2000 Annual Report

Various Authors

Follow this and additional works at: http://digitalcommons.usu.edu/wdc_reports

Part of the Dairy Science Commons

Recommended Citation
http://digitalcommons.usu.edu/wdc_reports/6

This Report is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Annual Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.
Western Dairy Center
2000 Annual Meeting
May 16-17, 2000

TABLE OF CONTENTS

Activities Summary for 1999 .. 1
Operational Advisory Committee .. 2
Principal Investigators ... 3
Budget Report, 1999 ... 5
Financial Summary of Approved Projects, 1999 6

Annual Project Reports for projects active in 1999

Improvement of Mozzarella cheese functionality by understanding copolysaccharide production in thermophilic starter cultures
P: Jeff Broadbent .. 6

The use of bacteriophage-receptor genes of Lactococcus lactis to develop bacteriophage resistance in Cheddar cheese starter strains
P: Bruce Geller .. 11

Identification and characterization of components of the proteolytic enzyme system of Lactobacillus helveticus which effect bioactive peptide accumulation, Utah State University part
P: Bart Weimer ... 17

Growth of non-starter lactic acid bacteria in reduced fat Cheddar cheese, Utah State University part
P: Jeff Broadbent ... 20

Improvement of low-fat Cheddar cheese through identification and characterization of microbial enzymes responsible for the production or degradation of bitter peptides in cheese, Utah State University portion
P: Jeff Broadbent ... 23

Improvement of low-fat Cheddar cheese through identification and characterization of microbial enzymes responsible for conversion of aromatic amino acids into off flavor compounds in cheese
P: Jeff Broadbent .. 29

Microbial catabolism of methionine to improve Cheddar cheese flavor - a
comparative study of the relative contribution by starter cultures and flavor adjunct bacteria
PI: Bart Weimer ... 33

Conversion of amino acids to short and branched-chain fatty acids
by starter and adjunct bacteria
PI: Bart Weimer ... 37

Application of a metabolic control switch to improve and control starter proteolysis in Mozzarella cheese
PI: Jeff Broadbent ... 41

Characterization of proteolytic enzymes from thermophilic lactic acid bacteria and their influence on Mozzarella cheese functional properties
PI: Craig Oberg ... 44

Understand the role of proteolysis on functional properties of Mozzarella cheese
PI: Donald McMahon .. 48

Developing an affinity purification procedure to purify prosaposin from whey
PI: Marie Walsh ... 52

Developing an extruded whey protein meat extender suitable for use in coarse-ground meat products
PI: Marie Walsh ... 57

Process technology to improve the flavor of heated milk
PI: Donald McMahon and Joseph Irudayaraj ... 61

Controlling chemical composition and functionality of cheese
PI: Conly Hansen ... 73

Effect of butter and margarine intake on human milk CLA and fat concentrations in lactating women
PI: Mark McGuire ... 77

Determination of the oxidation/reduction potential of cheese
PI: Bart Weimer ... 79

Use of non-lactic acid bacterial proteolytic enzymes to reduce bitter peptides in dairy products
PI: Bart Weimer ... 81

Effect of size, hydrophobicity and temperature on the diffusion of molecules within the Cheddar cheese matrix.
PI: Carl Brothersen ... 84
Production of a 100% textured whey product
 PI: Marie Walsh ... 86

New starter systems for accelerated ripened Cheddar cheese
 PI: Jeff Broadbent .. 92

Effects of microbial exopolysaccharide on functionality in high
 moisture cheese
 PI: Jeff Broadbent ... 95

Production of intensely flavored Cheddar-type cheeses by adjunct cultures
 PI: Jeff Broadbent .. 97

Determine physiochemical and structural aspects of cheese using
 model cheeses
 PI: Donald McMahon

Production of an extruded whey protein snack food
 PI: Marie Walsh ... 101
The Western Dairy Center is a consortium of researchers devoted to improving the dairy industry in the United States by conducting research in all areas of dairy foods. The Center includes researchers from Utah State University, University of Idaho, Oregon State University, Brigham Young University, Washington State University and Weber State University. This report covers research activities from January 1, 2000 through December 31, 2000.

The Center Annual Meeting was held on June 14-15, 2000, at Utah State University. A large group representing both dairy producers, processors and researchers attended and provided significant input onto the future direction of the Center.

The Center conducted the 16th Annual Cheese Making Short Course on Feb. 6-8, 2000, at Utah State University.

The Center of Excellence for Dairy Technology Commercialization, which is funded by the Utah State Office of Economic Development, continued to work toward commercialization products and technologies developed by researchers at the Western Center. Activities in 2000 concentrated on commercializing the exopolysaccharide cultures, the flavor injected cheese products, and the textured whey protein technology.

The Center for Microbial Physiology and Rapid Detection, directed by Bart Weimer, continued their activities in 2000. The center is developing methods to detect pathogens in dairy products, other food products, water and air.

In 2000, twenty research projects were funded by DMI. Five research projects were funded by Center funds. Project progress reports of all research projects active in 2000 are included in this report.
WESTERN DAIRY CENTER
OPERATIONAL ADVISORY COMMITTEE

Pursuant to the Western Dairy Center proposal and contract with the National Dairy Promotion and Research Board, the voting members of the Operational Advisory Committee are:

Eric Bastian
Avonmore West
1341 Fillmore
Idaho Falls, ID 83301

Rodney J. Brown, Dean
College of Agriculture
Utah State University
Logan, UT 84322-4800

Robert Champion
Dairy Management Inc.
10255 W. Higgins Road, Suite 900
Rosemont, IL 60018-5616

Gary L. Clawson
Utah Dairy Commission
375 S. 800 W.
Hyrum, UT 84319

Bruce Geller
Dept of Microbiology, Nash 220
Oregon State University
Corvallis, OR 97331-3804

Roy Leach
Chr. Hansen’s Laboratory, Inc.
9015 West Maple St.
Milwaukee, WI 53214

John Lyne
DSM
10 E. 300 S.
Millville, UT 84326

Michelle Malone
SKW Biosystems
620 Progress Ave.
P O Box 1609
Waukesha, WI 53187

Donald McMahon, Director
Western Center
Nutrition & Food Sciences Dept
Utah State University
Logan, UT 84322-8700

James Moran
Kraft General Foods, Inc.
801 Waukegan Road
Glenview, IL 60025

Gale Moser
United Dairymen of Idaho
1864 South Hulls Crossing
Preston, ID 83263

Raj Narasimmon
Schreiber Foods, Inc.
425 Pine Street
Green Bay, WI 54307

Swiss Valley Farms
P O Box 4493
Davenport, IA 52808

Steve Wright
Rhodia Inc.
2802 Walton Commons West
Madison, WI 53718-6785
WESTERN DAIRY CENTER

PRINCIPAL INVESTIGATORS

Craig Oberg
Dept of Microbiology
Weber State University
Ogden, UT 84408

Donald J. McMahon
Dept of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Jeff Broadbent
Dept of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Conly Hansen
Dept of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Bart Weimer
Dept of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Deloy Hendricks
Dept of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Marie Walsh
Dept of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Daren Cornforth
Dept of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Deborah Gustafson
Dept of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Mark McGuire
Dept of Animal & Veterinary Sciences
University of Idaho
Moscow, ID 83844-2330

Anthony Vella
Dept of Microbiology
Oregon State University
Corvallis, OR 97331

Michelle McGuire
Dept Food Science & Human Nutrition
Washington State University
Pullman, WA 99164-6376

Kathy Beerman
Dept Food Science & Human Nutrition
Washington State University
Pullman, WA 99164-6376

Mark Johnson
Center for Dairy Research
1605 Linden Drive
Madison, WI 53706
PRINCIPAL INVESTIGATORS

(Continued)

James Steele
Dept of Food Science
University of Wisconsin-Madison
1605 Linden Drive
Madison, WI 53706

Scott Rankin
Dept of Animal & Avian Sciences
University of Maryland
College Park, MD 20742-2311

Joseph Irudayaraj
Agricultural & Biological Engineering
249 Agricultural Engineering Blvd
Pennsylvania State University
University Park, PA 16802

Bruce L. Geller
Dept of Microbiology
Oregon State University
Corvallis, OR 97331

Charlotte Brennand
Dept of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700

Carl Brothersen
Dept of Nutrition & Food Sciences
Utah State University
Logan, UT 84322-8700
Western Dairy Center
Budget Report
2000

Dairy Management Inc. $229,728

Regional/Industry Support
- Utah Dairy Commission $25,000.00
- United Dairymen of Idaho 25,000.00
- Glanbia 5,000.00
- Chr. Hansen’s Labs 5,000.00
- Kraft 5,000.00
- Schreiber Foods 5,000.00
- SKW 5,000.00
- DSM 5,000.00
- Rhodia 5,000.00
- Swiss Valley Farms 27,227.00
- Center for Dairy Technology Commercialization 115,000.00
- Center for Micro Detection and Physiology 150,000.00

TOTAL Regional/Industry Support $377,277

Carryover from 1999 $129,429

Total Funding for 2000 $736,384

Committed Funds for 1999
- DMI funds ($229,728)
- Western Dairy Center Funds ($388,780)

Total Committed Funds for 1999 ($618,508)

2000 Balance $117,926
Western Dairy Center
Project Report
Reporting Period June 1, 1997 — December 31, 2000

Principal Investigators: Dr. Jeffery Broadbent, Utah State University
Co-Investigators: Donald J. McMahon, Utah State University
 Dr. Craig Oberg, Weber State University

Project Title: Improvement of Mozzarella Cheese Functionality
 by Understanding Exopolysaccharide Production in
 Thermophilic Starter Cultures

Institution’s Project #: 97079

Project Completion Date: 6-30-00

National Research Plan (1997): Priority: 4; Goal: 4; Tactic: 1
Understand the impact of polysaccharide production by starter cultures in cheese
quality and functionality.

Modifications to Project/Budget:
None

Project Objectives: (Include any revisions to objectives)
1. Characterize the structure, molecular weight, and polymer properties of the
 exopolysaccharide produced by S. thermophilus MR-1C.
2. Isolate and characterize the S. thermophilus MR-1C gene cluster for
 exopolysaccharide production.
3. Transform EPS- Mozzarella starter cultures with the cloned gene cluster and
 evaluate the influence of these constructs on moisture level and functional
 properties of low-fat Mozzarella cheese.

Project Summary: (Suitable for inclusion in Center documents released to the
 public)
Mozzarella cheese functionality is significantly affected by cheese
moisture level, and increasing moisture content has been used to improve the
melting properties of low fat Mozzarella cheese. Previous work by our group
has shown that exopolysaccharide (EPS)-producing starter cultures can be used
to significantly increase the moisture content of lower fat Mozzarella cheese. We
have identified a culture, Streptococcus thermophilus MR-1C, that produces a large
capsular EPS, and have shown that this capsule is involved in cheese moisture
retention. Ongoing experiments are characterizing the structure of the MR-1C
EPS and the genes that encode its biosynthesis. This project will provide basic
information needed to understand the influence of EPS on cheese quality and
functionality.
1. Significant Progress against Objectives:

Our research confirmed that the MR-1C EPS has a novel basic repeating unit composed of galactose, rhamnose and fucose. We have also completed nucleotide sequence analysis for a region encompassing 36 kb of the MR-1C chromosome that contains the cps gene cluster. Capsule production in this bacterium appears to involve at least 19 different genes. Like each of the EPS-related gene clusters characterized to date in *S. thermophilus*, the MR-1C cps genes lie immediately downstream of the *deoD* gene. The first 4 genes, *cpsA-D*, are highly conserved and are thought to function in regulation (*cpsA*), polymerization (*cpsC*), and membrane translocation (*cpsD*) during polysaccharide synthesis. The MR-1C *cpsE* gene encodes a product that is 99% identical to the *S. thermophilus* Sfi6 EpsE protein, a phosphogalactosyl-transferase that catalyzes the first step in EPS biosynthesis. The MR-1C *cpsF* gene product is also closely related (97% identical) to its Sfi6 counterpart, EpsF, which is believed to function as a branching galactosyltransferase. The similarity between these enzymes may be misleading, however, because DNA sequence analysis suggests that the MR-1C CpsF protein, like that of *S. thermophilus* CNRZ368, includes 50 amino terminal residues that are not predicted to occur in the Sfi6 EpsF enzyme. The MR-1C *cps* region downstream of *cpsF* is closely related to the *eps* gene cluster of *S. thermophilus* CNRZ368. However, the latter bacterium does not produce any detectable EPS, and our sequence data suggest this observation is likely due to frameshift mutations in CNRZ368 *epsF* and *epsN* genes.

Protein homology studies using deduced amino acid sequences from each of the 19 putative MR-1C *cps* genes has identified genes whose products may function as glycosyltransferases in the assembly of the repeating unit, regulation of Cps expression, and in polymerization and membrane translocation of the basic repeating unit. With the possible exception of *cpsE*, however, no specific function can be assigned to any of the MR-1C *cps* genes, and the role of many of these genes in capsule biosynthesis is entirely speculative. In addition, some of the *cps* genes we have identified could have general housekeeping functions and would therefore be present in both EPS+ and EPS- bacteria. Given the complexity and size of the MR-1C *cps* gene region, our goal to construct capsule-producing variants from fast acid-producing *S. thermophilus* starters will require the identification of MR-1C *cps* genes that are essential for capsule production. To address this need, we have initiated work to identify regions of the MR-1C *cps* cluster that are not present in the industrial, fast acid-producing, EPS-negative, Mozzarella cheese starter bacterium *S. thermophilus* TAO61. Preliminary analysis of MR-1C and TAO61 indicates that both contain the 4-kb *epsA-D* gene regions found in other *S. thermophilus* strains. Polymerase Chain Reaction (PCR) analyses also indicate the presence of genes similar to the MR-1C *cpsL* and *cpsU* genes in TAO61, as well as sequences that lie immediately downstream of the MR-1C *cps* gene cluster. Thus, TAO61 does appear to possess at least some homologs to MR-1C *cps* genes. Sequence analysis of the available TAO61 PCR fragments revealed that overall they are 94 to 99% identical to the corresponding MR-1C regions. The greatest difference identified so far is in the *cpsC* gene where TAO61 is only 86.2% identical to MR-1C. This difference may be significant since the *cpsC* gene is predicted to be important in determination of the chain length of the polysaccharide.
Research was also performed to address an industry concern related to the use of EPS cultures in cheese. Several processors expressed a concern that EPS cultures may increase whey viscosity, and thereby retard the efficiency of whey concentration and drying. In response, we investigated the effect of capsular and ropy S. thermophilus starter bacteria on Mozzarella cheese and whey. Cheeses were manufactured on three separate occasions using Lactobacillus helveticus LH100 paired with one of four S. thermophilus strains: MR-1C (capsular EPS'), 360 (ropy EPS'), TAO61 (EPS' commercial starter) and an EPS' mutant of MR-1C (DM10). As expected, cheese moisture levels were significantly ($P < 0.05$) higher in Mozzarella made with EPS' versus EPS' cocci. Viscosity measurements of cheese whey that had been concentrated 5-fold by ultrafiltration, however, showed that whey from cheese made with S. thermophilus 360 was significantly more viscous ($P < 0.01$) than whey from cheeses made with MR-1C, TAO61, or DM10. No significant differences were noted in the viscosity of concentrated whey from cheeses made with S. thermophilus MR-1C, TAO61, or DM10. These data indicate that encapsulated (but not ropy) EPS' S. thermophilus can be used to increase cheese moisture levels without affecting whey viscosity.

2. Significant Conclusions:
Our data demonstrate that the S. thermophilus MR-1C EPS is a novel polymer with unique and significant commercial applications.

3. Anticipated Problems/Delays:
Project is complete

Publications:

Broadbent, J.R., D.J. McMahon, C.J. Oberg, and D. L. Welker. Use of exopolysaccharide-producing cultures to improve the functionality of low fat cheese. Int. Dairy J. (accepted)

Theses:
Published Abstract:

Presentations:
Broadbent, J.R. 2000. Use of exopolysaccharide-producing cultures to improve the functionality of low fat cheese. Oral presentation at International Dairy Federation Symposium on Ripening and Quality of Cheeses. March 12-17, Banff, Canada.

Broadbent, J.R. 1997. EPS production in *Streptococcus thermophilus*: physiology, biochemistry, and genetics. Invited oral presentation for the Marschall/Rhône-Poulenc Italian and Specialty Cheese Conference, Sept. 17-19, Madison, WI.

Patent/Invention Disclosures:
none

Technology Transfer Activities
Confidentiality and material transfer agreements have been signed by several culture manufacturing companies who are evaluating them for commercial production.

For information on licensing contact:
Jeff Broadbent or Carl Brothersen
Visitors Hosted:
None
Western Dairy Center
Project Report
Reporting Period January 1, 1997 – December 31, 2000

Principal Investigators: Bruce L. Geller, Associate Professor of Microbiology, Oregon State University

Co-Investigators:

Project Title: The Use of Bacteriophage-Receptor Genes of Lactococcus lactis to Develop Bacteriophage Resistance in Cheddar Cheese Starter Strains

Institution’s Project #: 97081

Project Completion Date: 12/31/00

Understand phage-resistance systems of starter cultures and phage counter defense systems to develop longer lasting phage resistance strategies.

Modifications to Project/Budget:
One year no-cost extension to 12/31/00

Project Objectives: (Include any revisions to objectives)
1. Identify and isolate host genes other than pip that are required for infection by phage of the c2 species. 2. Identify a gene encoding a receptor for a phage of the p335 species. 3. Identify a gene encoding a receptor for a phage of the 936 species. 4. Construct a phage-resistant strain of the L. lactis with defective copies of the receptor genes for phages of the c2, 936 and p335 species. 5. Evaluate the effects of receptor gene mutations on phage resistance, growth rate, acidification and coagulation of milk, and other cheese production traits.

Project Summary: (Suitable for inclusion in Center documents released to the public)
The proposed research examines early steps of bacteriophage infection of L. lactis, which include attachment of the phage to the surface of cells and entry of phage DNA into cells. Both of these steps are required for infection by phage. Our strategy of strain improvement is to prevent to phage from attaching or entering the host in the first place. To do this requires knowledge of the host components required for attachment and phage entry. The outcomes of this proposal will enable the construction of new strains with defined mechanisms of phage-resistance. Host genes required for phage infection of L. lactis will be
identified and isolated. We have previously isolated one such gene named pip (an acronym for phage infection protein). The protein encoded by pip (Pip) is a receptor for phage attachment and phage DNA entry into the host. We have constructed phage-resistant strains of L. lactis by replacing the pip gene with a defective version. There is evidence that host components in addition to pip are required for phage attachment and DNA entry. Isolating genes in addition to pip that are required for phage infection will enable the construction of new strains with alterations in two or more different host components. The strategy of combining multiple phage-resistance mechanisms will greatly decrease the chance that the strain will fail after introduction into commercial use. Genes will be isolated that also extend the range of resistance to phages that do not require pip. We propose to isolate genes that encode host receptors for two different types of small isometric-head phage (p335 and 936). Together with the phages that required pip, the p335 and 936 species of phage cause nearly all the starter failures in U.S. cheese factories. Phages of the p335 species are particularly troublesome, as they have only recently emerged as a major problem, and less is known about their mechanism of infection. The isolated receptor genes will be inactivated and used to construct a new commercial strain with a combined phage-resistance defined by each of the inactivated genes (including pip). The phage-resistant strain will be evaluated for physiological characteristics important for making cheese.

1. Significant Progress against Objectives:

We have cloned by complementation, lactococcal genes required for infection of phage sk1, which is a phage of the species 936. Phage-resistant mutants of L. lactis C2 were isolated after challenge of L. lactis C2 with page sk1. One resistant strain, RMSK1/1, had cell wall compositions indistinguishable from that of L. lactis C2 and adsorbed phage sk1 to the same extent as strain C2. RMSK1/1 has characteristics consistent with a strain mutated in its cell membrane receptor.

To identify the locus (or loci) of L. lactis responsible for this resistance to phage sk1, RMSK1/1 was transformed with a genomic library of L. lactis LM2301 DNA (LM2301 is a plasmid-less derivative of C2). Transformants were screened for phage sensitivity. Two transformants with overlapping DNA that complemented RMSK1/1 to phage sensitivity were analyzed.

We have completely sequenced the cloned DNA, and identified all open reading frames by homologies to known genes in the databases. The cloned DNA includes an open reading frame with similarity to lysozymes (β-1,4-N-acetylglucosaminidase) of phage of Lactobacillus and Streptococcus, DNA homologous to non-coding sequences of temperate phage of Lactococcus lactis, a gene with similarity to tRNA genes, a prophage attachment site, and open reading frames with similarities to sun, phosphoprotein phosphatases, and protein kinases.

The lysozyme gene has been designated lysL. Lysozymes degrade bacterial cell walls, and bacteriophage often encode their own lysozyme. Indeed, LysL is similar to lysins of virulent phage LL-H of Lactobacillus delbrueckii subsp. lactis, Cp-1 and Cp-9 of Streptococcus pneumoniae, and of temperate phage mv4 of
Lactobacillus delbrueckii subsp. lactis, and phage adh of Lactobacillus gasseri.

Starting 307 bp distal to *lysL* was DNA similar to that of temperate lactococcal bacteriophage of the p335 species, including BK5-T, rlt, lc3, and Tuc2009. These regions of the phage genomes contain sequences involved in transcription termination and homologous recombination and are from 173 to 197 bp distal to the respective lysin genes. An alignment of these similar nucleotide sequences revealed that this region of *L. lactis* DNA similar to temperate phage of the p335 species contains a 266 base-pair stretch of DNA that interrupts the region of similarity. The 266 base-pair intervening sequence contains a set of inverted repeats at the borders, and another set in the exact middle of the sequence. The symmetry of the inverted repeats in this 266 bp sequence suggests that a transposition event occurred in this region.

Several lines of evidence indicate that this region does not contain an intact integrated prophage, despite the fact that lysogeny is the rule rather than the exception for lactococcal strains. Indeed, strain C2, the parent of strains RMSK1/1 and LM 2301, harbors a prophage that produces a small, isometric virion upon induction with UV light. Although DNA similar to that of temperate lactococcal bacteriophages of the p335 species was detected distal to *lysL*, the lysin enzymes of these temperate phages are less similar to LysL than the proteins discussed above. In addition, the regions bordering *lysL* were not similar to the att regions of temperate phages, and the regulatory sequences present in lytic and temperate phages of *Lactococcus lactis* were not present in the 5832 bp sequenced. Also, the region of similarity to temperate phage of the p335 species appeared to be interrupted by a transposition event. The homologies of *lysL* with lysin genes from other phages, and the similarities with regions of temperate phage of the p335 species suggests that this may be the site on an ancient propane integration.

Starting from the end of *lysL* (nucleotide 1169) to nucleotide 2209, there is a 42% identity with the phage skl genome from nucleotides 22109 through 23198. This region of the phage genome encodes 4 orfs of unknown function, the early promoter E5, and the 3' end of a putative phage DNA polymerase subunit. Nucleotides 2051 through 2154 of the cloned DNA are 58% identical to phage skl DNA from nucleotides 17501 through 17604. This later region of the phage DNA encodes the early promoter E6 and a partial orf of unknown function.

Beginning at nucleotide 2209 through 2258 is DNA with similarities to tRNA genes. An analysis of secondary structures revealed a lack of a consensus anticodon stem structure, suggesting that this region does not code for a functional tRNA.

Distal to the tRNA gene starting at nucleotide 2313 is 13 bp of DNA that is 85% identical to the *attP* of the temperate p335 species bacteriophage TP901.

Distal to *attP* are orfs with similarities to *sun*, phosphoprotein phosphatases, and protein kinases. These genes were not studied further, as they were not involved with complementation of phage skl-resistance.

We have found that the non-coding DNA with similarity to temperate phages and phage skl was responsible for complementation. Complementing DNA was subcloned, using phage sensitivity to assay for complementation. The region responsible for the complementation was narrowed to *lysL* and about 1300 bp downstream of this locus. The region further downstream (including the
tRNA-like gene, \textit{attP}, and all orfs except \textit{lysL}) did not complement. We constructed a modified version of \textit{lysL} that contains nonsense codons in all three frames and a unique restriction site as a distinguishing marker. This nonsense allele complemented the phage resistant mutant. In addition, we exchanged the wild type \textit{lysL} in the phage-sensitive strain LM2301 with the nonsense allele and found that the strain was still phage sensitive. We conclude that \textit{lysL} is not involved in the phage-resistance mechanism.

The above results suggested that the region downstream of \textit{lysL} was responsible for complementation. We deleted this region and found that complementation \textit{in trans} was eliminated. We also deleted this region from the chromosome of strain LM2301 and found that it was not phage resistant. We conclude that the non-coding region with similarity to temperate phages and phage \textit{sk1} was responsible for complementation. We also conclude that deletion of this complementing region does not cause phage \textit{sk1} resistance. This suggests that phage resistance in \textit{RMSK1/1} is caused by an unidentified mechanism of resistance.

To learn more about this unusual mechanism of resistance, we further characterized strain \textit{RMSK1/1}. The frequency of cell death upon addition of phage \textit{sk1} to liquid cultures of \textit{RMSK1/1} was investigated. We found no difference in the number of viable cells or growth rate in the presence or absence of phage \textit{sk1}. This suggests that phage \textit{sk1} DNA does not enter \textit{RMSK1/1}. This also suggests that the mechanism of resistance is neither abortive infection nor restriction/modification.

The ability of \textit{RMSK1/1} to replicate phage \textit{sk1} DNA and assemble and release mature phage particles was analyzed. Phage \textit{sk1} DNA was introduced to strains \textit{RMSK1/1}, LM2301, and C2 by electroporation. The results show that \textit{RMSK1/1} produced phage from phage \textit{sk1} DNA as well as strains LM2301 and C2. We conclude that phage \textit{sk1}-resistance in \textit{RMSK1/1} is not an abortive infection mechanism.

The efficiency of plaquing (EOP) was analyzed. Previously, we had found that the EOP on strain \textit{RMSK1/1} was undetectable. This was confirmed by plating 10^7 PFU and observing no plaques on \textit{RMSK1/1}. However, we observed that the transformant \textit{RMSK1/1} (pSA3) formed plaques at an EOP of 0.1 when the calcium concentration in the growth agar was increased to 10 mM from our usual concentration of about 1 mM. The diameter of plaques formed on \textit{RMSK1/1} (pSA3) was estimated at about 0.1 mm (pinpoint).

It was hypothesized that the slower growth rate of \textit{RMSK1/1} (pSA3) compared to \textit{RMSK1/1} was one factor that enabled plaques to form. This was tested by tittering phage \textit{sk1} on \textit{RMSK1/1} at growth temperatures of either 30°C or 20°C, including 10 mM calcium in the agar. The results were that the EOP was undetectable (no plaques) at 30°C and was 0.1 at 20°C.

Plaques formed on \textit{RMSK1/1} (pSA3) did not form plaques on \textit{RMSK1/1}, nor did the EOP increase after passage through \textit{RMSK1/1} (pSA3) or \textit{RMSK1/1} at 20°C. We conclude that the mechanism of resistance of \textit{RMSK1/1} is not restriction/modification.

Adsorption of \textit{sk1} to isolated plasma membranes was measured in vitro. Purified plasma membranes from either \textit{RMSK1/1} or LM 0230 were mixed and incubated with \textit{sk1}. Membranes from either strain inactivated the phage,
indicating that there is no defect in adsorption to the plasma membrane in RMSK1/1. Phage adsorption was not inhibited by rhamnose or N-acetylglucosamine (two inhibitors of ϕsk1 adsorption to the cell wall receptor), indicating that phage inactivation was not caused adsorption to the cell wall carbohydrate receptor. Moreover, non-specific adsorption cannot account for this result, because purified plasma membranes from Escherichia coli did not inactivate ϕsk1.

Collectively, the above results indicate that the mechanism of phage resistance of RMSK1/1 is an inhibition of phage DNA injection into the host cell. This mechanism may be similar to one described recently by Gerald Fitzgerald's group for a strain resistant to c2 species phage.

We have also constructed insertion mutants of Lactococcus lactis that are resistant to a p335 species phage. We have screened 6 of these mutants and found that they are defective in absorbing phage. We plan to clone at least one of the genes responsible for the phage-resistant phenotype. However, progress on this goal has been on hold since 1998 due to lack of personnel to complete this part of the project. It is anticipated that a graduate student will continue this work in 2000 and 2001.

2. Significant Conclusions:
A phage sk1-resistant mutant of L. lactis strain C2 was restored to phage-sensitivity by complementation with cloned host DNA. Characterization of the complementing DNA revealed a gene that encodes a protein related to lysins of phage of Lactobacillus spp and Streptococcus pneumoniae. Distal to this gene is DNA homologous to phage sk1 and non-coding sequences of temperate phage of Lactococcus lactis. These similarities suggest that this phage-sensitivity region may have originated as part of a prophage.

The DNA with similarities to non-coding regions of temperate phage and phage sk1 was responsible for complementation.

3. Anticipated Problems/Delays:
The PI, Bruce Geller is on sabbatical leave from August 1999 to August 2000, and was granted by Bob Champion (DMI) a one year, no-cost extension to continue the project. It is anticipated that additional time will be required after 12/31/00 to complete the project because of the delay caused by the sabbatical leave.

Publications:

Theses:
None

Published Abstract:
None

Presentations:
None

Patent/Invention Disclosures:
We have filed an Invention disclosure with the Technology Transfer Office at Oregon State University. We have signed confidentiality agreements with 3 major culture suppliers, with the objective of negotiating an agreement with one or more of them for licensing this invention. The results suggest that RMSK1/1 contains a unique mechanism of resistance for 936 phages, which may be of interest for commercial development.

<table>
<thead>
<tr>
<th>Technology Transfer Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>For information on licensing contact:</td>
</tr>
<tr>
<td>----</td>
</tr>
</tbody>
</table>

Visitors Hosted:
None
Western Dairy Center
Project Report
Reporting Period July 1, 1997 — December 31, 2000

Principal Investigators: Dr. Bart Weimer
Co-Investigators:

Project Title: Identification and characterization of components of the proteolytic enzyme system of *Lactobacillus helveticus* that effect bioactive peptide accumulation, Utah State University part.

Institution’s Project #: 97083

Project Completion Date: 6-30-00

Modifications to Project/Budget: None

Project Objectives: (Include any revisions to objectives)
1. To screen strains of *Lactobacillus helveticus* for the type and level of bioactive peptides/bioactive peptide precursors which accumulate as the result of the organisms growth in milk.
2. Determine which components of the proteolytic systems of the selected strains of *L. helveticus* are essential for the accumulation of the bioactive peptides/bioactive peptide precursors from milk.
3. Construct strains of *L. helveticus*, which accumulate elevated levels of the bioactive peptides/bioactive peptide precursors of interest.

Project Summary: (Suitable for inclusion in Center documents released to the public)
Strains of lactobacilli (60) were screened for degradation of the alpha-casein 1-23. In *Lactobacillus helveticus* at least 5 patterns were found. Specific peptides are unique to strains. Each peptide profile is being investigated to determine unique peptides in each strain. Whole caseins are being screened for production of peptides with HPLC/MS. Knockout mutants provided by Jim Steele were screened for peptide production from alpha-casein 1-23, and found that *Lb. helveticus* CNRZ32 produces at least 2 proteases and that the peptide pattern is a product of those enzymes. Pure peptides with bioactivity have been synthesized and were as standards for further analysis of proteolytic patterns. The gene sequence is partially determined, which will be combined with the hydrolysis patterns to form a classification system. Accumulation of peptides is being determined as the hydrolysis progresses.
Hydrolysis of the alpha-casein 1-23 fragment by lactobacilli was complete within 15 minutes of incubation at 37°C. Identity of the resulting peptides were determined for CNRZ32 and protease deficient mutants by HPLC/MS and co-elution of synthetic peptide standards. Multiple peaks were observed with 11 dominate peptides being produced in the wild type. The most noteworthy is the 1-9 fragment that was produced at high levels in all strains tested. It appears that the substrate is hydrolyzed once in various locations that result in two fragments, opposed to hydrolysis of each fragment in multiple locations. For example, one fragment pair was 1-9 and 10-23. In some cases, one part of the pair was not observed. However, since every peak was not sequenced, it is possible that it was present and not identified. Alternatively, these peptides may have been metabolized by cultures during incubation, but this is unlikely considering the short incubation times used in the assay. These data are ready to be used to define a protease classification system.

The proteolytic system of L. helveticus is significantly different to that of lactococci. This strain contains at least 2 proteases. The first cloned and sequenced has a different substrate binding site and different substrate specificity to that of the lactococcal proteinase. The new proteinase changed the peptide pattern. In the deletion mutant, 3 bitter peptides were not produced, despite the large amount of 1-9 produced by all strains tested (>65 cultures).

Additional comparisons are in progress to group all the species into distinct classifications based on the peptides produced. This will be completed in the next few months.

1. **Significant Progress against Objectives:**
 All objectives are being completed as listed in the proposal. Final analysis of the proteolytic comparisons and strain characteristics are in progress.

2. **Significant Conclusions:**
 Numerous hydrolysis patterns are found in the strains. At least 2 proteases seems be produced in L. helveticus CNRZ32. The gene sequence is finished, and was found to be a new type of enzyme in LAB. L. helveticus and L. casei produce similar degradation patterns from the 1-23 fragment. Other lactobacilli are significantly different from these two species.

3. **Anticipated Problems/Delays:**
 A new student just arrived to finish the project.

Publications:
Theses:
Paul Joseph – Ph.D. candidate

Published Abstract:

Presentations:

Patent/Invention Disclosures:
none

Technology Transfer Activities
For information on licensing contact:
Bart Weimer
Milkbugs@cc.usu.edu
435 797 3356

Visitors Hosted:
Western Dairy Center
Project Report
Reporting Period July 1, 1997 — December 31, 2000

Principal Investigators: Dr. Jeff Broadbent, Utah State University
Co-Investigators: Dr. Mark Johnson, Wisconsin Dairy Center
Dr. James Steele, University of Wisconsin

Project Title: Growth of Non-starter Lactic Acid Bacteria in Reduced Fat Cheddar Cheese, Utah State University part.

Institution’s Project #: 97085

Project Completion Date: 12-31-00

National Research Plan (1997): Priority: 1; Goal: 1; Tactic: 3;
Establish knowledge matrices relating cheese composition, flavor and the role of adjunct and nonstarter microorganisms.

Modifications to Project/Budget:
None

Project Objectives: (Include any revisions to objectives)
Objective 1 To establish the population dynamics between starter, non-starter, and adjunct bacteria during ripening of 50% reduced fat Cheddar cheese.
Objective 2 To establish the population dynamics between starter, non-starter, and adjunct bacteria during ripening of 50% reduced fat Colby cheese.
Objective 3 To construct derivatives of the adjunct Lactobacillus casei subsp. pseudoplantarum that are unable to co-metabolize citrate and lactate and to test the influence of the loss of this metabolism on the ability of the adjunct to grow in cheese.
Objective 4 To establish the impact on the sensory attributes of reduced fat Cheddar cheese to which adjunct bacteria have been added by monitoring the relationship between growth of starter, adjunct and non-starter bacteria and flavor attributes during aging of the cheese.

Project Summary: (Suitable for inclusion in Center documents released to the public)
Microbial studies of ripening cheese reveal that numbers of starter bacteria decline during maturation while those of, while those of nonstarter bacteria (NSLAB; in particular lactobacilli) increase to levels of 10^7-10^8 CFU per gram of cheese. It is well established that starter, adjunct, and NSLAB can have a profound effect on the development of flavor in Cheddar cheese. The cause and effect relationship between these bacteria, however, has not been studied, nor is much known about mechanisms that enable these bacteria to maintain viability...
or proliferate in cheese. While the type and numbers of adjunct and starter bacteria can be controlled, the types of NSLAB still remain a matter of chance. It is the hypothesis of this project that certain adjunct bacteria can be used to control the NSLAB population to ensure proper flavor development. To test this hypothesis, we are investigating the effect of adjunct bacteria on the numbers and types of NSLAB in ripening cheese and the influence of cheese environment on NSLAB and adjunct populations.

1. Significant Progress against Objectives:
Work at Utah State University was focused on Objectives 1 and 2, while objectives 3 and 4 are being done at the University of Wisconsin-Madison. Our research on the population dynamics between starter, non-starter, and adjunct bacteria during cheese ripening has relied on random amplified polymorphic DNA (RAPD) fingerprinting of cheese isolates. Initial studies confirmed the utility of this technique for differentiation among individual strains of *Lactococcus lactis*, *Lactobacillus casei*, and *Lactobacillus helveticus*. For the cheese studies, 8 vats of 50% reduced-fat Cheddar and Colby cheese was manufactured at UW-Madison in November of 1998. Template DNA for RAPD was isolated from 80 individual colonies (10 per vat) collected on Rogosa or Ellikers agar after day 1, 2 weeks, 1 mo, 2 mo, 3 mo, 4 mo and 6 mo of ripening. RAPD fingerprints have now been collected from day 1, 2 wk, 2 mo, 4 mo, and 6 mo cheese isolates. Isolates which displayed a unique RAPD fingerprint were identified by nucleotide sequence analysis of their 16S rRNA gene. By combining strain fingerprint and species data, we have been able to monitor the diversity of NSLAB in each of the cheeses over time and have been able to evaluate the ability of an adjunct *Lactobacillus casei* strain to dominate the NSLAB biota. As part of this work, we also isolated DNA from our 6 mo-old experimental cheese and used it as a template for the amplification of bacterial 16S rRNA genes. It was our hope that this approach would allow us to speciate nonculturable bacteria that might dominate the NSLAB population. Unfortunately, the only species identified to date by DNA sequence analysis of 10 different 16S rDNA clones is the starter, *Lc. lactis*.

2. Significant Conclusions:
RAPD is an effective method for the analysis of NSLAB population dynamics in ripening cheese. RAPD and 16S rRNA studies showed that:

1. The NSLAB biota in both cheeses changed over time, but NSLAB populations in Colby cheese retained a greater degree of heterogeneity than those of Cheddar.

2. The *Lb. casei* Lila adjunct did not dominate the NSLAB populations beyond 3 mo, but it’s use did limit the heterogeneity of the NSLAB population in Colby and in young Cheddar.

3. All cheese finished with a NSLAB population dominated by more than 1 strain of *Lb. casei*. Interestingly, the dominant strains of *Lb. casei* in each
cheese appeared to be most affected by adjunct treatment and not cheese variety.

3. Anticipated Problems/Delays:
none

Publications:

Theses:
none

Published Abstract:
none

Presentations:
Broadbent*, J.R. Role of lactic acid bacteria in cheese flavor development. Invited oral presentation for special ADSA pre-meeting workshop on the basics of flavor development in cheese. Sponsored by the American Dairy Science Association and Rhodia, Inc. July 24, Baltimore, MD.

Patent/Invention Disclosures:
none

| Technology Transfer Activities |
| For information on licensing contact: |
| Jeff Broadbent |

Visitors Hosted:
none
Western Dairy Center
Project Report
Reporting Period July 1, 1997 — Dec. 31, 2000

Principal Investigators: Dr. Jeffery R. Broadbent, Utah State University
Co-Investigators: Dr. Charlotte Brennand, Utah State University
 Dr. James L. Steele, University of Wisconsin-Madison
 Dr. Mark E. Johnson, Center for Dairy Research

Project Title: Improvement of Cheddar cheese quality through
 identification and characterization of microbial
 enzymes responsible for the production or
 degradation of bitter peptides in cheese.

Institution’s Project #: 97086

Project Completion Date: 12-31-00

National Research Plan (1997): Priority: 1; Goal: 1; Tactic: 1;
Establish knowledge matrices relating flavor and role of starter, adjunct, and
nonstarter bacteria to clarify which organisms are responsible for positive and
negative attributes of cheese flavor and provide an understanding of how these
organisms assert their influence

Modifications to Project/Budget:
None

Project Objectives: (Include any revisions to objectives)
1. Define the contribution of starter CEP specificity on peptide pools and
 bitterness in Cheddar cheese.
2. Develop a cheese-based test for bitterness in Cheddar cheese and establish
 factors that influence sensory perception of bitterness in Cheddar cheese.
3. Determine bitter taste thresholds for β-CN (f193-209) and αs1-CN (f1-9).
4. Define the contribution of Lactobacillus helveticus CNRZ32 peptidases to
degradation of β-CN (f193-209) and αs1-CN (f1-9).
5. Construct L. lactis SK11 derivatives with enhanced activity of peptidases
demonstrated to be important in hydrolysis of β-CN (f193-209) & αs1-CN (f1-9).

Project Summary: (Suitable for inclusion in Center documents released to the
public)
Bitterness is a significant problem in Cheddar cheese, and this defect is
particularly common in low-fat cheeses. Bitterness has been a problem in cheese
for decades, but modern consumer preference for mild-flavored Cheddar has
lent greater significance to the impact of bitterness on dairy economics.
Bitterness is caused by the accumulation of hydrophobic peptides produced by some starter bacteria and chymosin. Starter proteinase specificity is the primary determinant in whether or not a starter culture produces bitter peptides. Fortunately, bitter peptides produced by chymosin and starter bacteria can be degraded by intracellular peptidases from starters and adjunct bacteria, but the relative contribution of individual peptidases to these reactions remains unknown. This project is working to identify and characterize microbial enzymes responsible for the production or degradation of bitter peptides in cheese. Results from the study will facilitate industry efforts to understand and control flavor development in Cheddar cheese by providing new strategies to identify or develop starter systems which eliminate or control bitter flavor defect in full and low-fat Cheddar cheese.

1. Significant Progress against Objectives:

Previous research by our group has shown that the lactococcal cell envelope proteinase (CEP) is a primary determinant in whether or not a starter culture will produce bitter peptides. One of the limitations in that study was that peptide accumulation data were confounded by variability in the degree of autolysis and intracellular peptidase activity among strains of *Lactococcus lactis*. To overcome this limitation, Dr. Broadbent's laboratory constructed a series of isogenic strains which differ only in proteinase specificity and which lack the gene for the major lactococcal autolysin, AcmA. The proteinase which were evaluated included the *L. lactis* Wg2 group e proteinase, CEP, the *L. lactis* SK11 group a proteinase, and the group h proteinase from the bitter starter *L. lactis* S3. The proteinase specificity of each isogenic construct was confirmed by in vitro incubation of whole cells with α-CN (f1-23) at pH 5.2 in 4% NaCl and, for the S3 clone, by DNA sequence analysis of the substrate binding regions. Permission to perform sensory analysis on cheeses manufactured with these bacteria was then obtained from the Utah State Biosafety Committee and the USU Institutional Review Board (for experiments with human subjects). 50% reduced-fat Cheddar cheese was manufactured at UW-Madison and HPLC analysis has confirmed that peptide accumulation in the experimental cheeses is occurring as predicted by the CEP specificity of each starter. Trained sensory analysis of the experimental cheeses after 2, 4, and 6 mo of ripening has established a clear role for CEP specificity in bitterness. As expected, strains carrying the group a, e, or h proteinase had low, intermediate, or high propensities for bitterness, respectively. These results confirm our previous findings that starter culture proteinase specificity is a key determinate of whether or not a cheese will develop bitterness.

A number of casein-derived peptides with bitter flavor notes have been characterized, but the actual peptides that are most frequently responsible for bitterness in cheese have not yet been identified. In the past, researchers seeking to determine the contribution of specific peptides to bitterness in cheese have relied on sensory evaluation of peptides in aqueous solutions to measure bitterness. However, sensory studies have clearly established that taste thresholds for a compound increase when viscosity increases or when competing tastes are present. For this reason, the quantity of any peptide necessary to evoke a bitter response will always be much higher in cheese than in water, so
water dispersion data cannot be reliably applied to cheese. Dr. Brennand's work has demonstrated that dispersal of bitter compounds in a cheese model system is a representative and effective means to study bitterness in cheese. To our knowledge, we are the first group to study the contribution of individual peptides to bitterness in model cheese system, and our work on bitter taste thresholds for β-CN (f193-209) and αs1-CN (f1-9) has provided valuable new insight into the role of specific peptides in bitterness. In the case of both peptides, the bitter taste threshold was approximately 10-fold higher in the model cheese system than in water. When the bitter taste threshold of these peptides in the model cheese system were compared to the levels of these peptides observed in a bitter cheese, it was concluded that the αs1-CN (f1-9) was primarily responsible for bitterness in this cheese. While the β-CN (f193-209) peptide likely had a complementary function, rather than a dominant role, in the perception of bitterness in this cheese.

The ability of lactic acid bacteria peptidases to hydrolyze bitter peptides to non-bitter peptides and amino acids is well established, but the relative contribution of individual enzymes to this process is largely unknown. The peptidase system of Lactobacillus helveticus CNRZ32, an adjunct that reduces bitterness in cheese, has been investigated in detail by Dr. Steele's laboratory. Genes for ten peptidases have been cloned and sequenced from this organism. Of these enzymes, the contribution of 2 general aminopeptidases (PepC and PepN), a proline-specific aminopeptidase (PepX), and two endopeptidases (PepO and PepE) to the hydrolysis of the known bitter peptides β-CN (f193-209) and αs1-CN (f1-9) has been evaluated. Growth studies and studies with cell-free extracts (CFEs) of CNRZ32 and isogenic strains lacking one of the five peptidases mentioned above revealed that all of the mutants hydrolyzed these peptides completely to free amino acids. These results indicated that overlapping specificities in CNRZ32 peptidases were masking the effect of individual peptidases. To overcome this problem, we evaluated the rate of hydrolysis and the transition peptides formed by cell-free extracts of CNRZ32 and the five isogenic peptidase-deficient derivatives described above. Differences in the hydrolysis of β-CN (f193-209) were only observed between CNRZ32 and the mutant lacking PepN activity. These results indicated that PepC, PepX, PepO, and PepE have no detectable role in the hydrolysis of β-CN (f193-209) and that PepN initiates the N-terminal hydrolysis of this peptide. The observation that 50% of the transition peptides identified from β-CN (f193-209) had either a C-terminal Pro204 or Pro206 residue suggested that a post-proline endopeptidase was also involved in the hydrolysis of this peptide. Confirmation of a post-proline endopeptidase in CNRZ32 was obtained by the ability of CNRZ32 CFEs to hydrolyze C- and N-blocked β-CN (f203-209). The identification of a post-proline endopeptidase in CNRZ32 is significant, as this enzymes substrate specificity suggests it may contribute to the hydrolysis of numerous bitter peptides. Hydrolysis of the αs1-CN (f1-9) by CFEs from CNRZ32 and its isogenic derivatives lacking one of the five peptidases previously described was evaluated. The primary peptide produced by all CFEs was αs1-CN (f1-7), suggesting either that an endopeptidase distinct from PepO and PepE or a carboxypeptidase was responsible for the formation of this peptide. Therefore, Objective 5 was delayed to identify endopeptidase essential for the hydrolysis of β-CN (f193-209). To date, we have cloned and sequenced an endopeptidase O2
(pepO2), which has shown the capability to hydrolyze a carboxyl-blocked form of β-CN(f193-209). Next, the expression of pepO2 in Lc. lactis will be examined using a transcriptional fusion vector and the enzyme will be characterized.

2. Significant Conclusions:
Trained sensory analysis of experimental cheeses made with isogenic starters showed bitterness did not develop in cheeses made with the proteinase-negative isogen, whereas isogens that produced group a, e, or h cell-envelope proteinase had a low, intermediate, or high propensity for bitterness, respectively. These results demonstrate a clear role for lactococcal proteinase specificity in the development of bitterness, and suggest that the propensity of certain industrial strains for bitter flavor defect could be altered by proteinase gene exchange.

Dr. Brennand’s trained sensory panel has shown that although the concentration of β-CN (f193-209) in bitter S3 cheese is above the bitter taste threshold for water, it is well below the taste threshold for cheese. Thus, β-CN (f193-209) likely has a complementary function, rather than a dominant role, in the perception of bitterness in Cheddar cheese. In contrast, the bitter taste threshold for αs1-CN (f1-9) in cheese appears to lie very near the actual concentration of this peptide in bitter cheese. The latter finding supports our previous suggestion that αs1-CN (f1-9) may have a key role in bitterness in Cheddar cheese, and helps to illustrate the basis by which CEP specificity relates to a strain’s propensity for bitterness. In addition, Dr. Steele’s observation that cell-free extracts from Lactobacillus helveticus CNRZ 32 can degrade β-CN (f193-209) also supports our assertion that adjunct bacteria can be used to remove bitter peptides produced by the action of chymosin. Together, these observations indicate that we can develop starter systems which do not produce, but can still degrade, bitter peptides in Cheddar cheese.

3. Anticipated Problems/Delays:
The project is complete

Publications:

Theses:
none

Published Abstract:
none

Presentations:

Patent/Invention Disclosures:
none

Technology Transfer Activities
For information on licensing contact:
Jeff Broadbent

Visitors Hosted:
none
Western Dairy Center
Project Report
Reporting Period July 1, 1997 — Dec. 31, 2000

Principal Investigators: Dr. Jeffery R. Broadbent, Utah State University
Co-Investigators: Dr. Bart C. Weimer, Utah State University
Dr. James L. Steele, University of Wisconsin-Madison
Dr. Mark E. Johnson, Center for Dairy Research and
Dr. Scott A. Rankin, University of Maryland

Project Title: Improvement of low-fat Cheddar cheese through identification and characterization of microbial enzymes responsible for the conversion of aromatic amino acids into off flavor compounds in cheese.

Institution’s Project #: 97087

Project Completion Date: 12-31-00

National Research Plan (1997): Priority: 1; Goal: 1; Tactic: 2;
Clarify which organisms are responsible for cheese flavor (positive and negative) and understand how these organisms assert their influence.

Modifications to Project/Budget:
None

Project Objectives: (Include any revisions to objectives)
1. Investigate the role of metabolic cross-feeding between starter, adjunct, and nonstarter cheese bacteria in the production or removal of aromatic off flavor compounds.
2. Characterize the contribution of key enzymes to the conversion of aromatic amino acids into off flavor compounds.
3. Confirm the action of key enzymes in cheese slurries or in low-fat Cheddar cheese.

Project Summary: (Suitable for inclusion in Center documents released to the public)
Development of off flavors is a significant problem in low-fat Cheddar cheese. Compounds associated with unclean, medicinal or utensil, and floral or rosy off flavors may arise via microbial catabolism of aromatic amino acids. Starter, adjunct, and nonstarter lactic acid bacteria may catabolize aromatic amino acids under conditions found in Cheddar cheese, and pathways involved in these reactions can facilitate the production of off flavor compounds. This project will investigate the contribution of metabolic cross-feeding between starter, adjunct, and nonstarter bacteria to the production or removal of aromatic off flavor compounds, the specific roles for selected enzymes in the production of these
compounds, and confirm that these enzymes and pathways are functional in low-fat Cheddar cheese. Results from the project will facilitate industry efforts to understand and control flavor development in low-fat Cheddar cheese by providing new strategies, based on enzyme assays, gene probes, or recombinant DNA technology, that can be used to identify or develop starter systems which avoid or reduce development of utensil, medicinal, unclean, putrid, and floral off flavors in low-fat Cheddar cheese.

1. Significant Progress against Objectives:
Metabolic cross-feeding studies for Trp, Phe, and Tyr confirmed that these reactions are active under simulated cheese conditions (pH 5.2, 4% NaCl, no carbohydrate, 13-15°C). Those studies established that unlike the Lactococcus lactis (Lc. lactis) starter bacteria, Lactobacillus casei (Lb. casei) are able to metabolize p-OH-phenyl pyruvic acid into p-OH-phenyl lactic acid, a compound that is not associated with cheese off-flavors. As a result, overexpression of the enzyme that effects this conversion, D-2-hydroxyisocaproate dehydrogenase, should yield bacteria that can remove p-OH-phenyl pyruvic acid from the cheese matrix and thus help to prevent spontaneous degradation of p-OH-phenyl pyruvic acid into off flavor compounds. To test this hypothesis, The L. casei gene encoding the NADH-dependent D-2-hydroxyisocaproate dehydrogenase (D-HicDH) was cloned, sequenced, and overexpressed in Lb. casei 334 using the high copy number plasmid pTRKH2. Duplicate vats of 50% reduced fat Cheddar cheese were manufactured at UW-Madison using starter alone, starter plus L. casei 334 (pTRKH2), and starter plus L. casei 334 (pTRKH2:d-hicDH). Another set of duplicate cheeses were manufactured to contain 20 g/kg a-ketoglutarate. Volatile analysis of 1 and 3 mo old cheeses made with a-ketoglutarate showed that the starter composition significantly affected the concentrations of ketones, aldehydes, organic acids, phenolic compounds, and total volatiles in 1 mo-old cheeses. Levels of total volatiles, organic acids, and phenolic compounds was also significantly different in 3 mo-old cheese. Trained sensory evaluation were also performed on 1, 3, and 6 mo old cheeses. Results suggested addition of a-ketoglutarate affected diacetyl, meaty-brothy, barny, bitter and umami flavor notes. As a whole, these data suggest D-HicDH overexpression has clear potential for manipulating cheese volatile chemistry for the control of off-flavor development.

2. Significant Conclusions:
Starter, adjunct, and nonstarter lactic acid bacteria are each able to catabolize aromatic amino acids in defined media under conditions found in Cheddar cheese, and pathways involved in these reactions can facilitate the production of off flavor compounds.

3. Anticipated Problems/Delays:
None.

Publications:
Gummalla, S. M. Drake, S. Rankin, and J. R. Broadbent. Overexpression of Lactobacillus casei D-hydroxyisocaproate dehydrogenase: effects on cheese
volatile chemistry and sensory properties. Manuscript in preparation.
by Lactobacillus cheese flavor adjuncts. J. Dairy Sci. (in press).
Gummalla, S., and J.R. Broadbent. 1999. Tryptophan catabolism by Lactobacillus
casei and Lactobacillus helveticus cheese flavor adjuncts. J. Dairy Sci. 82:2070-
2077.
attributes which affect cheese flavor development, pp. 157-170. In, Proc.
LACTIC ’97 conference, Which strains? For which products?
1997. Starter contribution to reduced fat Cheddar. Dairy Ind. Int. 62 (2):35-
39.

Theses:

Published Abstract:
none

Presentations:
Broadbent, J.R. Role of lactic acid bacteria in cheese flavor development. Invited oral presentation for special ADSA pre-meeting workshop on the basics of flavor development in cheese. Sponsored by the American Dairy Science Association and Rhodia, Inc. July 24, Baltimore, MD.

Broadbent, J.R. Cheese curing and flavor development. Invited oral presentation for the 15th Cheese Making Short Course. February 9-11, Utah State University, Logan.

Patent/Invention Disclosures:
none
Technology Transfer Activities
For information on licensing contact:
Jeff Broadbent

Visitors Hosted:
none
Western Dairy Center
Project Report
Reporting Period July 1, 1997 — December 31, 2000

Principal Investigators: Dr. Bart C. Weimer, Utah State University
Co-Investigators: ______

Project Title: Microbial catabolism of Methionine to improve Cheddar cheese flavor- a comparative study of the relative contribution by starter cultures and flavor adjunct bacteria.

Institution’s Project #: 97088
Project Completion Date: 6-30-00

Develop/characterize/modify strains with particular flavor producing capabilities and enzymes linked to actual cheese flavor development.

Modifications to Project/Budget:
None

Project Objectives: (Include any revisions to objectives)
Use bacteria with defined flavor producing capabilities as model systems for the study of enzymes and metabolites linked to the development of 1) desirable and 2) undesirable flavors in Cheddar cheese.

Project Summary: (Suitable for inclusion in Center documents released to the public)
Met metabolism in dairy related bacteria is under investigation. Brevibacteria produce more sulfur containing compounds during their metabolism than do lactic acid bacteria. Additionally, the mechanism by which production of methanethiol occurs is different than lactococci. The enzyme responsible for methanethiol production in brevibacteria was isolated to homogeneity and characterized — methionine gamma-lyase (MGL). Addition of MGL, whole cells of B. linens BL2 (commercially available from GB) with either GDL or L. cremoris S2 demonstrated that MGL and whole cells of BL2 produced significantly more volatile sulfur compounds (VSC) than S2 alone in slurries. L. cremoris S2 produced VSC at levels just above flavor threshold. Addition of MGL or BL2 produced 2 to 5 times more VSC than S2 alone. These increases were associated with the treatments and not contamination from other organisms. The predominant VSC were methanethiol, dimethyl disulfide, and dimethyl trisulfide. As the methanethiol content decreased the dimethyl disulfide content increased.
This observation suggested the redox potential was important, but was not measured.

Studies to screen other lactic acid bacteria (LAB) for met utilization indicate LAB produced significantly less VSC than brevibacteria. Whole cells or cell free extracts produce VSC, but wholes cells produce less than cell free extracts, suggesting that met transport may be important in the production rate.

Studies are underway to determine the relative amounts of VSC production from organic and inorganic sulfur sources.

1. Significant Progress against Objectives:
All objectives are on time.

2. Significant Conclusions:
Brevibacteria produce more sulfur compounds from Met than lactic acid bacteria. While a broad range of MTPC occurs in lactococci and lactobacilli, it seems the mechanism of production varies between the two genera. MGL is active in slurries, suggesting that it maybe active in Cheddar cheese curd. Lactococci produce more VSC that expected in slurries, suggesting an unknown mechanism is at play.

The genes associated with MGL are being investigated now. The genetics of brevibacteria are significantly more difficult than those in other bacteria associated with cheese.

3. Anticipated Problems/Delays:
The student associated with this project quit to stay home with a new baby. I am in the process of finding a new student or post doc to finish the project.

Publications:

Theses:
Ben Dias – Ph.D. (completed spring '99)
Kim Seefeldt – Ph.D. terminated due to student quitting
S. Ghosh – M. S.

Published Abstract:
Presentations:
Weimer, B. C., 1999. Flavor compounds – bacteria and cheese. Land O’Lakes, Minneapolis, MN.

Weimer, B. C., 1999. Sulfur metabolism in dairy related bacteria. Institute of Food Technologists annual meeting, Biotechnology Section, Chicago, IL.

Patent/Invention Disclosures:

<table>
<thead>
<tr>
<th>Technology Transfer Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTACT WAS MADE WITH 2 LARGE CHEESE COMPANIES IN THE US ABOUT WORKING TOGETHER ON SULFUR METABOLISM IN CHEESE FLAVOR</td>
</tr>
</tbody>
</table>

For information on licensing contact:
Bart Weimer
Milkbugs@cc.usu.edu
435 797 3356

Visitors Hosted:
Paul Chiak – IFF
Chakra Wijesundera – Food Science Australia
Western Dairy Center
Project Report
Reporting Period July 1, 1997 — December 31, 2000

Principal Investigators: Dr. Bart C. Weimer, Utah State University
Co-Investigators:

Project Title: Conversion of amino acids to short and branched-chain-fatty acids by starter and adjunct bacteria.

Institution’s Project #: 97089

Project Completion Date: 6-31-00

Understand how cheese matrix composition influences survival and metabolism of starter and adjunct cultures to produce fatty acids from keto acids.

Modifications to Project/Budget:
None

Project Objectives: (Include any revisions to objectives)

Hypothesis:
The first catabolic step for amino acids is catalyzed by aminotransferases using keto acids as co-factors (amino donors and acceptors) to form flavor compounds in cheese. The most common co-factor transformation is ketoglutarate to glutamic acid. Therefore, generation of these two co-factors is important in controlling the rate of flavor development in cheese.
A. Determine the diversity of transferase reactions that use ketoglutarate to glutamic acid in LAB.
B. Determine the role of this transformation in production of cellular energy and flavor compound production from each class of amino acids (branched chain, aromatic, acidic, neutral, basic).
C. Determine the rate of product formation with the addition of keto acids in relation to the amino acid precursor concentration. (Aminotransferases are bidirectional enzymes based on the products and reactant concentrations. If this reaction is increased it may lead to a method to accelerate cheese flavor.)
D. Determine the environmental triggers that induce each aminotransferase in lactococci and lactobacilli with transcription analysis.

Project Summary: (Suitable for inclusion in Center documents released to the public)
Short-chain fatty acids have a role in Cheddar cheese flavor development. The mechanisms responsible for their production in cheese are not established. Microbial lipases are involved, however, lactic acid bacteria typically possess
extremely weak lipolytic ability and do not produce improved flavor, even with use of strains that over express the lipase (Holland et al., 1996). Alternatively, short chain fatty acids in Cheddar cheese may arise from microbial catabolism of branched chain amino acids. The aim of this study was to determine the ability of volatile fatty acid (VFA) production in lactococci associated with cheese processing in absence of carbohydrate and in carbohydrate starvation.

All bacteria tested produced VFA in laboratory conditions with diversity in genera and species in complex laboratory media. Strains of lactococci, lactobacilli, and brevibacteria convert amino acids to various VFA. Brevibacteria produced 10–100 times more VFA than the other bacteria tested. Studies linking carbohydrate starvation and amino acid metabolism demonstrated that some strains appeared to die by growth studies. However, brevibacteria and lactococci maintained the ability to produce increasing amounts of VFA in carbohydrate starvation conditions in a chemically defined media (CDM), despite an apparent decrease in viable cells. Isovaleric acid alone was produced by strains in CDM at pH 7, while no fatty acids were detected in CDM at cheese-like conditions. These studies indicate amino acids are converted to VFA by cheese related bacteria. Further, they indicate that the amount of sugar present regulates these metabolic processes.

NMR studies with radiolabeled amino acids demonstrated the interconversion occurs in these bacteria. Brevibacteria produced significantly more FFA from branched chain amino acids than lactococci. Lactococci produced FFA only after the onset of carbohydrate starvation.

Deletion mutants from J. Steele (Wisconsin) and M. Yvon (France) that lacked specific aminotransferase enzymes retained the ability to produce fatty acids from amino acids, but the type of VFA produced was different compared to the wild type. This indicates that multiple metabolic pathways exist for production of VFA in lactococci. This will allow a hypothesis for the catabolic pathway in cheese. Screening for VFAs' production from various amino acid precursors showed that genera involved are not diverse within the species but different between genera.

Another attempt to exclude the aminotransferase reaction was made by using precursor a-keto acids as substrates for in vivo catabolism to VFAs. The keto acids degraded in solution during incubation to VFAs. However, lactococci and lactobacilli produced VFAs above the observed background degradation. They also produced different products from what would be expected from a reaction subsequent to an aminotransferase in the catabolic pathway. This makes the role of an aminotransferase in VFA production more complicated than it would seem to be.

Lactococcus lactis ssp. *lactis* ML3 was inoculated into CDM (modified from Gao et al., 1997) at pH 7.2 and 5.2, containing 0.2% lactose. The cells metabolized the small amount of lactose to become carbohydrate starved for 6 months. ML3 entered the non–culturable state within 10 days of inoculation into CDM, but
remained metabolically active and contained ATP. They eventually produced branched-chain fatty acids such as isovaleric and isobutyric acid. The lack of milk fat in CDM and associated fatty acid production during starvation implicates branched-chain amino acid catabolism during starvation as a plausible explanation for branched-chain fatty acid production. Monitoring the activities of aminotransferases in cell-free extracts lead to no patterns correlated with branched-chain fatty acid production. Current work is underway to determine patterns of amino acid utilization and genes expressed associated with the catabolic pathways.

1. Significant Progress against Objectives:
All objectives are on schedule as listed in the proposal

2. Significant Conclusions:
Dairy related bacteria convert amino acids to fatty acids that are not found in milk fat. The implications for cheese flavor indicate the starters, adjunct, and NSLAB bacteria produce VFA.

3. Anticipated Problems/Delays:
None

Publications:
1 submitted

Dissertations:
B. Ganesan – In progress

Published Abstract:
none

Presentations:

Patent/Invention Disclosures:
None

Technology Transfer Activities
For information on licensing contact:
Bart Weimer (435) 797 3356

Visitors Hosted:
Paul Cihak – IFF
Vaughan Crow – NZDRI
Chakra Wijesundera – Food Science Australia
Western Dairy Center
Project Report
Reporting Period January 1, 1997 — December 31, 2000

Principal Investigators: Dr. Jeffery Broadbent, Utah State University
Co-Investigators: Donald J. McMahon, Utah State University
 Dr. Craig Oberg, Weber State University

Project Title: Application of a metabolic control switch to improve and control starter proteolysis in Mozzarella cheese

Institution’s Project #: 98091

Project Completion Date: 12-31-00

National Research Plan (1997): Priority: 1; Goal: 4; Tactic: 2
Develop knowledge matrix database to improve the performance of cheese starters by using genetic and microbial technologies to select, modify, or adapt starter cultures.

Modifications to Project/Budget: None

Project Objectives: (Include any revisions to objectives)
Objective 1: Characterize the Lactobacillus helveticus LH212 groESL heat shock gene promoter.
Objective 2: Construct an expression vector that incorporates the LH212 groESL promoter.
Objective 3: Develop a model system to study temperature-dependent protease expression in Lactobacillus helveticus and Lactococcus lactis using the groESL promoter-based expression vector.

Project Summary: (Suitable for inclusion in Center documents released to the public)
The purpose of this project is to develop an expression system for important dairy starter cultures that will allow these bacteria to produce high levels of a desired protein during a specific (and transient) stage of cheese manufacture. Although such an expression system would have application in several dairy processes, research outlined in this proposal will focus on its use to avoid pitfalls presently associated with the addition of proteolytic enzymes to cheese. To accomplish this, we are investigating: (1) the regulation of a tightly controlled Lactobacillus helveticus heat shock gene promoter; (2) application of this promoter in a gene expression system that can transiently induce enzyme production during the cook step in cheese manufacture and; (3) this system’s performance in cheese using a model enzyme such as the Bacillus subtilis neutral protease. These
experiments will allow us to determine whether a natural metabolic switch can be employed to avoid problems presently associated with the addition of proteolytic enzymes to cheese. Results from this work will provide basic and applied information needed by industry to control and accelerate functionality in Mozzarella cheese.

1. Significant Progress against Objectives:
Nucleotide sequence analysis of the \textit{L. helveticus} LH212 \textit{groESL} operon and Northern hybridization with a \textit{groEL} DNA probe confirmed that the \textit{groESL} promoter is tightly regulated at the transcriptional level by heat shock. Constitutive expression of \textit{groESL} is very low in \textit{L. helveticus} LH212 but transcription of the operon is induced more than 400% upon temperature upshift from 37 to 52°C. An expression vector that incorporates the LH212 \textit{groESL} promoter upstream of the \textit{Bacillus subtilis npRE} gene was then constructed. This effort was initially based on the broad host range, theta-replicating vector pHW800, but experiments showed this vector did not transform efficiently into \textit{Lc. lactis}. As a result, we shifted our effort to use the lactococcal shuttle vector pGK13 as our replicon. This change proved successful, and we were able to isolate our construct after direct cloning in \textit{L. lactis} LM0230. Temperature studies confirmed the expression system was operating as expected in the lactococcal host, and we have now introduced it into \textit{Lactobacillus helveticus} and \textit{Pediococcus pentosaceous}. Temperature-inducible proteinase expression was documented in all three species of lactic acid bacteria, which indicated our system may have broad application in the fermentation industry. Cheese trials are now being planned to document the effect of our system on enzyme delivery in cheese.

2. Significant Conclusions:
Results to date support our hypothesis that the \textit{L. helveticus} LH212 \textit{groESL} promoter is a strong metabolic control switch that may be well suited for the development of a process-regulated gene expression system to control enzyme production in a variety of lactic acid bacteria.

3. Anticipated Problems/Delays:
The project is complete.

Publications:

Theses:
none.
Published Abstract:

Presentations:

Patent/Invention Disclosures:

<table>
<thead>
<tr>
<th>Technology Transfer Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>For information on licensing contact:</td>
</tr>
<tr>
<td>Jeff Broadbent or Carl Brothersen</td>
</tr>
</tbody>
</table>

Visitors Hosted:
none
Principal Investigators: Donald J. McMahon, Utah State University
Co-Investigators: Jeffery Broadbent
Craig Oberg

Project Title: Characterization of proteolytic enzymes from thermophilic lactic acid bacteria and their influence on Mozzarella cheese functional properties

Institution’s Project #: 98092

Project Completion Date: December 31, 2001

National Research Plan (1997): Priority: Goal: Tactic:
Understand role of moisture and proteolysis on physical and functional properties of cheese.

Modifications to Project/Budget:
None

Project Objectives: (Include any revisions to objectives)
Overall Objective: Understand the influence of microbial proteolytic systems which have variable effects on the rheological properties of Mozzarella cheese.
Objective 1: Characterize proteolytic enzymes in thermophilic Mozzarella cheese starter cultures.
Objective 2: Investigate the influence of different distinct proteolytic enzyme systems on Mozzarella cheese functionality.

Project Summary: (Suitable for inclusion in Center documents released to the public)
The purpose of this project is to control the functionality of Mozzarella cheese by understanding the role of starter culture proteolysis in the development of melting properties. This project will investigate (1) the diversity that exists in the proteolytic systems of important thermophilic lactobacilli starter cultures, and (2) how these differences may influence Mozzarella cheese functionality. Strains of lactobacilli will be screened for proteinase activity, specificity toward \(\alpha_s \)-casein (f 1-23) and their ability to degrade individual intact caseins. Strains found to represent distinct proteinase enzymes within lactobacilli species will then be used to manufacture Mozzarella cheese to investigate the effect each enzyme type has on proteolysis and cheese functionality. Knowing characteristics of starter culture proteolytic systems would provide a sound basis for starter culture selection; so that functionality can be customized to meet customer requirements by the manufacturer. This
information would also make it possible to develop starter culture systems for optimum manufacture of both full and lower fat Mozzarella cheese.

1. Significant Progress against Objectives:
Objective 1, Step 1 - Forty one lactobacilli strains have been characterized for cell morphology, Gram stain reaction and sugar utilization (API), and selected strains were evaluated by membrane fatty acid analysis.

Objective 1, Step 2 - Twenty two strains of lactobacilli (8 strains of Lactobacillus helveticus and 14 strains of Lactobacillus delbrueckii ssp. bulgaricus) have been characterized for proteolysis using the β-casein (f 1-23) method. HPLC analysis of whole cell preparations of 14 L. delbrueckii subsp. bulgaricus and eight L. helveticus strains incubated with β-casein (f 1-23) indicated at least six distinct proteolytic patterns. A seventh group may also occur where f 1-7 is the primary breakdown product (instead of f 1-9), but further HPLC analysis of two strains must be done since the proteolytic cascade occurred so rapidly that intermediate products could not be determined. Clustering of these patterns within each species was apparent, but overlaps were also noted. Most cells accumulated β-casein (f 1-9), but differences were found in both the primary and secondary specificity toward β-casein (f 1-23) and its breakdown products. In addition, while some strains exhibited an identical specificity, they showed a much higher or lower relative affinity toward individual peptide bonds.

Objective 1, Step 4 - OPA analysis for total proteolysis has been done for representative strains from each proteolytic grouping. The o-phthaldialdehyde (OPA) method was used to determine general proteolysis for each bacterial strain. No correlation was found between OPA data and β-casein (f 1-23) digestion patterns for the strains examined.

Objective 2 - Part-skim Mozzarella cheeses were manufactured from 2% fat milk using three different strains of L. delbrueckii subsp. bulgaricus along with a single strain of Streptococcus thermophilus. The three strains of L. delbrueckii subsp. bulgaricus differed in their proteolytic specificity and were assigned to Group I (RI), Group III (RIII), and Group V (RV). OPA proteolysis was similar among all three test strains. The moisture and fat content in cheeses ranged from 45.2 to 48.4% and 19.9 to 20.5%, respectively. Differences in functional properties were evident between cheeses made using RIII and RV, while cheeses made with RI and RIII were similar. RI and RIII groups were similar in their β-casein (f 1-23) breakdown products (with differences in their cascade patterns), while the RV group generated a much different pattern. In addition, there was a high correlation between the total area of the peaks obtained on HPLC for the water-soluble peptides in the cheeses and meltability and stretch characteristics.

2. Significant Conclusions:
Data for the β-casein (f 1-23) method indicates at least six distinct patterns of proteolysis can be found in dairy lactobacilli, specifically L. delbrueckii subsp. bulgaricus and L. helveticus. Differences in preferential cleavage patterns of
the α_s-casein (f 1-23) for various strains can be used for characterization. Since no correlation was found between OPA data and α_s-casein (f 1-23) digestion patterns, it appears that only characterizing overall proteolysis (with the assumption that this indicates the culture's effect on cheese functionality) does not provide an accurate prediction of the actual affect. This is confirmed by the fact that using cultures from different cleavage pattern groups can change the functional properties (meltability, hardness, cohesiveness, melt strength, and stretch quality) of the cheese. An improved understanding of the influence of Lactobacillus proteinase specificity on casein degradation and cheese functionality will facilitate efforts to develop starter cultures that improve the physical and functional properties of Mozzarella cheese.

3. Anticipated Problems/Delays:
Many of the lactobacilli cultures at the Weber State Culture Collection were lost due to a freezer malfunction and it took additional time to obtain new cultures, particularly from commercial sources. No other delays occurred.

Publications:

Theses:
None

Published Abstracts:

Presentations:

Patent/Invention Disclosures:

Technology Transfer Activities:
For information on licensing contact:

Visitors Hosted:
None
Western Dairy Center
Project Report
Reporting Period January 1, 1998 — December 31, 2000

Principal Investigators: Donald J. McMahon, Utah State University
Co-Investigators: Craig J. Oberg, Weber State University
Jeff Broadbent, Utah State University
Rajiv Dave, South Dakota State University

Project Title: Understand the role of proteolysis on functional properties of Mozzarella cheese

Institution’s Project #: 5-48181

Project Completion Date: December 31, 2000

Establish knowledge matrices relating the effects of processing parameters on cheese functionality by 12/31/01: Understanding role of moisture and proteolysis on functional properties of cheese.

Modifications to Project/Budget:
The three replications taken on making cheese with plasmin added milk failed and hence the project has been diverted and hence specific project objectives have been modified. However, the main objective of establishing correlation of melt with the breakdown of beta-casein has not been changed.

Project Objectives: (Include any revisions to objectives)
1. Determine the contribution of alphas1-casein hydrolysis on melting properties of mozzarella cheese.
2. Determine the contribution of beta-casein hydrolysis on melting properties of mozzarella cheese.

Project Summary: (Suitable for inclusion in Center documents released to the public)
The purpose of this project is to develop an understanding of how proteolysis during storage of mozzarella cheese influences cheese melting properties. In particular, the proteolysis that occurs during storage of mozzarella cheese will be profiled so that changes in melt and stretch functionality can be correlated with breakdown of alphas1-casein and beta-casein into peptides.
The project is designed to extend the knowledge of cheese proteolysis in mozzarella cheese beyond that which is currently known by monitoring the disappearance of intact proteins during refrigerated storage, by making cheeses that purposely have increased hydrolysis of alphas1-casein or b-casein. To avoid the influence of starter culture bacterial enzymes on proteolysis, the cheese will be made using direct acidification (i.e. without any cultures being added to the milk). Various levels of chymosin and plasmin will be added during
cheesemaking to modify the extent of proteolysis of alpha-s1-casein and beta-casein, respectively. The extent of proteolysis, as measured by the disappearance of the intact proteins and the appearance of peptides, will be correlated with melting, rheological and functional properties of the cheese.

1. Significant Progress against Objectives:
The preliminary trials were successfully completed by the end of September 1998. Methodologies for the manufacture of cheeses and analyses of various rheological and bio-chemical parameters were standardized during this time. Trials for Objective 1, to study the role of alpha-s1-casein hydrolysis on meltability and rheological properties of fat-free, reduced fat and part-skim mozzarella cheeses have been completed. Mozzarella cheeses with 0, 10 and 20% fat were made using direct acidification to test the influence of coagulant concentration on proteolysis, meltability and rheological properties of cheeses during 60 d storage periods at 4°C.

Nine batches of milk (at three fat levels) were acidified to pH 5.65 (using acetic/citric acid combination) and then coagulated with 0.2x, 1x, and 4x recombinant coagulant at 37, 35 and 32°C, respectively. After cutting and healing the curd, pH was further dropped by adding glucono-delta-lactone to the whey and the curd cooked to 44°C and salted. The curd was then hand stretched in 5% brine at 82°C, molded, cooled in cold water, cut into 4 pieces, vacuum packed and stored at 4°C. The cheeses were sampled for fat, protein, moisture, salt, and calcium analysis on d 1. Changes in pH, meltability (using a tube test in an oil bath at 90°C for 16 mins), extent of proteolysis (using an acid-urea capillary electrophoresis and 12.5% TCA-soluble nitrogen) and rheological properties (stress sweep and temperature sweep tests) were monitored at 1, 15, 30 and 60 d.

The first set of trials for Objective 2 were conducted during April to June, 1999. However, it was observed when the extent of proteolysis was determined that adding plasmin had no significant effect. Either the added plasmin was lost in the whey or inactivated during cheese making. A different experimental design from that originally proposed is to be conducted at South Dakota State University to study the influence of beta-casein hydrolysis on melting properties of cheese.

2. Significant Conclusions:
Lowering fat content reduced the initial (d 1) meltability of the cheeses: 15.7, 13.8 and 7.8 cm of melt for the 20, 10 and 0% fat cheeses made using 1x coagulant. Lowering the coagulant level to 0.2x reduced d 1 meltability: 9.1, 8.5 and 6.3 cm, respectively, with the greatest decrease occurring with the 20% fat cheese. During storage, meltability increased for the 0% fat cheese, but decreased for the 20% fat cheese after 15 d because increased stickiness of the cheese reduced flowability of the cheese in the glass tubes.
The time required to hydrolyze all intact alphaS1-casein was about 15, 30 and 60 d for cheeses made using 4x, 1x and 0.2x coagulant, respectively. The higher the fat content, the softer the cheese, i.e. the cheese had lower complex modulus yield values. Also, during aging, the cheeses became softer but aging of the cheese had less effect than fat content of the cheese. While increasing the chymosin content had a large impact on level of proteolysis, there was an increase in hydrolysis of beta-casein as well as alphaS1-casein.

For this project, student Ms. Pragati Sharma was awarded with the Graduate Research Assistantship and has started her work on this project. The final agreement for this project was made from March, 2000. Hence, all the major experiments/replications are underway. The three replications that were taken with plasmin and plasmin inhibitor did not show any specific trend and hence the project was modified to achieve the breakdown of beta-casein by using proteolytic culture and sure curd coagulant from Endothia parasitica. The preliminary trials have been completed and the rate of starter addition, maximum rate of coagulant that we can add, rheology parameters (fall in height and measurement of complex and elastic modulus) and melt (using computer imaging) etc. have been standardized for the final replications, which are already underway. From the initial trials, it was found that there is a difference in melt and rheology of cheese made with different coagulants at various concentrations. We have started our actual replications now and hoping to get the exact idea as to how the proteolysis is correlated to melt and rheology of cheese.

Also, Dr. Rajiv Dave has completed writing of 3 research papers and handed in 2 to Dr. McMahon for further modifications before final submission. One of the research paper on whey project has already been accepted by J. Dairy Sci. and will be published soon. This was as a part of his obligation with Utah State University, when he worked as a post-doctoral researcher in Dr. McMahon’s laboratory.

3. Anticipated Problems/Delays:
The project will not be completed until December 31, 2000 with the final project work being conducted at South Dakota State University by Dr. Dave.

Publications:
Nil

Theses:
Nil

Published Abstract:
Dave, R. I., McMahon, D. J., Oberg, C. J, and J. R. Broadbent. 1999. Influence of
coagulant concentration on proteolysis, meltability and rheology of 0, 10 and 20% fat containing Mozzarella cheese made using direct acidification. 94th American Dairy Science Association Meeting, J. Dairy Sci. 82(Supp. 1):D59.

Presentations:

Patent/Invention Disclosures:

<table>
<thead>
<tr>
<th>Technology Transfer Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>For information on licensing contact:</td>
</tr>
<tr>
<td>Not applicable at this time.</td>
</tr>
</tbody>
</table>

Visitors Hosted:
Western Dairy Center
Project Report
Reporting Period January 1, 1998 — December 31, 2000

Principal Investigators: Marie K. Walsh, Assistant Professor, Department of Nutrition and Food Sciences, Utah State University.

Co-Investigators:

Project Title: Developing an affinity purification procedures to purify prosaposin from whey

Institution’s Project #: 98094

Project Completion Date: 6-30-00

National Milk/Whey Powders Research Plan (1997):
Priority: 2
Goal: 2
Tactic: 2
Increase the use of whey and whey products for health and nutrition applications/positionings (include carries for nutraceuticals, pharmaceuticals, vitamins, essential nutrients).

Modifications to Project/Budget:
None

Project Objectives: (Include any revisions to objectives)
1. To develop a bioselective adsorption matrix for affinity purification of prosaposin from whey. Factors to be considered include the type of immobilized ganglioside (i.e. GM1, GQ1b, and/or GT1b) and support (glass or polystyrene).
2. To determine the affinity of the interactions and dissociation requirements between immobilized gangliosides and prosaposin by analytical affinity chromatography.
3. To characterize bovine prosaposin with respect to enzyme activation and carbohydrate content.

Project Summary: (Suitable for inclusion in Center documents released to the public)
In addition to the partial purification of prosaposin, we have purified both lactoferrin and transferrin using immobilized bovine gangliosides. Lactoferrin was purified from WPC and WPI using sodium phosphate buffer (pH 7) followed by sodium acetate buffer (pH 4) before elution of lactoferrin with 1 M NaCl in sodium acetate buffer. Lactoferrin was identified by N-terminal protein sequencing. From the intensities of the protein bands in SDS-PAGE, lactoferrin constitutes a minimum of 40% of the total protein in the salt eluted sample. Pretreated 1% WPI, heat treated and ultrafiltered with a 50 kDa membrane, showed the highest lactoferrin purity among protein sources, while WPI (10% wt/vol) showed the highest recovery. Bovine transferrin (BTF) was fractionated
from bovine whey using ganglioside affinity chromatography. After loading the immobilized matrix with a 2% whey solution, the matrix was washed with sodium acetate buffer at pH 4 containing 1 M NaCl before elution of BTF with sodium phosphate buffers at pH 7. The ganglioside column showed a 74.2% BTF recovery from whey. In conclusion, immobilized gangliosides can be used to purify BLF and BTF from bovine whey. This novel matrix is stable to organic solvents, acidic solutions and drying.

1. Significant Progress against Objectives:

Ganglioside Purification

Gangliosides were purified from fresh bovine buttermilk (30% solids, Breaden Butter, Logan, UT). Buttermilk was diluted 1:10 with water and ultrafiltrated using a prep/ scale-TFF 2.5 ft² cartridge membrane with 10 kDa (Millipore, Bedford, MA) to remove lactose. The efficiency of lactose removal was confirmed with a lactose enzymatic bioanalysis kit (Boehringer Mannheim, Indianapolis, IN). Moisture, protein, minerals and lipid content of lactose free buttermilk were determined by oven, Kjeldahl, ash and Majonnier, respectively. Lactose free buttermilk was freeze-dried and gangliosides were extracted using 20 vol. of organic mixture of an chloroform:methanol:water (40:80:30 vol.) per gram dry solids (6). The sample was centrifuged at 11,000 x g and the supernatant was collected and evaporated under nitrogen gas. The total amount of gangliosides purified was determined by the periodate-resorcinol method using sialic acid as standard according to Jourdian et al. (9).

Ganglioside Immobilization

Controlled pore glass (CPG) beads (2000 Å, 120-200 mesh) (Sigma, St. Louis, MO) were derivatized with 3-aminopropyltriethoxy silane and succinylated with succinic anhydride according to Walsh and Swaisgood (25). Acetic anhydride (10% by vol.) in acetone was used to cap excess amino groups. Gangliosides were saponified to produce the lyso-derivative containing a free amino group by the reflux boiling method (22). The OPA method (O-phthalaldehyde) as described by Weimer and Oberg (26) was used to confirm saponification of gangliosides. The carboxyl matrix was reacted with Sulfo-NHS (Pierce Chemical Co., Rockford, IL) in 0.01 M MES (pH 6) containing water-soluble carbodiimide (EDC). The lyso-gangliosides, dissolved in MES buffer (pH 6), were circulated through the Sulfo-NHS matrix to couple via amide bond formation for 12 hours at 4 °C using a peristaltic pump. Hydroxylamine (10 mM) was added to quench the reaction by hydrolyzing any unreacted NHS present. The efficiency of gangliosides immobilized was determined by measuring the amount of sialic acid on the matrix and the soluble gangliosides in the immobilization solution as described above.

Ganglioside Affinity Chromatography

Immobilized gangliosides (2 g beads) were packed into stop-flow columns (Pierce, Rockford, IL) and equilibrated with 0.05 M sodium acetate buffer (pH 4). For lactoferrin purification crude and pretreated whey samples were applied to the column and circulated for 5 minutes at room temperature. Proteins were
eluted by batch mode using four kinds of 0.05 M buffers in order; A= sodium phosphate, pH 7; B= sodium acetate, pH 4; C= sodium acetate, pH 4 containing 0.5 M NaCl; and D= sodium acetate, pH 4 containing 1.0 M NaCl.

For transferrin purification, whey sample (2% wt/vol) was applied to column and circulated for 5 minutes at room temperature. Bovine transferrin was purified by batch mode using four kinds of 0.05 M buffers; A= sodium acetate (pH 4), 1 M NaCl; B = sodium acetate (pH 4); C = sodium phosphate (pH 7); D = sodium phosphate (pH 7), 1 M NaCl. For the complete removal of lactoferrin and bovine serum albumin (BSA), the eluted whey sample was applied successively to the ganglioside column and followed by washing with sodium acetate buffer at pH 4 (buffers A and B) 4 times. BTF was eluted with sodium phosphate buffer at pH 7 (buffers C and D) and analyzed by SDS-PAGE under nonreducing conditions.

Protein Concentration

The protein concentration of samples eluting from the ganglioside column was determined by Bradford assay (Bio-Rad, Hercules, CA) with BSA as the standard.

RESULTS

Bovine lactoferrin (BLF) and bovine transferrin (BTF) are major-iron transport and regulatory proteins found in bovine whey. BLF and BTF must interact with the eukaryotic cell surface to mediate their biological function of iron delivery and cellular functions of inflammatory and immunological reactions. As common components of eukaryotic cell surface, gangliosides were used for affinity purification of BLF and BTF. Bovine gangliosides were isolated from fresh buttermilk using a combination of ultrafiltration and organic extraction. Isolated gangliosides were covalently immobilized onto controlled-pore glass beads. The immobilized matrix contained 66 micrograms of gangliosides per gram beads.

The gangliosides affinity technique is a unique and novel method to purify BLF and BTF. In addition to BLF and BTF, immobilized ganglioside can be used to purify other proteins which interact with eukaryotic cell walls. This ganglioside affinity method presents several benefits in comparison with the methods used previously. This affinity chromatography procedure provides a rapid and efficient isolation of BLF and BTF without the need to pretreat whey. The inclusion of pH difference and sodium chloride in the chromatography buffers remove some of the nonspecifically absorbed whey proteins before elution of BLF or BTF. Gangliosides coupled to CPG beads have good mechanical properties and are stable to organic solvents, acidic solutions, and drying. The immobilized ganglioside column has been used repeatedly without apparent decrease in BLF binding capacity for 6 to 12 months. The support can be cleaned in ethanol, urea, or high salt buffers.

Bovine lactoferrin (BLF) was purified by affinity chromatography using immobilized gangliosides. After loading the matrix with whey protein WPI or WPC), the matrix was washed with sodium phosphate buffer (pH 7) followed by sodium acetate (pH 4) before elution of lactoferrin with 1 M NaCl in sodium acetate buffer. Lactoferrin was identified by N-terminal protein sequencing,
From the intensities of the protein bands in SDS-PAGE, lactoferrin constitutes a minimum of 40% of the total protein in the salt eluted sample. Pretreated whey isolate (1% wt/vol) showed the highest BLF purity among protein sources, while whey protein isolate (10% wt/vol) showed the highest recovery of BLF. Bovine transferrin (BTF) was fractionated from bovine whey using ganglioside affinity chromatography. After loading the immobilized matrix with a 2% whey solution, the matrix was washed with sodium acetate buffer at pH 4 containing 1 M NaCl before elution of BTF with sodium phosphate buffers at pH 7. Con-A affinity and Mono-Q anion exchange chromatography were used for further purification. The ganglioside column showed a 74.2% BTF recovery from whey and BTF was enriched to 61% purity with Mono-Q chromatography. Bovine transferrin was identified by SDS-PAGE analysis, Western analysis, and isoelectrofocusing.

Bovine lactoferrin and bovine transferrin are of commercial interest because of their medical and nutritional benefits. Therefore, BLF and BTF purified using our affinity column could be applied for infant formulas to strengthen the immune system, specialty dietary formulations to assist iron absorption, pharmaceuticals to treat harmful bacteria, and personal health items such as antibacterial toothpaste or anti-microbial cosmetics.

In conclusion, immobilized gangliosides can be used to purify BLF and BTF from bovine whey. These affinity purification procedures are suitable to obtain BLF and BTF from whey.

3. Anticipated Problems/Delays:
None

Publications:

|---|

|---|

Theses:
Affinity Purification of bovine lactoferrin and bovine transferrin using immobilized gangliosides. S.H. Nam. USU.

Published Abstracts/ Presentations:

Institute of Food Technologists Annual Meeting, Chicago, IL.
ADSA Annual Meeting, Baltimore MD.

Patent/Invention Disclosures:

<table>
<thead>
<tr>
<th>Technology Transfer Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>For information on licensing contact:</td>
</tr>
<tr>
<td>Provisional patent submitted</td>
</tr>
</tbody>
</table>

Visitors Hosted:
Scott Bloomer, Land O'Lakes, Inc.
Western Dairy Center
Project Report
Reporting Period January 1, 1998 — December 31, 2000

Principal Investigators: Marie K. Walsh, Assistant Professor, Department of Nutrition and Food Sciences, Utah State University.

Co-Investigators:

Project Title: Developing an extruded whey protein meat extender suitable for use in coarse-ground meat products

Institution’s Project #: 98095

Project Completion Date: 12/31/00

Modifications to Project/Budget: None

Project Objectives: (Include any revisions to objectives)

We believe that thermoplastic extrusion can be employed to produce a textured whey protein (TWP) having a stable, meat-like texture for use as an extender of coarse-ground meat products.

Objective 1. We will identify the physiochemical parameters of extrusion necessary to produce a TWP. The goal is to produce a TWP having a meat-like texture that is stable during cooking and consumption.

Step 1. We will employ response surface methodology to identify the physiochemical conditions that lead to the most extensive and stable protein cross linking during extrusion. The physiochemical factors to be considered include the temperature, pH, calcium concentration, moisture level, and extent of proteolysis of the whey protein.

Step 2. We will identify which of three likely polysaccharides (maltodextrin, carboxymethyl cellulose, and corn starch) imparts the most meat-like texture to the TWP when incorporated at different levels (10, 20, 30, and 40 wt% of the whey protein).

Objective 2. We will produce a TWP using the optimal extrusion conditions and formulation as identified in objective 1, and evaluate its use in meat patties and in crumbled meat. The patties and taco meat will be produced using ground beef mixtures formulated to include an all beef control, and 10,
20, and 30% of beef replaced with the TWP, and 30% of the beef replaced with a textured soy concentrate. The products will undergo sensory evaluation of texture, flavor, and juiciness by a consumer panel. Cook yield will be determined for the products and cohesiveness of patties will be instrumentally measured.

Project Summary: (Suitable for inclusion in Center documents released to the public)
Texturized vegetable proteins (TVP) are used extensively in institutional ground meat products as meat extenders. TVP is commonly made by extruding soy protein. Similar processing of whey protein would open new markets for whey protein. There are several that contribute to feasibility of texturizing whey protein via extrusion cooking, these include the type of added starch and extrusion temperature. We have shown that whey proteins can be textured by thermoplastic extrusion for use as meat extenders. The textured whey proteins (TWP) can be used to replace up to 40% of the weight of hamburger patties without affecting consumer acceptance of the product.

1. Significant Progress against Objectives:

MATERIALS AND METHODS
Textured whey proteins were made by extruding a dry mix of: 2/3 whey protein concentrate (AMPC 800, American Meat Packers Cooperation, Ames IA) and 1/3 cornstarch (purchased locally). The whey protein concentrate (WPC) contains 80% protein, 4.6% fat, 4.5% ash (0.294% calcium), 4.4% carbohydrate, and 4.2% moisture. Calcium chloride dihydrate was added to the dry mix before extrusion. The NaOH, and HCl were added through the water source during extrusion. Lean and fat ground beef was purchased from the USU meat lab and fat content was determined using the Babcock method. Textured Procon®, a textured soy protein concentrate (Central Soya, Fort Wayne, IN) was the control used in panel one.

Extrusion
Extrusion was conducted on an APV Baker MPF19 twin-screw extruder. In the MPF19, dry feed and fluid are added separately and the components are mixed in the barrel. Collected samples were dried at room temperature overnight.

Sample preparation
Samples for both sensory and instrumental analysis were prepared at the same time. Formulation was carefully calculated for each panel. Hydration of textured whey and soy proteins was accomplished by adding water to the dry granules at a 1.5:1 (g/g) ratio. Product was allowed to stand at room temperature for at least 10 minutes to ensure complete hydration. Extenders were then mixed with lean and fat ground beef to give a final meat mix composition for the panel.

Patties were pressed into a 10-cm diameter and 1.2 cm height mold, and weighed a 1/4 lb. each. They were cooked on 350°F grills for four minutes on each side or
until an internal temperature of 180°C was reached. Samples were then salted (first panel only) and cut though the center into four equal, triangular pieces. Samples were served hot to panelists.

Two separate panels were conducted to determine consumer acceptance of TWP in hamburger patties. Representative TWPs were chosen for the first panel based on water holding capacity. The highest scoring TWP from the first panel was tested in a second panel at three usage levels, 30, 40 and 50%.

Panel one
In the first panel, 83 panelists tested six samples including: 1) TWP extruded with water, 2) TWP extruded with 0.1 M HCl, 3) TWP extruded with 0.2 M NaOH, 4) TWP extruded with water with 1.69% calcium (w/w protein) added, 5) a textured soy protein meat extender, and 6) an all beef control. The objective was to compare the acceptability of TWPs to commonly used products. All meat extenders were added to the ground beef at the 30% level (weight hydrated/weight patty). All patties were standardized to 20% fat.

Panel 2
In panel two, three usage levels of the most acceptable TWP from panel 1, TWP extruded with 0.2 M NaOH, were tested, 30, 40 and 50%, and compared to an all beef control. Salt was added to each meat mix before patties were formed at 2 1/2 t per ~ 5 1/2 lb. batch. All patties were standardized to 13.6% fat. Samples were tested by 88 panelists.

Sensory panel evaluation
Variables were assigned random three-digit numbers and rotated in ballot position to prevent bias. Panelists were served hot samples in booths, under red lights, in an open consumer panel. They were asked to evaluate samples on a hedonic scale from 1 (dislike extremely) to 9 (like extremely) with a median of 5 (neither like nor dislike). Panelists scored each sample for tenderness, juiciness, texture, flavor, and overall acceptability.

Textural analysis
Instrumental analysis was conducted on ten patties from each variable for each panel. Measurements were made using the USU Penetrometer, which measured the peak force required to break the patties. Measurement of raw and cold cooked weight, height, and diameter were made for each patty. Patties were cooked with those used in sensory analysis, but cooled to room temperature before analysis.

Results
In taste panel one, TWP extruded with 0.2 M NaOH and all beef control samples had significantly higher scores (p < 0.05) than all other samples in tenderness, texture, flavor and overall acceptability. For juiciness, TWP extruded with water was not significantly different (p < 0.05) from the two previously mentioned. The TWP extruded with 0.2 M NaOH was the only sample with average scores above 6 (like slightly) in every category. Acid adjusted TWP had lowest scores for texture, and TSP had lowest scores for flavor.
The all beef and TSP samples required higher (p < 0.05) peak forces than the TWP samples. Within TWP samples, 0.2 M NaOH had the highest to breakage peak force.

In taste panel two, no sensory differences (p < 0.05) were found between the all beef control and patties with 30 and 40% TWP added. However, 50% TWP samples received lower scores for texture, flavor, and overall acceptability. There were no differences among the peak forces of patties with TWP added, and all had lower peak forces than the all beef control. However, the differences due to peak force do not seem to effect the overall acceptability of the samples.

Conclusion
This research shows that whey protein extruded with base is a product that can be used in meat patties up to at least the 40% level. This research shows high usage potential for textured whey proteins as meat extenders.

3. Anticipated Problems/Delays:
None

Publications:
Theses:

Published Abstract:

Presentations:
Same as above
Western Dairy Center
Project Report
Reporting Period January 1, 1998 — December 31, 2000

Principal Investigators: Joseph Irudayaraj, Penn State University
Co-Investigators: Donald McMahon

Project Title: Process technology to improve the favor of heated milk

Institution’s Project #: 98101

Project Completion Date: June 30, 2000

National Fluid Milk Research Plan (1997): Priority: 3 Goal: 3 Tactic:
Fluid Milk 3.3: Exploration of alternate processes for specific products and
development of ingredients and beverages

Modifications to Project/Budget:
—

Project Objectives: (Include any revisions to objectives)
1) Determine the effect of electroheating on flavor and sensory attributes
2) Compare the flavor characteristics to conventional UHT processes

Project Summary: (Suitable for inclusion in Center documents released to the public)
Raw milk was pasteurized using plates and steam heat exchangers at Utah State University’s dairy pilot plant. The pasteurized milk was then UHT treated using the Electroheating system developed by Raztek Corporation. Another set of experiment was conducted using the commercial pasteurized milk. Electroheating temperatures considered were 135, 145, and 155 deg C. Holding times used were 0.5 and 4 secs. All experiments were replicated two times. Protein denaturation from electroheating was 30% while that of the commercial UHT sample was about 67%. Sensory evaluation using a trained (12 panelists) and untrained panel (80 consumers) was conducted. The commercial sample had the lowest liking scores from the untrained panelists and 66% of the consumers preferred the UHT milk by electroheating (145 deg C) over the commercial variety. High sweetness, low butter, oxidized, and stale flavor was realized by the trained panel for the electroheated milk.

Significant progress against objectives:
Ohmic heating is a novel technology currently utilized worldwide to produce a variety of high-quality, low and high-acid products. The most distinct advantages of ohmic heating are: its ability to accurately control the temperature of the product, uniform heating of liquids, fast heating rates, no fouling and
scorching of product on the walls, low maintenance, no residual heat after the current is shut off, and very low heat losses.

The ohmic heater consists of a column which typically contains four electrode housings machined from solid blocks and encased in stainless-steel for mechanical integrity. The housings are connected together using stainless-steel inter-connecting tubes lined with an electrically insulating plastic liner. The column is mounted in a vertical or near vertical position with the flow of product in an upward direction. Power to the heater is provided by a main step-up transformer with the power being controlled on the primary side of the transformer using a feed-forward temperature control system. A feed-back monitoring system is used to prevent any long term drift in outlet temperature (Skudder, 1991). One of the first applications of ohmic heating to food products was due to the work by deAlwis and Fryer (1990). However, only recently this technology has received considerable attention in thermal processing of foods (Qihua et al., 1993).

Commercial ohmic heating systems are already being used for continuous processing of food materials (Stirling, 1987; Skudder, 1991). However, such applications provide very less or almost no information on the design and performance aspects of ohmic systems (Biss et al., 1989; Stirling, 1987). An experimental ohmic heating unit was designed and fabricated for continuous thermal processing of liquid foods and applied for orange juice processing. The unit was supported by a data acquisition system for sensing the liquid temperature distribution, line voltage, and current with time. Experiments indicated that the temperature of liquid at the outlet was decided directly by the flow rate, electrical conductivity, applied voltage gradient and dimensions of the heating unit (Qihua, 1993). Only temperature and current data was collected for heating of orange juice.

The electroheating technology is a unique form of ohmic heating which is based on the principle of passing electric current through a food product which causes the food to heat. Applications and details of the general ohmic heating system is provided in this section. The fundamental principles have been discussed by Sastry (1992). The major benefit of the process is that heating occurs volumetrically and the product does not undergo large temperature variations. The ohmic heater was originally developed by the United Kingdom Electricity Research and Development Center at Capenhurst (UK). APV Baker obtained a license for the system in 1983, and since then, has substantially improved its design and applications. The applications initially dealt with are: 1) hygienic production of value added readily prepared meals, 2) pre-heating of food product prior to in-can sterilization, 3) pasteurization of particulate fruit products for hot-filling, and 4) aseptic processing of prepared meals. In 1988, APV Baker was awarded the “Food Processing Award” for technical innovation and in 1990 was awarded the “Du-pont Award” and a “Du-Pont Diamond Award” for pioneering the development of this technology. This process, to our knowledge, has not yet been successfully applied to heat processing of milk. Parameters obtained from this work could be used in the future work in modeling, property determination and process optimization. In order to fully
exploit the inherent advantages of a process such as electroheating, the quality of the processed product becomes important. A brief review of flavor and sensory characteristics are presented below.

Effect of flavor Changes in the flavor of milk become more pronounced the higher the temperature used to process the milk. For example, many compounds have been identified in sterilized concentrated milks and in UHT processed milks, originating from both proteins and fat (Patel et al., 1962, Bassette & Jeon, 1983). Some of these include diacetyl, lactones, alcohol ketones, maltol, vanillin, benzaldehyde, acetophenone, etc. However, the exact compounds responsible for flavor are not yet known.

Immediately after processing, UHT-processed milk has a more-or-less strong ‘heated’ flavor with a sulfurous odor. This odor disappears rapidly and the heated flavor decreases with time and a characteristic ‘UHT’ flavor, described as ‘stale’ develops which becomes stronger with time. Badings and Neeter (1980) have identified 45 different compounds contributing to ‘UHT’ flavors, with an additional 12 unidentified compounds. A list of flavor compounds is also provided by Burton (1988). UHT processing allows milk to be stored at room temperature for 1 to 2 years without microbial spoilage. However, increased temperature treatments used in UHT processing cause cooked or caramelized flavor due to Maillard browning reactions. UHT milk processed using steam injection results in less cooked flavor compared to indirect heating, but does not eliminate this defect (Burton and Perkin, 1970). To further reduced cooked flavor, extend the shelf life beyond 14 days, and expand the capabilities to transport milk without spoilage, milk is being commercially processed at temperatures well above those used for pasteurization, more typical of those for UHT processing; and packaged under aseptic or ultra-clean conditions so as to produce extended shelf life (ESL) milk. No research has been performed on processing milk at extremely high heating rates for a very short time (faster than is obtainable with steam heating) using direct heating of the product by electrical current.

Sensory Evaluation

Sensory evaluation of milk is important for quality control. Classification of grades are based on defects and quantitative assessment of the terms “slight”, “definite”, and “pronounced”. Different authors have published descriptors of off-flavors in milk and milk products (Bodyfelt et al., 1988; IDF, 1987). These descriptors are used for training of sensory panels and off-flavor recognition. Although, it is difficult to perceive a mixture of flavors, for some, threshold values have been published (Connolly et al., 1980; Jellinek, 1985). But less information is available on safety, sensory qualities, or absolute shelf life of milk stored for longer periods of time. Microbial survival, enzyme activity must also be considered when studying the characteristics of ESL products (Blake, et al, 1995).

The specific objectives of are to:
1) Determine the effect of electroheating on flavor characteristics of heated milk during storage, measured by both trained and untrained sensory panel
2) Determine the effect of electroheating on volatile flavor compounds during storage and whey protein denaturation

Methods and Materials

Milk Processing:
Mixed herd raw milk standardized to 1% fat will be used in this study. The 1% fat content milk used in this study is classified as low fat milk (i.e., fat content is less than 1.25%). Processing runs will be made in the USU Dairy plant (Utah State University) using a pilot plant system (Sterilab™, Alpha Laval system) equipped with a steam injection system (for direct heating) and a plate heat exchanger (for indirect heating). The capacity of the plant is 30 gal/hr and the preheating temperature range is between 70 and 90°C. The preheated milk will be heated to the desired temperature (in the range between 130 and 150°C) and flash cooled to 60°C.

Processing temperature considered for ohmic heating are 135, 140, and 150°C. Holding times considered are 1 and 4 seconds.

Protein Denaturation: Whey protein denaturation will be measured using a modified procedure of Vakaleris and Price (1959). Ten milliliter milk samples are diluted with 40 ml distilled water. Twenty-five milliliter of this diluted solution is adjusted to pH 4.6 by dropwise addition of 0.1N HCl and filtered. From each filtrate, 10 ml is used to determine whey protein nitrogen (WPN) content by a semi-micro Kjeldahl procedure (Manji and Kakuda, 1987) using a Kjeltec Auto 1030 Analyzer (Tecator AB, Hoganas, Sweden). Percent whey protein denaturation is calculated using:

\[
\text{% Denaturation} = 100 \times \frac{\text{WPN}_{\text{raw milk}} - \text{WPN}_{\text{heated milk}}}{\text{WPN}_{\text{raw milk}}}
\]

GC Analysis: Flavor Chemistry

Samples for volatile analysis will be conducted using a dynamic headspace analysis (Brewer et al., 1997). A 50 g sample is placed into a 100-ml round-bottom flask fitted with a universal inlet adapter. Sample purge is conducted by immersing the flask in a 37°C circulating water bath. A submersible stirrer on highest setting and Teflon starburst stirring head (9.5 mm, Fisher Scientific, Pittsburgh, PA) is used to provide thorough agitation of samples, facilitate heat transfer, and increase gas/liquid interaction. Nitrogen purge gas is used to limit oxidative changes. Purge gas is passed through a moisture and hydrocarbon trap (Restek, Bellefonte, PA). Teflon tubing is used for all connections following the gas filters. Purge is conducted by swept surface to avoid foaming and inclusion of antifoam agents. Samples are purged at 800 ml/min for 20 min; final purge volume is 16 L.

Commercially available Carbopack (Supelco, Bellefonte, PA) traps are used with a bed weight of 350 mg. Following headspace sampling, the 50 mg breakthrough section of the trap is placed in a 2 ml vial and examined for analyte
breakthrough. The 350 mg section is eluted with double distilled diethyl ether into a separate 2 ml vial then concentrated to ~100L.

Gas chromatography is carried out with a Hewlett Packard (Avondale, PA) 6890 gas chromatograph with flame ionization detector under the following conditions. Initial temperature is 40°C isothermal for 6 min; increased by 6°C/min to 210°C and maintained for 15 min. A Restek (Bellefonte, PA) Stabilwax-DA column is employed (30 m, 0.25 mm i.d., 1.0 µ film thickness). Column flow rate is 1.1 ml/min and sample size is 1.5 l with splitless injection. HP ChemStation software is used for peak area determination and identification of recovered volatiles is obtained by comparison of analyte retention indices (RI) in an available database, by retention times of pure standards (Sigma-Aldrich, St. Louis, MO), and by mass spectroscopy.

Mass spectroscopy is performed with a Hewlett Packard mass spectrometer with column and chromatographic parameters as described above. Conditions are ion source temperature, 170°C; ionization voltage, 70 eV; mass scan range, m/e 20-300; scan rate, 1.0 scan/s. Compounds are identified in cheese samples by comparison of sample spectra with library reference spectra (NIST) and by comparing mass spectra and GC retention times to known standards. Quantification in cheese samples is based on the recovery of internal standards (20 l methyl butyrate solution) added to the milk at a final concentration of 0.010 g/g.

Sensory Analysis:

Trained panel
A trained panel was used to rate the intensity of taste and flavor attributes. The panel had been trained in September. There were 4 evaluation sessions. At each session the panels received 5 samples (control, T1-T4). The panelists did duplicate evaluations for each sample in each replication. The milk samples were served at 14.5°C.

Consumer evaluation
A consumer panel was used to rate consumers’ opinions about the milk samples. The panelists were screened for drinking low fat milk. Each consumer evaluated the 5 samples. For the consumer evaluations 40 persons evaluated samples from replication 1 and 39 persons evaluated samples from replication 2. There were 2 evaluation questions for each sample (see enclosed ballot). The values for the 9-point liking scale were 9=like extremely, 5=neither like nor dislike, and 1=dislike extremely.

Analysis
SAS General Linear Model (analysis of variance procedure) was used to analyze the trained and consumer data and Tukey’s to compare the means. Analysis of variance was used to analyze the trained and consumer data and Tukey’s to compare the means. The trained panel did duplicate evaluations for each set of samples from each rep. The data from the two reps were combined for the analysis of both the trained panel and consumer evaluations.
Results

Protein Denaturation:
A comparison of protein denaturation of electroheated milk with a commercial variety is given in Table 1. The electroheated milk processed at 145°C with minimum holding time had the least denaturation. Results were consistent with all experiments.

Table 1: Protein denaturation of milk

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Sample ID</th>
<th>Trial 1 % Denaturation</th>
<th>Trial 2 % Denaturation</th>
<th>Trial 3 % Denaturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Past. Milk 1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>GS 2% fat</td>
<td>70.54</td>
<td>66.17</td>
<td>66.17</td>
</tr>
<tr>
<td>3</td>
<td>GS Skim milk</td>
<td>70.54</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Treatment1 (155, 1 sec)</td>
<td>23.65</td>
<td>28.65</td>
<td>28.91</td>
</tr>
<tr>
<td>5</td>
<td>Treatment2 (145, 1 sec)</td>
<td>21.04</td>
<td>21.1</td>
<td>21.11</td>
</tr>
<tr>
<td>6</td>
<td>Treatment3 (145, 4 sec)</td>
<td>35.26</td>
<td>36.95</td>
<td>36.95</td>
</tr>
<tr>
<td>7</td>
<td>Treatment4 (135, 4 sec)</td>
<td>27.35</td>
<td>30.21</td>
<td>30.18</td>
</tr>
</tbody>
</table>

Sensory Analysis

The control sample had a significantly lower score for sweet taste and higher score for butter flavor when compared to the treatment samples (Table 2). The control sample also had highest scores for oxidized and stale although not significant for all sample comparisons. Treatment 2 had the lowest scores for oxidized and stale although not significantly lower for all sample comparisons. The control sample had the lowest liking score (Table 3). When combining the two top categories, 66.9% consumers thought that treatment 2 was better than or equal to milk they normally drank as compared to 27.7% for the control (Table 4). Treatment 2 had the highest liking score although not significantly higher when compared to the other treatments.
Table 2. Mean scores\(^1\) for flavor attributes of 2% UHT milk

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sweet</th>
<th>Sour</th>
<th>Salt</th>
<th>Bitter</th>
<th>Dairy</th>
<th>Cooked</th>
<th>Oxidized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.38(^2)</td>
<td>0.24</td>
<td>0.27</td>
<td>0.11</td>
<td>0.64</td>
<td>0.91</td>
<td>0.67</td>
</tr>
<tr>
<td>Treatment 1</td>
<td>0.9(^B)</td>
<td>0.3(^A)</td>
<td>0.4(^A)</td>
<td>0.2(^A)</td>
<td>5.5(^A)</td>
<td>1.6(^A)</td>
<td>1.8(^A)</td>
</tr>
<tr>
<td>Treatment 2</td>
<td>1.6(^A)</td>
<td>0.3(^A)</td>
<td>0.3(^A)</td>
<td>0.1(^A)</td>
<td>6.0(^A)</td>
<td>1.9(^A)</td>
<td>1.3(^AB)</td>
</tr>
<tr>
<td>Treatment 3</td>
<td>1.6(^A)</td>
<td>0.3(^A)</td>
<td>0.4(^A)</td>
<td>0.1(^A)</td>
<td>6.1(^A)</td>
<td>2.4(^A)</td>
<td>1.3(^AB)</td>
</tr>
<tr>
<td>Treatment 4</td>
<td>1.5(^A)</td>
<td>0.2(^A)</td>
<td>0.5(^A)</td>
<td>0.1(^A)</td>
<td>5.8(^A)</td>
<td>2.4(^A)</td>
<td>1.3(^AB)</td>
</tr>
</tbody>
</table>

\(^1\)N=36 (2 replications x 9 panelists x 2 duplicates)
\(^2\)Minimum significant difference.
\(^3\)Means having the same letter are not significantly different (alpha=0.05).

Table 3. Mean overall liking scores\(^1\) of UHT milk

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Overall Liking(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.69</td>
</tr>
<tr>
<td>Treatment 1</td>
<td>4.2(^B)</td>
</tr>
<tr>
<td>Treatment 2</td>
<td>5.7(^A)</td>
</tr>
<tr>
<td>Treatment 3</td>
<td>6.1(^A)</td>
</tr>
<tr>
<td>Treatment 4</td>
<td>5.6(^A)</td>
</tr>
</tbody>
</table>

\(^1\)n=79 (40 persons evaluated rep1 samples; 39 persons evaluated rep 2 samples)
\(^2\)Minimum significant difference
\(^3\)A 9-point hedonic scale was used with 9 = like extremely, 8 = like very much
7 = like moderately, 6 = like slightly, 5 = neither like or dislike, 4 = dislike slightly, 3 = dislike moderately, 2 = dislike very much, and 1 = dislike extremely
\(^3\)Means having the same letter are not significantly different (alpha = 0.10)
Table 4. Summary of consumer’s responses to the question comparing the milk sample to milk they normally drink

<table>
<thead>
<tr>
<th>% responding to each Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question</td>
</tr>
<tr>
<td>In comparison to milk you normally Drink, the milk sample was :</td>
</tr>
<tr>
<td>Better than</td>
</tr>
<tr>
<td>Equal to</td>
</tr>
<tr>
<td>Worse than</td>
</tr>
</tbody>
</table>

The control sample had the lowest score for sweet taste and the highest score for oxidized flavor although not significant for all treatment comparisons (Table 5). The score for butter flavor for the control sample was significantly higher when compared to the treatment samples. The control sample had the lowest liking score (Table 6). Table 7 contains the summary of consumer’s responses to the question comparing the milk samples to milk they normally drink. When combining the two top categories, 72.2% consumers thought that treatment 4 was better than or equal to milk they normally drank as compared to 20.3% for the control (Table 7). The percent of consumers who thought that treatments 1, 2, and 3 was better than or equal to milk they normally drank was 54.4%, 59.5%, and 58.3% respectively.
Table 5. Mean scores\(^1\) for flavor attributes of 2 % UHT milk – Test

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sweet</th>
<th>Sour</th>
<th>Salt</th>
<th>Bitter</th>
<th>Dairy</th>
<th>Cooked</th>
<th>Oxidized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.0(^B)(^3) 0.4(^A)</td>
<td>0.3(^A)</td>
<td>0.2(^A)</td>
<td>6.2(^A)</td>
<td>2.1(^A)</td>
<td>2.0(^A)</td>
<td>0.8(^A) 1.3(^A)</td>
</tr>
<tr>
<td>Treatment 1</td>
<td>1.6(^A)</td>
<td>0.4(^A)</td>
<td>0.4(^A)</td>
<td>0.1(^A)</td>
<td>6.0(^A)</td>
<td>2.4(^A)</td>
<td>1.4(^AB) 0.4(^A) 0.7(^B)</td>
</tr>
<tr>
<td>Treatment 2</td>
<td>1.4(^A)</td>
<td>0.3(^A)</td>
<td>0.4(^A)</td>
<td>0.1(^A)</td>
<td>6.1(^A)</td>
<td>1.9(^A)</td>
<td>1.1(^B) 0.3(^A) 0.6(^B)</td>
</tr>
<tr>
<td>Treatment 3</td>
<td>1.2(^AB)</td>
<td>0.3(^A)</td>
<td>0.3(^A)</td>
<td>0.1(^A)</td>
<td>6.2(^A)</td>
<td>1.8(^A)</td>
<td>1.1(^B) 0.4(^A) 0.8(^B)</td>
</tr>
<tr>
<td>Treatment 4</td>
<td>1.3(^AB)</td>
<td>0.3(^A)</td>
<td>0.4(^A)</td>
<td>0.2(^A)</td>
<td>6.3(^A)</td>
<td>1.7(^A)</td>
<td>1.3(^AB) 0.6(^A) 0.6(^B)</td>
</tr>
</tbody>
</table>

\(^1\)N=32 (2 replications x 8 panelists x 2 duplicates)
\(^2\)Minimum significant difference.
\(^3\)Means having the same letter are not significantly different (alpha=0.05).
Table 6. Mean overall liking scores\(^1\) of UHT milk

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Overall Liking(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.71 (^2)</td>
</tr>
<tr>
<td>Control</td>
<td>3.8 (^{b4})</td>
</tr>
<tr>
<td>Treatment 1</td>
<td>5.9 (^{A})</td>
</tr>
<tr>
<td>Treatment 2</td>
<td>6.0 (^{A})</td>
</tr>
<tr>
<td>Treatment 3</td>
<td>6.0 (^{A})</td>
</tr>
<tr>
<td>Treatment 4</td>
<td>6.2 (^{A})</td>
</tr>
</tbody>
</table>

\(^1\)n = 79 (40 persons evaluated rep 1 samples; 39 persons evaluated rep 2 samples)
\(^2\)Minimum significant difference.
\(^3\)A 9-point hedonic scale was used with 9=like extremely, 8=like very much, 7=like moderately, 6=like slightly, 5=neither like nor dislike, 4=dislike slightly, 3=dislike moderately, 2=dislike very much, and 1=dislike extremely.
\(^3\)Means having the same letter are not significantly different (alpha=0.05)

Table 7. Consumer responses to the question: “In comparison to milk you normally drink, the milk sample was”

<table>
<thead>
<tr>
<th>Percent responding to each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question</td>
</tr>
<tr>
<td>Better than</td>
</tr>
<tr>
<td>Equal to</td>
</tr>
<tr>
<td>Worse than</td>
</tr>
</tbody>
</table>
Gas Chromatography: Concentrations of key volatile compounds recovered from Electroheated and control were determined. Significant differences in the volatile compounds (2-pentanone, 2-hexanone, 2-heptanone, and dimethylsulphide) between the control and electroheated milk could not be determined. We are in the process of refining this technique for effective detection of these compounds.

Regardless of the treatment level combination, none of the electroheated samples showed identifiable differences in profiles of volatile compounds. Comparing the average electroheated data to the control sample, a total of thirteen volatile compounds were identified as having a potential sensory significance. The carbonyl compounds 2-heptanone, 2-nonanone, and nonanal were approximately 9-fold higher in the electroheated samples. Typically considered products of oxidation of unsaturated fatty acids, they are characterized as having green grass-like odors (Moio, et al, 1993). In contrast to the carbonyl compounds, the presence of two heat process-derived compounds, 3-furanmethanol and tetrahydro-2-furanmethanol, were identified only in the control samples. These compounds are associated with the development of heated flavors in products such as baked breads and caramel and are reported to have a roasted aroma. No significant differences were found between the concentrations of either phenolic or acidic compounds, however, these compounds are potent aroma-imparting compounds and may play some role in the overall background flavor of the milks. Finally, the control sample had a significantly higher amount of total esters, namely butyl acetate, than the electroheated milks.

Significant conclusions: Protein denaturation and sensory evaluation using trained and consumer panel indicated that the flavor of electroheated milk was better than the commercial variety. Experiments using GC indicated that there were no detectable differences between any of the electroheated samples and the only viable comparisons were with the control. However, when compared with a typical UHT product (e.g. Gossners) the electroheated milk was very low in volatiles. Additional trials will be conducted to correlate this with the volatile compound analysis.

3. Anticipated Problems/Delays:
Due to the tremendous volume of work a minor delay in GC analysis was anticipated. However, this was rectified.

Publications:
___none___

Theses:
___none___

Published Abstract:
___none___
Presentations:
none

Patent/Invention Disclosures:

Technology Transfer Activities
For information on licensing contact:

Visitors Hosted:
none
Western Dairy Center
Project Report
Reporting Period January 1, 2000 – December 31, 2000

Principal Investigators: Conly Hansen, Utah State University
Co-Investigators: Donald J. McMahon, Utah State University

Project Title: Controlling Chemical Composition and Functionality of Cheese

Institution=Project #: 99104

Project Completion Date: 12/31/01

National Research Plan (1997): Priority: 4; Goal: 4; Tactic: 1

Modifications to Project/Budget:
None

Project Objectives: (Include any revisions to objectives)

To determine the influence of pH, calcium, salt and moisture content of cheese on shredability and meltability.

Objective 1: To develop a high pressure injection system for modifying the chemical composition of cheese.

Objective 2: To modify pH, calcium, and salt contents of cheese while keeping all other parameters constant, and determine their influence on functionality.

Objective 3: To determine the combinations of calcium, salt, and pH required for optimum shredding and melting of cheese.

Project Summary: (Suitable for inclusion in Center documents released to the public)

Progress

Effect of water and calcium injection on structure-function attributes of Mozzarella cheese

Introduction
In cheese, calcium content is associated with differences in structure-function attributes. However, the specific way in which calcium influences such structure-function attributes of cheese requires further elucidation. Our objective was to determine how injection of calcium solutions into cheese affects cheese microstructure, and then relate that to changes in hardness and melting of cheese.

Materials and Methods

Mozzarella cheese (48, 49, and 53% moisture, and 22% fat) was made by a direct-acid, stirred-curd procedure. Cheese was cut into 0.3 to 0.4-kg blocks, vacuum packaged and stored for 10 d at 4°C. Cheese blocks were then high-pressure injected (1 to 5 times) with either water or a 40% calcium chloride solution. Thus, ten treatments were defined, corresponding to five water and five calcium injection levels. A control, uninjected cheese block was also considered. Injections were performed in two opposite sides of the block, and according to a 1 x 1 cm pattern, with successive injections performed 24 h apart. Pressure of injection was set as 1400 psig, and burst injection time as 1 s. After 42 d of storage at 4°C, cheese blocks were analyzed for structural and functional attributes. Scanning electron micrographs, (1500 X magnification, from two different fields) were uploaded into Adobe Photoshop® 4.0 and their gray-scale values analyzed. Dark areas (corresponding to fat/whewy pockets) were differentiated from light areas (corresponding to protein matrix) by applying a threshold function, and the proportion of pixels associated with dark and light areas determined. Texture profile analysis was performed using a two-bite compression test run on an Instron 5542 (Canton, MA). Samples, 20 mm by 16 mm diameter, were taken from the cheese immediately after removal from the refrigerator and tested at ~5°C.

Results and Discussion

Results of the statistical analysis are presented in Table 1. When water was injected, a slight increase in weight was observed. In contrast, when calcium was injected, the cheese lost weight and considerable serum was expelled from the cheese. Moisture content increased with water injection, and decreased with calcium injection. The control (uninjected) cheese had the typical structure of a stirred/pressed-curd cheese, with protein matrix interspersed with areas containing fat and/or serum. Injecting water increased the area occupied by the protein matrix (by 14% after 5 injections) as shown by an increase in the proportion of light pixels in the micrographs. Increasing the calcium content of the cheese (from 0.3% to 1.8% after 5 injections) decreased the area occupied by the protein matrix (by 17%). This represents a contraction of the protein matrix and concomitant release of serum entrapped within the protein matrix. A decrease in cheese pH occurred upon injection of calcium, but it had been previously observed that pH did not affect cheese microstructure unless it was accompanied by a change in calcium content. Water injection decreased cheese hardness but did not affect any other functional attribute. Hardness increased when calcium was injected, but cohesiveness decreased. Adhesiveness and
springiness were unaffected. Meltability of the cheese was inversely proportional to calcium content.

Table 1. Pr>F for the ANOVA sources of variation and specified contrasts by variable of interest.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Calcium</th>
<th>Moisture</th>
<th>pH</th>
<th>Weight</th>
<th>Melting</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td>< 0.0001 < 0.0001 < 0.0001 0.0634 0.0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determination</td>
<td>0.6707 0.9705 0.8773 0.9841 0.7387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control-Calcium¹</td>
<td>< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control-Water²</td>
<td>0.6225 0.0253 0.0105 0.1418 0.9455</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹. Contrast of control (uninjected cheese) against all calcium levels.
². Contrast of control (uninjected cheese) against all water levels.

Conclusions

Increasing calcium content of cheese alters how proteins in the cheese matrix interact. It appears that calcium promotes protein-to-protein interactions, probably through calcium bridging and charge neutralization. Such increased interactions between proteins cause contraction of the protein matrix and expulsion of serum from the matrix. More energy must also be applied to overcome these interactions and allow proteins to flow when heated. Thus, cheese hardness is increased and meltability decreased when the calcium content of the cheese is increased.

Presentations
Published Abstract

Western Dairy Center
Project Report
Reporting Period July 1, 1999 - June 30, 2000

Principal Investigators: Mark McGuire, University of Idaho
 Michelle McGuire, Washington State University
 Kathy Beerman, Washington State University

Project Title: Effect of butter and margarine intake on human milk CLA and fat concentrations in lactating women.

Institution's Project #: 99106

Project Completion Date: 2/01/2001

National Research Plan (1997): Priority: 4; Goal: 4; Tactic: 1

Modifications to Project/Budget:

Project Objectives: (Include any revisions to objectives)

Project Summary: (Suitable for inclusion in Center documents released to the public)

1. Significant Progress against Objectives:

Since our last update, we have made significant progress in the completion of this project. Most importantly, upon gaining the approval of the Institutional Review Board, we began subject recruitment in June. Since that time, we have successfully enrolled all 12 women, and have completed sample and data collection in 10 of them. The remaining 2 subjects will complete the study in early September. In summary, this experiment lasts 32 d and has 6 periods: baseline (3 d), intervention I (5 d), washout I (7 d), intervention II (5 d), washout II (7 d) and intervention III (5 d). Interventions consists of enriching the diets of the women with butter (containing CLA and no industrially-produced trans fatty acids), regular margarine (containing no CLA and high amounts of industrially-produced trans fatty acids) and no trans margarine (containing either CLA nor industrially-produced trans fatty acids). Blood and milk samples are collected on the last day of each period, dietary information on the last 3 d of each intervention period, milk output data on the penultimate day of each intervention period, maternal and infant weight data before and after the study and maternal body fat estimations (via dual energy x-ray absorptiometry; DEXA) during the baseline period.

Milk and plasma fat analyses will commence in early September, with fatty analyses following this. It is our hope that milk fat data will be submitted in
abstract form for the upcoming Experimental Biology meetings (Spring, 2001). Dietary data entry into computerized dietary assessment software is currently underway; we hope to complete this by November. It is our hope that all laboratory analyses will be completed by May, 2001 with statistical analyses and manuscript preparation completed by August, 2001. We anticipate the publication of one peer-reviewed journal article from this research.

2. Significant Conclusions:
None to date.

3. Anticipated Problems/Delays:
None to date.

Publications:
None to date.

Theses:
None to date.

Published Abstract:
None to date.

Presentations:
None to date.

Patent/Invention Disclosures:
None to date.

Technology Transfer Activities
None to date.

Visitors Hosted:
None to date.
Western Dairy Center
Project Report
Reporting Period July 1, 1999 — December 31, 2000

Principal Investigators: Bart Weimer, Utah State University
Co-Investigators: Carl Brothersen, Utah State University
Paul Grossl, Utah State University

Project Title: Determination of the oxidation/reduction potential of cheese

Institution’s Project #: 99207

Project Completion Date: 6/30/00

National Research Plan (1997): Priority: 4; Goal: 4; Tactic: 1

Modifications to Project/Budget:
None

Project Objectives: (Include any revisions to objectives)

Hypothesis
The redox potential has an impact on cheese flavor development, but due to lack of adequate analysis methods the role of residual oxygen has not been delineated.

Objectives
1. Evaluate commercially available probes for use in milk and milk products (Brothersen).

2. Use the methods to determine the redox potential of cheese slurries made with direct acid and lactic acid bacteria.

Project Summary: (Suitable for inclusion in Center documents released to the public)

- Significant progress against objectives:
Objective 1 has been completed. We have located a redox probe which can be used in both liquids and cheese.
We have used the redox probe to measure the redox and pH in both slurries inoculated with lactic acid bacteria.

We have monitored the pH and redox of cheese as it ages.

- **Significant Conclusions:**
 We have been able to control pH and redox independently in liquids. The redox potential of cheese decreases slowly and uniformly as it ages.

3. **Anticipated Problems/Delays:**

Publications:

Theses:

Published Abstract:

Presentations:

Patent/Invention Disclosures:

<table>
<thead>
<tr>
<th>Technology Transfer Activities</th>
</tr>
</thead>
</table>

Visitors Hosted:
Western Dairy Center
Project Report
Reporting Period July 1, 1999 — December 31, 2000

Principal Investigators: Bart Weimer, Utah State University
Co-Investigators:

Project Title: Use of non-lactic acid bacterial proteolytic enzymes to reduce bitter peptides in dairy products.

Institution’s Project #: 99109

Project Completion Date: 6/30/00

National Research Plan (1997): Priority: 4; Goal: 4; Tactic: 1

Modifications to Project/Budget: None

Project Objectives: (Include any revisions to objectives)

Hypothesis:
Proteolytic enzymes associated with non-lactic acid bacteria will increase proteolysis that subsequently improves flavor development and reduces bitter peptides during cheese aging.

Objectives:
• Determine the ability of 3 previously isolated proteases to degrade αs1-casein (f1-9) in Jenness-Koops buffer.
• Determine the ability of 3 previously isolated proteases to degrade B-casein (f193-209) in Jenness-Koops buffer.
• Determine the ability of these proteases to degrade αs1-casein (f1-9) and B-casein (f193-209) in direct acid cheese slurries.

Project Summary: (Suitable for inclusion in Center documents released to the public)

Proteolysis is an important process in Cheddar cheese manufacture and plays a role in flavor and texture development of the cheese. Initial hydrolysis of intact caseins is catalyzed by chymosin and endogenous milk enzymes. Subsequently, the concerted action of the proteolytic systems of the starter and non-starter bacteria hydrolyzes peptides during aging. The interaction between these enzymes is directly linked to bitter peptide production in Cheddar cheese. Bitter peptides are hydrophobic and usually originate from αs1- and β- casein. Two peptides commonly associated with bitterness are αs1-casein f(1-9) and β-casein f(193-209). Hydrolysis of these peptides is associated with decreased bitterness in
Cheddar cheese. The aim of this study was to investigate the ability of flavor adjunct bacteria and non-starter lactobacilli to degrade bitter peptides.

Cheddar cheese was made with *Lactococcus lactis* ssp. cremoris S1 with and without *Brevibacterium linens* BL2 and *Lactobacillus helveticus* CNRZ32 as adjuncts. In addition, Cheddar cheese was made with *Lactococcus lactis* ssp. lactis S2 with and without *B. linens* BL2 and *L. helveticus* CNRZ32 combined as adjuncts. Each bacterial population was followed during ripening. RP-HPLC analysis was used to determine \(\beta_{\text{sl}} \)-casein f(1-9) and \(\beta \)-casein f(193-209) content and sensory attributes were evaluated by a trained taste panel.

The \(\beta_{\text{sl}} \)-casein f(1-9) and \(\beta \)-casein f(193-209) content in each cheese, with and without adjuncts, increased during ripening. However, the concentration of these peptides was lower in cheeses made with adjuncts. When the adjuncts were added in combination they did not produce an appreciable reduction in \(\beta_{\text{sl}} \)-casein f(1-9) and \(\beta \)-casein f(193-209) content in comparison to the individual adjunct addition. Addition of the adjuncts did not affect the overall flavor acceptability. But the Cheddar cheese did receive lower bitter scores. Cheddar cheese made with *B. linens* BL2 was rated the best by the panel, in addition to having lower \(\beta_{\text{sl}} \)-casein f(1-9) and \(\beta \)-casein f(193-209) content. These studies suggest that adjunct bacteria reduce bitterness during ripening.

The NSLAB counts remained low for the initial aging period compared to a consistently high count for the starter population. Further analysis of the peptides is underway.

1. **Significant progress against objectives:**
 Objectives 1 and 2 are done. We added a few enzymes that will expand the amount of information compared to the original objectives.

2. **Significant Conclusions:**
 Addition of proteolytic enzymes from Non-LAB bacteria associated with cheese will remove bitter peptides and change the cheese flavor.

3. **Anticipated Problems/Delays:**
 Changed slurries to cheese production. We will wait for cheese ripening.

Publications:

Weimer, B. C., Xie Yi, and Rod Brown. 2000. Autocatalytic processing of the protease from *Brevibacterium linens* BL2: a kinetic analysis for the degradation of

2 additional papers in progress

Theses:

P. Joseph – Ph.D. in progress

Published Abstract:

None

Presentations:

Patent/Invention Disclosures:

None

Technology Transfer Activities

Visitors Hosted:

Western Dairy Center
Project Report
Reporting Period October 1, 1999 — December 31, 2000

Principal Investigators: Carl Brothersen, Utah State University
Co-Investigators: Bart Weimer, Utah State University

Project Title: Effect of size, hydrophobicity and temperature on the diffusion of molecules within the Cheddar cheese matrix.

Institution’s Project #: 99110

Project Completion Date: 4/1/2000

Modifications to Project/Budget:

Project Objectives: (Include any revisions to objectives)
- Determine the extent of diffusion for macro molecules in Cheddar cheese.
- If significant diffusion is detected in objective 1, determine the effect of storage temperature on the migration of molecules in Cheddar cheese.
- If significant diffusion is detected in objective 1, determine the effect of age at injection on the migration of molecules in Cheddar cheese.

[Project Summary: (Suitable for inclusion in Center documents released to the public)]

- Significant Progress against Objectives:
 This project was delayed in starting because of problems with the confocal microscope and problems with personnel. We now have a person trained on the microscope and have determined the sample preparation procedures. We are currently collecting and analyzing images from the microscope.

2. Significant Conclusions:

3. Anticipated Problems/Delays:

Publications:

Theses:
Published Abstract:

Presentations:

Patent/Invention Disclosures:

| Technology Transfer Activities |

Visitors Hosted:
Western Dairy Center
Project Report
Reporting Period January 1, 2000 — December 31, 2000

Principal Investigators: Marie Walsh
Co-Investigators:

Project Title: Production of a 100% textured whey product
Institution’s Project #: 00212
Project Completion Date: 6/30/00

Modifications to Project/Budget:

Project Objectives: (Include any revisions to objectives)
The objective of this research was to evaluate a TWP patty for consumer acceptance. A TWP was produced by thermoplastic extrusion. Binding agents for formulating meatless TWP burger patties were evaluated. Flavored TWP patties were compared to a comparably flavored commercially available TVP product using sensory analysis.

Project Summary: (Suitable for inclusion in Center documents released to the public)
Whey protein concentrate (WPC, 80% protein) was textured using thermoplastic extrusion to produce textured whey protein (TWP) product. Various binding agents were investigated for their usefulness in the formation of a TWP meatless burger patty. Sensory analysis of two TWP patty formulations and a commercially available textured vegetable protein (TVP) patty was performed. Patties were evaluated on appearance, texture, flavor, aftertaste and overall acceptance. There were no significant differences among the appearance and texture of the three patties, whereas the flavor, aftertaste and overall acceptance were significantly different. The preference rankings for the TWP patties were significantly higher than the TVP patty.

1. Significant Progress against Objectives:
Pattie Formulation
Commercial meatless burger patties available at local supermarkets were sampled to evaluate the effectiveness of various binding agents in similar meatless patty products. The binding agents are incorporated in the formulation to hold the patty matrix together. Binding agents present in commercial meatless patties include brown rice, carob bean gum, corn oil, cornstarch, dried eggs, dried egg whites, gum arabic, konjac flour.
maltodextrin, potato flakes, safflower oil, tapioca starch, wheat gluten, vegetable gum, and xanthan gum. The binding agents are most commonly used in combination to set and hold the meatless patty matrix during each processing step prior to consumption. In whey burger formulation these steps include rehydration of textured whey protein, patty formation, baking, freezing, thawing and reheating. It was necessary to determine which combination of binding agents, and in what concentration, resulted in the desired cohesiveness, texture, and mouthfeel in the textured whey burger patty.

From initial trials using binding agents in the patty formulation, it was determined that dehydrated whole eggs should be eliminated due to the predominance of an off flavor (egg or sulfury), undesirable color (yellow hue), and changes in mouthfeel (coating of the mouth). Brown rice was not found to be an effective binding component in the textured whey burgers. It had no observable effect on the stability of the TWP matrix. Excessive levels of xanthan gum resulted in a slimy mouthfeel. Wheat gluten effectively bound the rehydrated textured whey protein fragments but when used in large amounts, undesirable glue-like masses were observed pooled in clumps as part of the stringy elastic gluten matrix. Egg white, gluten, and xanthan gum, especially when used in combination, proved to be very effective at binding the rehydrated textured whey protein fragments.

Differences in texture were identified in comparing the individual patties before and after freeze-thaw and reheating. During the freeze-thaw evaluation it became evident that although the burgers formulated with a larger amount of dehydrated egg whites held together well, they exhibited a distinct an undesirable grainy/sandy mouthfeel. Additional patties were formulated using lower concentrations of dehydrated egg white to avoid the grainy/sandy defect while relying more on wheat gluten to provide patty cohesiveness. The formulation was optimized to reduce the use of wheat gluten, dehydrated egg whites, and xanthan gum. These binding agents were used at minimal levels while still offering the desired texture and binding. The final binding combination was determined to be 2.25 g egg white, 2 g wheat gluten, and 0.5 g xanthan gum per 30 g of textured whey protein particles rehydrated in 45 g of water (Table 1). As determined by the 4-member taste panel, this combination eliminated the undesirable grainy/sandy defect by reducing the amount of dehydrated egg white three fold. The small amount of xanthan gum did not result in the slimy mouthfeel defect but exhibited desirable uniform water binding. The level of gluten resulted in an appropriate level of stringiness without pooling the gluten into undesirable masses. TWP burger formulations used in the sensory evaluation are shown in Table 1.

Sensory

Mushroom and Vegetable flavored TWP burger patties were evaluated side-by-side in a preference test of three different samples. The third sample was a commercial product produced by GardenBurger® Inc. (GardenBurger® Inc., Portland, OR). The commercial product was
Analysis of the results for the different attributes elucidates the comparison of the three products evaluated. Statistical Analysis Software (SAS) was used to generate analysis of variance tables for each of the five attributes scored in the sensory evaluation. The assumptions of approximate normality and equality of variance of the residuals were satisfied. Overall acceptability, aftertaste, and flavor were found to be highly statistically significant (p<0.0001 each). These attributes were also the main contributors to the explained variability (r-squared values of 0.1270, 0.1458, 0.1908 respectively). Appearance and texture were found to be non-significant (p=0.7661 and p=0.0717 respectively). These attributes did not contribute to the explained variability (r-squared values of 0.0022 and 0.0217 respectively). Texture was determined to be marginally non-significant in this evaluation. However, if the number of panelists increases in future testing, this attribute may become significant. The attribute effects are summarized in Table 2.

The mean scores, rank sums, and difference rankings as reported by SAS, including the multiple means comparison tests for the individual samples, are shown in Table 3. The two formulations of TWP patties scored significantly higher (p<0.05) than Gardenburger®'s Hamburger Style Roasted Garlic Gardernburger® Soy Burgers (©1999 Gardenburger, Inc.) in overall acceptability, aftertaste, and flavor. There was no significant difference (p>0.05) between the three products in appearance or texture. TWP patties were scored significantly higher (p<0.05) than Gardenburger®'s Hamburger Style Roasted Garlic Gardernburger® Soy Burgers (©1999 Gardenburger, Inc.) in preference ranking. The two formulations of TWP patties did not differ significantly from each other in any of the individual attributes or the preference ranking.

The demographics of the panelists were considered. Of the 81 volunteer panelists, 58% of the evaluators were female (47 panelists) and 42% male (34 panelists). The panelists were stratified into four age categories (15 to 24, 25 to 34, 35 to 45, 45 and above). Forty-three percent of those participating in the evaluation were ages 15 to 24 (35 panelists). Twenty-five percent were ages 25 to 34 (20 panelists). Twenty-two percent were ages 45 or more (18 panelists). Ten percent were ages 35 to 44 (8 panelists).

The panelists were asked to indicate how often they consumed meatless burger patties. The majority (75%) of the panelists consumed 0 to 1 meatless burger patties per month (64 of 81 panelists). Ten percent consumed 2 to 5 meatless burger patties per month (8 of 81 panelists). Five percent stated that they consumed 5 to 10 meatless burger patties and 5% that they consumed 10 or more meatless burger patties per month. One panelist did not indicate frequency of consumption.

Half the panelists (5 of 10) who frequently consume meatless burgers (5 or more per month) ranked Whey burgers above Gardenburger® Hamburger Style Roasted Garlic Gardenburger® Soy Burgers in the preference ranking portion of the evaluation. The majority (8 of 10) of these panelists who frequently consume meatless burgers (5 or more per month) rated one of the Whey burgers at least a point higher than Gardenburger® Hamburger Style Roasted Garlic Gardenburger® Soy Burgers in the overall acceptability portion of the evaluation.
This research determined how WPC, textured by thermoplastic extrusion, could be used in the formulation of meatless patties. Such formulae take advantage of whey's mild flavor and complete protein nutritional profile in developing a product more desirable than a commercially available TVP meatless patty. Challenges identified extruding whey protein in similar applications prior to this investigation had to be overcome.

TABLE 1
TWP Burger Patty Formulations

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Vegetable TWP (g)</th>
<th>Mushroom TWP (g)</th>
<th>Desired Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textured Whey Protein</td>
<td>30</td>
<td>30</td>
<td>Mild dairy flavor, Texture</td>
</tr>
<tr>
<td>Water</td>
<td>45</td>
<td>45</td>
<td>Hydrate TWP, Juiciness</td>
</tr>
<tr>
<td>Corn Oil</td>
<td>3</td>
<td>3</td>
<td>Flavor, Processing Aid</td>
</tr>
<tr>
<td>Egg White (dry)</td>
<td>2.25</td>
<td>2.25</td>
<td>Binding of TWP, Texture</td>
</tr>
<tr>
<td>Wheat Gluten (dry)</td>
<td>2</td>
<td>2</td>
<td>Binding of TWP, Texture</td>
</tr>
<tr>
<td>Xanthan Gum (dry)</td>
<td>0.5</td>
<td>0.5</td>
<td>Binding of TWP, Texture</td>
</tr>
<tr>
<td>Vegetable Base</td>
<td>3</td>
<td>0</td>
<td>Flavor</td>
</tr>
<tr>
<td>Mushroom (raw)</td>
<td>0</td>
<td>6</td>
<td>Flavor, Texture</td>
</tr>
<tr>
<td>Mushroom Base (paste)</td>
<td>0</td>
<td>3</td>
<td>Flavor</td>
</tr>
</tbody>
</table>

TABLE 2
Analysis of variance models for sensory properties of Gardenburger® soy and TWP meatless patties

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Model</th>
<th>R-Squared</th>
<th>F Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Not Significant</td>
<td>0.0022</td>
<td>0.27</td>
<td>0.7661</td>
</tr>
<tr>
<td>Texture</td>
<td>Non-Significant</td>
<td>0.0217</td>
<td>2.66</td>
<td>0.0717</td>
</tr>
<tr>
<td>Flavor</td>
<td>Significant</td>
<td>0.1908</td>
<td>28.30</td>
<td><.0001</td>
</tr>
<tr>
<td>Aftertaste</td>
<td>Significant</td>
<td>0.1458</td>
<td>19.89</td>
<td><0.001</td>
</tr>
<tr>
<td>Overall</td>
<td>Significant</td>
<td>0.1270</td>
<td>17.46</td>
<td><0.001</td>
</tr>
<tr>
<td>Acceptability</td>
<td>Significant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3
Mean Scores, Rank Sums, and Difference Rankings

<table>
<thead>
<tr>
<th>Description</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>Garden Burger</td>
<td>TWP Mushroom</td>
<td>TWP Vegetable</td>
</tr>
</tbody>
</table>

87
<table>
<thead>
<tr>
<th>Blinding Code</th>
<th>Garlic</th>
<th>314</th>
<th>769</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td>5.20<sup>a</sup></td>
<td>5.31<sup>a</sup></td>
<td>5.42<sup>a</sup></td>
</tr>
<tr>
<td>Texture</td>
<td>4.35<sup>a</sup></td>
<td>4.85<sup>a</sup></td>
<td>5.01<sup>a</sup></td>
</tr>
<tr>
<td>Flavor</td>
<td>2.95<sup>b</sup></td>
<td>5.11<sup>a</sup></td>
<td>4.60<sup>a</sup></td>
</tr>
<tr>
<td>Aftertaste</td>
<td>3.24<sup>b</sup></td>
<td>4.89<sup>a</sup></td>
<td>4.71<sup>a</sup></td>
</tr>
<tr>
<td>Overall</td>
<td>3.38<sup>b</sup></td>
<td>5.00<sup>a</sup></td>
<td>4.73<sup>a</sup></td>
</tr>
<tr>
<td>Acceptance</td>
<td>121<sup>b</sup></td>
<td>193<sup>a</sup></td>
<td>172<sup>a</sup></td>
</tr>
<tr>
<td>Preference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranking</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Like superscripts on means within a row indicate no significant difference among the means (α = 0.05).
NS = not significantly different
cr = least significant difference critical range. Acceptability means differing by the cr or more are different (α = 0.05).
cd = critical difference. Rank sums differing by more than the critical difference are different (α = 0.05).

2. Significant Conclusions:
Whey protein concentrate (WPC) can be textured with cornstarch using thermoplastic extrusion to produce textured whey protein (TWP). The TWP meatless burger patty formulations bound using wheat gluten, dehydrated egg whites, and xanthan gum out were preferred to commercially available Textured Plant Protein (TVP) patty in the sensory analysis. The formulae take advantage of whey's mild flavor resulting in a product more desirable than the commercially available TVP meatless patty made primarily from soy protein concentrate.

3. Anticipated Problems/Delays:
None

Publications:
Development and Sensory Analysis of a Textured Whey Protein Meatless Burger. Submitted to J. Food Sc.

Theses:

Published Abstract:

Presentations:

Patent/Invention Disclosures:
Technology Transfer Activities
For information on licensing contact:

Visitors Hosted:
Modifications to Project/Budget:

Project Objectives: (Include any revisions to objectives)

- **Determine bitter taste thresholds for casein derived peptides in a cheese model system.**
 Hypothesis: By establishing the relative contribution of individual peptides and combinations of peptides to bitterness, we can refine current knowledge of the relationship between specific peptides and bitterness and provide industry with information to identify starter combinations that stimulate amino acid nitrogen production for accelerated flavor development, without contributing to bitterness and over-ripening by proteolysis in accelerated ripened cheese.

- **Define the contribution of *Lactobacillus helveticus* CNRZ32 peptidases to the hydrolysis of casein derived bitter peptides.**
 Hypothesis: Identification of peptidases that have a major role in the hydrolysis of bitter peptides in cheese will provide industry with the information needed to develop starter systems that control over-ripening by proteolysis and contribute to accelerated flavor development in accelerated ripened cheese.

- **Construct food-grade *Lactococcus lactis* S2 derivates with enhanced activity of peptidases demonstrated to be important in hydrolysis of bitter peptides.**
 Hypothesis: Cloning genes for key peptidases in a food-grade system will provide industry with a tool to readily and dramatically enhance the ability of starter bacteria to control over-ripening by proteolysis.
and contribute to accelerated flavor development in accelerated ripened Cheddar cheese.

- **Develop a food-grade, genetic system for proteinase gene exchange in industrial strain of *Lactococcus lactis***.

 Hypothesis: This system will provide industry with the technology to develop fast acid-producing industrial starter strains that stimulate amino acid nitrogen yet do not contribute to bitterness and over-ripening by proteolysis in accelerated ripened cheese.

Overall Hypothesis and Objective:

It is our hypothesis that the most effective strategy to control bitterness and over-ripening by proteolysis in accelerated ripened cheese is to develop a starter system that combines a low propensity for the production of bitter peptides with high debittering peptidase activity. A key advantage to this approach is that is will not only help to retard over-ripening by proteolysis (via control over bitterness), it will also boost (via the production of free amino acids) levels of cheese flavor precursors in the curd matrix. Thus, the overall objective of this proposal is to expand upon our previous work on the enzymology of bitterness in a manner that will provide industry with the technology transfer tools it needs to develop starter systems that contribute to accelerated flavor development and provide unprecedented control over bitterness and over-ripening by proteolysis in accelerated ripened Cheddar cheese. To accomplish this, we propose to refine our understanding of the relationship between starter CEP specificity and bitterness by establishing taste thresholds for additional peptides that appear to have an important role in bitterness, and to isolate genes encoding enzymes that can rapidly degrade these peptides in cheese. Knowledge gained from this work will then be applied to the construction of starter culture systems and technology transfer tools that will facilitate rapid industrial application of our results in the manufacture of accelerated ripened Cheddar cheese.

Project Summary: (Suitable for inclusion in Center documents released to the public)

Bitterness is a significant concern in accelerated ripened cheese. Our group has shown that the starter proteinase is a key determinant in the production of bitter peptides, and that we can increase the activity of enzymes that degrade bitter peptides up to 1000-fold using a starter-based enzyme delivery system. In this project, we will expand on our previous work in a manner that provides industry with the information and technology transfer tools to develop food grade starter systems that control bitterness and over ripening by proteolysis in accelerated ripened cheese.
1. Significant Progress against Objectives:

2. Significant Conclusions:

3. Anticipated Problems/Delays:
Publications:
Theses:
Published Abstract:
Presentations:
Patent/Invention Disclosures:

<table>
<thead>
<tr>
<th>Technology Transfer Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>For information on licensing contact:</td>
</tr>
</tbody>
</table>

Visitors Hosted:
Western Dairy Center
Project Report
Reporting Period January 1, 2000 — June 30, 2000

Principal Investigators: Jeff Broadbent
Co-Investigators: Dr. Donald J. McMahon, Utah State University
Dr. Craig J. Oberg, Weber State University

Project Title: Effects of microbial exopolysaccharide on functionality in high moisture cheese.

Institution’s Project #: 00115

Project Completion Date: 12/31/00

National Research Plan Priority: cheese Goal: 10

Modifications to Project/Budget: none

Project Objectives: (Include any revisions to objectives)
1. To characterize the effect of a capsular exopolysaccharide on the firmness of increased moisture stirred curd cheese.
2. To determine whether functional properties of shredded cheese are maintained when cheese is produced with a capsular exopolysaccharide-producing starter culture.

Project Summary: (Suitable for inclusion in Center documents released to the public)
How well a cheese can be shredded depends upon its firmness and adhesiveness. If cheese is too soft or sticky, it doesn’t form uniform shreds and may foul shredding equipment. This project will determine whether a capsule (exopolysaccharide)-producing starter culture can be used to improve shreddability, as measured by firmness, in high moisture American style cheese. To accomplish this, we will manufacture stirred curd cheeses with equivalent moisture levels using MR-1C or a nonexopolysaccharide-producing starter. The shreddability of each cheese will then be determined and melt properties of the shredded cheese measured during storage.

1. Significant Progress against Objectives:
We have developed methodology to manufacture stirred curd cheeses with equivalent moisture levels using MR-1C or a nonexopolysaccharide-producing starter, and have begun to investigate firmness and shreddability of these cheeses.
2. Significant Conclusions:
see progress, above

3. Anticipated Problems/Delays:
none

Publications:
none

Theses:
none

Published Abstract:
none

Presentations:
none

Patent/Invention Disclosures:
none

Technology Transfer Activities
For information on licensing contact:
Jeff Broadbenit or Donald McMahon

Visitors Hosted:
none
Western Dairy Center
Project Report
Reporting Period April 1, 2000 — December 31, 2000

Principal Investigators: Jeff Broadbent
Co-Investigators: Drs. James Steele and Bill Wendorff, University of Wisconsin-Madison

Project Title: Production of intensely flavored Cheddar-type cheeses by adjunct cultures.

Institution’s Project #: 00116

Project Completion Date: 12/31/00

National Research Plan Priority: cheese Goal: 3.3

 Modifications to Project/Budget: none

Project Objectives: (Include any revisions to objectives)
- The construction of strains of Lactobacillus casei which produce elevated levels of diacetyl.
- Construction of strains of Lactobacillus casei which over-express a bacterial lipase known to enhance cheese flavor.
- Manufacture processed cheese from Cheddar cheese having significantly elevated levels of free fatty acids or furanones and pyrazines.

Project Summary: (Suitable for inclusion in Center documents released to the public)
Use of cheese as an ingredient is in part dependent on the impact of the cheese on final product flavor. Process cheese is a significant cheese group and an excellent model system to study carry through of specific flavor compounds into natural cheese-derived products. This project seeks to utilize flavor adjunct lactic acid bacteria to produce elevated levels of specific flavor compounds in natural cheese and then determine the impact of those flavor compounds in processed cheese.

1. Significant Progress against Objectives:
Objective 1. Primers designed based upon pyruvate-formate lyase genes from other microorganisms have been utilized to generate an amplicon from Lb. casei. Preliminary analysis of the DNA sequence of this amplicon indicates that it is a pyruvate-formate lyase gene.

Objective 2. Attempts to develop a plate assay for the identification of lipase positive clones of Lb. casei have been unsuccessful. Therefore, we have
changed to a flood plate screen in *Escherichia coli* to identify lipase/esterase genes from *Lb. casei* Lila. Initial results indicate that we have identified at least one, if not more, lipase/esterases from this organism.

2. Significant Conclusions:

see progress, above

3. Anticipated Problems/Delays:

none

Publications:

none

Theses:

none

Published /Abstract:

none

Presentations:

none

Patent/Invention Disclosures:

none

<table>
<thead>
<tr>
<th>Technology Transfer Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>For information on licensing contact:</td>
</tr>
<tr>
<td>Jeff Broadbent</td>
</tr>
</tbody>
</table>

Visitors Hosted:

none
Western Dairy Center

Project Report

Reporting Period April 1, 2000 — December 31, 2000

Principal Investigators: Donald McMahon
Co-Investigators:

Project Title: Determine physiochemical and structural aspects of cheese using model cheeses

Institution's Project #: 00117

Project Completion Date:

Modifications to Project/Budget:

Project Objectives: (Include any revisions to objectives)

Project Summary: (Suitable for inclusion in Center documents released to the public)

- Significant Progress against Objectives:

The project is proceeding as outlined in the proposal.

2. Significant Conclusions:

3. Anticipated Problems/Delays:

Publications:

Theses:

Published Abstract:
Presentations:

Patent/Invention Disclosures:

Technology Transfer Activities
For information on licensing contact:

Visitors Hosted:
Western Dairy Center
Project Report
Reporting Period November 1, 2000 — December 31, 2000

Principal Investigators: Marie K. Walsh
Charles Carpenter

Co-Investigators:

Project Title: Production of an extruded whey protein snack food

Institution’s Project #: 00119

Project Completion Date: December 31, 2001

Modifications to Project/Budget:

Project Objectives: (Include any revisions to objectives)

| Project Summary: (Suitable for inclusion in Center documents released to the public) |
| High protein snack foods are currently finding a large market as protein supplements, and we have described the use of thermoplastic extrusion to produce a high protein snack from whey protein. Our WPS is puffed during extrusion, although we have not yet achieved the expansion (puffing) desirable in this type of snack product. The purpose of this proposed research is to optimize the formulation and extruder configuration to allow extrusion into a puffed snack having acceptable texture. Variables being explored include concentration of whey protein and type of starch. |

Significant Progress against Objectives:

- Operational parameters to permit pilot scale production of an extruded whey protein snack food.
- Determine appropriate starch type (corn, modified corn, potato, modified potato, rice and bran), pH and use level which permits production of a puffed product.
- Product evaluation including sensory and stability analysis.

Extruder configuration is being optimized to allow shear and pressure development vs conveyance which is typically used in meat extenders.

Corn starch, rice starch, tapioca starch, oat bran, wheat bran, corn bran and modified starches including Crisp Film, BAKA-SNAK and Purity NC (National Starch Company) have been obtained and are being used for the production of a
whey protein snack product.

2. Significant Conclusions:

The type of starch significantly influences the expansion of an extruded snack product. In addition the concentration of whey protein influences the expansion of a snack product with higher whey levels leading to a more dense product.

3. Anticipated Problems/Delays:
None

Publications:

Theses:

Published Abstract:

Presentations:

Patent/Invention Disclosures:

<table>
<thead>
<tr>
<th>Technology Transfer Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>For information on licensing contact:</td>
</tr>
</tbody>
</table>

Visitors Hosted: