
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

Physics Capstone Projects Physics Student Research

5-8-2014

Analyzing Solutions to the Einstein Equations Using Differential Analyzing Solutions to the Einstein Equations Using Differential

Geometry Geometry

Jordan Rozum
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/phys_capstoneproject

 Part of the Physics Commons

Recommended Citation Recommended Citation
Rozum, Jordan, "Analyzing Solutions to the Einstein Equations Using Differential Geometry" (2014).
Physics Capstone Projects. Paper 8.
https://digitalcommons.usu.edu/phys_capstoneproject/8

This Report is brought to you for free and open access by
the Physics Student Research at DigitalCommons@USU.
It has been accepted for inclusion in Physics Capstone
Projects by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/phys_capstoneproject
https://digitalcommons.usu.edu/physics_sr
https://digitalcommons.usu.edu/phys_capstoneproject?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/phys_capstoneproject/8?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

> >

> >

> >

> >

(1.2)(1.2)

(1.1)(1.1)

M > M >

> >

Analyzing Solutions to the Einstein Equations using
Differential Geometry
Final Project for PHYS 4900: Research in Physics
Jordan Rozum, USU, 05/08/2014

Part 1: The Simplest Example, Minkowski Space
In part one, I walk through some examples using the Minkowski metric.

To start working with DifferentialGeometry, we have to load in the required packages. We'll also set
some preferences to make the output look nicer.

with(DifferentialGeometry):
with(Tensor):
Preferences("TensorDisplay", 1):
interface(typesetting = extended):

We will start with the most fundamental solution to the Einstein equations, the Minkowski Metric.
Before we can define the metric, we have to set up
manifold on which it will exist. We'll do this using the DGsetup command. When defining a manifold,
it takes a list of coordinates and a manifold name.
The verbose option will print make it print a list of the variables DifferentialGeometry has reserved for
the manifold.

DGsetup([t,x,y,z],M,verbose);
The following coordinates have been protected:

t, x, y, z
The following vector fields have been defined and protected:

v
t
, v

x
, v

y
, v

z

The following differential 1-forms have been defined and protected:
dt, dx, dy, dz

frame name: M

Now that our manifold is defined, we can create a tensor using these coordinates. Maple will not
know that this tensor is our metric, so we will have to pass
this tensor into many of our commands as an argument later. The evalDG command instructs Maple to
interpret the argument using DifferentialGeometry.
Here, &t is short for &tensor, which also works and is the tensor product.

g := evalDG(dx &t dx + dy &t dy + dz &t dz - dt &t dt); #
The Minkowski Metric

g dK dt5 dtC dx5 dxC dy5 dyC dz 5 dz

(1.4)(1.4)

M > M >

(1.6)(1.6)

(1.7)(1.7)

(1.3)(1.3)

M > M >

M > M >

M > M >

(1.5)(1.5)
M > M >

The first thing we'll do with this metric is check that it satisfies the Einstein equations. This is a
vacuum sollution, meaning that the energy-momentum tensor
is zero. Also, there is no Λ, or cosmological constant for this sollution. Therfore, G CLg = 8 pT
reduces to G = 0. We can easily check that G, the Einsten
tensor, is zero using the EinsteinTensor command:

G := EinsteinTensor(g);
G d 0 v

t
5 v

t

There are other things we could calculate. For example, the Reimann curvature tensor and the
Christoffel symbols:

R := CurvatureTensor(g);
R d 0 v

t
5 dt5 dt5 dt

Gamma := Christoffel(g,"FirstKind");
Gd 0 dt5 dt5 dt

These are all pretty boring, but we'll come back to these commands for more interesting cases later.
For now, we'll move on to algebraic classifications.
Three important classifications of metrics are the Petrov type, Segre type, and the Petrov-Peblanski
type.

The Petrov type classifies the metric according to the eigenvectors of the Weyl tensor (the trace-free
part of the curvature tensor, which can be calculated
using WeylTensor(g)). We can find the Petrov type using PetrovType(g).

The Petrov-Peblanski type classifies the metric according to the eigenvectors of the Peblanski tensor,
which has the same algebraic symmetries as the
Weyl tensor. We actually calculate the Petrov-Peblanski type using SegreType(g), which returns two
things; the first is the Petrov-Peblanski type,
and the second is the Segre type.

The Segre type classifies the metric according to the eigenvectors of the Ricci tensor (the trace
component of the curvature tensor, which can be calculated
using RicciTensor(g)).

PetrovType(g);
"O"

SegreType(g);
"O", "[(1,111)]"

These classifications are helpful because they don't depend on the coordinates in which the metric is
expressed. Another coordinate invariant property of
metrics is the symmetry they exhibit, expressed as the isometry algebra. The isometry algebra is a Lie

(1.10)(1.10)

M > M >

M > M >

(1.9)(1.9)

M > M >

(1.11)(1.11)

M > M >

M > M >

(1.12)(1.12)

M > M >

(1.8)(1.8)

algebra whose basis vectors are (some linear
combination of) the so-called Killing vectors. While the Killing vectors themselves are coordinate
dependent, the algebra they form under commutation
is unique up to isomorphism. Later in this tutorial, we will take a look at ways to classify these
algebras, but for now, we'll just calculate the isometry algebra.

KV := KillingVectors(g);
KV d z v

t
C t v

z
, K v

t
, K z v

x
C x v

z
, K z v

y
C y v

z
, v

z
, y v

t
C t v

y
, K y v

x
C x v

y
, v

y
,

x v
t
C t v

x
, v

x

KV is a list of vectors (expressed as derivatives), X, such that the Lie derivative of the metric with
respect to X is zero. We can easily test this:

LieDerivative(KV,g);
0 dt5 dt, 0 dt5 dt, 0 dt5 dt, 0 dt5 dt, 0 dt5 dt, 0 dt5 dt, 0 dt5 dt, 0 dt5 dt, 0 dt

5 dt, 0 dt5 dt

To turn these vectors into a Lie algebra, we will need to load the LieAlgebras package. Then we can
pass KV to the LieAlgebraData command, which will
calculate the structure constants and other internal data for the Lie algebra. Finally, we initialize the Lie
algebra with the DGsetup command:

with(LieAlgebras):
LD := LieAlgebraData(KV,isometry_alg); # Calculate, among
other things, the structure constant.
The second argument will be the algebra name.

LD d e1, e2 = e5, e1, e3 = K e9, e1, e4 = K e6, e1, e5 = e2, e1, e6 = K e4, e1,
e7 = 0, e1, e8 = 0, e1, e9 = K e3, e1, e10 = 0, e2, e3 = 0, e2, e4 = 0, e2, e5
 = 0, e2, e6 = K e8, e2, e7 = 0, e2, e8 = 0, e2, e9 = K e10, e2, e10 = 0, e3,

e4 = K e7, e3, e5 = e10, e3, e6 = 0, e3, e7 = e4, e3, e8 = 0, e3, e9 = K e1,
e3, e10 = K e5, e4, e5 = e8, e4, e6 = K e1, e4, e7 = K e3, e4, e8 = K e5,
e4, e9 = 0, e4, e10 = 0, e5, e6 = 0, e5, e7 = 0, e5, e8 = 0, e5, e9 = 0, e5,

e10 = 0, e6, e7 = K e9, e6, e8 = e2, e6, e9 = K e7, e6, e10 = 0, e7, e8 = e10,
e7, e9 = K e6, e7, e10 = K e8, e8, e9 = 0, e8, e10 = 0, e9, e10 = e2
DGsetup(LD);

Lie algebra: isometry_alg

Below, we will take a look at the multiplication table for the algebra. For now, this is all we'll do with
the isometry algebra. In a later tutorial, we'll look
at how we can classify the Lie algebra we've generated.

MultiplicationTable(isometry_alg,"LieTable");

M > M >

(1.14)(1.14)

M > M >

M > M >

(1.13)(1.13)

(1.12)(1.12)

(1.15)(1.15)

isometry_alg e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

e1 0 e5 K e9 K e6 e2 K e4 0 0 K e3 0

e2 K e5 0 0 0 0 K e8 0 0 K e10 0

e3 e9 0 0 K e7 e10 0 e4 0 K e1 K e5

e4 e6 0 e7 0 e8 K e1 K e3 K e5 0 0

e5 K e2 0 K e10 K e8 0 0 0 0 0 0

e6 e4 e8 0 e1 0 0 K e9 e2 K e7 0

e7 0 0 K e4 e3 0 e9 0 e10 K e6 K e8

e8 0 0 0 e5 0 K e2 K e10 0 0 0

e9 e3 e10 e1 0 0 e7 e6 0 0 e2

e10 0 0 e5 0 0 0 e8 0 K e2 0

One final command we'll talk about is the SubspaceType command. It takes the Killing vectors and the
metric and uses these to calculate an induced metric
on the tangent space at a point. It then computes the signature of that induced metric to determine
whether the subspace type is Riemannian, Pseudo-Riemannian,
or Null.

SubspaceType(g, KV,[x=a,y=b,z=c,t=d]);
4, Fail

The SubspaceType command failed because the point specified was too generic. This command
computes the sign of a certain determinant to decide the subspace
type. We can get an idea of what is causing Maple to fail here by increasing the infolevel of the
command:

infolevel[SubspaceType]:=2;
infolevelSubspaceType d 2

SubspaceType(g, KV,[x=a,y=b,z=c,t=d]);
The orbit type is "Null" if the induced metric on the orbit is
degenerate
The orbit type is "Riemannian" if the induced metric on the
orbit is positive or negative definite
The orbit type is "PseudoRiemannian" if the induced metric on
the orbit is non-degenerate and indefinite
 The matrix h defining the induced metric is:
 Matrix(4, 4, [[-c^2+d^2,c,d*a,d*b],[c,-1,0,0],[d*a,0,a^2+c^2,
b*a],[d*b,0,b*a,b^2+c^2]])
The determinant of the matrix h is: -c^4*d^2

4, Fail

Here, Maple was unable to determine the sign of Kc4$d2. This is because c or d could be zero, or even
complex. We can specify that these parameters are non-zero

(2.2)(2.2)

> >

> >

M > M >

> >

(1.16)(1.16)

M > M >

> >

(2.1)(2.1)

> >

M > M >

(1.12)(1.12)

> >

real numbers by using the assuming command. Note that use of less-than or greater-than symbols
implicity declares that the variables are real.

SubspaceType(g, KV,[x=a,y=b,z=c,t=d]) assuming c>0 or c<0,
d>0 or d<0;

The orbit type is "Null" if the induced metric on the orbit is
degenerate
The orbit type is "Riemannian" if the induced metric on the
orbit is positive or negative definite
The orbit type is "PseudoRiemannian" if the induced metric on
the orbit is non-degenerate and indefinite
 The matrix h defining the induced metric is:
 Matrix(4, 4, [[-c^2+d^2,c,d*a,d*b],[c,-1,0,0],[d*a,0,a^2+c^2,
b*a],[d*b,0,b*a,b^2+c^2]])
The determinant of the matrix h is: -c^4*d^2

4, "PseudoRiemannian"

Part 2: Classifying the Minkowski Space Isometry
Algebra
In part two, I continue analyzing the Minkowski metric by looking at its isometry
algebra in more detail.

First, we'll catch up to where we left off in part one:

Load packages and set display preferences:
with(DifferentialGeometry): with(Tensor): with(LieAlgebras):
Preferences("TensorDisplay", 1):
interface(typesetting = extended):

Set up a manifold:
DGsetup([t,x,y,z],M,verbose);

The following coordinates have been protected:
t, x, y, z

The following vector fields have been defined and protected:
v

t
, v

x
, v

y
, v

z

The following differential 1-forms have been defined and protected:
dt, dx, dy, dz

frame name: M

Define the Minkowski metric:
g := evalDG(dx &t dx + dy &t dy + dz &t dz - dt &t dt);

M > M >

M > M >

M > M >

(2.2)(2.2)

M > M >

M > M >

(2.5)(2.5)

(1.12)(1.12)

M > M >

(2.6)(2.6)

M > M >

M > M >
(2.4)(2.4)

(2.3)(2.3)

g dK dt5 dtC dx5 dxC dy5 dyC dz 5 dz

Get the Killing vectors:
KV := KillingVectors(g);

KV d z v
t
C t v

z
, K v

t
, K z v

x
C x v

z
, K z v

y
C y v

z
, v

z
, y v

t
C t v

y
, K y v

x
C x v

y
, v

y
,

x v
t
C t v

x
, v

x

Get the Lie algebra data and call it isometry_alg:
LD := LieAlgebraData(KV, isometry_alg);

LD d e1, e2 = e5, e1, e3 = K e9, e1, e4 = K e6, e1, e5 = e2, e1, e6 = K e4, e1,
e7 = 0, e1, e8 = 0, e1, e9 = K e3, e1, e10 = 0, e2, e3 = 0, e2, e4 = 0, e2, e5
 = 0, e2, e6 = K e8, e2, e7 = 0, e2, e8 = 0, e2, e9 = K e10, e2, e10 = 0, e3,

e4 = K e7, e3, e5 = e10, e3, e6 = 0, e3, e7 = e4, e3, e8 = 0, e3, e9 = K e1,
e3, e10 = K e5, e4, e5 = e8, e4, e6 = K e1, e4, e7 = K e3, e4, e8 = K e5,
e4, e9 = 0, e4, e10 = 0, e5, e6 = 0, e5, e7 = 0, e5, e8 = 0, e5, e9 = 0, e5,

e10 = 0, e6, e7 = K e9, e6, e8 = e2, e6, e9 = K e7, e6, e10 = 0, e7, e8 = e10,
e7, e9 = K e6, e7, e10 = K e8, e8, e9 = 0, e8, e10 = 0, e9, e10 = e2

Initialize the Lie algebra:
DGsetup(LD);

Lie algebra: isometry_alg

This is optional, but it can help to visualize the Lie
algebra with the MultiplicationTable command:
MultiplicationTable(isometry_alg, "LieTable");

isometry_alg e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

e1 0 e5 K e9 K e6 e2 K e4 0 0 K e3 0

e2 K e5 0 0 0 0 K e8 0 0 K e10 0

e3 e9 0 0 K e7 e10 0 e4 0 K e1 K e5

e4 e6 0 e7 0 e8 K e1 K e3 K e5 0 0

e5 K e2 0 K e10 K e8 0 0 0 0 0 0

e6 e4 e8 0 e1 0 0 K e9 e2 K e7 0

e7 0 0 K e4 e3 0 e9 0 e10 K e6 K e8

e8 0 0 0 e5 0 K e2 K e10 0 0 0

e9 e3 e10 e1 0 0 e7 e6 0 0 e2

e10 0 0 e5 0 0 0 e8 0 K e2 0

Now that we've caught up, we can start analyzing this Lie algebra. The first step (unless the algebra is
trivial enough to identify on sight) is to perform a Levi decomposition.
This splits the Lie algebra into a solvable part (the radical, usually labeled r) and a semi-simple part

(2.2)(2.2)

isometry_alg > isometry_alg >

(2.10)(2.10)

isometry_alg > isometry_alg >

(2.9)(2.9)

isometry_alg > isometry_alg >

(2.8)(2.8)

(2.7)(2.7)

(2.12)(2.12)

(2.11)(2.11)

isometry_alg > isometry_alg >

M > M >

(1.12)(1.12)

isometry_alg > isometry_alg >

(usually labeled s):

LDec := LeviDecomposition(isometry_alg);
LDec d e2, e5, e8, e10 , e1, e3, e4, e6, e7, e9

We can check that the first part is solvable and the second is semi-simple by using the Query
command:

Query(LDec[1],"Solvable"); Query(LDec
[2],"Semisimple");

true
true

We will examine the solvable part, or radical, first. The solvable Lie algebras are usually much more
difficult to classify than the semi-simple algebras, but in this case, we're in luck.

LDr := LieAlgebraData(LDec[1],r);
LDr d e1, e2 = 0, e1, e3 = 0, e1, e4 = 0, e2, e3 = 0, e2, e4 = 0, e3, e4 = 0

The solvable part has all zero structure constants, so this is the four-dimensional Abelian Lie algebra.
Notice that the vectors were relabeled when we called LieAlgebraData;
the vectors that are called e2, e5, e8, and e10 in the isometry algebra are now called e1, e2, e3, and e4
within the radical of the isometry algebra.

Now we will move on to the semi-simple part of our isometry algebra.

LDs := LieAlgebraData(LDec[2],s);
LDs d e1, e2 = K e6, e1, e3 = K e4, e1, e4 = K e3, e1, e5 = 0, e1, e6 = K e2,

e2, e3 = K e5, e2, e4 = 0, e2, e5 = e3, e2, e6 = K e1, e3, e4 = K e1, e3, e5
 = K e2, e3, e6 = 0, e4, e5 = K e6, e4, e6 = K e5, e5, e6 = K e4

Again, LieAlgebraData has relabeled the vectors. We can fix this if we want to keep track of which
vectors are which by giving DGsetup a list of names for the vectors and
one forms. If we are content with the relabeling, we by no means have to supply these lists. However,
if we supply one list, we must supply the other.

DGsetup(LDs,['e1', 'e3', 'e4', 'e6',
'e7', 'e9'],['o1', 'o3', 'o4', 'o6',
'o7', 'o9']);

Lie algebra: s
MultiplicationTable(s,"LieTable");

(2.2)(2.2)

(2.12)(2.12)

(1.12)(1.12)

s e1 e3 e4 e6 e7 e9

e1 0 K e9 K e6 K e4 0 K e3

e3 e9 0 K e7 0 e4 K e1

e4 e6 e7 0 K e1 K e3 0

e6 e4 0 e1 0 K e9 K e7

e7 0 K e4 e3 e9 0 K e6

e9 e3 e1 0 e7 e6 0

Now we can begin the classification algorithm. There are several steps, which are outlined below with
some explanation. This is barely enough information to carry out the
algorithm, much less understand it, but it should be enough to give some vague idea of what's going
on.

1. Find a Cartan subalgebra, h, of s. This is a nilpotent self-generating subalgebra. In the case of
semi-simple Lie algebras, all Cartan subalgebras are abelian, and some sense,
they may be thought of as maximal abelian subalgebras.

2. Find the root space decomposition (RSD) of s with respect to h. This one requires a little more
background. First, if we fix a vector in a Lie algebra, it can act on all other
vectors linearly via the Lie bracket, and thus has a matrix representation. This matrix can be defined
for each vector in a Lie algebra, and is called the adjoint of that vector. The
adjoint matrices of the basis vectors of h are diagonalizable and have a mutual set of eigenvectors.
Each eigenvector therefore has associated with it a list of eigenvalues (called
a root) that corresponds to the list of basis vectors in h. Each root has one and only one eigenvector
associated with it and vice-versa. The RSD splits a semi-simple Lie algebra
into a Cartan subalgebra plus the eigenvalues associated with each root. The relationship between the
roots completely characterizes the Lie algebra.

3. Select the positive simple roots. As mentioned above, the roots obey certain properties. One such
property is that if a simultaneous eigenvector of the adjoint matrices of
the Cartan subalgebra has the eigenvalue list [a1, a2, . . ., ar], then there is another simultaneous
eigenvector with an eigenvalue list [-a1,-a2, . . ., -ar]. Therefore, there is a
degree of overspecification in the RSD. If we pick half the roots to be positive (there cannot be an all-
zero root for a semi-simple Lie algebra), then the other half are determined.
Additionally, it is possible that some of the positive roots are positive integer linear combinations of
the others. Those that are not positive integer linear combinations of the
others are called simple. The additive relationships between positive simple roots and the rest of the
roots is a unique basis-independent characterization of any
semi-simple Lie algebra.

4. Put into standard form. The additive relationships between positive simple roots and all other
roots can be compactly represented in a Cartan matrix. There are only a few
possible Cartan matrices, and they are given a letter (A, B, C, up to G) and a subscript for their
dimension (e.g. B2). This completely characterizes the semi-simple Lie algebra

s > s >

(2.19)(2.19)

(2.2)(2.2)

s > s >

s > s >

s > s >

s > s >
(2.14)(2.14)

(2.13)(2.13)

(2.16)(2.16)

(2.15)(2.15)

(2.12)(2.12)

(2.17)(2.17)

(1.12)(1.12)

(2.18)(2.18)

isometry_alg > isometry_alg >

s > s >

as a complex Lie algebra (i.e., any complex change of basis vectors for the Lie algebra leaves the
Cartan matrix unchanged). Since isometry algebras correspond to real variables,
we would like to only allow real changes in basis, so there is one more step, once we know which
complex Lie algebra we have.

5. Compute the signature of the Killing form. For semi-simple Lie algebras of low enough
dimension, each real form of a complex Lie algebra has a unique Killing form signature.
Luckily, the largest possible isometry algebra we can have is dimension 10, so the semi-simple part
will always have low enough dimension for this trick to work. The down-side,
however, is that as of now, Maple doesn't have this information programmed in, so you either have to
look it up yourself, or simply know which algebras have which Killing form
signatures.

Let's apply these steps to our semi-simple algebra, s:

h := CartanSubalgebra(s); # Step 1
h d e1, e7

RSD := RootSpaceDecomposition(h); # Step 2
RSD dtable K1, KI = e3K I e4K I e6C e9, K1, I = e3C I e4C I e6C e9, 1,

KI = e3K I e4C I e6K e9, 1, I = e3C I e4K I e6K e9
PR := PositiveRoots(RSD); # Step 3

PR d
1
KI

,
1

I

SR := SimpleRoots(PR); # Step 3 continued

SR d
1
KI

,
1

I

C:=CartanMatrix(SR, RSD); # Step 4; This matrix corresponds
to B2 or A1 + A1

C d
2 0

0 2

KF := KillingForm(s); # Step 5
KF d 4 o15 o1K 4 o35 o3K 4 o45 o4C 4 o65 o6K 4 o75 o7C 4 o95 o9
QuadraticFormSignature(KF,output="dimensions"); # Step 5
continued

3, 3, 0

From the quadratic form siganture and the Cartan matrix, we can determine (either from a table or
from memory) that the semi-simple part of our Lie algebra is in fact SO(3,1).
Therefore, our isometry algebra is the semi-direct sum of the four-dimensional abelian Lie algebra
with SO(3,1).

(2.2)(2.2)

> >
> >

(3.1)(3.1)

> >

> >

> >

> >

(2.12)(2.12)

> >

(1.12)(1.12)

> >

(3.2)(3.2)

Part 3: Examples using MetricSearch
In part three, I go over how to use MetricSearch to retrieve cataloged metrics and
analyze a couple of example metrics.

We will start by loading in the packages we'll need and setting preferences. The new packages in this
tutorial are the Library package, which contains a catalog
of metrics, and the Tools package, which will help us classify solvable Lie algebras.

with(DifferentialGeometry):
with(Tensor):
with(LieAlgebras):
with(Library): with(Tools):
Preferences("TensorDisplay", 1):
interface(typesetting = extended):

We will use MetricSearch command to get a list of metrics with certain properties. The below
command will return a list of Einstein Maxwell metrics with
isometry dimension 4. A list of search options can be found in the help file. Alternatively,
MetricSearch can be called without arguments to launch a graphical
version.

Results := MetricSearch(["PrimaryDescription" =
"EinsteinMaxwell", "IsometryDimension" = 4]);

Results d "HawkingEllis", 1, 5, 26, 1 , "Stephani", 1, 12, 21, 1 , "Stephani", 1,
13, 46, 1 , "Stephani", 1, 13, 48, 1 , "Stephani", 1, 15, 21, 1 , "Stephani", 1,
15, 21, 2 , "Stephani", 1, 15, 27, 2 , "Stephani", 1, 15, 27, 3 , "Stephani", 1,
15, 27, 5 , "Stephani", 1, 15, 27, 6 , "Stephani", 1, 28, 44, 1 , "Stephani", 1,
28, 44, 2 , "Stephani", 1, 28, 44, 3 , "Stephani", 1, 28, 44, 4 , "Stephani", 1,
28, 44, 5 , "Stephani", 1, 28, 44, 6

To initialize one of these results, we use the Retrieve command. We can get a list of what parameters
and features are recorded by calling Retrieve with the
search result as the only argument.

Retrieve(op(Results[2]));

table "PlebanskiPetrovType" = "D", "SegreType" = "[(1,1)(11)]", "OrthonormalTetrad"

= 1, 0, 0, 0 , 0,
_x
_a

, 0, 0 , 0, 0,
_x
_a

, 0 ,
2 _y
_x

, 0, 0,
1
_x

, "Bugs"

(2.2)(2.2)

(2.12)(2.12)

(1.12)(1.12)

(3.2)(3.2)

= "Electromagnetic field in 12.22 is incorrect" , "IsometryDimension" = 4, "Authors"

= "McLenaghan, Tariq (1975)", "Tupper (1976)" , "SecondaryDescription"

= "Homogeneous", "SimpleTransitive" , "BasePoints" = _t = 0, _x = 1, _y = 0, _f

= 0 , "Metric" = K1, 0, 0, 2 _y , 0,
_a2

_x2 , 0, 0 , 0, 0,
_a2

_x2 , 0 , 2 _y, 0, 0, _x2

K 4 _y2 , "SimplifyEval" = , "Parameters" = _a, _k, _k0 , "PetrovType" = "I",

"ElectromagneticField" = 0,
2 cos 2 ln _k _x

_k0 _x
, 0, 0 , K

2 cos 2 ln _k _x

_k0 _x
, 0, 0,

4 _y cos 2 ln _k _x

_k0 _x
, 0, 0, 0,

2 sin 2 ln _k _x

_k0
, 0, K

4 _y cos 2 ln _k _x

_k0 _x
,

K
2 sin 2 ln _k _x

_k0
, 0 , "PrimaryDescription" = "EinsteinMaxwell", "Reference"

= "Stephani", "NewtonConstant" = _k0, "IsotropyType" = "F15",

"ElectromagneticPotential" = 0, K
2 cos 2 ln _k _x 2 _f _yK _t

_k0 _x
,

K
2 _f sin 2 ln _k _x

_k0
, 0 , "Coordinates" = _t, _x, _y, _f , "KillingVectors" = 0,

_x, _y, K_f , 2 _f, 0, 1, 0 , 0, 0, 0, 1 , 1, 0, 0, 0 , "SideConditionsAssuming" = 0

N1 > N1 >

(3.5)(3.5)

(3.3)(3.3)

(2.2)(2.2)

(2.12)(2.12)

(1.12)(1.12)

(3.4)(3.4)

(3.6)(3.6)

(3.2)(3.2)

N1 > N1 >

N1 > N1 >

N1 > N1 >

! _a, 0 ! _k0 , "CosmologicalConstant" = 0, "EnergyMomentumTensor"

=
2 _x2 C 4 _y2

_x2 _k0 _a2 , 0, 0,
4 _y

_x2 _k0 _a2 , 0, K
2 _x2

_a4 _k0
, 0, 0 , 0, 0,

2 _x2

_a4 _k0
, 0 ,

4 _y
_x2 _k0 _a2 , 0, 0,

2
_x2 _k0 _a2 , "OrbitType" = "PseudoRiemannian", "NullTetrad"

=
2 2 _yC _x

2 _x
, 0, 0,

2
2 _x

,
2 K2 _yC _x

2 _x
, 0, 0, K

2
2 _x

, 0,
2 _x

2 _a
,

I
2

 2 _x

_a
, 0 , 0,

2 _x
2 _a

,
K

I
2

 2 _x

_a
, 0 , "SideConditionsSimplify" = ,

"Domains" = 0 ! _x , "OrbitDimension" = 4, "Comments"
= "_k parametrizes the most general electromagnetic invariant with respect to the last 3
Killing vectors"

To actually use this solution, we can call Retrieve with additional options. To start, we will grab the
metric, cosomological constant, energy momentum tensor so
we can check that the solution is valid. We will need to name a manifold for the metric to exist on.

g := op(Retrieve(op(Results[2]),manifoldname=N1,output=
["Metric"]));

g dK dt5 dtC 2 y dt5 dfC
_a2

x2 dx5 dxC
_a2

x2 dy5 dyC 2 y df5 dtC x2

K 4 y2 df5 df

T := op(Retrieve(op(Results[2]),manifoldname=N1,output=
["EnergyMomentumTensor"]));

T d
2 x2 C 4 y2

x2 _k0 _a2 v
t
5 v

t
C

4 y
x2 _k0 _a2 v

t
5 v

f
K

2 x2

_a4 _k0
 v

x
5 v

x
C

2 x2

_a4 _k0
 v

y

5 v
y
C

4 y
x2 _k0 _a2 v

f
5 v

t
C

2
x2 _k0 _a2 v

f
5 v

f

Lambda := op(Retrieve(op(Results[2]),manifoldname=N1,
output=["CosmologicalConstant"]));

Ld 0
G := EinsteinTensor(g);

G d
2 x2 C 4 y2

x2 _a2 v
t
5 v

t
C

4 y
x2 _a2 v

t
5 v

f
K

2 x2

_a4 v
x
5 v

x
C

2 x2

_a4 v
y
5 v

y

(2.2)(2.2)

N1 > N1 >

N1 > N1 >

(3.7)(3.7)

(3.10)(3.10)

(3.8)(3.8)
N1 > N1 >

(2.12)(2.12)

(1.12)(1.12)

N1 > N1 >

(3.9)(3.9)

(3.6)(3.6)

(3.2)(3.2)

C
4 y

x2 _a2 v
f
5 v

t
C

2
x2 _a2 v

f
5 v

f

We can see that G is proportional to T. In particular, if _k0 =
1

8 p
, the Einstein equations,

G CLg = 8 pT, are satisfied. (Different values for _k0 correspond to different
choices for units).

Many of the properties we might calculate for this metric are already in the Library package. One
important exception is the isometry algebra classification. We will now
procede to perform that classification. First, we will retrieve the Killing vectors for our metric (we
could also compute them directly from the metric):

KV := op(Retrieve(op(Results[2]),manifoldname=N1,output=
["KillingVectors"]));

KV d x v
x
C y v

y
K f v

f
, 2 f v

t
C v

y
, v

f
, v

t

Now, we'll compute the structure constants and other data needed to initialize the Lie algebra:

LD1 := LieAlgebraData(KV, alg1);
LD1 d e1, e2 = K e2, e1, e3 = e3, e1, e4 = 0, e2, e3 = K 2 e4, e2, e4 = 0, e3, e4

 = 0

Now, to actually initialize the algebra, we call DGsetup.

DGsetup(LD1);
Lie algebra: alg1

It is usually best to start the classification of a Lie algebra by computing the Levi decomposition.
However, if the algebra is solvable or semi-simple, the Levi
decomposition is reduntant. Computationally, it is relatively inexpensive to check to see if the algebra
is solvable or semi-simple, and for large or complicated
algebras, the Levi decomposition can be time consuming. It just so happens that we have picked a
solvable Lie algebra.

Query(alg1,"Solvable");
true

Solvable Lie algebras are more difficult to classify than semi-simple ones. In this case, however, the
structure constants are telling; e4 commutes with all
other vectors. While classification algorithms exist for solvable Lie algebras of low dimension, such as
this one, they are not implemented in Maple,
and I have not written code to do this. Instead, I have written code to narrow down the list of
candidate Lie algebras. A complete list of real solvable Lie

(2.2)(2.2)

(2.12)(2.12)

N1 > N1 >

(1.12)(1.12)

(3.6)(3.6)

(3.2)(3.2)

(3.11)(3.11)

algebras up to dimension six is included in the Library package. These are in the "Winternitz"
resource. As an example, we can retrieve the the fourth three-
dimensional solvable (real) Lie algebra:

LD_example := Retrieve("Winternitz",1,[3,4]);
LD_example d e1, e2 = 0, e1, e3 = e1, e2, e3 = K e2

Below is a method to comb through the algebras listed in the Winternitz source to return a list of Lie
algebra candidates. I will demonstrate its use
on the isometry algebra, alg1, that we created earlier. (This code relies on the Tools package to
determine the dimension of the Lie algebra.)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

my_LowD_SLA_explore := proc(alg)
This is a tool to help narrow down what solvable Lie Algebra alg might be
local SE,i,j,myalg,is_candidate,Candidates,DS,mDS,numAlg,Dim;

Candidates:=[]:

Dim := DGinfo(alg,"FrameBaseDimension"):

Winternitz doesn't bother with Dim < 3, but I'll pretend for consistency.
if Query(alg,"Abelian") then

return [["Winternitz",1,[Dim,0]]]:
fi:

If it were abelian, then we would've caught it already (only 2 2D LA's: abelian and not)
if Dim = 2 then

return [["Winternitz",1,[2,1]]]:
fi:

This determined how many algebras in Winternitz we'll have to check based on the dimension
if Dim = 3 then

numAlg := 9:
elif Dim = 4 then

numAlg := 12:
elif Dim = 5 then

numAlg := 39:
elif Dim = 6 then

numAlg := 22:
fi:

Isomorphic real Lie algebras have the same
- derived series (and therefore derived algebra)
- center
- nilradical

alg1 > alg1 >

(2.2)(2.2)

(3.16)(3.16)

(3.14)(3.14)

alg1 > alg1 >

(3.12)(3.12)

alg1 > alg1 >

(3.13)(3.13)

alg2 > alg2 >

(3.17)(3.17)

(2.12)(2.12)

(1.12)(1.12)

alg1 > alg1 >

(3.15)(3.15)

N1 > N1 >

(3.6)(3.6)

(3.2)(3.2)

Candidates := my_LowD_SLA_explore(alg1);
Candidates d "Winternitz", 1, 4, 8

In this case, we are lucky; only one candidate is returned. We now know that our Lie algebra, alg1, is
the eighth Lie algebra in the Winternitz source.
To double-check this, we can initialize it and compare multiplication tables. To avoid confusion, we'll
label our retrieved algebra vectors using f, rather
than the default e.

LD2 := Retrieve(op(Candidates[1]),alg2);
LD2 d e1, e2 = 0, e1, e3 = 0, e1, e4 = 0, e2, e3 = e1, e2, e4 = e2, e3, e4 =

K e3
DGsetup(LD2,[f],[o]);

Lie algebra: alg2
MultiplicationTable(alg1,"LieTable");
MultiplicationTable(alg2,"LieTable");

alg1 e1 e2 e3 e4

e1 0 K e2 e3 0

e2 e2 0 K 2 e4 0

e3 K e3 2 e4 0 0

e4 0 0 0 0

alg2 f1 f2 f3 f4

f1 0 0 0 0

f2 0 0 f1 f2

f3 0 K f1 0 K f3

f4 0 K f2 f3 0

These don't exactly match, but we should be able to perform a simple change of basis to fix that. We'll
slightly parameterize the change of basis and use the fact
that one of the basis vectors is in the center of the algebra.

LD1a := LieAlgebraData([e4, a*e1, b*e2, c*e3],alg1a);
LD1a d e1, e2 = 0, e1, e3 = 0, e1, e4 = 0, e2, e3 = K a e3, e2, e4 = a e4, e3, e4

 = K 2 b c e1
LD2;

e1, e2 = 0, e1, e3 = 0, e1, e4 = 0, e2, e3 = e1, e2, e4 = e2, e3, e4 = K e3

With a = b = 1 and c =
K1
2

, we get very close; the vectors are just labeled in a slightly different order.

> >

> >

alg1 > alg1 >

(2.2)(2.2)

(3.18)(3.18)

(3.20)(3.20)

> >

> >

alg1 > alg1 >

(3.19)(3.19)

> >

> >

(2.12)(2.12)

(1.12)(1.12)

alg1 > alg1 >

(3.6)(3.6)

(3.2)(3.2)

LD1a := LieAlgebraData([e4, e2, (-1/2)*e3, e1],alg1a);
LD1a d e1, e2 = 0, e1, e3 = 0, e1, e4 = 0, e2, e3 = e1, e2, e4 = e2, e3, e4 =

K e3

Now the multiplication tables look the same so the result is verified:

DGsetup(LD1a);
Lie algebra: alg1a

MultiplicationTable(alg1a,"LieTable");
MultiplicationTable(alg2,"LieTable");

alg1a e1 e2 e3 e4

e1 0 0 0 0

e2 0 0 e1 e2

e3 0 K e1 0 K e3

e4 0 K e2 e3 0

alg2 f1 f2 f3 f4

f1 0 0 0 0

f2 0 0 f1 f2

f3 0 K f1 0 K f3

f4 0 K f2 f3 0

Part 4: Example Codes
In part four, I provide the code, with minimal introduction, that I used to automate
the procedures discussed in the previous tutorials.
For explanations of all the pieces, see the previous three tutorials.

We will start by loading in the packages we'll need and setting preferences as always.

with(DifferentialGeometry):
with(Tensor):
with(LieAlgebras):
with(Library): with(Tools):
Preferences("TensorDisplay", 1):
interface(typesetting = extended):

The below code is used for narrowing down candidates for solvable Lie algebras of low dimension

(2.2)(2.2)

(2.12)(2.12)

(1.12)(1.12)

(3.6)(3.6)

(3.2)(3.2)

and was used in Tutorial 3.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

my_LowD_SLA_explore := proc(alg)
This is a tool to help narrow down what solvable Lie Algebra alg might be
local SE,i,j,myalg,is_candidate,Candidates,DS,mDS,numAlg,Dim;

Candidates:=[]:

Dim := DGinfo(alg,"FrameBaseDimension"):

Winternitz doesn't bother with Dim < 3, but I'll pretend for consistency.
if Query(alg,"Abelian") then

return [["Winternitz",1,[Dim,0]]]:
fi:

If it were abelian, then we would've caught it already (only 2 2D LA's: abelian and not)
if Dim = 2 then

return [["Winternitz",1,[2,1]]]:
fi:

This determined how many algebras in Winternitz we'll have to check based on the dimension
if Dim = 3 then

numAlg := 9:
elif Dim = 4 then

numAlg := 12:
elif Dim = 5 then

numAlg := 39:
elif Dim = 6 then

numAlg := 22:
fi:

Isomorphic real Lie algebras have the same
- derived series (and therefore derived algebra)
- center
- nilradical

This is an automated version of the method used to classify semi-simple Lie algebras.

(2.2)(2.2)

(2.12)(2.12)

(1.12)(1.12)

(3.6)(3.6)

(3.2)(3.2)

1
2
3
4
5
6
7
8
9

SSClass := proc(alg)
Returns the Cartan Matrix for a semi-simple Lie algebra
local CSA, RSD, PR, SR, CM:
CSA := CartanSubalgebra(alg):
RSD := RootSpaceDecomposition(CSA):
PR := PositiveRoots(RSD):
SR := SimpleRoots(PR): CM := CartanMatrix(SR,RSD):
return CM;

end proc:

The code below takes a Lie algebra and performs a Levi-decomposition, then uses the two codes above.
This is
essentially the procedure followed in Tutorial 3.

(2.2)(2.2)

(2.12)(2.12)

(1.12)(1.12)

(3.6)(3.6)

(3.2)(3.2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

LieClassHelper := proc(alg)
This will help classify Lie Algebras
local LDec, alg_ss, alg_sol, LD_ss, LD_sol, CM, Candidates:

LDec := LeviDecomposition(alg):

if nops(LDec[1]) > 0 then
LD_sol := LieAlgebraData(LDec[1],alg_sol):
DGsetup(LD_sol):
Candidates := my_LowD_SLA_explore(alg_sol):

else
Winternitz doesn't bother with Dim < 3, but I'll pretend for consistency.
Candidates := [["Winternitz",1,[0,0]]]:

fi:

if nops(LDec[2]) > 2 then
LD_ss := LieAlgebraData(LDec[2],alg_ss):
DGsetup(LD_ss):
CM := SSClass(alg_ss):

else
CM := Matrix([]):

fi:

return [Candidates, CM]:

end proc:

The code below calculates several metric properties of interest, as are outlined in Tutorial 1.

(2.2)(2.2)

(2.12)(2.12)

(1.12)(1.12)

(3.6)(3.6)

(3.2)(3.2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

BlackBoxMetric:= proc(g, Lambda)
Takes a metric, g, and a cosmological constant, Lambda.
Returns a list containing:
- Curvature Tensor
- Einstein Tensor,
- Energy Momentum Tensor (assuming that the Einstein equations are satisfied)
- Petrov Type
- Segre Type
- Killing Vectors
- Subspace Type (note: this often fails without additional user input)
local R, G, PT, K, K_i, ST, T, g_inv, Segre, ans:

R:=CurvatureTensor(g):
print("R", R);

G:=EinsteinTensor(g):
print("G", G);

if not(Lambda = 0) then
g_inv:=InverseMetric(g):

else
g_inv:=g: # if Lambda is 0, then the inverse metric

doesn't matter (for now!), so no reason to find it.
fi:

T is the energy-momentum tensor given by g and Lambda
T:=simplify(evalDG((G + Lambda * g_inv) / (8 * Pi))):
print("T", T);

PT:=PetrovType(g);

	Analyzing Solutions to the Einstein Equations Using Differential Geometry
	Recommended Citation

	Untitled

