Utah State University DigitalCommons@USU

Presentations and Publications

3-20-2015

The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes

Jesse Hicks Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/dg_pres

Part of the Cosmology, Relativity, and Gravity Commons, Geometry and Topology Commons, and the Other Applied Mathematics Commons

Recommended Citation

Hicks, Jesse, "The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes" (2015). *Presentations and Publications*. Paper 8. https://digitalcommons.usu.edu/dg_pres/8

This Presentation is brought to you for free and open access by DigitalCommons@USU. It has been accepted for inclusion in Presentations and Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

	A Little Background	The Idea	The Example	Conclusion
The	Riemann curvati	ire tensor	its invariants, a	nd
	their use in the cl	assification	of spacetimes	
		osso Hicks		
	J			

March 20, 2015

Utah State University

<ロ> <同> <同> <同> < 同>

Jesse Hicks

Introd	luction
muou	luction

- "Spacetime tells matter how to move; matter tells spacetime how to curve" - John Wheeler
- The Einstein field equations:

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R + \Lambda g_{\alpha\beta} = \kappa T_{\alpha\beta}$$

- Solutions are components $g_{\alpha\beta}$ of metric tensor g
- Equivalence Problem: $g_1 \equiv g_2$?

Jesse Hicks

Definition

A metric tensor field g on M is a mapping $p \mapsto g_p$, where $p \in M$ and

$$g_p: T_pM \times T_pM \to \mathbb{R}$$

is a symmetric, non-degenerate, bilinear form on the tangent space to p on M.

Jesse Hicks

Utah State University

	A Little Background	The Idea	The Example	Conclusion
G	iven a basis $\{X_{\alpha}(p)\}$ o	$f T_p M, g(p)$	has components	
		, ,		
	$g(p)_{\alpha\beta}$	$= g_p(X_{\alpha}(p), \lambda)$	$X_{\beta}(p)$	
	0 (174p		ρ(, , ,	
📕 In	a neighborhood U o	f a point,		
		σ		
		δαβ		
٦r	• C^{∞} functions of coordinates of the coordina	dinates		
ai		unates		
Definit	ion			
A space	c etime is a 4-dimensior	nal manifold w	ith metric tensor	
having	signature (3 1) i.e. a	Lorentzian sig	mature	
naving	Signature (0, 1), i.e. a			

∢ ≣ ► ≣ ৩ ৭ ৫ Utah State University

・ロト ・四ト ・ヨト ・ヨ

	A Little Dackground	The Idea	
We	refer to $g_{\alpha\beta}$ as the	metric.	

ap

The metric defines a unique connection

$$\Gamma_{\alpha \ \beta}^{\ \lambda} = \frac{g^{\lambda\mu}}{2} (\partial_{\alpha}g_{\beta\mu} + \partial_{\beta}g_{\alpha\mu} - \partial_{\mu}g_{\alpha\beta})$$

$$= \Gamma_{\beta \alpha}^{\lambda}$$

• $\Gamma^{\lambda}_{\alpha \ \beta}$ allows us to define a derivative, called the **covariant** derivative

...which returns a new tensor when applied to a given tensor.

< (17) > < (17) > (17)

Utah State University

Jesse Hicks

Introduction	A Little Background	The fuea		Conclusion
On	a 4-dimensional manif	old <i>M</i>		
	$X: C^{\infty}(A)$	$(M,\mathbb{R}) o C^{\circ}$	$^\infty(M,\mathbb{R})$	
	$X = X^1(\mathbf{x})\partial_{x^1} + X^2$	$(\mathbf{x})\partial_{x^2} + X$	$^{3}(\mathbf{x})\partial_{x^{3}}+X^{4}(\mathbf{x})\partial_{x^{4}}$	

• The components of the covariant derivative of X are

$$X^{\nu}_{;\alpha} = \partial_{\alpha}X^{\nu} + \Gamma^{\nu}_{\alpha\beta}X^{\beta}$$

 When performing repeated covariant differentiation and taking the difference, we get

$$X^{\nu}_{;\alpha;\beta} - X^{\nu}_{;\beta;\alpha} = (\partial_{\beta} \Gamma^{\nu}_{\mu\ \alpha} - \partial_{\alpha} \Gamma^{\nu}_{\mu\ \beta} + \Gamma^{\nu}_{\lambda\ \beta} \Gamma^{\lambda}_{\mu\ \alpha} - \Gamma^{\nu}_{\lambda\ \alpha} \Gamma^{\lambda}_{\mu\ \beta}) X^{\mu}$$

Utah State University

Jesse Hicks

A Little Background	The Idea	The Example	Conclusion

Define

$$R_{\mu \ \alpha\beta}^{\ \nu} = \partial_{\beta} \Gamma_{\mu \ \alpha}^{\ \nu} - \partial_{\alpha} \Gamma_{\mu \ \beta}^{\ \nu} + \Gamma_{\lambda \ \beta}^{\ \nu} \Gamma_{\mu \ \alpha}^{\ \lambda} - \Gamma_{\lambda \ \alpha}^{\ \nu} \Gamma_{\mu \ \beta}^{\ \lambda}$$

・ロン ・回 と ・ ヨン・

Utah State University

■ $R^{\nu}_{\mu \ \alpha\beta}$ are the components of the **Riemann curvature** tensor!

•
$$R_{\mu \ \alpha\beta}^{\ \nu} \neq 0$$
 indicates **curvature**.

If all
$$R_{\mu \ \alpha\beta}^{\ \nu} = 0$$
, the spacetime is **flat**.

Jesse Hicks

The Idea

- The $R_{\mu \ \alpha\beta}^{\ \nu}$ change when changing coordinates,
- BUT certain contractions and products and combinations of its contractions do NOT!

Called Riemann invariants

Example

From
$$R_{\mu\alpha} := R_{\mu}^{\ \nu}{}_{\alpha\nu}$$
 is created the Ricci scalar $R := g^{\mu\alpha}R_{\mu\alpha}$

Jesse Hicks

Utah State University

A Little Background	The Idea	The Example	Conclusion

 From J. Carminati and R. Mclenaghan's paper "Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space"

$$\begin{split} R &:= g^{ad}g^{bc}R_{abcd}, \\ r_1 &:= \Phi_{AB\dot{A}\dot{B}} \Phi^{AB\dot{A}\dot{B}} = \frac{1}{4}S_a{}^bS_b{}^a, \\ r_2 &:= \Phi_{AB\dot{A}\dot{B}} \Phi^B{}_C{}^b{}_C \Phi^{CA\dot{C}\dot{A}} = -\frac{1}{8}S_a{}^bS_b{}^cS_c{}^a, \\ r_3 &:= \Phi_{AB\dot{A}\dot{B}} \Phi^B{}_C{}^b{}_C \Phi^C{}_D{}^c{}_D \Phi^{DA\dot{D}\dot{A}} = \frac{1}{16}S_a{}^bS_b{}^cS_c{}^dS_d{}^a, \\ w_1 &:= \Psi_{ABCD} \Psi^{ABCD} = \frac{1}{4}\overline{C}_{abcd}\overline{C}{}^{abcd}, \\ w_2 &:= \Psi_{ABCD} \Psi^{CD}{}_{EF} \Psi^{EFAB} = -\frac{1}{8}\overline{C}_{abcd}\overline{C}{}^{cd}{}_{ef}\overline{C}{}^{efab}, \end{split}$$

Utah State University

Jesse Hicks

	A Little Background	The Idea	The Example	Conclusion
cor	ntinued			
	$m_1 := \Psi_{ABCD} \Phi^{CL}$	$P_{CD} \Phi^{ABCD} = \frac{1}{4}\overline{C}$	$S_{acdb}S^{cd}S^{ab}$,	
	$m_2 := \Psi_{ABCD} \Phi^{CL}$	$\Phi_{CD}\Psi^{AB}{}_{EF}\Phi^{EFC}$	Ď	
	$= \frac{1}{4}\overline{C}_{acdb}S^{cd}$	$\bar{Z}^{a}{}_{ef}{}^{b}S^{ef}$,		
	$m_3 := \Psi^{AB}{}_{CD} \Phi^{CL}$	$\Phi_{AB}\overline{\Psi}^{AB}{}_{CD}\Phi_{AB}{}^{C}$	ĊĎ	
	$= \frac{1}{4} \overline{C}_{acdb} S^{cd}$	$\overset{+}{C}{}^{a}{}_{ef}{}^{b}S^{ef}$,		

$$m_4 := \Psi_A^{\ B}{}_{DE} \Phi^{DE}{}_{A}^{\ B} \overline{\Psi}_{\dot{B}}^{\ C}{}_{\dot{DE}} \Phi_B^{\ C\dot{DE}} \Phi_C^{\ A}{}_{\dot{C}}^{\ A}$$

$$= -\frac{1}{8}\overline{C}_{acdb}S^{cd}C^{+b}_{efg}S^{ef}S^{ag},$$

$$m_5 := \Psi^{AB}{}_{CD} \Psi^{CD}{}_{EF} \Phi^{EF}{}_{EF} \overline{\Psi}^{EF}{}_{CD} \Phi_{AB}{}^{CD}$$

$$= \frac{1}{4} \overline{C}_{aefb} \overline{C}^{a}{}_{cd}{}^{b} S^{cd} \overline{C}^{g}{}_{ef}{}^{h} S^{cf},$$

ъ

・ロト ・回ト ・ヨト ・

Jesse Hicks

A Little Background	The Idea	The Example	Conclusion

THE KEY: Obvious when two metrics are NOT equivalent

Utah State University

Jesse Hicks

- In Einstein Spaces, A. Z. Petrov gave a "complete" classification of spacetimes with symmetry according to group action.
- In Exact Solutions of Einstein's Field
 Equations, Stephani et al compiled many famous spacetimes.
- The Gödel metric SHOULD be in Petrov's classification, as it's a homogeneous space with isometry dimension 5.

Utah State University

	A Little Background	The Idea	The Example	Conclusion
The Gö	del Metric			
■ g = a ² €	$= -a^2 dt dt - a^2 e^x dt$ $e^x dz dt - 1/2 a^2 e^{2x} dz$	dz + a² dx dx Iz dz	$+a^2 dy dy -$	
■ g =	$= 1/4 a^2 dr dr + 1/4 a^2$	$a^2 dr ds + 3/4 a$	$a^2 dr du +$	

$$g = \frac{1}{4}a^{2} dr dr + \frac{1}{4}a^{2} dr ds + \frac{3}{4}a^{2} dr du + \frac{1}{4}a^{2} (2e^{s/2+u/2+v/2+r/2} + 3) dr dv + \frac{1}{4}a^{2} ds dr + \frac{1}{4}a^{2} ds ds - \frac{1}{4}a^{2} ds du - \frac{1}{4}a^{2} (1 + 2e^{s/2+u/2+v/2+r/2}) ds dv + \frac{3}{4}a^{2} du dr - \frac{1}{4}a^{2} du ds + \frac{1}{4}a^{2} du du - \frac{1}{4}a^{2} (2e^{s/2+u/2+v/2+r/2} - 1) du dv + \frac{1}{4}a^{2} (2e^{s/2+u/2+v/2+r/2} + 3) dv dr - \frac{1}{4}a^{2} (1 + 2e^{s/2+u/2+v/2+r/2}) dv ds - \frac{1}{4}a^{2} (2e^{s/2+u/2+v/2+r/2} - \frac{1}{4}) dv du - \frac{1}{4}a^{2} (4e^{s/2+u/2+v/2+r/2} - 1 + 2e^{s+u+v+r}) dv dv$$

• Using
$$t = \frac{-r+s+u+v}{2}, x = \frac{r+s+u+v}{2}, y = \frac{r-s+u+v}{2}, z = v$$

Utah State University

・ロト ・回ト ・ヨト ・

ъ

2

A Little Background	The Idea	The Example	Conclusion

• Here Gödel is again:

 $g = -a^2 dt dt - a^2 e^x dt dz + a^2 dx dx + a^2 dy dy - a^2 e^x dz dt - 1/2 a^2 e^{2x} dz dz$

• It's been shown that (33.17) with $\epsilon = -1$ is the ONLY metric in Petrov with equivalent Killing vectors:

 $\tilde{g} = 2 dx^1 dx^4 + k_{22} e^{-2x3} dx^2 dx^2 - e^{-x3} dx^2 dx^4 + k_{22} dx^3 dx^3 + 2 dx^4 dx^1 - e^{-x3} dx^4 dx^2$

Utah State University

Jesse Hicks

A Little Background	The Idea	The Example	Conclusion

Compute their respective Riemann invariants:

• Gödel, we have R = -1 and

イロト イヨト イヨト イ

Utah State University

Jesse Hicks

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Petrov's (33.17),
$$\epsilon = -1$$
, we have $R = \frac{-2}{k_{22}}$ and

$$r_{1} = \frac{1}{4k_{22}^{2}} \qquad m_{1} = -\frac{1}{12k_{22}^{3}}$$

$$r_{2} = 0 \qquad m_{2} = \frac{1}{36k_{22}^{4}}$$

$$r_{3} = \frac{1}{64k_{22}^{4}} \qquad m_{3} = \frac{1}{36k_{22}^{4}}$$

$$m_{1} = \frac{1}{6k_{22}^{2}} \qquad m_{4} = 0$$

$$m_{2} = \frac{1}{36k_{22}^{3}} \qquad m_{5} = -\frac{1}{108k_{22}^{5}}$$

• These are different metrics. Petrov incorrectly *normalized*.

Jesse Hicks

Utah State University

Introduction	A Little Background	I he Idea	The Example	Conclusion

- A corrected and complete classification is in a database.
- A classifier has been coded in Maple that makes comparisons against database.
- Many metrics from Stephani's compilation have been identified in Petrov.
- Software has been written to help find explicit equivalences.
- Using that software, all homogeneous spaces of dimension 3-5 have explicit equivalences to metrics in Petrov.

A Little Background	The Idea	The Example	Conclusion

- Many thanks to my advisor Dr. Ian Anderson and the Differential Geometry Group at USU!
- Thank You!

Utah State University

A ►

3 →