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“Spacetime tells matter how to move; matter tells spacetime
how to curve” - John Wheeler

The Einstein field equations:

Rαβ −
1

2
gαβR + Λgαβ = κTαβ

Solutions are components gαβ of metric tensor g

Equivalence Problem: g1 ≡ g2?
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Let M be an n-dimensional differentiable manifold.

Definition

A metric tensor field g on M is a mapping p 7→ gp, where p ∈ M
and

gp : TpM × TpM → R

is a symmetric, non-degenerate, bilinear form on the tangent space
to p on M.
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Given a basis {Xα (p)} of TpM, g(p) has components

g(p)αβ = gp(Xα (p),Xβ (p))

In a neighborhood U of a point,

gαβ

are C∞ functions of coordinates

Definition

A spacetime is a 4-dimensional manifold with metric tensor
having signature (3, 1), i.e. a Lorentzian signature.
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We refer to gαβ as the metric.

The metric defines a unique connection

Γ λ
α β =

gλµ

2
(∂αgβµ + ∂βgαµ − ∂µgαβ )

= Γ λ
β α

Γ λ
α β allows us to define a derivative, called the covariant

derivative

...which returns a new tensor when applied to a given tensor.
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On a 4-dimensional manifold M

X : C∞(M,R)→ C∞(M,R)

X = X 1(x)∂x1 + X 2(x)∂x2 + X 3(x)∂x3 + X 4(x)∂x4

The components of the covariant derivative of X are

X ν
;α = ∂αX

ν + Γ ν
α βX

β

When performing repeated covariant differentiation and
taking the difference, we get

X ν
;α;β − X ν

;β;α = (∂βΓ ν
µ α − ∂αΓ ν

µ β + Γ ν
λ βΓ λ

µ α − Γ ν
λ αΓ λ

µ β)Xµ
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Define

R ν
µ αβ = ∂βΓ ν

µ α − ∂αΓ ν
µ β + Γ ν

λ βΓ λ
µ α − Γ ν

λ αΓ λ
µ β

R ν
µ αβ are the components of the Riemann curvature

tensor!

R ν
µ αβ 6= 0 indicates curvature.

If all R ν
µ αβ = 0, the spacetime is flat.
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The R ν
µ αβ change when changing coordinates,

BUT certain contractions and products and combinations of
its contractions do NOT!

Called Riemann invariants

Example

From Rµα := R ν
µ αν is created the Ricci scalar R := gµαRµα
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From J. Carminati and R. Mclenaghan’s paper “Algebraic
invariants of the Riemann tensor in a four-dimensional
Lorentzian space”
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continued...
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g

��

? // g̃

��

oo

R ν
µ αβ

��

R̃ ν
µ αβ

��

invariants
? // invariantsoo

THE KEY: Obvious when two metrics are NOT equivalent
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In Einstein Spaces, A. Z.
Petrov gave a
“complete” classification
of spacetimes with
symmetry according to
group action.

In Exact Solutions of
Einstein’s Field
Equations, Stephani et al
compiled many famous
spacetimes.

The Gödel metric SHOULD be in Petrov’s classification, as
it’s a homogeneous space with isometry dimension 5.

Jesse Hicks Utah State University

The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes



Introduction A Little Background The Idea The Example Conclusion

The Gödel Metric

g = −a2 dt dt − a2ex dt dz + a2 dx dx + a2 dy dy −
a2ex dz dt − 1/2 a2e2 x dz dz

g = 1/4 a2 dr dr + 1/4 a2 dr ds + 3/4 a2 dr du +
1/4 a2(2 es/2+u/2+v/2+r/2 + 3) dr dv + 1/4 a2 ds dr +
1/4 a2 ds ds − 1/4 a2 ds du − 1/4 a2(1 +
2 es/2+u/2+v/2+r/2) ds dv + 3/4 a2 du dr − 1/4 a2 du ds +
1/4 a2 du du − 1/4 a2(2 es/2+u/2+v/2+r/2 − 1) du dv +
1/4 a2(2 es/2+u/2+v/2+r/2 + 3) dv dr − 1/4 a2(1 +
2 es/2+u/2+v/2+r/2) dv ds − 1/4 a2(2 es/2+u/2+v/2+r/2 −
1) dv du − 1/4 a2(4 es/2+u/2+v/2+r/2 − 1 + 2 es+u+v+r ) dv dv

Using t = −r+s+u+v
2 , x = r+s+u+v

2 , y = r−s+u+v
2 , z = v
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Here Gödel is again:

g = −a2 dt dt − a2ex dt dz + a2 dx dx + a2 dy dy − a2ex dz dt −
1/2 a2e2 x dz dz

It’s been shown that (33.17) with ε = −1 is the ONLY metric
in Petrov with equivalent Killing vectors:

g̃ = 2 dx1 dx4 + k22 e
−2 x3 dx2 dx2 − e−x3 dx2 dx4 + k22 dx

3 dx3 +
2 dx4 dx1 − e−x3 dx4 dx2
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Compute their respective Riemann invariants:

Gödel, we have R = −1 and

r1 =
3

16a4

r2 =
3

64a6

r3 =
21

1024a8

w1 =
1

6a6

w2 =
1

36a6

m1 = 0

m2 =
1

96a8

m3 =
1

96a8

m4 = − 1

768a10

m5 =
1

576a10
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Petrov’s (33.17), ε = −1, we have R = −2
k22

and

r1 =
1

4k2
22

r2 = 0

r3 =
1

64k4
22

w1 =
1

6k2
22

w2 =
1

36k3
22

m1 = − 1

12k3
22

m2 =
1

36k4
22

m3 =
1

36k4
22

m4 = 0

m5 = − 1

108k5
22

These are different metrics. Petrov incorrectly normalized.
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A corrected and complete classification is in a database.

A classifier has been coded in Maple that makes comparisons
against database.

Many metrics from Stephani’s compilation have been
identified in Petrov.

Software has been written to help find explicit equivalences.

Using that software, all homogeneous spaces of dimension 3-5
have explicit equivalences to metrics in Petrov.

Jesse Hicks Utah State University

The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes



Introduction A Little Background The Idea The Example Conclusion

Many thanks to my advisor Dr. Ian Anderson and the
Differential Geometry Group at USU!

Thank You!
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