𝑃(𝐸𝑏) �1 − 𝑒−𝐸𝑏 𝐸�⁄ �

−1
;𝐸� ≤ 𝐸𝑏 ≤ 𝐸𝐻𝐼

𝑏 𝐸𝑏𝑛 �1− �1 + � 𝐸𝑏
𝑁𝑉
𝑒𝑓𝑓𝑚𝑒𝑐

2
��

−2

� ;𝐸𝑏 > 𝐸𝐻𝐼

� (13) 

 
Figure 4 demonstrates the sensitivity of the composite fit, 
Equation (10), to 𝑁𝑉

𝑒𝑓𝑓 for a typical conductor, Al.  Lower 
values of 𝑁𝑉

𝑒𝑓𝑓 overestimate the range, while higher values of 

Fig. 6. Dose rate as a function of energy in the CSDA for Au, Al and 
polyimide . 
 

Fig. 7.  RIC as a function of energy in the CSDA for polyimide. 
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𝑁𝑉
𝑒𝑓𝑓 underestimate the range.  Based on the quality of the fits 

to the database values, the typical uncertainty in 𝑁𝑉
𝑒𝑓𝑓 is 

estimated to be ≲10%. The residual curve for the fit for Al is 
shown in Fig. 5(b). 

Figures 5(a), 5(c) and 5(d) show best fits to data for three 
prototypical materials: the conductor Al; the polymeric 
insulator polyimide (Kapton), and the insulating ceramic 
Al2O3.  Table I lists the fitting parameter 𝑁𝑉

𝑒𝑓𝑓, along with 
materials properties and derived values, for 14 common 
spacecraft materials.  A more extensive set of fitting 
parameters for additional materials is currently being 
developed.   

III. APPLICATIONS 
The usefulness of an analytical approximation of the range 

to spacecraft applications can easily be demonstrated by 
considering expressions for the dose rate and the radiation 
induced conductivity; both expressions require an energy 
dependent range expression.  
 The dose rate, 𝐷̇, is defined as the power deposited by 
incident radiation per unit mass.  The dose rate in the CSDA 
for a homogeneous material is inversely proportional to the 
volume in which radiation energy is deposited; this volume is 
approximately equal to the beam cross sectional area times R 
[18]. Thus,  
 
𝐷̇ ≡ 𝜕𝐷

𝜕𝑡� = 𝐸𝑏𝐽𝑏
𝜌𝑚𝑅𝑞𝑒

∝ 𝑅−1           (14) 

 
The dose rates for three materials as a function of incident 
energy are shown in Fig. 6. 

Radiation Induced Conductivity (RIC) is the enhanced 
conductivity that results from the energy deposited in this 
volume. In the CSDA 
 
𝜎𝑅𝐼𝐶(𝐷̇) = 𝑘𝑅𝐼𝐶𝐷̇Δ𝜙 ∝ 𝑅−Δ            (15)  
with ½<Δ<1 [19].  Figure 7 shows the RIC for Kapton as a 
function of incident energy for three values of Δ.  As expected, 
RIC effects are generally larger for larger Δ, with the variation 
largest at the maximum value near 3𝐸�  and becoming much 

smaller in the relativistic region.  The magnitude of RIC 
exhibits a crossover at~2 eV; however, this is below the 
energy range for which Equation 10 is valid.    

Notice that both 𝐷̇ and σRIC exhibit energy dependent 
maxima as a consequence of the minimum in the range 
expression.  Both curves also have local minima at ~3 MeV 
for Au, as a result of the relativistic correction in Eq. (7) that 
occurs at lower energies for more dense materials.  

Secondary electron (SE) emission is another electron 
scattering process for which application of the range 
expression developed here could provide insight.  In the 
CSDA, the SE yield can be expressed as [1] 

 
𝛿𝑆𝐸 �𝐸,𝑁𝑉

𝑒𝑓𝑓,𝛿𝑚𝑎𝑥,𝐸𝑚𝑎𝑥� = 𝛿𝑚𝑎𝑥

1−𝑒𝑥𝑝�−𝑅(𝐸)
𝜆𝑆𝐸

�
�1 − 𝑒𝑥𝑝 �− 𝑅(𝐸)

𝜆𝑆𝐸
� 𝐸
𝐸𝑚𝑎𝑥

�
𝜂
��

                       (16) 
 

In a similar vein, Yasuda et al. have investigated the SE 
yield in terms of the relation between the IMFP and the 
valence electron excitation function (which they approximate 
by the outer shell ionization function) [20].  Earlier, Ashley 
and Williams found that the electron stopping power for many 
polymers was a function of the ratio of the number of valence 
electrons, Nv, in a monomer unit to its molecular weight, MA 
[21]. Burke used their relation to express the secondary 
electron emission coefficient from polymers as a function of 
Nv /MA in a semi-empirical model [22]. Work is underway at 
USU to develop an expression for the SE yield in terms of the 
composite range expression, Equation (10).  The resulting SE 
expression would have three independent free parameters; NV 
and the maximum SE yield δmax at energy Emax. 

IV. CONCLUSION 
Using the CSDA, a continuous, simple, composite, analytic 

formula—with a single free parameter, termed the effective 
number of valence electrons, 𝑁𝑉

𝑒𝑓𝑓—has been developed to 
approximate the range (10-9 m to 10-2 m) over an extended 
energy span (<10 eV to >10 MeV).  Agreement with available 
databases of electron interactions are within <20% for many 

Table I. Materials Properties and Fitting Parameters  
 

Material Fitting 
Parameter 
𝑁𝑉
𝑒𝑓𝑓 

Material Properties Derived Values 
Name Formula ρm 

(gm/cm3) 
ZA MA 

(amu) 
Egap 
(eV) 

n b 
(µm/eV-n) 

𝑬𝒑
𝒆𝒇𝒇 

(eV) 
Em 

(eV) 
λmin 
(nm) 

Graphite C 5.3 1.7 6 12.01 0.1 0.642 0.7143 24.87 69.6 0.793 
Amorphous C C 4.0 2.0 6 12.01 0.1 0.676 0.3877 23.43 65.6 0.614 
Aluminum Al 5.0 2.7 13 26.98 0.0 0.668 0.5075 20.31 56.9 0.467 
Silicon Si 5.0 2.33 14 28.09 1.11 0.676 0.5422 18.49 51.9 0.438 
Copper Cu 8.3 8.96 29 63.55 0.0 0.561 0.7821 31.06 87.0 0.422 
Germanium Ge 9.8 5.32 32 72.64 0.66 0.571 1.355 24.32 68.1 0.477 
Silver Ag 10.6 10.5 47 107.87 0.0 0.536 1.217 29.17 81.7 0.416 
Gold Au 12.0 19.32 79 196.97 0.0 0.508 1.261 31.15 87.2 0.371 
Polyethylene [C2H4]n 2.5 0.94 2.65 4.64 2.9 0.727 0.2354 20.43 57.8 0.642 
Polyimide [C22H10N2O5]n 4.1 1.42 5.01 9.769 2.3 0.678 0.4582 22.17 62.4 0.652 
PTFE [C2F4]n 6.0 2.2 8.01 16.023 6 0.620 0.8794 26.06 78.9 0.865 
Aluminum Oxide Al2O3 5.0 3.97 10 30.392 9.9 0.628 0.5188 28.33 84.0 0.746 
Silicon Dioxide SiO2 6.0 2.32 9.98 19.99 8.9 0.622 0.895 23.90 71.4 0.818 
Glass, Pyrex doped SiO2 6.2 2.32 9.98 19.99 4 0.626 0.8150 24.36 69.1 0.656 
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conducting, semiconducting, and insulating materials.  Use of 
this continuous expression over the extended energy range 
permits development of continuous expressions over extended 
energy ranges for dose rate, RIC and (potentially) SE yield.  
By comparing these extended expressions to data, which are 
often considerably easier to measure than range, the range 
formula can be further validated and improved. Continued 
development may also establish the ability to approximate the 
fitting parameter, 𝑁𝑉

𝑒𝑓𝑓
, using only material and empirical 

constants. This would allow construction of an empirical 
database for materials without the necessity of specific range 
data. 
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