Utah State University DigitalCommons@USU

Colloquia and Seminars

Astrophysics

9-19-2007

The First Frontier: High altitude ballooning and access to near space

Shane L. Larson Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/astro_colloq

Part of the Astrophysics and Astronomy Commons

Recommended Citation

Larson, Shane L., "The First Frontier: High altitude ballooning and access to near space" (2007). *Colloquia and Seminars*. Paper 11.

https://digitalcommons.usu.edu/astro_colloq/11

This Presentation is brought to you for free and open access by the Astrophysics at DigitalCommons@USU. It has been accepted for inclusion in Colloquia and Seminars by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

THE FIRST FRONTIER:

HIGH ALTITUDE BALLOONING & ACCESS TO NEAR SPACE

(BEareka!

SHANE L. LARSON DEPARTMENT OF PHYSICS WEBER STATE UNIVERSITY

PHYSICS COLLOQUIUM WEBER STATE UNIVERSITY 19 SEPTEMBER 2007

NEAR SPACE

- We can reach altitudes between 100,000 and 150,000 feet easily with balloon technology
- Above 99% of the Earth's atmosphere
 - At 105,000 feet, atmospheric pressure ~0.009 atm, temperature ~ -44.5° C
 - Roughly the conditions on the surface of Mars
- Technology needed is readily available; implementation trains students in the engineering of robust, remote operated/ autonomous equipment in harsh environments
- Skills and training is readily applicable in the aerospace workforce (workforce development)
- Flying to the edge of space is exciting attracts students to science, technology, engineering and mathematics (STEM pipeline)

STORYLINE FOR OUR TALK

• Dry stuff: Space Grant Consortia

• Exciting stuff: Use **BOREALIS** to illustrate how it works and what is possible

• Ballooning in Utah – how do we get started?

• Student driven

• Multi-departmental & Multi-institutional

• Non-University partners (high schools, companies)

SPACE GRANT CONSORTIA

- The National Space Grant College and Fellowship program is analogous to Land Grant and Sea Grant Programs.
- Created by an Act of Congress in 1988; there are 52 Space Grants in the United States (50 states + Washington DC + Puerto Rico)
- Organized as consortia between many universities, industrial partners. There is a "lead institution", but no single university is "the Space Grant university" (a la Land Grant)
- The Space Grant program is NASA's primary higher education program, and is responsible for science and engineering fellowships, seed grants for space research, and other space related activities.
- Utah is home of the Rocky Mountain Space Grant Consortium

RMSGC

• The Rocky Mountain Space Grant Consortium is comprised of:

Utah State University	University of Utah	University of Denver		
Weber State University	Thiokol	BYU		
Southern Utah University	Clark Planetarium	Snow College		
North American Native Research & Education Foundation	Idaho National Lab	Utah College of Applied Technology		
Dixie State College	Space Dynamics Laboratory	Salt Lake Community College		
Utah Science Center	Westminster College	Rocky Mountain NASA Fellows Association		
Bridgerland Applied Technical College	Hill Aerospace Museum	Shoshone-Bannock School		

- Co-directed by Doran Baker (USU) and Dwayne Westenskow (Univ. Utah)
- RMSGC is unique in that it has affiliates from multiple states
- Student fellowships in space-related career paths, partnerships with NASA centers, space related research experiences for students, develop industry ties
 - http://spacegrant.usu.edu/

BOREALIS

- First flight in 2001
- Provide a cheap and reliable platform for student based space hardware projects and experiments
- Low cost and quick turn around allows multiple student flights in a student lifetime
- Since 2001, had 50+ flights, all recovered; two launch systems at MSU and UM, experiments from many schools
- Some prominent Utahans got their start with BOREALIS:
- Shane Larson (Weber), Mike Murray (Clark Planetarium), John Belz (U. Utah), Michelle Larson (USU)

BALLOON FLIGHT SYSTEM

- Design is variable, but the basic elements are:
 - Balloon
 - Recovery System
 - Payloads
 - Comm System
- 12 lb mass limit

BALLOON FLIGHT PROFILE

• A high altitude balloon flight consists of:

• Launch

• Flight & Chase

• Recovery

1

FLIGHT EQUIPMENT: IBIS

- We always fly a camera on the balloon
- IBIS: Integrated Balloon Imaging System
 - Built by Sean Kirn (EE undergrad) and Shane Larson, HP215c, \$95 @ Walmart in 2001.
 - Replace shutter button with leads to timer circuit adapted from model rocketry

Grand Tetons are about 275 km away from balloon flight track!

West Thumb

Yellowstone Lake

Beartooth Range

Grand Tetons

FLIGHT DATA: APRS

- The most important bit of flight data is the GPS tracking data, which gives balloons LAT, LONG, and ALT.
- Transmitted over HAM frequencies in a format known as APRS "Automatic Position Reporting System"
- Balloon carries a transmitter, set to a licensed user (typically one of the Chase Team) that auto-broadcasts the GPS position at regular intervals

AE0SS-11>BEACON:T#087,086,101,046,136,135,00111000 AE0SS-11>APRS:\$PRWIZCH,30,7,05,7,02,7,04,6,10,7,06,7,29,2,21,7,00,0,13,6,00,0,00,0*42 AE0SS-11>APRS:\$GPRMC,151447,A,4034.5189,N,10424.4955,W,6.474,132.5,220406,10.1,E*58 AE0SS-11>APRS:\$GPGGA,151449,4034.5163,N,10424.4937,W,1,06,1.41,21475.8,M,-21.8,M,,*4D

KD7MFJ-11	45.862 -1	L0 ⁷ .87583	28	112 11818	2001.0607	14	01	49 4U5QWR,RELAY,WIDE
KD7MFJ-11	45.863	-107.8795	26	111 12431	2001.0607	14	01	23 4U5QWX,RELAY,WIDE
KD7MFJ-11	45.8635	-107.881	26	111 1 <mark>2628</mark>	2001.0607	14	01	10 4U5QXQ,RELAY,WIDE
KD7MFJ-11	45.864 -1	L07.88317	25	99 12 <mark>8</mark> 31	2001.0607	14	00	57 4U5QXT,RELAY,WIDE
KD7MFJ-11	45.8645 -	-107.88533	20	112 13235	2001.0607	14	00	43 4U5QXW, RELAY, WIDE

FLIGHT DATA: APRS TRACK

FLIGHT EQUIPMENT: HOBO

• HOBO data logger from Onset

THE HESS EXPERIMENT

- In 1912, Victor Hess flew a balloon to 17,500 ft
- Discovered background radiation increased with altitude
- Deduced the existence of cosmic rays

FLIGHT EQUIPMENT: GEIGER TUBE

• A geiger counter, attached to a palm sized data logging PC can be flown

FLIGHT EQUIPMENT: GEIGER TUBE

• A geiger counter, attached to a palm sized data logging PC can be flown

Geiger Counter Data, Flight BOR0109A

FLIGHT EXPERIMENTS: THE FUTURE

Balloon Technology

- •Mass reduction strategies*
- •Power reduction strategies*
- •Volume reduction strategies*
- •Accelerometers*
- •Communications experiments (EBBE)
- •Tracking experiments (GPS, DF, ...)*
- •Attitude sensing & control
- Microcontroller development*
- •Cutdown system*
- •Tethered Balloon (blimp!) systems*

Remote Sensing

IBIS digital still camera system*
Synthetic aperture
LIDAR
FLIR

Space Science

Cosmic Ray experiments* UV solar radiance * Solar observations Cosmic Background Radiation (?) There are no limits to balloon payloads with creative and excited students

So what about Utah?

Space Hardware

CubeSat payload test* CubeSat communications test Satellite Ground station testing

Earth & Atmospheric Sciences

- •IBIS digital still camera system*
- •Video camera system*
- Amateur TV system
- • 2π horizon camera system
- •Hyperspectral imaging
- •Ozone altitude profiles *
- •UV solar radiance *
- •IR photometry*
- •Atmospheric temperature* & pressure* profiles
- •Smoke & particulate sampling
- •Trace gas sampling from upper atmosphere
- •Measure diameter of Earth

Aeronautics

Glider platforms (Mars glider) Balloon flight modeling*

HARBOR

• High Altitude Reconnaissance Balloon for Outreach and Research

STARTING HERE IN UTAH

- Small group makes an observation trip for a BOREALIS flight this fall
- Construction of a "guest experiment" for flight on BOREALIS
- Participation in summer workshop on student space hardware projects, built around ballooning platforms (Colorado, summer 2008)
- Establishing HARBOR program for development
 - Secure seed funding (~\$2000; few x \$100 in expendables per flight)
 - Student design team, initial experiments, statewide partners
 - Identify suitable flight range in Utah (far from HAFB and SLC); flight simulation to determine expected ranges
 - Construction
 - Flight

LAST THOUGHTS

 High altitude ballooning provides easy access to near space with small payloads and experiments

• Flight turn-around is quick, so experiments can be repeated and/or upgraded many times

• Real engineering and science experience!

• Future flight observation trip & summer workshop

• Let's go flying!

RESOURCES

- BOREALIS Flight Handbook
 - http://spacegrant.montana.edu/borealis/resources/Handbook/
- Edge of Space Sciences (EOSS)
 - http://www.eoss.org/
- TVNSP (Treasure Valley Near Space Project)
 - http://www.tvnsp.org/
- Ralph Wallio's comprehensive listing of balloon programs:
 - http://showcase.netins.net/web/wallio/ARHABlinks.htm