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ABSTRACT 

Automated Data Type Identification and Localization  

Using Statistical Analysis Data Identification 

by 

Sarah J. Moody, Master of Science 

Utah State University, 2008 

 
Major Professor: Dr. Robert F. Erbacher 
Department: Computer Science 

 

This research presents a new and unique technique called SÁDI, statistical analysis data 

identification, for identifying the type of data on a digital device and its storage format based on 

data type, specifically the values of the bytes representing the data being examined.  This research 

incorporates the automation required for specialized data identification tools to be useful and 

applicable in real-world applications. The SÁDI technique utilizes the byte values of the data 

stored on a digital storage device in such a way that the accuracy of the technique does not rely 

solely on the potentially misleading metadata information but rather on the values of the data 

itself.  SÁDI provides the capability to identify what digitally stored data actually represents.  The 

identification of the relevancy of data is often dependent upon the identification of the type of 

data being examined. Typical file type identification is based upon file extensions or magic keys. 

These typical techniques fail in many typical forensic analysis scenarios, such as needing to deal 

with embedded data, as in the case of Microsoft Word files or file fragments.  These typical 

techniques for file identification can also be easily circumvented, and individuals with nefarious 

purposes often do so. 



 iv 

The results from the development of this technique will greatly enhance the 

capabilities of legal forensic units, as well as expand the knowledge base in the fields of computer 

forensics and digital security.  The results presented here are promising and certainly do not 

represent the complete capability of this new technique.  They compare favorably with other 

techniques from recent research and with the capabilities and performance of the professional 

tools currently in use in real-world forensics situations. 

 (76 pages) 
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CHAPTER 1 

INTRODUCTION 

 
In the field of computer forensics, there have been many techniques developed that 

attempt to aid in the identification of file types.  However, none of the techniques currently 

available have acceptable accuracy in the detection of file types except when relying upon file 

header information, file extensions, fixed “magic numbers,” and other such information 

associated with the file.  The most common method is to use the file extension to identify file 

type; this method, however, is extremely unreliable, as in most cases the extension is changeable 

by any user or application.  Other commonly used identification schemes can all be maliciously 

manipulated, and none handle embedded and obfuscated data well. 

The goals of this research were to 1) develop an algorithm for data type identification and 2) 

analyze the effectiveness and accuracy of the developed algorithm.  The algorithm is designed to 

identify and locate date types within a file system and automate this process.  As specified by the 

name, statistical analysis data identification (SÁDI), this method uses various results from a 

statistical analysis to identify the data type.  The most important statistical measurements include: 

average, kurtosis, distribution of averages, standard deviation, distribution of standard deviations, 

and the unique characteristics from the distribution of byte values.  These particular statistics are 

the most unique in differentiating among the various data types.  No other currently available 

methods utilize all of these statistics.  SÁDI utilizes the byte frequency distribution information 

differently than other recent identification techniques by focusing only on the unique portions for 

each type.  The most novel addition the SÁDI technique makes is the addition of the other 

statistics to the analysis process and the utilization of a unique application of a sliding windows 

technique to allow the identification of fragments of file data. 

These novel methods were chosen primarily to obtain greater accuracy in the 

identification process and to reach the differing goal of data type identification rather than file 
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type identification.  This differing focus is the key to achieving greater accuracy in the analysis.  

Focusing on data types allows SÁDI to handle situations involving data fragments, embedded and 

appended data.  Future research on SÁDI can expand to evaluate how it handles situations 

involving cryptography, steganography, and other such data manipulations. 

The SÁDI technique involves taking a memory block and identifying the data types 

within the block, based upon the block’s statistical analysis results. This technique also identifies 

what type of file the memory block is (if it is only one file) based upon the composition of data 

types and the format of the available data.  For example: “Is the data being examined similar to 

that which would occur in a PDF file, or is it in more of a raw form as would be seen in a doc?’ or 

‘Is the data stored in a binary format?” SÁDI is also unique in that only the content of the 

memory block is used in the identification of the data types, and it can identify pieces and 

fragments of files.  The memory blocks are divided up into smaller chunks or fragments usually 

in size of 256, 512, or 1024 bytes.  These chunks are then analyzed separately allowing the SÁDI 

technique to identify file fragments (at the very least 64 bytes, preferably one of the three sizes 

listed previously).  All the data is analyzed in a consistent manner without any user prejudice as 

to what the data is supposed to mean.  Earlier methods focusing on file type identification 

contained this drawback.  Several file types can easily have other data types embedded within 

them, for example a spreadsheet table embedded within a Word document.  In these cases, the 

identification of the file type is subsumed by the more important issue of identifying the data type.  

The SÁDI technique focuses on data type identification, and this change in focus is one of the 

strong points for the proposed technique.  This focus is what allows embedded data and data 

fragments to be identified.  The fact that some file types have other data types embedded within 

them is a major reason earlier methods not based on a content only analysis struggle to accurately 

identify file types. The data types found within a file are not solely indicative of the file type but 

also of the component data types. 
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Chapter 2 is a conference paper from the 2008 Systematic Analysis of Digital Forensics 

Evidence (SADFE) Workshop being held in May at the Claremont Resort in Oakland, CA.  The 

paper has been accepted and will be published in the proceedings of that workshop.  Chapter 3 is 

a draft of an article that will eventually be submitted to a professional journal in the area of digital 

forensics.  Both works contain detailed information about the implementation and evaluation of 

the SÁDI technique. Chapter 4 presents conclusions and areas for future work. 
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CHAPTER 2 

SÁDI – STATISTICAL ANALYSIS FOR  

DATA TYPE IDENTIFICATION1 

Abstract 

A key task in digital forensic analysis is the location of relevant information within the 

computer system. Identification of the relevancy of data is often dependent upon the identification 

of the type of data examined. Typical file type identification is based on file extension or magic 

keys. These typical techniques fail in many typical forensic analysis scenarios, such as needing to 

deal with embedded data, as in the case of Microsoft Word files or file fragments.  

The SÁDI technique applies statistical analysis of the byte values of the data in such a 

way that the accuracy of the technique does not rely on the potentially misleading metadata 

information but rather the values of the data itself. SÁDI has the capability to identify what the 

digitally stored data actually represents and also selectively extracts portions of the data for 

additional investigation; i.e., in the case of embedded data. Thus, our research provides a more 

effective data type identification technique that does not fail on file fragments, embedded data 

types, or with obfuscated data. 

2.1 Introduction and Motivation for the Work 

In computer forensics, the goal is to locate criminally relevant information on a computer 

system. Today’s operating systems allow such relevant information to be stored in many places 

within a computer system. The most common place to locate such information is on the hard 

drive. Given the size of today’s hard drives, locating small snippets of criminally relevant data 

can be extremely cumbersome, especially when sophisticated data hiding paradigms are used. A 

                                                      
1 Co-authored by Dr. Robert F. Erbacher 
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digital forensic analyst must be able to locate the evidence, or lack thereof, that might be found 

on any number of various types of digital storage devices. Rather than simply having to locate 

files containing criminal activity hidden within the morass of files, analysts must locate the 

information hidden within otherwise innocuous files. While many techniques can be used to hide 

information on the hard drive, we focus on the location and identification of relevant information 

embedded in or appended to other innocuous appearing files. Further, there are many techniques 

that can be applied for hiding data [17][20]. 

This need to locate evidence highlights the need to be able to “identify the type of 

information stored in a device and the format in which it is stored” [14] so the forensic analyst 

can retrieve the relevant portions of the data and utilize that information in the investigation. This 

research presents a new and unique technique for identifying the type of data on a digital device 

and its storage format based upon the values of the stored data bytes and a statistical analysis of 

those values. While we focus on the identification of data on hard drives, the discussed technique 

is applicable across the board to all forms of digitally stored data. SÁDI’s ability to identify data 

types as opposed to file types is of critical importance, a definition of file type versus data type is 

in order. Distinguishing between the two is particularly critical when considering hybrid data 

types, such as Microsoft Word, which can incorporate text, images, html, spreadsheets, etc.  

File type – The overall type of a file. This is often indicated by the application used to create 

or access the file. 

Data type – Indicative of the type of data embedded in a file. Thus, a single file type will 

often incorporate multiple data types.  

Thus, when attempting to locate relevant files, the goal is the location of relevant data 

types. For instance, when attempting to locate child pornography on a hard drive, we must 

consider locating the following:  

• Image files as separate whole units 
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• Fragments of image files, i.e., deleted files 

• Images or image fragments appended to files 

• Images or image fragments embedded into hybrid files, such as Microsoft Word 

• Images camouflaged on the hard drive 

These scenarios limit the effectiveness of relying on file header information or file 

extensions that are the primary focus of most detection techniques. 

SÁDI takes a block of memory, i.e., a single file, and performs a statistical analysis on it. 

The file’s blocks are processed using a sliding window paradigm [4], and various statistics are 

calculated for each window and the memory block as a whole. These statistical results are 

analyzed to identify their relationship to the unique characteristics representative of individual 

data types. The technique does not rely on the potentially misleading metadata information but 

rather the values of the data itself. 

2.2 Research Problem 

There have been many techniques developed that attempt to identify file types; Section 

2.3 discusses these techniques. However, currently available techniques do not have acceptable 

accuracy in the detection of file types except when relying upon file header information, file 

extensions, fixed magic numbers, and other such information associated with the file. The most 

common method is to use the file extension to identify file type; this method, however, is 

extremely unreliable, as in most cases the extension is changeable by any user or application. 

Many operating systems do not open a file that has been renamed with an incorrect extension, and 

some virus scanners will not scan files unless they have an executable extension [13].  

UNIX systems utilize the file command to identify file types. This command utilizes 

three different methods to identify the parameters passed to it. The first method uses system 

information to recognize system files, the second utilizes magic numbers found in the first 16 bits 
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of a file, and the third method utilizes any ASCII content within the file in order to categorize the 

ASCII data according to language (such as C or a troff input file) [2][13]. For the magic number 

test to accurately identify the file, the magic number found in the first 16 bits of the file must be 

found in the /etc/magic file and be associated with the correct file type as described in [2].  When 

dealing with file fragments or obfuscated files and data, the reliance on header information 

prevents magic numbers and file extensions from being useful. Other work on file header analysis, 

such as that by Li et al. [12], apply enhanced string kernels (ESK) and extended suffix arrays 

(ESA) to identify header fragments based upon the header content. 

Another tool for identifying files is a freeware product called TrID [19]. TrID utilizes the 

binary structure of files to identify them based upon recurring patterns found within files of the 

same type. This tool, however, was not designed as a forensic tool and, therefore, does not take 

into account situations involving covert channels or other such manipulated data purposefully 

hidden from file type identifying tools. It also has no available documentation on the accuracy or 

false positive/negative rate. Therefore, although TrID can be useful for many computer users, it 

cannot be considered a forensic tool, nor does it appear to provide more capabilities concerning 

file identification than already provided in current forensic tools previously listed. 

File header information and other embedded magic numbers can be manipulated to 

prevent the file from being identifiable by techniques that use this type of information [8]. In 

addition, the magic number file itself (/etc/magic) can be modified by a user to misrepresent files. 

This manipulation prevents all current techniques from accurately being able to identify file type. 

Such manipulations are typical of viruses attempting to cloak themselves. Hence, all of the above 

mentioned methods of identification are easily circumvented. 

Another problem with focusing on identifying file type rather than data type is the issue 

of embedded data. It is very easy for a criminal to hide a table of child porn sales, for example, 

within a very large word document so that it is not discovered. Current forensics tools lack the 
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ability to find and locate embedded data, thus causing resources to be spent trying to locate 

information that may or may not be located on a hard drive [1] [3] [5] [6] [16]. 

2.3 Background and Related Work 

This research extends the work of Erbacher and Mulholland [4]. In this previous work, 

the technique and an analysis of the potential of the technique were presented. The current 

research examines the actual implementation of the technique as well as measures its 

effectiveness and accuracy. 

Other previous work in the area of type identification is found in [13]. In this work, three 

different techniques are used to identify file types. Note, however, that although these detection 

algorithms utilize file content to perform the identification, the overarching goal of these 

techniques is to identify the file type regardless of what data or data types might be contained or 

embedded therein. Consequently, the techniques by McDaniel and Heydari [13] are not able to 

identify embedded data accurately. McDaniel et al.’s first technique uses a file fingerprint created 

from the byte frequency distributions of files of the same type. Files are then identified depending 

upon their match with a type’s fingerprint. This algorithm has an average accuracy rate of 27.5%. 

The second algorithm is the byte frequency cross-correlation algorithm (BCA). This algorithm is 

similar to the proposed method except it extends the process to look at correlations between byte 

values. The authors report that it is a much slower method than the BFA method and has an 

accuracy of just 45.83%. The third algorithm proposed by McDaniel et al. is the file header/trailer 

algorithm (FHT). This algorithm looks for patterns and correlations in a certain number of bytes 

at the beginning and ending of a file. Although this method achieves an accuracy of 95.83%, it 

reduces the problem to a noncontent-based approach that only relies upon headers and trailers; i.e., 

it fails in many situations of interest to forensic analysts. 
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In [10], Karresand and Shahmehri present an algorithm that utilizes the measure of the 

rate of change of the byte contents of a file and extends the byte frequency distribution based on 

the authors’ Oscar method [11]. A centroid, created from byte frequency distributions, byte 

averages, and the standard deviation for byte values, is used to identify file fragments. To match a 

type, the file fragment has to be closest to the type’s centroid. In [10], this Oscar method is then 

extended to incorporate the ordering of the byte values in a fragment using the rate of change 

between consecutive byte values. This Oscar method achieved 92.1% detection rate with a 20.6% 

false positive rate for JPEG files. Zip files achieved a detection rate of 46% to 80% with a false 

positive rate of 11% to 37%, while exe files only achieved a detection rate of 12.6% and a false 

positive rate of about 1.9%. For both zip files and exe files, as the detection rate increased so did 

the false positive rate. The fact that the technique was effective at identifying jpeg files is 

misleading. The authors incorporated analysis steps into their algorithm designed to specifically 

detect JPEG files; i.e., they look for byte patterns required to appear in JPEG files. This is the 

reason for the high false positive rate with JPEG files, and it brings into question the overall 

usefulness of the technique. These Oscar-based methods focus on identifying file type and, hence, 

have the same drawbacks as found in the methods developed by McDaniel et al. 

Hall and Davis [7] present an entropy-based method for performing broad file type 

classification.  The technique uses an entropy measurement and a compressibility measurement 

through the application of a sliding window technique. The technique fails to identify file types 

accurately, but it aids in differentiating the type of data contained within the file, such as 

compressed versus uncompressed data. 

Stolfo et al. [18] show the results of inserting common malware into doc or pdf files.  The 

authors inserted malware at the beginning, at the tail or in the middle.  A common virus scanner 

was then used to see if the malware could be detected.  Except those cases involving the CodeRed 

worm, the malware was not detectable. But, by the same token, the malware also affected the 
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ability to open the file without an error occurring.  This work did not attempt to develop any new 

techniques for identifying malware. SÁDI, on the other hand, has the capability to identify 

embedded data.  Future work will incorporate these container types and allow for the 

identification of executable data embedded within other data types. 

2.4 Research Project Goals, Approach, and Uniqueness 

Given the weaknesses of the existing tools for the identification of file types, we set out 

to develop a new methodology for file type identification that built on and improved previous 

work. Our goal with the development of the new methodology was to: 

• More accurately identify of file and data types 

• Identify obfuscated data and covert channels 

• Locate and extract hidden data 

While a full range of statistical techniques were examined for SÁDI, the following were 

identified as the most relevant for the data type differentiation: average, kurtosis, distribution of 

averages, standard deviation, distribution of standard deviations, and byte distribution. 

The graph of averages shows how the range of values in each window changes across the 

file. The kurtosis is used to show peakedness in a dataset and, hence, identifies the flatness or 

consistency of the data directly. The kurtosis is essentially another measure of the consistency of 

the data. The standard deviation essentially identifies how chaotic values within a window are 

and how tightly fit the elements are to the median; i.e., are there many outliers in the window or 

are the values mostly consistent? The distribution of averages and the distribution of standard 

deviations are both alternative ways of viewing the average and the standard deviation. The byte 

distribution allows us to differentiate between very similar data types, such as in the case of html, 

txt, and csv data. All of these data types are strictly textual data, but each has unique 
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characteristics in their distributions that allows for differentiation among them through the 

distribution of byte values. 

The most novel addition the SÁDI technique makes is the addition of the other statistics 

to the analysis process and the utilization of a sliding windows technique to allow the 

identification of fragments of data. These novel methods were chosen primarily to obtain greater 

accuracy in the identification process and to reach the goal of data type identification rather than 

file type identification. 

2.5 Methodology 

2.5.1 Applied Statistical Techniques 

As demonstrated by Erbacher and Mulholland [4], the most useful statistics for data type 

identification (regarding currently studied data types) include average, distribution of averages, 

standard deviation, distribution of the standard deviations, and kurtosis; to which we added the 

distribution of byte values. More specifically: 

Average – the average is taken by averaging the byte values for each window i and averaging 

the set of window averages. N denotes the number of bytes in the window. The graph of 

averages shows how the range of values in each window changes across the file. 

∑
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Distribution of Averages – the probability that an average chosen from all the averages of a 

memory block is of value B in the range of 0-255. The goal of mapping the distribution of the 

statistics, i.e., measuring the probability of a statistical value occurring, is to provide a 

summary of the type of data in a file, providing an overview of the components of a file. 
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Standard Deviation –the standard deviation of the byte values of a window from the average 

for the window. This essentially identifies how chaotic elements’ values within a window are 

and how tightly knit the elements are to the median; i.e., are there many outliers in the window 

or are the values mostly consistent? 

∑
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Distribution of Standard Deviations – the probability that a standard deviation chosen from 

all the standard deviations of a file is the value B. 
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Kurtosis – the peakedness or consistency of the data calculated from two different 

modifications of the standard deviation. The numerator is the standard deviation squared with 

a fourth power instead of a square power, and the denominator is the standard deviation 

squared. 
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Distribution of Byte Values – the probability that a byte chosen from all the bytes in a 

window is the value of B. Only unique values are used in the analysis. 
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These statistical characteristics are then utilized in the algorithmic analysis of the digital 

data to uniquely identify data of each data type. In various cases, the other statistics mentioned in 

[4] can be used to increase accuracy and differentiate between very similar data types.  
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2.5.2 Identifying Unique Data Type Characteristics 

As a starting point, only base data types were studied and applied to whole files in order 

to verify the accuracy and effectiveness of the statistical techniques and identified range 

characteristics associated with each data type. Base data types are those for which the entire file 

can be considered to be of the same data type (ignoring header information); some examples 

include jpg, exe, dll, and txt. The range characteristics amount to identifying the expected 

window values for each statistical technique. Unique range values for a sufficient number of 

statistics were used for each data type to ensure differential diagnosis. Creation of these range 

values was done through two phases. First, the statistical graphs for a large number of files with a 

similar type were compared. The goal here was to examine the graphs to identify unique and 

consistent patterns that may aid differential diagnosis. Second, the actual numerical values of the 

statistical techniques were examined to identify the exact values that gave rise to the unique 

characteristics identified in the graphs. These statistical differentiators were then stored in a 

configuration file in association with each of the individual data types. The identified range 

characteristics are shown in Table 1.  These ranges apply to a 256-byte window. 

Due to the shifts in the statistical results for the different window sizes, this textual input 

file used initially in this research project is only applicable for the window size used to generate 

the characteristic data found therein. Hence, for varying window sizes multiple characteristic 

input files are required. The advantage of allowing for different window sizes comes from the fact 

that each window size produces slightly varied statistical results for the data types, thus may 

highlight differing unique characteristics that may not be as clearly visible at alternate window 

sizes.  We primarily use a window size of 256 bytes.  This size was chosen because it is small 

enough to not obfuscate the data, a common problem with too large a window, yet it is large 

enough to provide a good amount of data in each window to produce unique characteristic 

statistical information. 
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Table 1. Configuration Values for the Differentiation of Typical Data Types. 

Type Average Kurtosis Std. Dev. 

 Min. Max. Min. Max. Min. Max.

NULL 0 0 0 0 0 0

Txt 58.156 97.640 1.013 5.065 26.482 38.07

Html 40.40 97.70 1.40 4.10 22.00 38.40

Csv 44.0 100.0 1.40 23.40 4.50 38.07

Jpg 103.0 148.40 1.48 3.30 56.70 88.80

Dll 0.0 178.0 0.0 20.80 20.0 106.70

Xls 2.0 87.690 1.265 51.993 5.025 93.735

Exe 1.510 165.86 0.0 58.620 0.0 118.58

Bmp 0.0 255.0 0.0 109.0 0.0 120.0

  

Several data types cannot be differentiated due to their extremely similar binary structure. 

Data types currently being analyzed that cannot be differentiated include: 

• Exe and dll files – These file formats are both binary with similar statistical values and 

compiled code content. 

• Csv, html, txt – Since these are all text oriented file formats, they have similar narrow 

ranges of values. The goal for differentiation is the identification of unique probability 

characteristics, namely, a high appearance of “,” in csv and {“<”,”>”} in html. 

Some data types also have unique identifying patterns for some statistics. This is seen, for 

instance, with Microsoft Excel spreadsheet files in conjunction with byte averages. This particular 

data type and statistic has a stair-step pattern unique to average statistical results for spreadsheet 

data [4]; see Figure 1.   

Also of note are the peaks at the beginning and end of the data streams. Finally, an 

embedded graph is visible at the 38% mark for one of the data streams.  This unusual pattern in  
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Figure 1. Average values for xls data. 

 

the xls average statistical data engendered a need for a second pass within the analysis code. The 

first pass focused solely on applying statistical analysis techniques and attempts to identify data 

blocks that match the statistical structure of known data types. The second pass performed an 

analysis that identified unusual patterns in these computed statistics, as seen with Microsoft Excel 

spreadsheet files; see Figure 2. 

The figure also shows the whole structure of the xls file; the beginning windows match 

an xls file header followed by windows that match spreadsheet data. These are then followed by 

windows matching empty spreadsheets and finally the last few windows match an xls trailer, 

clearly showing the data components found within an xls file.  

Output is provided to the user designating the most likely data types for each file. Any 

embedded or appended data should be able to be identified on a per window basis, similar to that 

shown for the component data types in the xls file shown in Figure 2.  The characteristic pattern 

typical of xls spreadsheets can be clearly seen. This pattern remains identifiable even with larger 

numbers of conflicting matches in the first pass. 
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Figure 2. Secondary analysis of Food_Storage.xls. 

2.6 SÁDI Implementation  

SÁDI’s task flow [15], as illustrated in Figure 3, is based on a continuous feedback loop 

paradigm to allow for the continuous improvement and refinement of the data differentiation 

parameters. This task flow diagram exemplifies the process of computing the initial statistical 

matching parameters and applying those parameters to test data for data type identification.  Such 

cyclic improvement available through this process is critical, given the continuous deployment of 

new or modified file formats; i.e., the Microsoft Word format changes with every new release of 

Microsoft Word. This ever-changing nature of file formats adds to the difficulty of differentiating 

file formats, as files that are the same essential type can have slight variations.  

2.6.1 Data Preprocessing 

Through the data preprocessor, we generate the statistical result files. These statistical 

result files are plain text and contain the statistics for each window from the original file. At the 

beginning of each of these statistical result files are three lines of text containing the name of the 
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original file (including any file extension), the size of window used, and other formatting 

information. Following these three lines, the remainder of the file is organized as a very large 

table of values. Each column contains the values for a single statistic and in the cases of the 

distribution statistics, an array of values. Each row corresponds with the values for a single 

window from the original file. The statistical result files generated by the preprocessor are then 

used as input into the analysis code. These are also the results used to initially construct the list of 

data type characteristics used in the identification process.  

2.6.2 Analysis Code 

The analysis code is organized such that each file’s window data is looped-over multiple 

times (once for each statistic for each data type); hence, the innermost loop is over the window 

data. The Big O complexity is O(f*d*s*m) where f is the number of files to be analyzed, d is the 

number of potential data types involved in the analysis, s is the number of statistics for each data 

type, and m is the length of the file.  

Accuracy enhancing features of the environment include: 

• Flexibility in setting weights for the values of the data type statistics 

• Inclusion of a percent match total for the block as a whole (facilitates file identification) 

rather than only on a per window basis 

• Addition of timing code for performance evaluations 

• Extension to use of a two pass analysis, with the second pass performing pattern 

matching. 

The benefit of a flexible weighting scheme for the data types’ statistics is in the ability to 

weight more unique statistics higher; therefore, they will have a greater effect on the resulting 

identification process than less unique statistics.  
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Figure 3. Analysis process. 

 

The second pass analysis, i.e., pattern matching, was only performed on those memory 

blocks that could not be identified with the faster initial analysis pass. This improved overall 

performance without sacrificing the accuracy of the entire analysis process. Currently, this pattern 

matching is primarily focused on detecting xls files. 

2.7 Evaluation 

To evaluate the accuracy of SÁDI, we gathered 25 files of each data type being analyzed: 

bmp, csv, dll, exe, html, jpg, txt, and xls, for a total of 8 different data types and 200 files. The 

first five files of each data type were used to identify the unique characteristics of each data type 
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initially and specify the statistical parameters used for the testing portion of the evaluation.  Next, 

the files were run through the preprocessor to generate the statistical result files that were then 

used in the automated analysis to identify the data type(s) contained in each. 

The results from the initial analysis pass without pattern matching are shown in Table 2, 

all requiring a minimum percentage match of 92% before a type could be considered a match. 

These results have combined csv, html, and txt data into one type as well as dll and exe data into 

one type. By adjusting this minimum percentage, we can vary the resulting percentage of correct 

matches, which in turn, alters the false positive and false negative rates. The ideal minimum 

percentage varies depending upon type. Worth noting is the fact that although xls is included here, 

a secondary pass had not yet been done and, therefore, much of this data were incorrectly 

identified. 

Table 2. Initial Analysis Results. 
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Bmp 25 16 9 0 0 0 64% 

Csv 25 0 0 25 0 0 100% 

Dll 25 6 19 0 0 0 76% 

Exe 25 6 19 0 0 0 76% 

Html 25 0 0 25 0 0 100% 

Jpg 25 1 7 0 17 0 68% 

NULL 0 0 0 0 0 0 100% 

Text 25 3 2 20 0 0 80% 

Xls 25 22 1 1 0 1 4% 

Totals 200 54 37 71 17 1 74.2% 
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Table 3 shows the results for xls data when a secondary pass has been taken into account. 

The incorporation of the pattern-based analysis greatly improves the results over the single pass 

only analysis.  The most influential reason for the terrible results for xls data when only 

considering the initial pass is that many Excel files by default include two sheets of blank data 

that most users simply leave blank and do not delete. These blank spreadsheets are stored 

primarily as NULL data, thus causing most xls files to have a relatively high match for null data. 

Even without the secondary pass, the results for xls data improve when the NULL data type is 

combined with the xls data type, producing a 64% accuracy compared with the 4% accuracy 

achieved when considering the two data types separately. 

The results of the analysis of the 25-bmp files are shown in  

  Table 4. The identification of matches with textual data was the key to improving 

the accuracy of bmp matches.  When considering the dissimilarity of bmp and textual data, it was 

very odd to see so many files identified as textual data.  

Upon an inspection of the original files being matched to the textual type, it was 

discovered that the files were of the form shown in Figure 4. Hence, the identification of the files 

as not actually being bmp files but text files, and the analysis correctly identified them as such. 

These appear to be source code files with embedded bitmap data, for instance, to act as icons. 

Those files were then replaced with actual bmp files for use in the results shown in Table 1.  

 

Table 3. Secondary Analysis Results for Xls Data. 
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Xls 25 2 3 1 19 76% 0 
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  Table 4. Secondary Analysis Results for Bmp Data. 

 

Also of note is the combination of dll and exe types. Because both are compiled code and 

contain binary data, these types cannot usually be differentiated and commonly have the exact 

same characteristic ranges. When considering them as separate types, both tended to match dll 

because that is the slightly more unique type, and most exe data do fall within the bounds of the 

dll data type. Future research will consider if the byte distribution has any effect upon the 

differentiation between these two similar types. 

When considering jpg data, although most jpg files were correctly matched, there were 

several that matched the wider range found within the dll and exe data types. This percentage is 

expected to fall as more files are tested. However, given the binary and compressed nature of jpg 

data, there will always be a subset of files falling just outside of the jpg data characteristic range, 

thus failing to match jpg data as accurately as other types of binary data, such as dll and exe data. 

 

#define info_width 8 

#define info_height 21 

static unsigned char info_bits[] = { 

 0x3c, 0x2a, 0x16, 0x2a, 0x14, 0x00, 

0x00, 0x3f, 0x15, 0x2e, 0x14, 0x2c, 

 0x14, 0x2c, 0x14, 0x2c, 0x14, 0x2c, 

0xd7, 0xab, 0x55}; 

Figure 4. Content of info.bmp. This is bitmap data in a textual form. 
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Table 5 gives the results with a varying minimum percentage; by varying the minimum 

percentage required for a match, we obtained the most promising accuracy for each data type.  

This table identifies the changes (improvements) in accuracy achieved by letting the minimum 

percentages float to optimal values independently for each data type.  The minimum percentage is 

the minimum percentage required to have the corresponding type be considered a match. The data 

being analyzed were identified as being of the most unique type that still meets this minimum 

percentage requirement. For example, some files containing data match the bmp type 100% but 

also match the text data 94.5% and dll/exe 97%. If the minimum required percentage were 95%, 

the data would be categorized as dll data since that is the most unique type that still meets the 

minimum percentage match requirement.  If the minimum percentage required for a match were 

instead 92%, the text type is more unique and meets this requirement, so the data would be 

identified as text. The xls data type has been left out as the most accurate results for that data type 

comes from the secondary analysis. 

To differentiate between the three kinds of textual data, the distribution of byte values is 

used. Although not yet fully incorporated into the automated analysis, we obtained some 

preliminary results to verify this differentiation is possible for most files. Each data type has a  

 

Table 5. Varied Minimum Percentages. 
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byte distribution of average values. A script compares each byte distribution value from a 

window with the expected average byte characteristic value(s) for the given types. The number of 

matching values is calculated for the window’s distribution, producing a window match 

percentage. The file’s match percentage is calculated by summing all of the windows’ match 

percentages and then dividing by the total number of windows. If this match percentage is greater 

than 80%, the file is counted as a match for the corresponding data type. The number of matched 

files is then divided by the total number of files analyzed, producing a percentage representing the 

number of correctly matched files. These percentages are presented in Table 6.  Here, we applied 

distribution analysis in order to differentiate csv, html, and txt files. This distribution analysis 

relies on the presence of unique frequently occurring bytes in each of the types, such as comma in 

csv files.  Each row represents the files’ data of the corresponding type while the values in each 

column represent the percentage of files matched for that column’s type.  For example, csv files 

have 96.0% of the files matching csv data while 0.0% of the files matched html data and 4.0% of 

windows matched plain text data. Therefore, more csv files match the csv data type than any 

other data type. 

Although the accuracy of the html data is reasonably high (84.0%), it could be higher for 

many files. Out of the 25 html files analyzed, four matched textual data better than html. When 

examining the original files, one reason for this is the presence of JavaScript code within the html 

proposed  

 

Table 6. Percentage of Matched Files from Textual Distribution Analysis. 

 Csv Html Txt 

Csv 96.0% 0.0% 4.0% 

Html 0.0% 84.0% 28.0% 

Txt 4.0% 0.0% 80.0% 
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file. The other html files contained much less of this embedded code or none at all and were 

accurately identified as html data. This is yet another example of the superiority of the 

technique’s ability to identify embedded data. 

2.8 Conclusion  

The results presented here are highly promising. The technique has been shown to 

accurately differentiate data types. This is highlighted in the results from the initial analysis of 

bmp files of which seven textual files were unknowingly included and were then identified as 

textual data rather than bmp data. In general, accuracy rates are far better than prior techniques 

and do not rely on header information, file extensions, or any other form of metadata.  

With regard to false positives, SÁDI compares well with previous techniques. False 

positive percentages range from 13.6% for dll and exe data through 10.67% for bmp data and 

down to 0% for jpg and xls data. One reason for the higher false negative percentages is that 

some files match a more unique type or a slightly less unique type. For example, most dll and exe 

data were incorrectly identified as bmp data, which has wider ranges and hence allowed for data 

with more varying values. Also, most incorrectly identified bmp data alternatively are identified 

as dll and exe data because they happen to fall within the smaller ranges of the characteristics of 

the dll and exe data types. 

Even in cases wherein covert channels are used to obfuscate data [9], SÁDI can be an 

effective analysis tool. One such covert channel method is to utilize file slack space, or extra 

space, in file headers to hide data [9]; the SÁDI technique would identify this embedded or 

appended data simply because of its existence and its differing statistical structure from the rest of 

the file. 

Bmp data presents a challenge because technically any binary value is a valid value; 

therefore, depending upon the colors present within the bmp picture, the file can fall into a much 
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narrower category. An extreme example is a bmp that is simply a black background, which is 

stored as all zeros and, hence, is identified as NULL data. This example is extreme because 

NULL is at the opposite end of the spectrum of data types due to the single value range for all 

statistics, compared with bmp that has the broadest range for all statistics. 

2.9 Future Work 

Further study of the effect of varying window sizes, both in identifying an optimal 

window size and in identifying applications outside of forensics, is warranted. For instance, SÁDI 

could benefit virus scanners and in identification of copyright or privacy violations. Similarly, 

simply identifying covert channels or unusual dissemination can aid identification of violations of 

trade secrets or other malicious uses of covert channels.  

Currently, we are looking to extend SÁDI to support more base types as well as the more 

difficult container type files, such as Microsoft Word, in order to identify the data types 

embedded therein.  Doing so will make SÁDI far more generally applicable to the detection of 

hidden data and allow SÁDI to locate information even when no file system is available. Doing 

so, however, will require applying SÁDI to fragments of data rather than to entire files and 

identify dynamically when the data type is substantially changing. 

When dealing with embedded data or data that has been appended, the technique also 

needs to identify the location of the data. To identify specific starting and ending locations of 

these kinds of data further analysis would be needed to break down the windows into byte values. 
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CHAPTER 3 

AUTOMATED DATA TYPE IDENTIFICATION AND 

LOCALIZATION USING SÁDI – STATISTICAL  

ANALYSIS DATA IDENTIFICATION2 

3.1 Introduction and Motivation for the Work 

In his introduction to McKemmish’s What is Forensic Computing? [13], Graycar states, 

“More and more, information technology is becoming the instrument of criminal activity.”  

McKemmish then states [13], 

“The application of computer technology to the investigation of computer based crime has 
given rise to a new field of specialization – forensic computing – which is the process of 
identifying, preserving, analyzing and presenting digital evidence in a manner that is legally 
acceptable.” 

McKemmish continues by presenting a list of what he considers to be the four key 

elements in forensic computing.  The first of these key components is the identification of digital 

evidence.  Whenever a computer based crime is committed, the perpetrator leaves behind digital 

evidence of his or her actions.  This evidence may be found on any type of digital storage device, 

including mobile/cellular phones and electronic PDAs as well as the more obvious devices such 

as a personal or laptop computer.  A digital forensic analyst must be able to identify the evidence, 

or lack thereof, that might be found on any number of these digital storage devices.  This 

highlights the need to be able to the format and type of digitally stored information so that the 

forensic analyst can retrieve the relevant portions of the data and utilize that information in the 

investigation [13].  This research presents a new and unique technique for doing just that, 

identifying the type of data on a digital device and its storage format based upon the values of the 

                                                      
2 Co-authored by Dr. Robert F. Erbacher 
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stored data bytes and a statistical analysis of those values.  This new technique is termed 

statistical analysis data identification, or SÁDI. 

In today’s world, there is a vast amount of digital data, which presents a challenge to 

forensics analysts.  McKemmish points out the time and effort required to identify and retrieve 

necessary information is much greater than with other similar activities [13].   SÁDI incorporates 

the automation required for such specialized data identification tools to be useful and applicable 

in real world applications.  The SÁDI technique utilizes the byte values of the data stored on a 

digital storage device in such a way that the accuracy of the technique does not rely on the 

potentially misleading metadata information but rather the values of the data itself.  SÁDI 

identifies what digitally stored data actually represent and selectively extracts portions of the data 

for additional investigation.  This can, in effect, be considered the same end goal as file type 

identification; SÁDI is just working from a different perspective to achieve the end result of data 

identification. 

3.2 Research Problem 

In the field of computer forensics, there have been many techniques developed that aid in 

the identification of file types.  However, none of the techniques currently available have 

acceptable accuracy in the detection of file types except when relying upon file header 

information, file extensions, fixed magic numbers and other such information associated with the 

file.  The most common method is to use the file extension to identify file type; this method, 

however, is extremely unreliable, as in most cases the extension is changeable by any user or 

application.  Many operating systems will not open a file that has been renamed with an incorrect 

extension, and some virus scanners will also not scan files unless they have the executable 

extension [12].  The Windows operating system utilizes this method of relying upon file 

extensions to identify files.  File types are associated with specific file extensions; these are preset 
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in the MS operating system, and if a user wishes to change the associations, s/he must do it 

manually [19]. 

File header information and fixed magic numbers depend upon predetermined patterns 

and/or values in the header portion of a file to determine the type of the file.  UNIX systems 

generally utilize a command entitled file to identify file types.  This command utilizes three 

different methods to attempt to identify the parameters passed to it.  The first method uses system 

information to recognize system files, the second utilizes magic numbers found in the first 16 bits 

of a file, and the third method utilizes any ASCII content within the file to categorize the ASCII 

data according to language (such as C or a troff input file) ([12] and [2]).  For the magic number 

test to accurately identify the file, the magic number found in the first 16 bits of the file must be 

found in the /etc/magic file and be associated with the correct file type as described in [2].  Magic 

numbers must, therefore, also be predefined before the generation of any associated files so that 

each file can have the magic number built into the header information.  This also prevents magic 

numbers from being useful in situations dealing with file fragments or obfuscated files and data. 

File header information and other embedded magic numbers can also be manipulated to 

prevent the file from being identifiable by techniques that use this information.  In addition, the 

magic number file itself (/etc/magic) can also be modified by a user to misrepresent files.  Some 

methods of manipulation include altering byte values located in the header or encrypting 

information by using any sort of cipher or encryption technique.  This manipulation generally 

prevents all current techniques from accurately being able to identify file type. 

Therefore, all of the above methods of identification are easily circumvented.  More 

information about the drawbacks, as well as the advantages, of using either magic numbers or file 

extensions can be found in [7].  A discussion of the drawbacks and advantages of using a byte 

frequency distribution for identification purposes in found in [7], this will be discussed more in 

Section 3.3. 
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Another problem with focusing on identifying file type rather than data type is the issue 

of embedded data.  It is very easy for a criminal to hide a table of child porn sales, for example, 

within a very large word document such that it is not discovered.  Current methods do not allow 

for the identification of this embedded table, and so to find this item of evidence, an analyst must 

open up every file and look through the entire contents of each to see if any embedded data were 

located in it and if so, determine if that data is applicable to the situation.  When considering the 

number of files on a typical hard drive, this process is not a viable option for the analyst.  Current 

forensics tools lack the ability to find and locate embedded data, thus causing resources to be 

spent trying to locate information which might or might not be somewhere on a hard drive.  The 

alternative to this large expense of time and effort is to just assume no applicable embedded data 

exists; this can obviously be a disastrous assumption to make.  The most popular forensic tools, 

including Encase, FTK (Forensics ToolKit), and ProDiscover, as well as many other forensic 

tools, lack this capability of identifying embedded data [1] [3] [5] [6] [15]. 

Another tool for identifying files is a Freeware product called TrID [18].  TrID utilizes 

the binary structure of files to identify them based upon recurring patterns found within files of 

the same type.  An XML database is used to store the definitions for the various file types.  

According to [18], TrID can be trained to recognize more file types by using another module, 

TrIDScan, to scan sample files of the same type to generate a new definition for that file type.  

This tool was not designed as a forensic tool and, therefore, does not take into account situations 

involving steganography or other such purposefully manipulated and disguised data.  It also has 

no available documentation on the accuracy or false positive/negative rate.  Therefore, although 

TrID can be useful for many computer users, it cannot be considered a forensic tool, nor does it 

provide more capabilities in regard to file identification than already provided in current forensic 

tools previously listed. 
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The proposed technique can identify and, with additional processing, specifically locate 

embedded data, as well as data hidden by using other techniques including steganography.  This 

research helps fulfill this pressing need of aiding the data analysis process.  Even in cases wherein 

steganography is used to obfuscate data, such as those discussed in [8], SÁDI is an effective 

steganalysis tool.  One such steganographic method mentioned in [8] is to utilize file slack space, 

or extra space, in file headers to hide data; the SÁDI technique can identify this embedded or 

appended data simply because of its existence and its differing structure from the rest of the file.  

In cases where in the embedded data is of the same type as the data in which it is being embedded, 

if there is any sort of fluctuation in the byte values (such as might be caused by header 

information on the embedded data), SÁDI identifies such fluctuations and flags them for further 

analysis. 

SÁDI involves taking a block of memory (a simplistic example is a single file) and 

performing a statistical analysis on it.  The blocks of various file and data types are first 

preprocessed, using a sliding windows technique, and the various statistics are calculated for each 

window and the memory block as a whole.  For further discussion of this preprocessing technique, 

see [4]. These blocks are then analyzed to identify the unique characteristics of each of the data 

types.  These characteristics are then used in the analysis of memory blocks with unknown types 

to identify the data types within those blocks on a per window basis.  We improved the analysis 

through feedback generated from correct and incorrect matches throughout the course of this 

research.  This feedback improved the data type characteristics which, in turn, increased the 

accuracy of the results. 

3.3 Background and Related Work 

This research extends the work of Erbacher and Mulholland in [4].  In this previous work, 

the technique and an analysis of the potential of the technique were presented.  The current 
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research extends the proof-of-concept technique found in [4] and implements it.  An analysis is 

given evaluating the accuracy, efficiency, and performance of the implemented algorithm. 

Other work in the area of data type identification is found in [12].  The authors use three 

different techniques to identify files.  Note, however, that although these detection algorithms 

utilize file content to perform the identification, the overarching goal of these techniques is to 

identify only the file type, not the data type contained within the file.  Consequently, the 

techniques are not able to accurately identify embedded data.  The first technique presented by 

McDaniel and Heydari is a byte frequency algorithm (BFA) which finds the average frequency of 

each byte value (0-255) for the entire file and then performs a normalization of the data. After 

doing this for many files of a particular type, a file type fingerprint is created that incorporates the 

byte frequency values of all files of the chosen type and allows an analyst to ascertain whether 

there are any particular byte values that are more common for the chosen file type.  To identify 

unknown files, the byte frequency distribution is calculated for each unknown file and compared 

to each type’s fingerprint; the closest match is then considered the type of the unknown file.  

During testing, this algorithm had an average accuracy rate of 27.5%.  The second algorithm, the 

byte frequency cross-correlation algorithm (BCA) extends the process to look at correlations 

among byte values.  It had an accuracy of 45.83% and performed a much slower analysis than the 

BFA method.  The third algorithm, the file header/trailer algorithm (FHT) looks for patterns and 

correlations in a certain number of bytes at the beginning and ending of a file.  Although this 

method achieved an accuracy of 95.83% during testing, it reduced the problem to a noncontent-

based approach which only relies upon headers and trailers. 

In [9], Karresand and Shahmehri present an algorithm that utilizes the measure of the rate 

of change of the byte contents of a file and extends the byte frequency distribution-based Oscar 

method mentioned from their research [10].  This original Oscar method utilizes a byte frequency 

distribution and then a calculation of the mean and standard deviation for each byte value.  This 
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forms a model, called the centroid by the authors, for the file type.  An unknown file fragment is 

compared with this centroid value, and if the sample fragment is close enough to the given 

centroid, the fragment is classified as the file type associated with that specific centroid.  In [9], 

this Oscar method is extended to incorporate the ordering of the byte values in a fragment, using 

the rate of change between consecutive byte values.  This method achieved 92.1% detection rate 

with a 20.6% false positive rate for JPEG files.  Zip files achieved a detection rate of 46% to 80% 

with a false positive rate of 11% to 37%, while exe files only achieved a detection rate of 12.6% 

and a false positive rate of about 1.9%.  For both zip files and exe files, as the detection rate 

increased so did the false positive rate.  Overall, the techniques discussed in [9] and [10] are only 

useful for identifying a fragment as a JPEG fragment or not, as opposed to actually identifying 

the type of the fragment from among all types.  These Oscar-based methods focus on identifying 

file type and, hence, have the same drawbacks as those methods developed by McDaniel et al. 

Li et al. [11] present a technique closer to SÁDI than either of the two previous 

techniques.  Li et al. utilize an n-gram analysis, and by utilizing a frequency distribution of byte 

values, generate a fileprint representative of all files of a given type.  The accuracy of this 

fileprint is generally much better than the previous techniques, although no false positive or false 

negative rates are given.  Also, the fileprint combines doc, ppt, and xls file types into one 

Microsoft Office type, and the dll type is combined with the exe file type, as they have similar 

fileprints.  Although in testing, a fileprint generated more positive results than the previous 

methods, the technique still is not very applicable to file fragments and, consequently, to data 

type identification in general.  The fileprint method of Li et al. also has the stated drawback of 

combining various types together to increase accuracy.  An interesting highlight noted by the 

authors is a modification to the technique to increase efficiency and accuracy.  By truncating the 

fileprint to only analyze a smaller portion of the first part of the file, with the highest degree of 

accuracy being when only the first 20 to 200 bytes are analyzed and the rest of the file is ignored, 
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a higher accuracy percentage is obtained as well as a much more efficient program (since most of 

the file is being ignored).  Although this does decrease execution time, it prevents the technique 

from even having the potential of identifying embedded types or in even recognizing their 

existence within an analyzed file.  So, even if a file is accurately recognized, there is no guarantee 

that it does not contain obfuscated, embedded, or appended data which could potentially be 

malicious or of forensic worth in an investigation.  Li et al. specifically designed their technique 

to answer the question, ‘Given file F and a set of potential file types Mi, can we correctly identify 

which type the file is or if it is an invalid type not within the set of potential types?’ Therefore, it 

was not designed to be used in situations in which the data type is unknown but discovering what 

the data actually represents is the desired outcome. 

The methods in [9], [10], and [12] are unable to achieve high accuracy rates while 

concurrently keeping the false positives rates low except when the method focused on header and 

trailer information or other special file identification numbers (such as are found in JPEG files). 

Unfortunately, such information can be manipulated or avoided by many data hiding and 

manipulation techniques.  The method in [11] achieves better accuracy but still does not address 

the problems of steganography and data obfuscation, nor is it able to accurately differentiate all 

file types.  These methods did, however, pave the way for the concept of the SÁDI technique, 

initially developed by Erbacher and Mulholland in [4] and more fully developed here to provide 

the capabilities unavailable in earlier techniques. 

3.4 Research Project Goals, Approach and Uniqueness 

The goals of this research project were to 1) develop algorithms for data type 

identification and localization and 2) analyze the effectiveness and accuracy of the developed 

algorithms.  The algorithm was designed to identify and locate date types within a file system and 

automate this process.  As specified by its name statistical analysis data identification (SÁDI), 



36 

this method uses various results from a statistical analysis to perform the data type identification. 

These include average, kurtosis, distribution of averages, standard deviation, distribution of 

standard deviations, and the unique characteristics from the distribution of byte values.  These 

particular statistics are the most unique in differentiating between the various data types, as will 

be discussed later in more detail.  No other currently available methods utilize these statistics.  In 

[12], McDaniel and Heydari utilize a byte frequency distribution which is identical to the 

distribution of byte values used in SÁDI; however, SÁDI utilizes the information differently and 

only concentrates on uniquely identifying distribution values.  In [9], the same basic byte 

frequency distribution is utilized to identify file fragments along with a few other modifications 

mentioned earlier.  SÁDI again utilizes the byte frequency distribution information differently by 

focusing only on the unique portions for each type.  The most novel addition the SÁDI technique 

makes is the addition of the other statistics to the analysis process and the utilization of a sliding 

windows technique to allow the identification of fragments of data. 

These novel methods were chosen primarily to obtain greater accuracy in the 

identification process and to reach the goal of data type identification rather than file type 

identification.  This differing focus is the key to achieving greater accuracy in the analysis.  

Focusing on data types allows SÁDI to handle situations involving data fragments as well as 

embedded and otherwise obfuscated data.  In the future, research on SÁDI can expand to evaluate 

how it can handle situations involving more sophisticated cryptography, steganography, as well 

as other data manipulations. 

Because the SÁDI technique involves taking a memory block and identifying the data 

types within the block based upon the block’s statistical analysis results, it should also be able to 

identify what type of file the memory block is (if it is only one file), based upon the composition 

of data types and the format of the available data.  For example: “Is the data examined similar to 

that which would occur in a PDF file or is it in more of a raw form as would be seen in a doc?”  
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SÁDI is also unique in that only the content of the memory block is used in the identification of 

the data types, and it can identify pieces and fragments of files with acceptable accuracy.  The 

memory blocks are divided up into smaller chunks or fragments usually in sizes of 256, 512, or 

1024 bytes.  These chunks are then analyzed separately, hence allowing the SÁDI technique to 

identify file fragments given enough data (at very least 64 bytes, preferably one of the three sizes 

listed previously).  All data is analyzed in a consistent manner without any user prejudice as to 

what the data is supposed to mean.  Earlier methods focusing on file type identification contained 

this drawback by assuming all data within a file are of the same type.  Several file types can 

easily have other data types embedded within them, such as the example of a spreadsheet table 

embedded within a Word document.  In these cases, the identification of the file type is subsumed 

by the more important issue of identifying data type.  The SÁDI technique focuses on data type 

identification. This change in focus, one of its many strong points, allows embedded data to be 

identified and localized.  The fact that some file types have other data types embedded within 

them is a major reason why earlier methods struggle to accurately identify file types based on an 

analysis of the content only. The types found within a file are not solely indicative of file type but 

also of the component data types. 

The following objectives embody the central process to the development of SÁDI: 

• Analyze the pros and cons of previous methods of identifying file types and utilize this 

knowledge to assist in the development of a more efficient and accurate algorithm (much 

of this work was done in [4]) 

• Develop an algorithm to locate and identify data types within a block of digital memory 

• Evaluate the effectiveness and accuracy of the algorithm, including calculating false 

positive and negative rates 
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• Utilize formal methods to verify the accuracy of the algorithmic method developed. This 

was done through precise documentation of procedures used and other adjustments made 

to the algorithm to obtain an increase in accuracy as well as a thorough testing of the 

algorithms to verify their integrity 

• Evaluate the capability to automate the algorithm and implement the automation 

• Analyze the effectiveness, efficiency and applicability of the automated algorithm 

3.5 Methodology 

3.5.1 Statistics and Data Types 

As a starting point, only base data types were studied until the accuracy of the SÁDI 

method was verified.  Base types are those for which the entire file can be considered to be of the 

same data type (ignoring header information). Some examples include jpg, png, dll, and mp3.  

The algorithms were later extended to include other data types and, additionally, to identify file 

types and the component data types within the files.  The reason behind this segregation of types 

was to verify the techniques on simple cases and then expand to accurately handle container-like 

files, such as doc and zip files which present a more advanced and complicated problem.  To 

develop this algorithm, we identified unique characteristics of data types in the various statistical 

measurements.  We used the work of Erbacher and Mulholland [4] for the most useful statistics 

for data type identification (regarding currently studied data types). These include average, 

distribution of averages, standard deviation, distribution of the standard deviations and kurtosis, 

to which was added the distribution of byte values. 

Average – (on a scale of 0-1, the normalized length of the file) the average of the byte values 

for each window i. A file-based average is the average of the set of window byte value 

averages. N denotes the number of bytes in the window or, in the file-based case, the number 

of windows. 
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Kurtosis – (on a scale from 0-1, the normalized length of the file) the peakedness or 

consistency of the data calculated from two different modifications of the standard deviation. 

The numerator is the standard deviation squared except with a fourth power instead of just a 

square and the denominator is the standard deviation taken to the fourth power. 

2

1

2~

1

4~

*






















−









−

=

∑

∑

=

=

N

i
ji

N

i
ji

j

XX

XX

NK
 

Distribution of Byte Values – (on a scale from 0-1) the probability that a byte chosen from 

all the bytes in a window is the value of B. Note: only unique values are used in the analysis. 

( ) )1Pr( BXBD iX i
≥>+=  



40 

These statistical characteristics are then utilized in the algorithmic analysis of the digital data 

to uniquely identify data of each data type.  In various cases, the other statistics mentioned in [4] 

are helpful in increasing accuracy and differentiating between very similar data types. 

3.5.2 Identifying Unique Data Type Characteristics 

To discover and identify the unique statistical characteristics for each data type, the 

results from test memory blocks were visually studied through a time intensive process, the 

outcome of this manual process being a textual file containing information about the unique 

characteristics for each data type. This information was then used in the automated algorithm to 

perform the statistical analysis identifying the various data types found within the analyzed 

memory blocks.  The use of this textual data input file allows easy modification of these values to 

obtain greater accuracy.  Due to the shifts in the statistical results for the different window sizes, 

this textual input file is only applicable for the window size used to generate the characteristic 

data found therein.  Hence, for varying window sizes, multiple characteristic input files are 

required. 

The advantage to allowing for different window sizes comes from the fact that each 

window size produces slightly varied statistical results for the data types and hence may highlight 

differing unique characteristics that may not be as clearly visible at alternate window sizes.  

Window sizes are of the form 2n, where n represents some integer power.  From [4], the most 

helpful window sizes are between 256 and 1024; therefore, we initially analyzed files utilizing 

these window sizes.  One disadvantage to utilizing multiple window sizes is that the manual 

identification of the data type characteristic information needs to be repeated with each window 

size, as the memory block data is more obfuscated with larger window sizes and more detailed 

and varying with smaller window sizes.  A second drawback to using the sliding windows of 

varying sizes is that each of these characteristic input files is only helpful in analyzing data that 
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has been preprocessed using the same window size, i.e., the window size used in the analysis 

must correspond to the window size used to preprocess the memory blocks to obtain viable 

results. 

Due to this drawback of manually constructing each characteristic input file for each 

window size individually, we primarily used a window size of 256 bytes.  As of yet, we have not 

expanded into detailed investigations into larger window sizes for two main reasons, the first 

being that the results from the smaller windows sizes are very promisingly accurate, and the 

second reason being that in identifying file fragments or obfuscated data, the smallest fragment or 

data piece that can be identified is the same as the window size.  Hence, by utilizing the smaller 

window size, SÁDI is more successful in accurately identifying small pieces of hidden data 

within larger blocks of memory.  It should be noted that the use of larger window sizes could 

reduce run time and decrease memory requirements and might be more helpful in applications 

that require faster run times or have limited memory available to the program.  This is an aspect 

to be researched in the future. 

Some of the data types also have very unique identifying patterns for some statistics.  The 

most unique example of this phenomenon is seen in the graph of the average statistical results 

from the spreadsheet data (referred to as xls data in Figure 1).  This particular data type and 

statistic has a stair step pattern which is unique to only the average statistical results for 

spreadsheet data [4]. 

Referring again to Figure 1, except for the red line corresponding to the file Food 

Storage.xls, all of the lines have the obvious stair step pattern which is unique to spreadsheet data.  

This particular file is very small and does contain one sheet with a limited amount of data in it, 

followed by two empty sheets. 

The empty sheets are represented by the horizontal sections between approx. 0.5 and 0.7 

and 0.7 and 0.9.  Due to the normalization between these files of differing lengths, the short stair 
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step pattern for Food Storage.xls is not clearly visible but is recognized in the automated analysis 

process.  The automated analysis process performs up to two passes over the data.  The second, 

optional, pass performs the analysis on a per window basis and utilizes any available pattern 

information.  A graph of the results from this second pass clearly shows SÁDI’s capability to 

identify component data types within a large memory block, as seen in Figure 5.  In Figure 5, the 

green ◊’s mark windows matched the corresponding type by more than 80% while the blue +’s 

mark windows only matched between 50-80% and the red □’s represent a match between 0-50%. 

By looking at this figure one can see the empty sheets represented, by null data, of the xls file.  

The intermediate spreadsheet data between the empty spread sheets can also be seen in the xls 

data column. 

Techniques similar to pattern matching can be used to identify these unique patterns in the 

statistical results of the data types.  Initially, SÁDI is using a simple recursive approach which 

recursively checks for a new matching pattern in the data or the continuation of a previously 

started pattern match, but more sophisticated techniques can later be tested and incorporated into 

SÁDI.  Incorporating the ability to have pieces of the pattern be optional would be helpful for 

some patterns. 

One technique used for string matching with a similar capability, the Smith-Waterman 

algorithm discussed in [16], might be used as a basis for a similar type of matching technique in 

the automated data matching algorithm used in SÁDI.  The Smith-Waterman algorithm has been 

show to also have the capability of being parallelizable, referred to as the Parallel SWAMP 

algorithm [17]. Thus, if the algorithm were used in this research, it would also inherit that 

advantage which would greatly improve performance.  Even our initial simple recursive 

technique can be parallelized when analyzing multiple memory blocks, assigning each processor 

one memory block to analyze. 
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Figure 5. Secondary analysis of an xls file showing component sheets. 

  

Work of other researchers in this research area was also studied to find other 

characteristics that might be useful in data type identification, specifically the research in [9] and 

[12].  As mentioned earlier, other statistical functions defined in [4] were also evaluated when 

working with data types not previously addressed. 

The algorithm preprocesses the data to be analyzed by calculating each statistic for a 

memory block’s windows.  Then, these statistical values are analyzed using the characteristic 

information found in the corresponding input file (discussed earlier on in this section); based 

upon the results provided, an evaluation of what data types are found within the file and 

approximate locations of the start and end of each data type are presented to the analyst. 
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Output is provided to the user designating the most likely data types for each file, and any 

embedded or appended data can be identified on a per window basis similar to that shown for the 

component data types in the xls file shown in Figure 5.  The algorithm does also locate the 

embedded and appended data down to the window; this will be extended to location down to the 

specific byte. 

3.5.3 Evaluation of SÁDI 

To evaluate the accuracy and efficiency of the algorithm, several sets of test data were 

generated that incorporate all the types included in the algorithm identification process, as well as 

some others to see how the algorithm handles the new data types.  The algorithm was then used to 

analyze the set of test memory blocks and identify the data types within the blocks and the 

approximate starting and ending point of the data.  This result was compared with the actual data 

types.  The number of accurate positives, the number of false positives, and the number of false 

negatives were cataloged, and from these statistics we derived an efficiency rating and identified 

any weaknesses of the algorithm (i.e., does it have trouble identifying certain data types with or 

without certain circumstances; how does it handle previously unknown data types; are there 

specific data types that are consistently identified as another type and why, etc.).  More work can 

be done later to better locate the data and allow it to be extracted from the memory block. The 

current work focuses on accuracy and the false positive/negative rate for the SÁDI technique.  

Initially, only base data types were analyzed to ensure the algorithm could handle the simple 

cases. Later, the study was expanded to include more types, including the types found in 

container-like files, such as doc, ppt, and pdf files. 

This general process was repeated: re-evaluating the data type characteristic information 

in light of the false positive and false negative instances, adjusting the characteristic information 
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to obtain greater accuracy and avoid such false positives and negatives, and finally rerunning the 

test data as well as other data to evaluate the adjusted accuracy. 

Throughout the development and testing of the automated algorithm, there was a 

continuous feedback loop so that each new memory block that was analyzed that did not fit the 

current set of characteristic information for the corresponding data types was added. Doing so 

enhanced the data type characteristics to obtain a more accurate set of characteristic statistical 

data for each data type.  Also, through the use of this feedback loop, issues stated above regarding 

the weaknesses of the algorithm were addressed and are being alleviated. This feedback loop was 

and will continue to be the drive behind the iterative improvement process for SÁDI 

This algorithm was compared with other current algorithms and techniques to evaluate its 

contributions to the field of computer forensics and how well it addresses the need for an accurate 

and reliable algorithm that performs type identification. 

3.6 SÁDI Implementation  

3.6.1 Implementation Overview 

The implementation of SÁDI contained several integral steps which together complete 

the analysis technique.  Figure 3 illustrates the correlation and connection between these 

component pieces, originally developed for [14] (a poster presentation of this same research at an 

earlier stage). 

3.6.2 Data Preprocessing 

For simplicity, we initially have all of our memory blocks be files; by sending these files 

through the data preprocessor, we generate statistical result files. These statistical result files are 

just plain text and contain the statistics for each window from the original file.  At the beginning 

of each of these statistical result files are three lines of text containing the name of the original 

file (including any file extension), the size of window used, and other formatting information.  
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Following these three lines, the remainder of the file is organized as a very large table of values.  

Each column contains the values for a single statistic and in the cases of the distribution statistics, 

an array of values.  Each row corresponds with the values for a single window from the original 

file.  The statistical result files generated by the preprocessor are then used as input into the 

analysis code.  These are also the results used to initially construct the list of data type 

characteristics used in the identification process.  

3.6.3 Analysis Code 

The analysis code itself went through several revisions throughout the testing and 

implementation of SÁDI and will undoubtedly continue to be refined over time.  All versions 

have several nested loops to facilitate a complete analysis of the targeted memory blocks.  In the 

initial implementation, the outermost loop dealt with the files to be analyzed with the next loop 

looping over the windows in each file and the inner loops looping over the various potential data 

types and their characteristic statistical information. 

In later implementations, these loops were reordered so that instead of looping over the 

data types’ statistical information multiple times (once for each window in the file), each file’s 

window data is looped over multiple times (once for each statistic for each data type). 

Consequently, the innermost loop was over the window data.  In the implementation used to 

generate the results here, both were used at different points.  The initial implementation with the 

innermost loops going over the potential data types and statistics was used in the initial analysis 

and in the additional pass to differentiate textual data types.  The pass that performs pattern 

matching utilizes the implementation with the window data as the innermost loop.  By 

incorporating both implementations, the performance improved noticeably, and less computation 

is required.  This also allows data to be written out to file during the initial analysis rather than 

being forced to be stored in memory until the analysis is completed.  In the initial analysis, each 
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window is completely analyzed before moving to the next; therefore, the results for that window 

are written out to the resulting output file rather than being kept in memory until all windows 

have been analyzed. 

The overall Big O complexity of both orderings is the same: O(f*d*s*m) where f is the 

number of files to be analyzes (or memory blocks in the more generic case), d is the number of 

potential data types involved in the analysis, s is the number of statistics for each data type, and m 

is the length of the files.  Obviously, these values vary depending upon the exact files being 

analyzed and the data types and statistics used. However, in either implementation for the same 

set of inputs, the Big O complexity is identical until extra calculations are included. This is done 

in order to maintain the ability to identify matches by hierarchical orderings of data types as well 

as the capability to display matching percentages in regard to either a unique type match or 

multiple type matches.  This concept is discussed later in reference to sample output files. 

Throughout the revisions, various capabilities were added to the analysis code, the most 

rewarding being flexibility in setting weights for the values of the data types statistics, inclusion 

of a percent match total for the block as a whole (facilitates file identification) rather than only on 

a per window basis, addition of timing code for performance evaluations, and the extension to use 

of a two pass analysis.  The benefit of a flexible weighting scheme for the data types’ statistics is 

in the ability to weight more unique statistics higher, giving them more influence on the resulting 

identification process then less unique statistics.  Clearly the most beneficial modification was the 

extension to a two pass analysis.  The first pass does not deal at all with any of the pattern 

matching, since earlier versions had severely reduced performance due to the time consuming 

nature of the pattern matching process. 

The challenge of the pattern matching process is that the pattern is not a simple character 

sequence; instead, it is an array of minimum-maximum pairs.  Therefore, to match a pattern in 

our case meant that the statistical values for a sequence of windows had to fit into the pattern of 
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valid ranges.  In addition, usually in a valid match, several windows matched one range before 

progressing to the next range.  In terms of regular expressions wherein each letter represents a 

unique range (minimum-maximum) pair, the pattern in our data might look like a+b+c+d+.  

However, not only did some ranges require one or more matching windows, others required zero 

or more, or even a specific number of matching windows within a set range (such as in the case of 

matching header information which can only constitute a few consecutive windows).  Thus, the 

use of a simple, although not extremely efficient, recursive method to implement the pattern 

matching was used.  To the authors’ knowledge, no previous work has been done with this kind 

of pattern matching effort, e.g. in which the pattern is so flexible and deals with ranges of 

numbers rather than characters. 

By not including the pattern matching analysis in the first pass, the potential accuracy of 

the results was reduced, but only in cases in which the file being analyzed contained these data 

patterns.  Therefore, this first pass was used in two distinct ways to improve the overall analysis: 

1) it allowed an analysis of the block as a whole to be considered; thereby performing file 

identification on the block; and 2) only when the block was identified as some sort of textual data, 

could not be identified as a specific type, or contained enough differing data to warrant further 

analysis would the file be flagged for a secondary analysis.  By only performing the secondary 

analysis, which incorporated pattern matching as well as textual differentiation analysis, on those 

memory blocks that could not be identified satisfactorily with the faster initial analysis pass 

performance was improved without sacrificing the accuracy of the entire analysis process. 

3.6.4 Graphical Results 

The results from the analysis are then utilized to generate graphs for ease of review.  

Graphs from the initial analysis pass are presented as histograms, such as the one given in Figure 

6.  In all of these histograms, a clustering technique is used to generate the two different columns 
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for each data type.  The gray bars indicate the percentage match without regard to other matches, 

the overall match for that type.  The blue bars indicate the percentage match when each window 

is only allowed to be matched to one of the data types.  Therefore, even if a specific window can 

match more than one type, it must be selectively assigned to only one type.  This is done by 

creating a hierarchy out of the available data types based upon their uniqueness.  Several of the 

data types' statistical characteristics encapsulate that of others. 

For example, the bmp data type can have valid averages anywhere from 0.0 to 255.0 while mp3 is 

only within the range from 100.0 to 150.0 and jpg data has averages between 103.0 and 148.4.  

Please note that mp3 is not used in the results for this paper as it is not satisfactorily refined yet.  

When considering just these three data types and the single average statistic, the most unique data 

type is jpg followed by mp3 and lastly bmp.  Therefore, if a window has an average of say 102.0, 

it would be assigned to be of type mp3 since that is the most unique type that it matches; however, 

if the average were 125.6, the identified type would be jpg, and if the average were 205.7, the 

matching type would be identified as bmp.  Therefore, each window type is assigned based upon 

the most unique type that it matches.  From these window types, the block’s overall type is 

identified as the most unique type that is still matched with a reasonable percentage of windows.  

In all cases, the overall percent match is calculated by taking the total number of matching 

windows and dividing by the total number of windows in the memory block.  These overall 

percentages are represented in the resulting histograms from the initial analysis. 

All of these graphs were generated by a two step process.  First, a Python script was used 

to generate a .p file for each graph. These .p files contained all the gnuplot commands to generate 

the graphs utilizing the output from the analysis. In addition, a single .p file (loadFiles.p) was 

written with a load command for each other generated .p file.  Second, gnuplot was run on the 

single loadFiles.p which then caused all graphs to be generated.  
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Figure 6. Sample result graph from initial analysis of Icon2.jpg. 

3.6.5 Identifying Characteristic Features and the Feedback Loop 

Having already touched on the process used to generate the characteristic input file 

containing the unique identifying characteristics for the data types, this discussion will be brief.  

All previously analyzed files of each data type were used to initially identify these unique 

characteristics.  A larger test set was then used to test accuracy and provide feedback to adjust the 

characteristics.  Adjustments were made to avoid high false positive and high false negative rates 

and to increase accuracy.  A mixed set of files, both those used in the earlier phases as well as 

completely new files, were next used to generate the results presented later in this paper. 

The feedback loop, however, is essential to continual improvement of the accuracy and a 

reduction of the false positive and false negative rates for all types as more files and memory 
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blocks are analyzed.  It will play an even more major role when other container-like files are 

analyzed to identify their data content. 

3.7 Comparison to Previous Work 

In the techniques found in both [11] and [12], various file types are combined to increase 

accuracy.  Specifically, Microsoft Office files were combined (acd, doc, ppt, and xls in [13] and 

doc, ppt, and xls in [11]) into one file type, and in [12], dll and exe files were combined into a 

logically equivalent type.  The other primary related work, [9], does not address any of these 

similar types, except for Windows executables.  Instead, it focuses on jpeg and zip in addition to 

the Windows executable.  Further, no comparison is made of similarities between Windows 

executable types and dlls. 

In our work, constructing the data type characteristic input files, we discovered one reason why 

the combinations of these types increased accuracy for previous methods.  Table 7 displays the 

average values for the first nine windows (with a window size of 256) of five files of each 

Microsoft Office type, doc, ppt, and xls.  From this table, one can see the obvious similarities 

among the data found within files of these types, especially in the second window.  The first and 

second windows are applicable to a header-based analysis, since these constitute the first 512 

bytes of the file.  Specifically, in regard to the second window’s average, to have an average of 

exactly 255 requires every single byte in the window to be the value 255.  If even one byte in a 

256 byte window is not 255, the average can be no more than 254.9961.  It is believed that these 

similarities among the header portions of these files is the primary reason why methods relying 

only upon a byte frequency distribution have an improved accuracy when combining these files 

into one type.  This is especially applicable for techniques that rely heavily on the header portion 

of the files.  
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Table 7. Average Values for Beginning Windows in MS Office Files. 

Window # Doc Average Ppt Average Xls Average Total Average 

0 171.6836 173.2695 187.5969 177.5167 

1 255 255 255 255 

2 27.15232 94.64374 27.50156 49.76587 

3 23.05312 108.4579 45.6789 59.06329 

4 14.43362 75.01406 41.26564 43.57111 

5 17.17422 80.41328 39.88284 45.82345 

6 14.50312 70.83046 40.89688 42.07682 

7 11.85236 138.5547 44.1875 64.86485 

8 0 102.0336 45.01876 49.01745 

9 0 98.42422 50.84452 49.75625 

 

 

In Table 8, all but one of the five sample dll files has an average value of 0 in windows 5-15 

and all but one exe file has an average of 0 in windows 3-15.  So, each of these outlier files pulled 

the average from an even 0.0 up to what is listed in the table.  If that proportion continues with 

larger sets of these files, the average for those windows will continue to get closer to zero for both 

types.  Clearly, if one is only using the byte frequency distribution, these two types of files do look 

incredibly similar, and this why in [12] the combination of these two file types improved accuracy.  

In addition, as the number of files increases, the two distributions become increasingly similar, and 

the types are harder to distinguish when only relying upon a byte frequency distribution.  From 

another perspective, see Figure 7-Figure 9 that display graphs originally generated in the research 

for [4], although not all were used in the paper itself.  Each of these graphs displays the 
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Table 8. Average of Beginning Windows of Dll and Exe Files. 

Window # Dll Average Exe Average Total Average 

0 64.8765624 65.5546876 65.21563 

1 15.2273436 9.4171874 12.32227 

2 15.1726564 13.6406248 14.40664 

3 0 2.735156 1.367578 

4 18.9328124 0 9.466406 

5 18.6875 0 9.34375 

6 15.2007812 18.9242188 17.0625 

7 16.915625 18.0328124 17.47422 

8 16.9054688 18.4359376 17.6707 

9 14.2164062 18.8742188 16.54531 

10 15.8929688 15.0601562 15.47656 

11 15.0992188 18.65 16.87461 

12 18.1289062 17.7671876 17.94805 

13 14.775 15.9007812 15.33789 

14 16.9828124 17.3578124 17.17031 

15 14.0273438 16.0195312 15.02344 

16 99.5929688 100.7562498 100.1746 
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Figure 7. Byte distribution probability for MS doc files, generated originally for [4]. 

 

 

Figure 8. Byte distribution probability for MS xls files, generated originally for [4]. 
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Figure 9. Byte distribution probability for MS ppt files, generated originally for [4].  

 

distribution of averages for doc, xls, and ppt file types, respectively.  Despite the variations in the 

individual files because of content, especially when the file contains a lot of image data and/or 

formatting and text, it is clear the distributions are reasonably similar.  This similarity could 

prevent some techniques from adequately classifying the files as different file types when only 

utilizing a byte frequency distribution in the identification process.  Consequently, for most 

previous techniques, the file characteristics are very similar and by combining them into one type 

increase a technique’s accuracy.  Therefore, by solely relying upon a byte frequency distribution 

or any other single measure to identify type, data type, or file type, challenges and problems arise. 

Indeed, as pointed out in [7], every measure has its drawbacks.  Therefore, SÁDI takes the good 

from several statistical measures and incorporates all the different measurements, thereby 

alleviating the drawbacks of any one or two individual methods. 
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Therefore, by solely relying upon a byte frequency distribution or any other single 

measure to identify type, data type, or file type, challenges and problems arise. Indeed, as pointed 

out in [7], every measure has its drawbacks.  Therefore, SÁDI takes the good from several 

statistical measures and incorporates all the different measurements, thereby alleviating the 

drawbacks of any one or two individual methods. 

3.8 Evaluation 

To evaluate the accuracy of SÁDI, we gathered 25 files of each data type, including bmp, 

csv, dll, exe, html jpg, txt, and xls, for a total of 8 different data types and 200 files.  These files 

were run through the preprocessor to generate the statistical result files which were then used in 

the automated analysis to identify the data types contained in each.  The results from the initial 

analysis pass are shown in Table 9. These initial results contain some false positives and false 

negatives. The more accurate results for xls data from both passes alleviated much of this 

inaccuracy caused by the patterned xls data, as shown in Table 10.  The individual type matches 

were chosen by selecting the most unique type with a satisfactory percentage match.   

To identify a positive match for a file’s initial results, the type containing the highest bar 

in the histogram generated from the initial results is considered the matched type; we are only 

considering blue bars, as these are the bars containing all available data results and only allow 

each window to match one overall type, thus preventing the potential confusion from multiple 

type matches. 

Thus we can see from Table 9 and Table 10 that SÁDI can accurately identify base data types.  

One challenge to note in reference to these results is the identification of zip data, as it is very 

easily confused with other compressed data such as jpg.  In addition, zip data can be considered 

simply as other multiple types of data in a compressed format, hence, the potential to fool the 

identification analysis if enough data of a differing type is contained within a zip data file. 
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Table 9. Analysis Results from Initial Analysis with Multiple Matches (Gray Bars in 

Graphs). 

  
% Correct was calculated by taking the total correctly matched 

divided by the total analyzed. 

 #files bmp text Dll /exe Jpg Xls Null % Correct 

bmp 25 11  12  2  44.0% 

csv 25  25     100.0% 

dll 25 4  17  3 1 68.0% 

exe 25 6  10  9  40.0% 

html 25  25     100.0% 

jpg 25 1  4 20   80.0% 

txt 25 2 20 1  2  80.0% 

xls 25 15 1 8  1  4.0% 

Totals 200       64.5% 

Updated average percentage ignoring xls. 73.1% 
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Table 10. Analysis Results for Xls Files from Pattern Matching Analysis. 

 #files bmp text Dll /exe Jpg Xls Null % Correct 

xls 25 2 1 3 0 19 0 76.0% 

 

In reference to the NULL data type, this occurs in several places for several different 

reasons, such as in the case of xls files.  In xls files, empty or blank sheets are generally stored as 

several windows of NULLS.  In earlier implementations, these were labeled as xls-empty-

spreadsheet data; however, this is inaccurate for other types of files that use nulls to separate data. 

  This alternative use of NULL data is seen in the first 10 windows of doc files, in which 

information at the beginning of the file is separated from the main data portion with usually at 

least one window of NULL data.   However, even in other data types, NULL can be valid value, 

such as in bmp images which are primarily black (for example a screenshot of a terminal window 

or a DOS prompt).  This can cause some bmp windows to match the NULL data type if they 

contain only bytes of value 0.  This is a rare case but still can be considered an exception to the 

identification of NULL as a data type.  However, due to the flexible use of NULLs in data 

memory, they are considered a separate type. When encountered, there is no way to accurately 

identify what they represent without additional information. 

Figure 10 does show an example graph, containing both a spreadsheet and various 

pictures embedded within it, from the initial pass of the analysis of a doc file.  In this figure, it is 

obvious that the file contains mostly pictures.  When compared with the results from the same 

document but with the images removed, the presence of the spreadsheet is clearly seen as well as 

the textual data, both of which were hidden by the large number of pictures (see Figure 11).  In 

Figure 11 the overall type cannot be determined; thus, a secondary pass is needed to demonstrate 

the technique’s ability at identifying and localizing data types. 
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Figure 12 shows the results from the secondary analysis.  Here, the textual data is located 

at the beginning of the file while a spreadsheet can clearly be identified in the second half of the 

file.  It should be pointed out that these two types are the more unique types that still match for 

those windows.  Hence, for the apparently matching compiled code and bmp types, these are 

more general types and less unique and would not be identified as the actual matching type.  This 

figure is representative of the potential of SÁDI to accurately identify component types and locate 

them within a file or memory block. 

In the current case, the type can be located down to the set of windows involved.  Further 

analysis would be needed to break down the windows into byte values before being able to 

specify starting and ending byte locations. 

3.9 Additional Results and Future Work 

This research generated other results not incorporated into this thesis.  Other file formats 

and data types were studied, and several things of note were discovered.  In regard to wmf files, 

there is a characteristic difference between wmf files and compressed wmf files.  This is 

especially seen in graphs of the byte distribution averaged across all windows of a file.  

Compressed wmf had a specific pattern of peaks compared with a regular wmf file (see Figure 13 

and Figure 14). 

The addition of varying window sizes would allow the technique to be more useful in 

other situations outside of the forensic field; therefore, further study is warranted. Some potential 

applications of SÁDI outside of forensics include its use in virus scanners and copyright and 

privacy issues.  Many companies have trade secrets that are not allowed to be transmitted outside 

of the company network; yet malicious insiders have the capability to disguise the information  
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Figure 10. Results from initial analysis of CyberSecurity-2.doc, contains image data. 
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Figure 11. Results from initial analysis of CyberSecurity2-noImg.doc, with images removed. 
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Figure 12. Results from pattern matching analysis of CyberSecurity2-noImg.doc. 
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Figure 13. Byte distribution of compressed wmf file. 
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Figure 14. Byte distribution for a regular wmf file. 
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using steganography or other data hiding techniques to send the information outside the company.  

SÁDI can be useful in overcoming these malicious attempts and help in other steganalysis fields. 

In the short term perspective, the most beneficial additional research currently being done 

to make SÁDI better is in expanding the current array of data types the analysis is able to handle, 

for example container-like files.  Without this extension, the technique is not nearly useful 

enough to pursue, even in the case of forensics for general use.  It would only be applicable in a 

subset of cases.  The power of SÁDI is in the general use case and its flexibility in meeting the 

demands required of many different scenarios both inside and outside of the forensics field. 

Other long term goals can include evaluation of overall performance with a much larger 

set of data types, the feasibility of its use in live forensics situations, feasibility of incorporating it 

into a current or future forensic tool such as Encase or the Forensics Toolkit (FTK), potential 

development of a GUI interface to increase usability and user friendliness, and the identification 

of other uses of such an algorithm (such as its potential inclusion in virus protection software, 

firewalls, etc.)  
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CHAPTER 4 

 SUMMARY AND CONCLUSION 

In both preceding chapters, the results presented compare well with other recently 

published techniques for file identification.  In fact, in most cases, the accuracy rates are higher 

and with fewer false positives.  The technique has also been shown to handle embedded data and 

is applicable to file fragments.  This research has produced a viable technique that is generally 

applicable to all sorts of digital data and produces comparable, and usually better, results.  

Although the technique is well on its developmental path, there are still many more data types it 

must be able to handle, as well as needing the incorporation of container file types. 

The utilization of a multiple pass analysis provides the flexibility to handle the many and 

varied challenges to the vast amount of data and data types available.  The ability to perform an 

initial analysis that can categorize the data while keeping run times low is immensely helpful for 

the forensics field.  The additional use of a separate analysis to perform pattern matching and 

textual differentiation is of utmost importance when applying the technique to a real world 

circumstance as would be seen by forensic professionals in the field.  The power and flexibility of 

this technique to handle data fragments and embedded data while avoiding the use of metadata 

and keeping the accuracy high is monumental. 

This research has met the goals listed earlier, namely, the development of a data type 

identification technique and the analysis of the effectiveness of the developed technique.  The 

preceding chapters describe in detail the development of the technique and the implementation 

used, and they provide an analysis of its effectiveness.  As a measure of the effectiveness of the 

technique, comparisons were made to other file type identification techniques to gauge the 

accuracy of the novel approach used by SÁDI.  Those results are again summarized in Table 11.  

Note the much more favorable results for all data types.  Also refer to Table 12 for a comparison 



67 

of the advantages between the various techniques.  Combine this with the added ability to identify 

embedded data, and this technique is obviously very powerful and useful for the researchers and 

analysts in the fields of computer and digital forensics. 

Table 11. Comparison of Accuracy across Techniques. 

  (Accuracy, False + Rate) 

 Avg. Jpg 
Dll/ 

Exe 
Zip Bmp Text Xls Doc 

SÁDI 74.2% 
72%, 

0% 

76%, 

10.9% 
NR 

64%, 

23.4% 

93.3%, 

0.6% 

76%, 

0% 
NR 

BFA 

(McDaniel et 

al.) 

27.5% NR NR NR NR NR NR NR 

BCA 

(McDaniel et 

al.) 

45.83% NR NR NR NR NR NR NR 

FHT 

(McDaniel et. 

al.) 

95.83% NR NR NR NR NR NR NR 

Extended 

Oscar 

(Karresand et 

al.) 

NR 
92.1%, 

20.6% 

12.6%, 

1.9% 

46-80%, 

11-37% 
NR NR NR NR 

File Header 

Identification 

(Li et al.) 

NR 
100%, 

NR 
NR NR NR NR 

73.6% 

NR 

83.9% 

NR 

Centroid 

based 

classification 

(Li et al.) 

99.6% 
100%, 

NR 

100%, 

NR 
NR NR NR NR 

98.9% 

NR 

 



68 

It is clear from this comparison that the overall applicability of SÁDI as a forensics 

technique is high.  While it is still not as refined as it eventually will be, it has many advantages 

lacking in other techniques.  This novel technique provides the computer science field with a 

more accurate and more widely applicable analysis technique, and it will only get better with 

future research. 

 

Table 12. Technique Comparison. 

 Advantages Disadvantages 

SÁDI 

Content-based, handles 

embedded and fragmented 

data 

Can still be refined more, 

some types still less 

accurate 

BFA (McDaniel et. al.) Fast Inaccurate 

BCA (McDaniel et. al.) Better than BFA Inaccurate, Not fast 

FHT (McDaniel et. al.) High accuracy Non-content-based 

Extended Oscar (Karresand 

et. al) 
Some w/ good accuracy 

Not accurate for all types, 

high false positive 

File Header Identification 

(Li et. al) 
Mostly high accuracy 

Non-content based, 

unknown False positive 

rates 

Centroid based classification 

(Li et. al.) 
High accuracy 

Only looks at first 200 bytes 

(non-content based), 

unknown false positive rates 
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