Utah State University

Digital Commons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2008

Modeling the Electrodynamics of the Low-Latitude lonosphere

Christian Stephen Wohlwend
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

6‘ Part of the Atmospheric Sciences Commons, and the Physics Commons

Recommended Citation

Wohlwend, Christian Stephen, "Modeling the Electrodynamics of the Low-Latitude lonosphere" (2008). All
Graduate Theses and Dissertations. 11.

https://digitalcommons.usu.edu/etd/11

This Dissertation is brought to you for free and open

access by the Graduate Studies at

DigitalCommons@USU. It has been accepted for

inclusion in All Graduate Theses and Dissertations by an /[x\

authorized administrator of DigitalCommons@USU. For N . .
more information, please contact élla' ,()Al UtahStateUniversity

digitalcommons@usu.edu. { MERRILL-CAZIER LIBRARY


https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/187?utm_source=digitalcommons.usu.edu%2Fetd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.usu.edu%2Fetd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/11?utm_source=digitalcommons.usu.edu%2Fetd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

Utah State University
Digital Commons@USU

All Graduate Theses and Dissertations Graduate Studies, School of

12-1-2008

Modeling the Electrodynamics of the Low-
Latitude Ionosphere

Christian Stephen Wohlwend

Recommended Citation

Wohlwend, Christian Stephen, "Modeling the Electrodynamics of the Low-Latitude Ionosphere” (2008). All Graduate Theses and
Dissertations. Paper 11.
http://digitalcommons.usu.edu/etd/11

This Dissertation is brought to you for free and open access by the A

Graduate Studies, School of at Digital Commons@USU. It has been

accepted for inclusion in All Graduate Theses and Dissertations by an a"’ m{l UtahState Uni versity
authorized administrator of Digital Commons@USU. For more % [ERAELCRCEN LIRAREY

information, please contact digitalcommons@usu.edu.
Take a 1 Minute Survey- http://www.surveymonkey.com/s/
BTVT6FR



MODELING THE ELECTRODYNAMICS OF THE

LOW-LATITUDE IONOSPHERE

by

Christian Stephen Wohlwend

A dissertation submitted in partial fulfillment
of the requirements for the degree

of
DOCTOR OF PHILOSOPHY

n

Physics
Approved:
Dr. Robert W. Schunk Dr. J. Vincent Eccles
Major Professor Committee Member
Dr. W. Farrell Edwards Dr. Randy J. Jost
Committee Member Committee Member
Dr. Vincent B. Wickwar Dr. Lie Zhu
Committee Member Committee Member

Dr. Byron R. Burnham
Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2008



i1

“The views expressed in this article are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the U.S. Government.”



1l

ABSTRACT

Modeling the Electrodynamics bf the Low-Latitude Ionosphere

by

Christian Stephen Wohlwend, Doctor bf Philosophy

Utah State University, 2008

Major Professor: Dr. Robert W. Schunk
Department: Physics

The electrodynamics of the Earth’s low-latitude ionosphere is dependent on

the ionospheric conductivity and the thermospheric neutral density, temperature,

and winds present. This two-part study focused on the gravity wave seeding mecha-
nism of equatorial plasma depletions in the ionosphere and the associated equatorial
spread F, as well as the differences between a two-dimensional flux tube integrated
electrodynamics model and a three-dimensional model for the same time period. The
gravity wave seeding study was based on a parameterization of a gravity wave pertur-
bation using a background empirical thermosphere and a physics-based ionosphere
for the case of 12 UT on 26 September 2002. The electrodynamics study utilized
a two-dimensional flux tube integrated model in center dipole coordinates (g, p, ¢),
which is derived in this work. This case study examined the relative influence of the
zonal wind, meridional wind, vertical wind, temperature, and density perturbations
of the gravity wave. It further looked at the angle of the wave front to the field
line flux tube, the most influential height of the perturbation, and the difference be-
tween planar and thunderstorm source gravity waves with cylindrical symmetry. The

results indicate that, of the five perturbation components studied, the zonal wind



v

is the most important mechanism to seed the Rayleigh-Taylor instability needed to

develop plasma plumes. It also shows that the bottomside of the F-region is the
most important region fo perturb, but a substantial E-region influence is also seen.
Furthermore, a wave front with a small angle from the field line is necessary, but the
shape of the wave front is not critical if the gravity wave is well developed hefore
nightfall. Preliminary results from the three-dimensional model indicate that the

equipotential field line assumption of the two-dimensional model is not valid below

100 km and possibly higher. Future work with this model should attempt to exam-
ine more of the differences with the two-dimensional model in the electric fields hnd

currents produced as well as with the plasma drifts that lead to plume development.

(200 pages)
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CHAPTER 1
INTRODUCTION

The equatorial ionosphere is a region of intense interest, because of the com-

plex dynamical processes and instabilities that occur there. Of particular interest

is the generation and evolution of ionospheric plasma depletions (bubbles) (Figure
1.1) that cause scintillation of electromagnetic signals passing through the disturbed
plasma. An essential part of the characterization and understanding of bubbles is
physics-based modeling of the electrodynamics that drive the plumes, and this in-
cludes modeling the trigger mechanism for plume generation. This is one of the

driving factors for the gravity wave perturbation study and the three-dimensional

JULIA Vertical Drift Velocity on September 25, 2005
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Figure 1.1. Plasma plume as seen by JULIA incoherent scatter radar (Courtesy of
Narayan Chapagain, USU).



low-latitude electrodynamics model presented in this research.

The degradation of electromagnetic signals caused by plasma depletions in the
ionosphere has been known for more than half a century [Booker and Wells, 1938].
The periodic nature of the plume events has led to many theories about the physical
cause of these events. The Rayleigh-Taylor instability is considered the dominant
factor in plume growth. Haerendel [1973] envisions a hierarchy of instabilities where

the plasma plumes are the first part of a multistep irregularity phenomenon that

leads to equatorial spread F as an event. The problem is that the Rayleigh-Taylor
instability requires a sufficiently strong initial perturbation in the plasma structure
to trigger plume development [Kelley, 1985]. One theory is that atmospheric gravity
waves are the trigger mechanism needed to finitiate plumes [ Whitehead, 1971].

The gravity wave perturbation study expands on the two-dimensional flux-
tube integrated electric field model developed by Haerendel [1973] to effectively ex-
amine the electric fields that drive plasma motion in the ionosphere. This investi-
gation examines gravity waves from any source as a potential trigger mechanism for
plasma plumes and subsequent equatorial spread F. Different source regions include
auroral zone gravity waves that propagate to the low-latitudes, as seen in traveling
ionospheric disturbances in the mid-latitudes, deep tropical convection where large
wavelength gravity waves penetrate to the thermosphere, and gravity waves gener-
ated within the thermosphere by mechanical oscillations like large-scale shears. The
electric field response to these perturbations is potentially the driving mechanism to
initiate the Rayleigh-Taylor instability responsible for plume development. The ver-
tical plasma drift caused by the horizontal electric field is enhanced near the peak of
the prereversal enhancement, which occurs shortly after sunset. This research shows

that plasma plumes can be generated by gravity wave-forcing of the bottomside of



the F-region. It also shows that the east-west component of the wind is the most

important parameter for generating perturbation electric fields.

The three-dimensional low-latitude electrodynamics modeling effort that is
part of this research is a result of wanting to examine other possible trigger mech-
anisms and examining some of the assumptions bf the two-dimensional model. The
two-dimensional model requires the assumption of equipotential field lines through-
out the ionosphere to permit the integration of the conductivity and conductivity
weighted winds along the field line flux tubes. This approximation is not accurate
below about 110 km, and possibly at night when the conductive connection between
the EE and F-regions is small. Therefore, we wanted to show how the potential de-
cays in the lower altitudes through the three-dimensional model results. Future work
will examine the possibility of including this decay parameter in the two-dimensional
integration. This new model will also allow us to examine the trigger mechanism the-
orized by Hysell and Kudeki [2004], or others that involve coupling of the E-region

3

and F-region electrodynamics.



CHAPTER 2
IONOSPHERIC ELECTRODYNAMICS

This chapter presents the background physics of the Earth’s low-latitude iono-

spheric electrodynamics. The electrodynamics will cover the basic principles of low-

latitude ionospheric physics including atmospheric structure, plasma dynamics, iono-
spheric currents and electric fields, and the atmospheric dynamo theory. Then, we
will look at the recent work onm equatorial gpread F and equatorial plasma density
depletions (bubbles). Finally, we will review some of the seminal works of the flux

tube integrated electrostatic modeling efforts.

2.1 Physics of the Low-Latitude Ionosphere

The electrodynamics of the low-latitude ionosphere is the focus of this re-
search. Therefore, the theories of the low-latitude physics are presented to highlight
the extensive work that has preceded this study. The structure of the atmosphere
is essential to the understanding hnd modeling of the Earth’s ionospheric electrody-
namics. A review of this structure is presented as well as the empirical and dynamical
models used as inputs to the electric field model. [Then, some physics of the electrody-
namics, gravitational, and diamagnetic plasma drifts are presented. The background
currents and electric fields driven by the neutral atmosphere are discussed, including
the E- and F-region dynamo driven currents. We will also discuss equatorial spread
F and the plasma bubbles, which impact the steady state electric fields and are the

main focus of this work.



2.1.1 Atmospheric Structure
The atmosphere is divided into regions by atmospheric scientists based on

the temperature, structure and composition (Figure 2.1). The neutral gasses are

divided into the troposphere, stratosphere, mesosphere, thermosphere and exosphere
[Schunk and Nagy, 2000; Kelley, 1989]. The troposphere, where weather occurs, is
defined by a well-mixed composition of primarily molecular nitrogen and oxygen,

with decreasing temperatures with height, and ranges from the surface to around
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Figure 2.1. Atmospheric structure of the Earth with neutral layers indicated and a
temperature curve for solar minimum and solar maximum.



10 kilometers. The stratosphere is the region of the htmosphere that is home to
the ozone layer, and it increases in temperature with height due to the absorption
of solar ultraviolet radiation. This region is thermodynamically stable and extends
from the tropopause to a height of around 45 km. The mesosphere is a region with
very little solar absorption. Its temperatures decrease with altitude. The mesosphere
is still primarily molecular nitrogen and oxygen, but there are many minor species.
Some metals such as iron and sodium are suspended in the mesosphere from meteor
debris. This region extends from the 45 km altitude up to the mesopause around 95—
105 km. Here, the transition to the thermosphere is due to the dissociation of diatomic
oxygen and ionization through solar radiation absorption. The thermosphere has a
temperature that again increases until the temperature becomes almost isothermal
with altitude. The thermosphere ranges from the mesopause up fo 500 km. The
exosphere is the region of near Earth space where the atmosphere gets very tenuous
and particles of light species like hydrogen are able to escape the Earth’s gravity.
These neutral regions are overlapped by the charged plasma environment of
the ionosphere. The ionosphere has been separated into layers to define the primary
ion constituent and associated chemistry. There are three commonly discussed layers
within the ionosphere: the D-region, E-region, and F-region (Figure 2.2). The D-
region, ranging from 60 km to 100 km, is controlled by ionization of neutrals by solar
x-rays and Lyman alpha radiation versus two and three body recombination and
electron attachment. The E-region, from 100-150 km, is dominated by the molecular
ions, with NJ, OF, and NOT as the primary constituents, and is also chemically
dominated. The F-region is dominated by monatomic oxygen, and in this layer
ion transport through diffusion and chemistry on the bottomside of the layer are

important. This is where the peak of ionization density occurs, with densities on the
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Figure 2.2. Electron and ion densities for O*, NO*, O, and HT ions in the E-
region, F-region, and topside ionosphere from the Ionospheric Forecast Model (IFM)
[Schunk et al., 1997] at 10°N, 105°E. The conditions are for 26 Sept 2002 at 12 UT.

order of 10° cm™3. The F-region peak density is usually over an order bf magnitude
greater than the E-region peak density.

The neutral atmospheric composition and winds of the upper mesosphere and
thermosphere land their interaction with the plasma of the ionosphere are the major
drivers of the Earth’s low-latitude electrodynamics. This is the region where the
ionosphere collisionally interacts with the neutral ptmosphere. The composition of
the ionosphere is also critical to understanding the electrodynamics. The composi-
tion includes not just the density of each neutral and ion species in the gas, but also
the temperatures of the neutral, ion and electron components. For our study of the
ionosphere, we used the Naval Research Laboratory’s Mass Spectrometer and Inco-

herent Scatter radar Extended empirical model from 2000 (NRLMSISE-00) [Picone



et al., 2002] as our model of the neutral atmospheric densities and temperature. The
neutral concentrations as a function of height at 10°N, 105°E are given in Figure 2.3
and the temperatures for the same location are shown in Figure 2.4. The wind
patterns are a mix of a tidal model for the E-region developed by J. Vincent Ec-
cles that is based on the Tarpley [1970a,b] tides, and the empirical Horizontal Wind
Model from 1993 (HWM93) [Hedin et al., 1996]. The ionospheric model used in this

research is the physics-based Tonospheric Forecast Model [Schunk et al., 1997], which

provides ion and electron densities and temperatures for the low and mid-latitudes
from 94 km to 1600 km altitude. The electron and ion concentrations as a function
of altitude for the location indicated above can be seen in Figure 2.2.

Collisions between the neutral atmosphere and the ions, the ions and electrons,

and the neutrals and electrons are the cause of the conductivity in the ionosphere.
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Figure 2.3. Neutral densities for Ny, Oy, N, O, H, and He in the upper atmosphere
from NRLMSISE-00 at 10°N, 105°E.
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Figure 2.4. Electron (T.), ion (T;), and neutral (T,) gas temperatures from the
IFM and NRLMSISE-00 models at 10°N, 105°E.

These conductivities are divided into the Hall conductivity, which defines currents
perpendicular to both the electric and magnetic fields; the Pedersen conductivity,
which defines currents parallel to the electric field, but perpendicular to the magnetic
field; and the parallel conductivity which defines currents parallel to the magnetic
field. The magnitudes of these conductivities can be seen in Figure 2.5. Here, it
is important to note the parallel conductivity is many orders of magnitude larger
than the Pedersen or Hall conductivities everywhere, except below 120 km. The high
parallel conductivity is the justification for the equipotential approximation that is
used in the flux tube integrated models that will be discussed later in this chapter.
The Earth’s magnetic field is often treated as a dipole magnetic field (Figure
2.6). It is not a perfect dipole, but we will use a dipole approximation to develop

the electric field equations. These equations will be adjusted to fit the actual mag-
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Figure 2.5. Pedersen (op), Hall (oy) and parallel (o)) conductivities at 10°N,
105°E.

netic field, which is tilted and skewed from the perfect dipole. To accommodate the
Earth’s imperfect dipole, we utilize a fbest dipole” approximation at each geographic
longitude, as shown in Figure 2.7, to correct for the magnetic coordinate shift from
the geographic coordinates. This is hot the exact magnetic field coordinate as pre-
sented in the International Geomagnetic Reference Field [MacMillan et al., 2003], but
it is sufficient for the geomagnetic latitudinal range of £45° needed for our studies

involving low-latitude electrodynamics.

2.1.2 Plasma Dynamics

The Earth’s ionosphere is driven by the complex dynamical relationship be-
tween the plasma and neutral atmosphere through collisional interactions. An ex-
cellent in-depth overview of the ionosphere is provided by Schunk and Nagy [2000].

The dynamics of the ionosphere can be described by the closed set of plasma conti-
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Figure 2.6. The Earth’s tilted and skewed magnetic field relative to the spin axis

and solar terminator [Jursa, 1985].
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nuity and momentum equations given in Chapter 3, where the temperature must be

specified to close the equation set. This allows for a descriptive model of hoth the
fluid and electromagnetic components of the gystem. Plasma can easily flow along
the magnetic field lines with very little resistance. The plasma constituents of the
gasses will follow a helical path along those field lines determined by the magnetic
field strength and mass of the particle. The cross-field-line motions of the plasma

require greater forcing and are derived from the Lorentz force, gravity, and a pres-

sure gradient force. These result in plasma drifts from the electric field, pressure

gradients, and gravity,

. ExB
== 2.1
P B (2.1)

— 1 VP x B

=1 == 2.2
Vh=-— 5P (2.2)

N mgx B
=22~ 2.3
“ e |BP 23)

where V g 18 the electromagnetic [drift, % p is the diamagnetic drift, X7G is the gravita-
tional drift, and where E is the electric field, B is the magnetic field, G is the gravita-
tional force, n is the number density of the species, m is the mass of the species, e is
the elementary charge, and P is the partial pressure of the species. The electric field
drift is the most important one for this work on wind driven electrodynamics. The
electric fields set up by the neutral winds interacting with the conductive ionosphere
create the vertical cross magnetic field line drifts that drive plasma bubbles. The
diamagnetic drifts create self-closing current loops that are ignored in the flux tube
integrated models. The gravitational drifts can have some impact on the overall drift

[Eccles, 2004b], so the gravitational term is included in the electrodynamics model.

b
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The mechanisms behind the ionospheric currents and associated electric fields make

up the majority of the electrodynamics model.

2.1.8 lonospheric Currents and Electric Fields

Currents are set up in the ionosphere by the high conductivity of the plasma
and the winds in the neutral atmosphere. The primary current system in the daytime
ionosphere is known as the S,, or solar quiet, current pattern (Figure 2.8). The S,
current is a result of winds due to differential heating of the atmosphere [Hasegawa,
1960]. The S, current system is a general background current that has daily and
regional variations imposed to create the actual currents. [t is the primary driver
of mid-latitude plasma drifts. A thorough review of ionospheric electrodynamics is
given in Fejer [1981] and this review can give the reader a more complete picture of
the entire current system and associated electric fields.

Low-latitude electric fields and currents are of particular interest to the re-
search presented here. There is a rich history of research in equatorial electrodynam-

ics, which includes the equatorial anomaly [Hanson and Moffett, 1966; Moffett, 1979

LATITUDE

Lot o
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_lﬁlﬁ_' 1T

LOCAL TIME

Figure 2.8. Solar quiet current pattern adapted from Matsushita [1975].
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and the equatorial electrojet (EEJ) that is driven by the east-west electric field at
the magnetic equator [Untiedt, 1967; Richmond, 1973a,b]. The anomaly (Figure 2.9)
is caused by a decrease in density af the equator, because of electrodynamic upward
forcing of the plasma that creates a fountain of plasma out of the equatorial regions
and into the sub-equatorial ionosphere.

The equatorial electrojet (Figure 2.10) is a region of enhanced current and

corresponding horizontal plasma motion around 105 km in the equatorial E-region.

The plasma velocity can reach speeds above 500 m/s in the electrojet. The magnitude

of the EEJ current in the integrated model is given by

2

. X
Jy=%cE;, Se=%p+H (2.4)
Xp

where J, is the longitudinal current, ¥s is the Cowling conductivity, Xp is the

Pedersen conductivity, and Xy is the Hall conductivity [Haerendel et al., 1992]. The
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Figure 2.9. The equatorial anomaly as seen by the increased electron density on
both kides of the equator taken from IFM at 0°E and 20UT.
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Figure 2.10. The equatorial electrojet at 0°N, 15°E for 12 UT on 26 Sept 2002.

EEJ is the current that closes the S, current loop at the equator. This strong current
exists due to the geometry at the magnetic equator where the magnetic field (North)
is perpendicular to the electric field (East) and the dominant conductivity gradient
in the E-region (vertical). The integrated Cowling conductivity is primarily the
Pedersen conductivity except near the equator in the E-region and in the auroral
zone. At the equator the high Hall conductivity sets up a vertical polarization electric
field that contributes to an increased longitudinal current of the current jet.

Days with low geomagnetic activity were selected in my research in order to
exclude the penetration electric fields from high to low latitudes, as presented by
Kamide and Matsushita [1979a,b, 1981]. Penetration electric fields are important
when studying storm time phenomena and will have to be included in future research
[Fejer and Scherliess, 1995, 1997].

There are three directions in which ionospheric currents can develop in rela-
tionship to the magnetic field. It is important to know that the Pedersen Current

is carried by positive ions in the E-region at 100-125 km, while the Hall current is
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carried by kelectrons at lower altitudes. Field-aligned currents are carried by thermal
electrons that can move rapidly along the geomagnetic field lines.

A review of equatorial plasma drifts by Fejer [1991] presents this material in
detail. The zonal plasma drifts in the ionosphere are eastward at night and westward
in the daytime due to vertical electric fields and the nearly horizontal magnetic field,
as first presented by Woodman [1970]. Zonal electric fields lead to vertical plasma

drifts (Figure 2.11) as seen by Woodman et al. [1972]; Fejer et al. [1981, 1991, 1995];

Coley and Heelis [1989]; and Maynard et al. [1995]. A prereversal enhancement
(PRE) has been observed in the vertical ion drift immediately post sunset (Figure
2.12) as the plasma transitions from an upward drift in the daytime to the downward
nighttime drift [Balsley, 1969; Woodman and Hagfors, 1969; Rishbeth, 1971]. Many
theories have heen developed to explain this phenomenon [Rishbeth, 1971; Farley
et al., 1986; Haerendel et al., 1992] and a short review of these theories is presented
by Eccles [1998b]. All of these theories have merit and more work needs to be done
to determine the actual physical processes involved. An important feature of the

PRE is that it is a precursor and physically linked to equatorial spread F occurrence

WEST

Figure 2.11. Plasma drift (Vg) due to zonal electric fields (E) crossed with the
magnetic field (B) in the daytime and nighttime ionosphere.
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Figure 2.12. Prereversal enhancement near 19 hours local time from the equatorial
electrodynamics model.

[Balsley et al., 1972].

The dynamo theories of the ionosphere describe how the winds of the neutral
atmosphere affect ionospheric currents, electric fields, and plasma motion. A review
of these theories is provided in Rishbeth [1997]. The E-region dynamo is a flow that
coincides with the flow of the neutral winds due to tidal fforcing [ Tarpley, 1970a,b].
The primary tidal forcing mechanism is a diurnal solar thermal, which produces west-
ward plasma drifts in the daytime and eastward drifts at night. There are also solar
semidiurnal and lunar tides that affect the plasma flow. The F-region dynamo is
also produced by differential solar heating [Rishbeth, 1971], but it is slightly different
from the E-region dynamo. The F-region dynamo is most pronounced at night when
the E-region decays and the [E-region currents become negligible. The F-region dy-
namo is driven by thermospheric pressure gradients due to solar extreme ultraviolet
heating. Collisions between ions and neutrals move the ions to a higher field lines,

setting up vertical electric fields through icharge imbalance. The electrons quickly
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move along the field lines to adjust the charge imbalance, which sets up horizontal
electric fields between the field lines in the E-region. This, in turn, generates a Ped-
ersen current that moves the ions in the same direction as the neutral wind. This was
shown by Heelis et al. [1974] to produce an F-region plasma drift of around 45 m/s
westward during the day and near 130 m/s eastward at night. This theory can also
explain the prereversal enhancement, where a disappearing E-layer and a continuing

F-region dynamo current require elevated electric fields to meet the F-region current

demands at sunset causing a strong vertical plasma drift [Rishbeth, 1981; Haerendel

and Eccles, 1992; Fecles, 1998a].

2.2 Equatorial Spread F and Plasma Bubbles

Equatorial Spread F (ESF) is a term derived from the spreading of the F-
region echoes on ionograms. It was first observed by Booker and Wells [1938]. A lot
of research has been conducted on the observational and physical theories of Spread F
since that time. Good reviews of ESF were published by Fejer and Kelley [1980] and
Ossakow [1981]. ESF is observed to have scales from centimeters to kilometers in size.
Our study focuses on the long wavelength structures and the generation of plasma
bubbles, as described by Woodman and La Hoz [1976]. The theory of ESF states
that the collisional Rayleigh-Taylor (R-T) instability causes the growth of plasma
irregularities on the bottomside of the F-region, which spreads the F-region signature
on an ionogram from an HF ionosonde instrument. The R-T instability is possible,
because the recombination of the E-region after sunset steepens the bottomside and
prevents the shorting of the F-region currents. The [F-region electric fields cause the
F-region to rise, which reduces the collisions between the charged particles and the

neutral species, and hence, the E-region conductivity, which then enhances the R-T
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Figure 2.13. Rayleigh-Taylor instability characterization at dusk in a field line
reference frame [Schunk and Nagy, 2000].

growth rate [Balsley et al., 1972]. Medium scale irregularities (10-100 km) form on

the bottomside, develop into non-linear ”plumes” or ”bubbles” of rarified plasma,
move up through the dense F-region plasma at 400 to 1000 m/s, and then steepen
on their tops as they rise to the topside ionosphere by E x B drift motion. Eastward
neutral winds in the thermosphere create vertical polarization electric fields that drive
a westward tilt to the bubbles with height.

The theory of the Rayleigh-Taylor instability in the ionosphere was first pre-
sented by Johnson and Hulburt [1950], with the work of Dungey [1956] making a
connection between the R-T instability and ESF. The R-T instability theory involves
a vertical plasma density gradient with a dense F-region plasma over a less dense F-
region plasma, enhanced by the steepening of the bottomside at night. This gradient,
when perturbed, will generate polarization electric fields that grow the perturbation

through an Ex R plasma drift, as seen in Figure 2.13. The growth rate for this theory
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is based on the density gradient of the plasma and the differential conductivity, as

first derived by Haerendel [1973], Zalesak and Ossakow [1980], and more recently by

3 3

Sultan [1996]. This research uses the R-T growth rafe (ygr) equation

_ig golty  ON[

== - 2.5
TR SE T SEVE RINT OR, (25)

where the effective collision frequency is
r _ SpBiRG (2.6)

14 = =
eff mszRg

and ig is the F-region Pedersen conductivity, ZNIIE; is the E-region Pedersen conduc-
tivity, N is the F-region number density, [R, is the equatorial crossing radius, Ry is
the radius of the Earth, By is the magnetic field strength at the Earth’s surface, and
the acceleration of gravity is given by gg = —9.8 m/s. This is based on the integrated
form of the equation as presented in Sultan [1996].

Fejer et al. [1999] provides a climatological view of ESF generation through
the pre-reversal enhancement (PRE), which is sometimes also referred to as the post-
sunset rise (PSSR) or the evening prereversal enhancement (EPE). The search for
a seeding mechanism for plasma bubbles is driven by the finding that the Rayleigh-
Taylor finstability is not sufficiently strong to create the observed plume development
from a smooth ionosphere [Kelley, 1985]. Theoretical and numerical simulations of
ESF have been conducted by many researchers [Scannapieco and Ossakow, 1976;
Chaturvedit and Ossokow, 1977; Ossckow et al., 1979; Zalesak and Ossakow, 1980;
Zalesak et al., 1982]. Recent work involving seeding mechanisms for plasma bubbles
include atmospheric gravity waves creating structure in the F-region plasma density

[Huang and Kelley, 1996a], a collisional shear instability in the equatorial F-region
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ionosphere [Hysell and Kudeki, 2004], E-region electric field perturbations produced

through the Hall conductivity [Prakash, 1999], and sporadic-E layer electrical cou-
pling to the F-region [ Tsunoda, 2006]. The day-to-day variability in ESF magnitudes
and bubble generation was the primary driver for further studies [Tsunoda, 2007].
Tsunoda [2005, 2006, 2007] clearly shows that the large-scale wave structure ob-
served in radar data is a necessary and sufficient requirement for ESF development

and subsequent bubble production. He presents compelling arguments for support of

multiple theories, including the collisional-shear instability [Hysell and Kudeki, 2004]
and electrically coupled effects from gporadic-E layer instability [Tsunoda, 2006].
The large-scale wave structures (LSWS) observed by Tsunoda have scales around
500 kilometers, which closely match those of atmospheric gravity waves, as proposed
by Réttger [1973]. This provides the basis for the gravity wave perturbation study
that follows, as an investigation of the cause of the LSWS observed to trigger plumes
at the crest of the PRE upwelling.

The early work on gravity wave seeding of ESF and plasma bubbles was pre-
sented by Whitehead [1971] and [Réttger [1973] as theories for the observed spacing of
bubble development. Rétiger [1977] showed the ESF could theoretically be generated
by electric fields produced from gravity waves resulting from thunderstorms. Further
research by Rdttger [1981] attempted to show that the ESF climatology was closely
related to the intertropical convergence zone and its relationship to the magnetic
equator. This zone is the seasonally changing region of enhanced tropical thunder-
storm development that is offset by about 5° from the geographic equator, with a
latitudinal extent of around 15° [Atkinson, 1991]. This latter study did not involve an
all inclusive model of ESF generated by thunderstorms, but a general relationship of

thunderstorm gravity waves and electromagnetic coupling to the lower atmosphere.
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This seminal work, as well as more recent research into gravity wave studies of trav-

elling ionospheric disturbances (TID), will be reviewed in Chapter 4. In order to
investigate these theories more effectively, a number bf numerical models have been
developed. The most common approach is the two-dimensional flux tube integrated

model, which is discussed in the next subsection.

2.3 Two-Dimensional Integrated Equatorial
Electric Field Models

This section briefly discusses the work of Haerendel et al. [1992] that illustrates
the modeling technique for a two-dimensional flux tube integrated electrodynamics
model. The full derivation of the model equations are presented in Appendix A.
This modeling technique was used by Sultan [1996] as a way to implement the linear
theory of ESF and the R-T instability. A follow-up investigation by Fecles [2004b]
on the gravity and pressure gradient terms in the momentum equations shows that
the gravitational term is important in the electrodynamic solution, but the pressure
gradient term is negligible for electric field determination. The flux tube integrated
model is set up in an orthogonal three-dimensional frame with one direction along
the magnetic field line, one perpendicular upward, and one perpendicular and to the
east (I, ¢, s). The plasma dynamics equations are then integrated from the bottom
of the E-region in one hemisphere to the bottom of the E-region in the conjugate
hemisphere. This creates a two-dimensional polar model, with coordinates of geo-
magnetic longitude (¢) and magnetic equatorial crossing altitude as a function of the
Earth’s radius (L). In this framework, the driving forces are the Pedersen and Hall
conductivities that create the currents and the conductivity weighted neutral winds.
Ultimately, the model assumes integrated current continuity and solves an ellipti-

cal equation for the steady state electric potential. A few assumptions were made
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in order for this technique to be utilized. This technique requires the assumption

of equipotential field lines to obtain the integrated values. The result is that only
medium and large scale phenomena of greater than 1 km can be investigated, because
of the physical limitations of the integration technique [Dungey, 1956]. The first work
on justifying this assumption was Farley [1959], and it was shown to be valid for imost
of the F-region and topside ionosphere. This assumption breaks down in the lower E-

region and below. The benefit of this process is that the three-dimensional structure

of the atmosphere is maintained in the integrated two-dimensional model in the entire
region where the equipotential field line approximation holds true. Other modeling
studies involving ionosphere currents were performed by Singh and Cole [1987] land
Bailey and Sellek [1990], which used a three-dimensional plasmasphere model. Also,
Crain et al. [1993a.b] and later work from the integrated slab model [Lin et al., 005
illustrate that an integrated electrodynamics model provides reasonable solutions for

the Earth’s currents and electric fields, even during geomagnetic storms.
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CHAPTER 3
DERIVATION OF MODEL EQUATIONS

3.1 Dipole Magnetic Field Approximation

Here we examine the calculation of a dipole magnetic field that is used as the
approximate basis for the geomagnetic field. Begin by assuming that the Earth is a
hard ferromagnet in free space (Figure 3.1). Define the sphere of the Earth to look
like a disk in two-dimensions with a radius __R\E‘7 an internal magnetic moment M s
and no free currents. Set up a coordinate system where the z-axis is parallel to M
and examine a point of interest that is at some angle 6 off of the z-axis. Now apply

Maxwell’s equations for magnetostatics,

V-B=0 (3.1)

\?-HO(EJFW):O, (3.2)

Figure 3.1. Earth’s dipole magnetic field with geographic North and South labeled.
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SO

—

V-H=-V-M. (3.3)
Then assume no free currents (jf),
VxH=J;=0 (3.4)
so that we can assume a scalar potential solution for I such that
H=-Va, . (3.5)

Now, we need to define an effective magnetic density and realize that the magnetic

material is non-divergent to get

pm=—V M =0 (3.6)

Combining all of these equations we arrive at the final form of Laplace’s Equation.
V2®,, = —pm =0 (3.7)
We know that for azimuthal symmetry the general solution to Laplace’s Equation is

o, = Z [Alrl + Clr_(l“)]Pl (cos®) (3.8)
1=0

Boundary conditions must now be applied to this general form, so as r ap-

proaches infinity we know that the magnetic potential must be zero. This implies
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that all A; = 0 outside of the sphere, so we are left with
Dpout = »_ Cir™ VP (cosb) (3.9)

=0

Likewise, as r approaches zero, the magnetic potential must be finite, so all the C; = 0

inside the sphere, leaving

D, in = Z At P (cos ) . (3.10)

=0

The surface of the Earth is the interface of these two potentials where » = Rp. Here,

the tangential components of the magnetic field must be equal, so
n X (ﬁout - ﬁzn) =N X (§(I)m,,in - §(I)m,out) =0 s (311)

which leads to the relationship that ®,, ;, = ®p, out, SO We can say

Z AR5'P,(cosh) = Z CyRp~Vp, (cos®) (3.12)
=0 =0
or
Ay =GR~ (3.13)

This same requirement also allows us to say that

(EM _ En) =0, (3.14)
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and applying the definitions for the magnetic field inside and outside of a dielectric

Biy = pio (Hin + M) (3.15)
and
@mn‘, = ,UOf{out ; (316)
then
Hop -1 — (E{n n fw) " (3.17)
SO,
VB, ot - 1t = K%@mm - M) . (3.18)
Recall that M = M2, so
M- = Mys -7 = My cos (3.19)
and
- 09,
Vo, = (3.20)
or

to get the solution at r = Rp of

—> (1 +1)CRp™ "™ P (cosh) = > 1A RV P (cosh) — Mycos0 . (3.21)
=0 =0

Through the orthogonality of the Legendre Polynomials, P, we see that only the

I =1 terms survive, so

2—013 cosf = (Mg — Aq) cosd (3.22)

I
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or
20,

AIZMofR—Eg.

(3.23)

We now combine the two solutions, Equation (3.13) with Equation (3.23), to get

M
A] — —0
3
MyRg*
C, = —F (3.24)
3
Therefore, we can conclude that
MoRg’
q)m,out = W cos (325)
M,
P in = ?Or cos @ (3.26)

where we are concerned with the magnetic field outside the Earth. This allows us to

calculate the magnetic field and its magnitude for our area of interest. Using

N

Bout = ,UOHout = _,ufovq)m,out

8(I)m,out A + 1 (I)m,outé
= — —e,r —
Ho\ " or vl og

8 [ MoRg® . 19 (MyRg’ ,
= —1 {5< 22 cos@) eT-I—;%( 52 cos B | ég (3.27)

we arrive at

2mcos msin@

B= &g (3.28)

where

= BgRg® | (3.29)
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where |Bg is the surface magnetic field strength at the equatorial crossing. Then, the

magnitude of the magnetic field is calculated

om cos @\ > msin 0 >
ne () ()

— ?3\/4 cos? § + sin® 0 = %\/3 cos?0 + (cos? 0 +sin’ ) (3.30)

to get

B=""\1%3cos?0 . (3.31)

r3
These equations of the magnetic ffield will now be put to use to describe the coordinate

system for our model of the Earth’s ionosphere.

3.2 Geometry and Coordinate System Transformations
This section describes the geometry of the system as well as the coordinate

systems used in the derivation. We begin by examining the equation for a dipole.

df B & tand

— = = .32
Tdr B, 2 (3.32)

The solution to this differential equation is the field line
r = Rysin®@ , (3.33)

using R; as the distance to the dipole field line at the equatorial crossing point of

6 = 90°. Then, we use this solution to get an equation in terms of 8,

f = sin~! ( i) (3.34)
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to verify the solution of the differential equation. This gives us
d ( K ) r
r— | sin — | = —/—
dr Ry /1 — T/Rn

L\ BT
2 \ R Ro
r

B QRo\/T/RO\/l "R,

B Rysin® 6
- 2 2
2R0\/Rosm Q/Rg\/lfRosm Q/Ro
sin® 4 _ tand

" 9sinfcos® 2 (3.35)

thus proving this is a solution to the differential equation.

3.2.1 Definition of the Dipole Coordinate System

Now, we must define the coordinate system which will be used for the problem.
Up to this point everything has been done in spherical coordinates (r, 8, ¢). Here, we
will transition to a centered dipole coordinate system (g, p, ¢), because the plasma
dynamics will be defined by the Earth’s magnetic field lines. This will make the
numerical solution of the problem easier. The dipole coordinate system is related to

spherical coordinates through the equations

_ R%cosf  Rjcosd _r R
~r2 Risin*d P~ Rpsin®0  Rp

q p=0. (3.36)

We must begin by defining the unit vectors that make up our dipole coordinate
system. The unit vector relationship is shown in Figure 3.2, where B designates the
magnetic field line, ¢, is the unit vector along the field line (g-direction), é, is the unit
vector vertically perpendicular (p-direction) and positive upward, and é, is the unit

vector in the longitudinal direction (p-direction) and positive eastward. The angle
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/UJ,;

£ 2,

Figure 3.2. Centered dipole coordinate system.

6 is still defined from the north magnetic pole as in Figure 3.1, Rg is the average
radius of the Earth, and Ry is the distance to the dipole field line as described
in Equation (3.33). This derivation is based on the position of the magnetic field,
so we must recall the equations for the magnitude and vector representation of B,
Equation (3.31) and Equation (3.28), respectively, in order to derive the g-direction

unit vector. We begin with

. B 2mcosf  msinf | r3
=5 = 6+ — 69:| 7 (3.37)
r r m (1 + 3cos?f) 72
to arrive at
2cos 0 sin @
6, = &+ réo (3.38)

(1 + 3 cos? 0)1/2 (14 3cos?6)

In order to get the unit vector in the p-direction we recall that it will take the form

&, = Bé, + véq . (3.39)
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Then, we use the inner product to define how the two vectors are related,

€, €, =cosa, (3.40)

in order to be an orthogonal basis o = 90° and 3% + 72 = 1 so that

2cos 0 sin 8

N=0. (3.41)

+ ,
(1+3cos28)2 (14 3cos2h) ™

Then we use g = —%7 to get the relationship %72 ++%=1or

4cos? @
e 42
7 (1+3cos?0)’ (342)

which results in our two coeflicients

_ 4 2cosf 6—+ sin 8 (3.43)

(1 + 3 cos? 0)1/2 (1 + 3 cos? 0)1/2 .

-3

In order to get é, pointed positive upward at the magnetic equator, we force the

correct signs to get

e, =
’ (1+%cos,20)1/2

ing 2 cos
sin 6 — LA (3.44)

(14 3cos? 0)1/2

The final unit vector in the p—direction is positive eastward and defined by

(3.45)

>
©
I
>
[~
X
>
3

We also need to convert the unit vectors é, and €y into our new coordinate

system. We have an equation for é, in terms of é,. and é; in Equation (3.38) that can
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be changed to .
~ (14 3cos?0) 2 ~|sind

= . 3.46
&= 2cos < D cosf ( )
From the equation for é, , Equation (3.44), we have a similar relationship,
1
sin@ (1 + 3cos? ) 2
Co = By —é . 4
€ = F 2cosf 2cosf (347)

Then the two can be combined to get

~

ér = €4

(1—|—300520)1/2 e ( sin @ )2 . Biné (1 + 3 cos? 0)1/2

2cos 2cosf “ 4cos?0

1 1
1+ sin? 6 (1+3cos?6)? _ sinf(1+ 3cos?f)
é, =é é
4 cos? 0 e 2cos b b 4 cos? 0
1 1
. (1+3cos?0) _ sinf (14 3cos? )"
€r = €4 : €p :
2cos b (1 -+ ﬁﬁ;%) 4cos?d (1 -+ 45(“:22290>
1 :
_2cosf (14 3cos?6) 2 sin9(1+3cos2<9)P/2
=é
" 4cos?6 +sin? 6 P 4cos?6 4 sin? 6
1 j
X 26089<1+BCOS29)/2+A sin@(l—l—?)cosQG)P/2 (3.48)
=¢ é .
7 1+ 3cos?6 P 1+ 3cos?0 ’
finally,
2cos sin 6
ér =&, — 46 — (3.49)
(1 + 3cos? ) 2 (1+ 3cos28) "
Likewise, we can find éy from Equations (3.46) and (3.47) above
ind 2 cos 0
Gy = 6y——— — g (3.50)

(1 + 3 cos? 0)1/2 (1 + 3 cos? 9)% .
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3.2.2  Metric Calculation and Vector Operators

Having the definition of the basis vectors in relationship to the spherical coor-
dinate basis vectors allows us to examine all vector quantities in the centered dipole
coordinate system. Now, we must relate partial derivatives and line segments in the
three directions. In order to do this, we need to find the metric tensor for the dipole

coordinate system. We will begin by calculating the Jacobian that relates the dipole

coordinates to spherical coordinates,

9g p 9¢
8( ) or or or
_ Q7p'; ()0 _ 6 8 6
270000 | # P .
9q¢ Op Oy
¢ O¢ O¢
where
dq _ 2Rjcost p 1 8_@_0
or r3 Or  Rpsin®f or
@_7R2Esin9 /2 QTFOSQ 8_@_0
00 r2 90  Rpgsin®6 00
9q dp O
— =0 — =0 — =1 3.52
Oy Oy Oy ( )

which will give a determinant to the Jacobian of

2R% cos 0 2r cos 0 R% sin 6 1
det (J) = <_ r3 ) <_REsin39> a <_ r? ) (RE%irFH)

__ 4Rpg cos? Rg  Rg (sinZP + 4 cos? 0)
~ r2sin®6 r2sinf r2lsin® 6
_ Rp(1+3cos?0)

r2 sin® 0

(3.53)
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In order to find the Jacobian for the coordinate transformation from spherical to

dipole, we must take the inverse of the Jacobian that we just calculated. This becomes

o 00 O
dq dq Oq
p_adi(d) _0(nb9) | 4 p e (3.54)
= det(J) 9(pq.v) R |
o 00 D
O¢ O¢ Op

For this, we need to calculate the adjoint matrix and then divide by the determinant

that we just calculated,

_ _2rcosé _ 1 0
Rgsin®6 Rgsin? 6
: _ R2 sinf 2R2 cos @
adj(J)= | Fhsint 2R 0 . (3.55)
0 0 4R2E'r cos? @ + R% sin @

Rgr3sins 0 Rpr?sin? 6

This gives
_ 2rcosé r2 sin® @ _ 1 r2sin® @ 0
Rpsin®4 Rp(1+3cos? 0) Rpsin?d Rp(1+3cos? 8)
— 2 o 2 i3 2RZ% cosd 2 sin
J L R% sin r“sin” 6 _ 2y r2sin” ¢ 3.56
= r2 Rp(1+3cos? 9) r3 Rp(1+3cos? 8) 0 ! ( )

0 0 o

_ [ 4Rgcos? 6 r? sin3 9 Rgp r2sin® 6 _ :
where o = < r2sin 0 ) <RE(1+3cos2 0) + ('r2 sinﬁ) Rp(1+3cos?6) ] — 17 which leaves us

with the solution

o 273 cos § _ 1 0
R%(1+3cos? 6) R%(1+3cos? 0)
J—l — Rpsintg _ 2Rgcos@sind g . 3.57
= (143 cos? ) r(1+3 cos? §) 0 ( )

0 0 1
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At this point we have the partial derivatives needed to calculate the metric with

aor 273 cos 0 9 r%sin @_0

dq R% (1+ 3cos?6) dq R% (1 + 3cos?6) Jq

or  Rg sin 0 90  2Rg cos f sin® 0 dp 0

dp (14 3cos?0) op r (14 3cos? 0) dp

oy 9 _ % _v. 358
Oy ot ot

For the orthogonal coordinate system we are using, we know that the off-
diagonal components of the metric tensor are zero. This means that we can limit our

investigation to the diagonal components where the equation of the line segment is

ds® = giidqy + gaadgs + g33dq; (3.59)

where ¢; is a generic coordinate. This gives us the equation of the metric, g;; as

i = Z (gﬁj )2 (3.60)

J

and h; = ,/g;; can be used to develop the scale factors needed in the vector quantities.
This can be seen in the dipole coordinate system version of the linear differential,
the area differential, the volume differential, the scalar gradient, the divergence of a

vector quantity, the scalar Laplacian, and the curl of the vector quantity, respectively,
dr = é,h,dq + é,h,dp + é,h,dp (3.61)

4o = é,hyhodpdp + é,hgh,dgdp + &,hghydgdp (3.62)

dV = hgh,h,dgdpdy (3.63)
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Tazp L Tow . Toy

= = 1 0 0 0
A= — .
v [8 (A hyhy) + e (Aphghy) + o (Awhth)] (3.65)

h
o, 1 0 [ hphy Oy o O hyhy O
VY [0 <h aq)%p(rl*ap)*aw(h awm (3.66)

Eqhg Ephy  Eohy,

v % A — 8 8 8
Vxd=ool s 2 2| (3.67)

h"lAq PAP h‘P A‘P

This means we have to solve the equations
fEEE e
hy = \/(%Z)Q + (%)2 + (%)2 (3.69)
@G e

[hus, we need to utilize the chain rule on the terms in the square root based on

partial derivatives that we know. For example,

' 0
0z _ Owor | 0x0b  Ozlp (3.71)
Bq Ordq 000q 0Opdq’

where we need to recall the Cartesian representation of spherical coordinates

r =rsinfcosy y = rsinfsing z =rcosf (3.72)
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so that the partial derivatives with respect to the spherical coordinates are

ox " Oz <in g ox 0 si
— = sin0 cos — = kinf cos — = —rsinfsin

or ' v or ' i Op e v

9y sin # sin 9y cos 6 sin %y sin € cos

— = 8s1 1 — =7 — = Thsl

or v B0 v B v

0z 0z 0
8_7Z“ = cos 0 8—; = —rsinf é =0. (3.73)

Continuing with our example for h, we get

Ox 2r3 cos 6 " 72 sin 9

— = sin f cosp — r cosf cos

dq R% (1 + 3cos?6) i R% (14 3cos?6) 7

oy 2r3 cos 6 o r2sin 6 o

= = — sin fsin ¢ — r cos 8 sin

dq R% (1 + 3cos?0) ? RZ (1 + 3cos? §) 7

d 2r3 cos 0 Zsinf

o L co® cosf + 7 sin rsing . (3.74)

dq R% (1 + 3cos?6) R2 (1 + 3cos?6)

Then, we need to square these terms

2\’ _ 9r%cos? fsin® A cos®
(aQ> © RL(1+3cos?0)
oy \ > _ 9r%cos?@sin® fsin’
(8_Q> ~ RL(1+3cos?6)?

(%) 2 _ 478 cost N rbsint g B 475 cos? 0sin? 6 (3.75)
q RL(1+43cos260)>  RL(1+43cos?26)® RL(1+3cos?b)’ '

These can then be combined to calculate the scale factor |, utilizing the trigonometric

identities sin?@ + cos?# = 1 and sin? ¢ + cos? ¢ = 1 multiple times,



39

743

h, = 919 cos? A sin® 6 cos® © + 9r° cos? B sin® A sin?
! R%(1+300820)( 7 4

+ 4% cos* 6 + rOsin? @ — 4r° cos? A sin® 9)%

743

h RZ (1 + 3cos?6) (

1
$in26 + 4 cos” 0) * | (3.76)

which results in

r3 ROg sin® @

hy = = :
! R% (1 + 3 cos? 0)1/2 R% (1 + 3 cos? 0)1/2

(3.77)

This process can be repeated for all of the other scale factors resulting in the equations

Rpsin® 6
hy = —250 7 (3.78)
(1+ 3cos?6)

h, =rsinf = Rysin®4 . (3.79)

These can now be used to derive the specific quantities from Equations (3.61)—(3.67).

Differential Radius Vector Element:

r3 Rgsin®6

R% (1 + 3cos?0) (1+300820)1/2

dr = ¢, 0 dq + é, dp + é,rsinfdy (3.80)

or

RS’ sin® @

QR% (1 4 3 cos? 0)1/2

Rgsin®6

dF = ¢ ;
(1+ 3cos26) 2

dp + é,Rokin® Odyp (3.81)

dg + ¢,




40

Differential |Area Vector Element:

. Rpgrsin*é
do = ¢, = T dpdy
(1+ 3cos?0)
r¥sin r3 sin® 0
é é .82
+é dpdg0+eqRE<1+3COSZG)de<p 3.8

pR% (1 + 3 cos? 6)1/2

or
.. RgRysin®é
do=eé dpde
! (1 + 3 cos? 9)1/2
Risin” 0 R3sin® 0
2 dpd 2 d .
te p ¢+eqRE(1+3cos20)ﬂp ? (3.83)

DR% (1 + 3 cos? 6)1/2

Differential Volume Element:

rdsin? 0
dV = dgdpd 3.84
Rg (1 4+ 3cos?6) epae (3:84)
or
Risin'?6
dV = 0 dgdpd 3.85
Rg (1 + 3cos?0) 1apty (3.85)
(Gradient:
1 1
. 2 (1 20)2 9 1+3cos?8)20 1 0
WlﬂzéqRE( + 3 cos? §) _¢+ép( + C?S?) )= oy 6 o (3.86)
r3 dq Rgsin®0  Op rsinf dy
or

Ty =p R%(1+300320)1/28_¢+é (1+3c082¢9)1/28_¢ 5 1w (3.87)
B R3sin® 9 d¢g " Rgsin®6 Op “Rysin®00¢p '
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Divergence:
6.;1_1%%(1—1-300820)2 rsint A
r4sint @ dq (1+ 3 cos? 9)1/2 7
1+ 3cos?8) 0 4sind 1 0A
( 4C?S4 ) a r*sin a4 — . (3.89)
Rprtsin® 0 Op (1 + 3cos? ) 2 rsinf Oy
or
{7‘2:}%(1—1—3%820)& sin® @ 4
R3sin'?0  dq (14 3 cos? 0)1/2 ’
1+ 3cos?0)” 8 1T 0A
(L1 3cos?0) ” ¢ (3.89)

(Ro4,) +
RpRisin®6 adp P/ Rosin® 0

Scalar Laplacian:

V2w—R4 7 (1+3cos’0) 0 sin408zp
- r4sint 0 Oq 7‘2
(1+3cos’8) & 1 0% 5.00
RZrisin*6 Op |sin 0 (919 T sin? f Op? (3.90)
or

N Rp(1+3c0s’0) 9% | (143cos?h)|0 [ ,0¢ 1 %y
V= T Rene 0¢f | RLRisin'6 “op Tt 9 ap? OOV

0 o sin D Risin® 8 0p
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Curl:
[ . r3 o Rpsin® @ A : i
é é,rsinf
\ T R2 (143 cos? 6) 2 ep(1+3<3052 P
ﬁXZ:REﬂﬁ-COS 6) 9 N N
rdsin g dq ap oy
Agrd ApRpsin® 0 A rsin
| R%(1+3cos? 6) ' (143 cos? 9)1/2 v |
Yo
| (1 +3cos?26)* O . 1 04,
— Z (A ) — 9%
“a Rprsint0  0p (Agr sin rsinf Oy
1
1 94, RL(1+3cos?6)” 8 .
J e — (A 0
c [r sinf Oy r4sin dq (Agrsind)
; (1 + 3cos?0) B2 9 A, sin® 0
“ r3sin®6 Edq (1+ 3 cos? 9)1/2
A 3
9 (LA (3.92)
Ip (1 + 3cos?6) 2
or
o . '(1+3cos26)1/28<AR) 1 84,
= € _— S
| RyRpsin®0 dp' * " Rysin®0 dp
: 1
1 04, R%(1+3cos?6)” 9
+é 1 _FE — (A, sin®6
ep Rysin®0 0y Risin® 4 Oq (A sin”6)

~

o

Ry (1+3cos’d) 9 A,sin® @
Risin’0  0Oq (1 + 3cos? 3)1/2

(3.93)

1
(1+3cos?8) 2|0 3
- % AR

R3Rpsin’ 6 p( ofio)

If we apply the definition of the radius, Equation (3.33), then we can have different

representations of the divergence and Laplacian.
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Divergence in Condensed Form:

?"3

= R%(143cos?0) 0
(1 + 3cos? B)l/Q

V. A Y
v 76 0q

Aq

(1+SC?S426)§ risin 6 R 1 A, 501
Rprtsin® 0 Op (1 + 3cos?6) ) rsinf OJy
Laplacian in Condensed Form:
1+ 3cos? 6) &2 14+ 3cos?6) 0 S, 1T 92
v2¢:(+ cos” 0) 0% (+.czs ) & .7“2 o L P’y (3.05)
ré 0q? risin*d  Ip \sin’6H Op r2sin® 6 0p?

3.2.8  Application of Dipole Coordinates
The ionosphere that we are going to examine next is a plasma suspended
above the Earth. An important part of the momentum equation for this plasma is

gravity. Here, we will examine gravity for later inclusion as

é, . (3.96)

We put the equation for the é, unit vector, Equation (3.49), in the (q, p, ¢) coordi-

nates into the equation for gravity to get

2g0R% cos 6
RZsin* 0 (1 + 3 cos?6)

2h,REgqcot @ h,Reg . R
=P h20 é, + ph2 0 — Geq + 9oy - (3.97)
@ @

goR% sin @ .
é
RZsin 0 (1 + 3 cos? 6)1/2 ’

A~

1/2 €q +

g =
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This same conversion will also be required for the magnetic field vector, which yields

= ByR% (1 + 3cos? 0)1/2 R
B = - —5 €q
R3sin® @

_ BoRg

k= B, (3.98)
q

Lastly, we will apply this procedure to the neutral wind vector:

U = Ur€y + Uy + ULl

_ 2cost ¢, sin @ : ép]
(1+ 3cos?6) (1+3cos?f)
o sin @ o, 2cost B
(1+3cos?f) (1+ 3cos?6) 2
2u, cos 8 Uug sin @ ] .
= i + 1 e
(1+3cos?6)?  (1+3cos?f)”
n u, sin 0 _ 2ug cos e, e,
(1+3cos?26)2  (1+3cos?f)”
_ [2R0hpur cos N Rohpug sin 9} :
Rgh, Rgh, 1
{ROfZZ;Lim o PRO/g;LZ:OS Q} o+ ugl,
= Ugby + Upép + ULE, (3.99)

This completes our transformation to the dipole coordinate system.

3.3 Derivation of Electrostatics
For this step we start with the equations of motion and electrodynamics of
the ionosphere [Schunk and Nagy, 2000]. This includes the continuity equation, mo-

mentum equation, the partial pressure that will be used to specify the temperature
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instead of an energy equation, and finally the definition of current and current con-

tinuity.

Continuity Equation:

+ V- (nsus) = P, — L, (3.100)

Momentum Equation:

Ou =2\ - — - - . =
N [ ;t + (us-V> us} +Vps + V-1, —n.e,(E+us x B)
+ ngms [~§ +20 x U + Q x (fl X F)H (3.101)
stﬂst — NgMg
= S i ) Yo P (7, - g, )

Partial Pressure:

PS = nskBTq s (3102)

so the pressure contribution to the momentum equation is

VP, =V (nkpTy) = kgV (n,T}) . (3.103)

Electrostatics:

= Z Ngls€s (3.104)

.y

w

i

S
I
o

(3.105)
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are used to get a closed set of equations that can be used to derive an elliptical

potential equation for the non-divergence of the current.

3.8.1 Assumptions and Scale Analysis

We are making an electrostatic approximation due to the assumptions that
are allowed in equatorial electrodynamics. We will assume that plasma waves can be
neglected, the flow is subsonic, stresses are small, Coriolis and centripetal corrections
are not required, the effect of heat flow on the momentum balance is negligible, neutral
and ion-electron collisions are both important, and there is no net production or loss.
We will only consider two species (ions and electrons) in the calculations and assume
neutrality of the species (n, = n; = n) when calculating the current. This leaves us
with the following equation for each species as a result of Eqn(3.101):

k €y = = ~ . ~ N
; VT, — (B + s x B) = § = in (tn — Us) + Ve (U — Us) - (3.106)

The last collisional ferm is due to the ion-electron collisions and is only necessary in
the direction along the magnetic field lines. The method of solution is to separate
the equation into our ¢, p. and ¢ coordinates for each species by calculating a dot
product with each of the unit vectors and then calculating the species flow equations

to substitute into the current expression [Equation (3.104)].
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3.83.2 Ion Momentum Equation

For the ions the momentum equation [Equation (3.106)] becomes

kB = €
V (nT;) — — (Eé, + Eyé, + E é
sy (ni13) oy (Eqéq + Epép + Epéy)

)

€ ~ A o ~ ~ « R .
- (Uip€p X Béy F Uiy X Béy) — gu€q — Gpp — Vie (Ueqfq — Uigfy)
i

— Vin (Ung€q — Wig€q T Unp€p — Wip€p F Upply — Uip€y,) =0

(3.107)

The next step is to isolate the ion velocity by jusing

— ! N
U = U; + Uy

(3.108)

to define the total ion velocity as the neutral velocity, u,,, plus the relative ion velocity,

—t
u;.

For the g-direction, we take the dot product with é,; this would look like a

simplified version of Equation (3.107), where the u,, cancels,

kg 0(nT;) eE,

hqnimi dq m; ~ e Vin [unq o (u;q + unQ)H

v [ (0l + i) — (1l + )] =0

(3.109)

with a result that uses the definition of the current [Equation (3.104)] in the g¢-

direction to get

y ek, kn d (n;T;) N 9q

= _ _ Piedq
iq
MiVin hqnimil/m dq

Vin, nelin

(3.110)



For the p—direction we calculate a dot product with é, and the result is

T 6 KTLZE) B e _ ,
hgonimil/in ‘890 My Vin |iE<F (uip + unp) B}

= [unp = (uly + unp) ] =0

N : 1
This will give us an equation for u,,:

- e kg 0(nTh)
Ui = MiVin [E4P (uip + Unp) B} hgonimiyin ago ’

Likewise, our equation for the ion flow in the p-direction is

r € ’ . kg a<anZ) 9p
Hip = MiVin [Ep * (uw * UW) B} hpnimiyin Op * Vin '
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(3.111)

(3.112)

(3.113)

The two perpendicular flow equations are dependent upon each other and must be

solved simultaneously. One simplifying assumption is to say that the neutral flow

times B is just part of the electric field and define the parameters

E,=FE,—Bu,, E,=E,+ Bu, .

This will allow us to combine the two equations simply, and the result is

' € ’ € / ' kp a<nZTZ)
= E — E ' B) —
Hip mﬂ/m{ ¢ [mﬂ/m( p+uup ) hpnimiyin op
L9 } R} ks (D |
Vin hgonimil/in dp

(3.114)

(3.115)



49

which becomes

B \? 2B B
U +u;¢<e j: g _ P p_ ezgp

i "4 2,,2 7p

Mm;Vin miVin m;Vi, m;v;
k B 0 (n;T; k 0 (n;T;
sBe 0(nt) ks 0T (3.116)
honym2v2  Op honim;viy, — Op
Recall the definition for the cyclotron frequency of any charged species is
B
e = 1B (3.117)

E]

and the ratio of the cyclotron frequency to the collision frequency is given by

5 — 11
K . (3.118)
This is used to simplify the form of the flow equation
L G . S B
W B\1+k2° ¢ 1+r2 P (1 H K2) Vi,
nimivin | 1y (1 +K2)  Op hy (1+K2) O '

Similarly, we can follow the exact same steps for ion flow in the p-direction to get

1 Ki g
— L 5 E)+—7°
Hip B(]—i—/{? p+1+ ) (14 &) v,

_ "B S <” )\ . (niT3) (3.120)
niMiVin [ he (1 +K2) Oy hy, (1 +K7) Op
Finally, we can simplify our flow parallel to the magnetic field to get
zE k a zﬂ i€ ’
o =t ks 0T | 9y Mieds (3.121)

“a B hqnimi Vin 8(] Vin NeEVin
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Equation (3.119), Equation (3.120) and Equation (3.121) are the final bulk ion flow

equations that will be used in determining the current in the electrostatic equation.

3.8.8  FElectron Momentum Equation
Now we will follow the same steps for the electrons. The equations will be
very similar except for the sign of the charge, e, is now negative and gravity can he

neglected. This gives us a momentum equation for our second species that looks like

kp = e . . . . . . .
" f; V (n.1.) + p— (Eglq + Enép + Eyéy + Ueby, X Béy + b, X Béy)

— Vep (Ung€q — Ueq€yq + Unpp — Uepfp + Unplip — Uey)

— Vi (Uig€q — Uegly) = 0 . (3.122)

We will again isolate the electron flow by employing the equation

—

Ue = . + Un (3.123)

to solve the momentum equation for the bulk flow equations. The result for the

g-direction flow is

k?B 0 (neTe) n eEq

— Ven [“nq - (uéq + “nqﬂ

nemh,  0q e
— v [(u;q + unq) — (u’eq + unq)} =0, (3.124)
with a result of
F k d(n.T. il
ul, = —— B O(nel) | Veis (3.125)

eq - -
MeVen  hgneMeVen,  Og NEVen
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The result for the ¢p—direction flow is very similar to the ion equation

kn 5(neTe)+ e
NeMeVenhy  Op MeVen

[E, — (ul, + Unp) B]
— [tng — (Ul +unp)] =0, (3.126)
which results in a flow equation of

e kg 0 (n.T.)

= — E, — (ul o) Bl — 3.127
Uey Mol [ v (uep +u P) } NeMeVenhy O ( )
In the p-direction we get
, e , kn 0 (n.T.)
= — E no) B| — . 3.128
Uep Mol [ p T (uw +u 90) } NeMeVenhy  Op ( )

Solving Equation (3.127) and Equation (3.128) simultaneously with the simplifica-
tions of

E,=E,+ Bu,, E,=FE,— Bu, (3.129)

results in the equation below:

i = € g kp 0 (n.T.)
¢ Melen ¢ nemey@'ﬂhS@ 8(,0
eB —e kg d (n.T%)
E’ ' B) — 3.130
MeVen | Melen (B, + .. B) NeMeVenhy — Op ( )

Using the definitions for the cyclotron frequency [Equation (3.117)] and ratio of ffre-

quencies [Equation (3.118)] and moving all of the flow terms to the right-hand side,
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we find

1 [ —k K2
I ° g I
Hey B<1+n§ 14 k2P

kg [ Ke J (n.T.) N 1 J (n.T.)
NeMelen [y (14+1K2)  Op he (1+k2) Oy

(3.131)

Similarly, for the other direction we get

1 K K2
o € / e !

k . 3 (n.T. 1 d (n.T.
4+ -8 i (n.T) _ (n.T.) (3.132)
NeMelen h% (1 + Iig) 8<p hp (]- + Kg) ap
Finally, we simplify our last flow pquation to
, keE, | kg d(nede)  Veidq
=— — . 3.133
Heq B hemeyenhq dq + NEVey, ( )

Equation (3.131), Equation (3.132) and Equation (3.133) are in the final form like our
ion equations above. Now, we have all of the information that we need to calculate

the current density for this problem.

3.8.4 Clurrent Derivation and Electrostatics

Recall that Equation (3.104) gave us a current density vector that can be
separated into the three dimensions. We will use this equation as well as the non-
divergence of the current [Equation (3.105)] to derive our final equation for the

model. Start by finding the ¢-direction current density. We will also apply the
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quasi-neutrality approximation here (n; = n. = n),

!

Ja = ne (Uig — Ueq) = 1€ [(Uly + Ung) — (Uby + Ung) | = ne (ul, — ul,)

ne nekg 0 (nT;) nekg 0 (nT.)
= X5 i e E, -
B (ki + Fie) Ey nmvinhy  0q + nmevenh, 0q
i neg, i <Vei + ﬁ) j; . (3134)
Vin en Vin
Now define
v, = (” + ”) (3.135)
Ven Vin
so that

, ne
Jo(1+v.) = E(n‘i-l—/ﬁe)Eq—

neks 9 (nl.)  negy (3.136)

nMmeVenhy  0g | Vin
Then, looking at the ¢p—direction we get

Jg = e (u;P - “izso)

ne K K2 K
_ - ? El_ 7 El e El El
B [(1—1—/1? L P)+<1+,@g S“Jr1+ p)

+ nekp K 0 (nT;) B
nmivi, | hy (1 +K2)  Op h, (1 + K2

N nekp Ke s, (nT) 1 )] Ki  negp
NMeVer | by (1 +K2)  Op h¢ (1+ K2) \&p 1+ 52| v
ne K

= — ¢ _ E
B{<1+ﬁ§+1+ﬁ2> <1+/£2 1+/<:> ]

N nekp [ Ki o(nly) }
nmivi, | by (1 + K7) 3]) h (1 + K2 &p

nekg [ Ko d(nT,) + 1 GKnTe)
h,(1+k2) Op (1+&2) |9g

] fo 9% - (3.137)

MM Ve, 1+ K2 vy
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Similarly, we can find the p-direction current density equation,

Jp = ne (u;p - u,ep)

R K2

ne i :
- — || —=E ¥ —_F E'
B KH&% SRR ¢>$<1+K2E” + ﬂ

nekpn K; 0 (nT;) N
nmVin | hy (14 k2)  Jgp h, (1+/€
nekp Ke d(nle) 1 ) 1 neg,
NMelen | hy (1+K2)  Op hp (1+ &2) 8p 1 + K2 Vi
e Ki
_ = E'
B{(l+/ﬁ:§+1+/§2> (1 + K2 ) }
nekp ®:  O0(nT) n nT;)
nmVin | hy (14 k2)  Jgp h, (1+/€ (9p
nekp Ke d(nT,) 1 s, (nTe) 1 neg, (3.138)
NMelen | hy (1+K2)  Op h, (1 + &2) 1 + K2 Vi '
We also need to define the Pedersen, Hall, and Parallel conductivities to be
ne kK; ne ke
i = — e = — 1
or B 1+ k2 oF B 1+ k2 (3.139)
ne k2 ne k2
i = = —— e = ——— 14
TH=B1rrr TH T Blys2 (3.140)
ne kK; _ne ke
Opi = El—i—l/r Tpe — B 1—}—1/,r (3141)
so that tthe combined conductivities
0o =00+ 0o Op=0p;+0p. O =0H— Omi (3.142)

can be used to simplify the three current equations. We substitute the conductivities

as well as the definitions of E, and |}, [Equation (3.129)] into the current density
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: ks 9 (nT3) 9 (nTe) migy
= oE - o1 — Oge 0i T 3.143
Ja= ol enh, 7 dq “ 0q te ( )
with
Je = 0p (Ey — Bunp) + om (Ep + Buyy)
k’B ﬁ(nﬂ) k’B 8(nTe)
—0p; Ope
enh, Op enh, Oy
kg O(nT; kg O(nT.
+ om; b M OHe B M
enh, Op enh, Op
— o (3.144)
e
and
Jp = 0P (Ep + Bung) — on (Ey — Buyy)
k?B 8(nﬂ) k‘B 6(71Te)
api Pe
enh, Op enh, Op
k’B 8(nTJ k’B 8(7?,Te)
—O0Hi——— @ — OHe —
enh, Op enh, Oy
+op i (3.145)

Now, we have to derive the divergence of the current using Equation (3.105)

and the dipole representation of the divergence operator,

R% (1 +3cos?6) 0

.|

6-‘:

Risin?9  og
(1 + 3 cos? 9)1/2 G,

RpRisin®0 ap (

0Jp

sin® 4 ;
(14 3cos? 0)1/2 !

L

_— . 3.146
Rysin® @ dyp ( )
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3.8.5 Continuity Equations

The derivation begins with the continuity equation [Equation (3.100)] arriving
at an equation for both species considered in the model. The major ion species are
calculated throughout the ionosphere to arrive at the total number density, but the

density is dominated in the F-region by monatomic oxygen, O~.

Ion Continuity:

dt ' hghyh, |Oq

0 0

(hphyniugg)

or

?”’3

1, Tiliq
(1+3cos?f) " ]

4sinf 1
T 1 N Up + ; i (nluw) = P, — L, (3148)
(1 + 3cos? 6) 2 rsin 6 0y

ot 70 Jq

on; N R (1+ 3cos?6) 0

(1+3cos’0) 9
Rprisintf dp

Electron Continuity:

on 1 0
- = (hph elle
at " hghyh, [(9q< phoneticq)

0 s,
+ B (hghpnetep) + o0 (hghpnete,)| = Pe — Le (3.149)
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or

In. R%L(1+3cos?6) &
+

ot o 0q

o
(148 Los.2 0)1/2
rsiné

(1+ 3cos?d

+

Nelegq

1 0

1+ 3cos?0)
| | >1/2”5“6p] * rengay Metee) = B~ Lo, (3150)

Rprisin*0 8_])

where we must remember the velocity relationships, Equation (3.108) and Equa-
tion (3.123) used in the derivation of the momentum equations for u; and ., respec-

tively.

3.4 Fieldline Integration for the Two-Dimensional Model

The two-dimensional equatorial plane allows for a calculation of the potential
for a Poisson’s Equation, an elliptic differential equation, in (R, ¢) coordinates (Fig-
ure 3.3). We will later define the polar coordinate, R, to be the equatorial crossing
altitude, Ry, in the dipole coordinates. We will need to relate the difference in local

space to the integrated space, where we have the relationships

dp 0 (R 1
% _ R<R_E>_R_E o= (3.151)

so that we can say the differential relationships between the dipolar coordinates and

the polar coordinates are

Redp=dR  dp = d¢ (3.152)

and we know that in polar coordinates we have the scale factors

hp=1 hy=R (3.153)
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Dipole
Coordinates

Equatorial Plane

~

™

Coordinates

Spherical
Coordinates

Figure 3.3. The coordinate systems used in this derivation. a) The spherical coor-
dinate system in relation to the dipole coordinates is shown where the ¢-direction is
the same in both. b) The polar coordinate system in the magnetic equatorial plane
that results from integrating along the magnetic field flux tubes.

and electric field equations

1 0@ 1 00

To derive the potential equation in polar coordinates, we must first examine the
scalar potential for these electric field components given the relationships we have

just derived,

7 = 2 2 12
EZ—V@:—éqRE(1+BCOS 6) " 0P
r3 dq
1
14 3cos20) 2 o® 1 0%
—ép< + 3 cos’ ) iy . (3.155)

Rpsin®®  dp  “rkinddyp
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Therefore, we can break this into components and say

_R%(1+300520)1/2% 1 00

o o __ 192 3.156
L r3 dqg  h, g (3.156)
b (+3c20)Po0 100
P Rgsin®0 dp h, Op
1 9% dp OR 1 9® Rg
- —— = —— — :—E 1
h, p OR p hpaRRF’ hy " (3.157)
1 9% 1 0@ 1 0% 100 R
o 00 10 1000000 102 R, = g5

¥ rsin@dp  h,dp  h,0pdpdp  h,0¢ h,

Then, we can set up the integrated value relationships for the current continuity
equation,

(V-7=0)a= / " (V7 =0) hohyhodpdg)| . (3.159)
.

where A = hrh,dRdy is the area of the polar coordinates and h,, h,, and h, are
scale factors in (g, p, ¢) space. Figure 3.4 shows the relationship between the inte-
grated volume of the dipole coordinate flux tube and the related area of the polar

coordinates. This becomes

[ : (i (Jrho) + E(JqﬁhR)) = o} hihsdRdg — /q " g

hrhy \OR 0
1 0 J . 9 .
N\ Wwhn 6_(] (Jghphe) + 8_p (Jphahe) + % (phghp) | = 0| hphodpde . (3.160)
q'lplle

The first term on the right-hand side of the equation is an integral along ¢ of j, from
one jpoint on the field line where the current is zero to another where the current is
zero (below E-Region altitudes). This results in the g term evaluating to zero, leaving

only the last two. Equating like terms on the left and right sides of the equation, we
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Magnetic Flux Tube Volume Area in Integrated Space
H_H:““‘“:_H_‘H“‘*\ h d¢
. T 1
D T o
L i \\\ \\ .,\A l :“Q
kN /N2 N
\| g \III I."’ //' \\..\ \
\\ \ ‘.\. \ || ] \ |
\ i— | I
al 3 'l,\ \ / /
-Ca\" p \ S IR _f
\\‘\ ;/r
h do =, y
~__ -

Figure 3.4. This is a schematic of the flux tube volume as compared o a polar
coordinate area after integrating plong the g¢-direction.

get the relationships

q+
Inhads = [ dauhyh,de) (3.161)
-

g+
JohrdR = / dq Gohahydp) (3.162)
o

These definitions allow us to derive our integrated conductivities and weighted wind,

gravity, and pressure quantities. The current equations in polar coordinates are

defined to be

R3.B,UP R3 B,UH
O SRS
(4] 0

+ goZp, + JET + JHE (3.163)
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and

- [(10® RYB,UE 9% RLBUM
Jo=-Yplport—p | "2l op— —p
R3¢ R3 OR R}

— goSu, F )T F I)E (3.164)

This will allow us to get an exact definition for each integrated quantity.

3.4.1 Integrated Currents and Conductivity Definitions
From Equation (3.161) and the definitions of the differentials in integrated
space we will be able to derive the R — p relationships that make the integrated

model possible. First, we have

q+
RyJg = / dgq (jphqhw)
q—

q+
_ / dahyhy {ow (B, + Bun,) — 0w (E,, — Bun)
-

+on R% sin 0 : m;go
72 (1 + 3cos26)2 €
kg 1 [ d (nTy) a(nTe)}
— — 7 |OPi — Ope
en h, op

op
ks 1 {Uma(”m n a(”Te)]} . (3.165)

en hg Oy OHe Op

Breaking this up into seven terms we get the definitions:

Term 1

Rg

q+ q+
RoSpER = / dq (hyhy,opE,) = / dg [hqhwap (h—ERN (3.166)
q— q— p



to define
q+ h
Y, =25 h.dg | —=
g Ry /q— ! q<hpap>
Term 2
R3.B,XpUP a+
Ry—2—— ¢ — / dq (hghop Buin,)
1
a* BoR:, (1 + 3 cos?6)
= dg | hoh 0°'F
/q_ q[ @ OP R}sin® 0
to define
q+ 1
EpUqf = Rm/ hedg (h—aqu) .
q— P
Term B
g+ g+
—R()EHEQS = —/ dq (hqh¢UHE¢) = — / dq |:hqh<pO'H (—E¢
a— q— ®
to define
g+
Sy E/ hodg (om) .
g—
Term 4
ByR3X,UH @t
Ry ——E R / dq (hghyo 5 Byy)

R}sin® 6

1
q+ BaR% (1 29 2
:/ da [hqhwap oR% (1 4+ 3cos®0) y
g

.

np
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(3.167)

(3.168)

(3.169)

(3.170)

(3.171)

(3.172)
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to define
g+ 1
q— P
Term 5
@ R% sinf m;
RogoXipy = / dq (hqhgoO'Pi L v ga) (3.174)
g R2sin* 0 (1 + 3cos26)7? €
to define
Rg ot hy 0pim;
Yp, = — hodg | 2 —-"1 . 3.175
we | o (27 (3.175)
Term 6
1 [ he k 0 (nT;) A (nT,
PP __ ¢ VB 7 e
= — —~+ = " — Opo— " . 1
I Ry /q hald [hp ne <0PZ op " op )] (3.176)
Term 7
1 [ kg 9 (nT5) d(nT.)
JIF = hodg | — | o : ) ° : 3.177
R RO — q q [ne (O-H agp + O-H/ agp ( )
This yields the final equation for Jg:
o®  RLBUJ 100 |RLBUE
Jp=-"2p| —=— ——— Yl =— — R
R= T <8R R ) (R 96 | RS D
+ goZp, + JET + JEE . (3.178)

Likewise, using Equation (3.162) and the definitions of the differentials in
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integrated space, we can derive the ¢ — ¢ relationships that make the integrated

model possible. First, we have

q+
REJ¢ = / dgq (jcphth)
qQ+

= / dgh,h,{op (E, — Buyy) + on (E, + Buy,,)
—

R% sin 0 m;go
— OH;i 1/
72 (1 +3cos2h) % €
kg 1 [ d (nT;) s, (nTe)}
— 7 |OPi — Ope
en h Oy

dg
N kg 1 UHi@(nTi) +m8(nT@) ‘
Op Op

en h,

Breaking this up into seven terms, we get the definitions:

Term 1

- q+ q+ RO
REEPE¢ = / dq (hthO'pE@) 2/ dq |:hth0'p <h_E¢>j|
q— q—

%)

to define
- R q+ h
Yp= %/ h,dg (h—p0p> :
EJq— ®
Term 2
B RSi UP q+
—REOETWQ —— / dq (hgh,opBy,)
0 q—

1
a BoR3, (1 + 3 cos?6)

=— | dg|hghyop—""" n

/q_ q[qpap R}sin® 0 tnp

(3.179)

(3.180)

(3.181)

(3.182)



to define

Term B

5 q+ 1
EPUR = Ro/ /iqdq (h—%punp> .
q— 12

g+
REZHER_/ dQ(hthUHEp
—

to define the same equation as before

q+
) _/ dq hthO'H @ER
q— hp

g+
Yy E/ h,dg (om)
.

)

Term 4
ByR3. Y yUH a+
ot = / dq (hyhyo 5 Buy,)
1
s BoR3, (1 + 3cos? )
= /q dq [hthaH K R Ungy
to define
q+ 1
EHUf = R()/ hqdq <—0Huw> .
- hy
Term 5

q+
REQDEHg = / df] hqh'pO-Hi
q—

R% sinf m;go

R?sin? 6 (1 + 3 cos? 0)1/2 €

)
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(3.183)

(3.184)

(3.185)

(3.186)

(3.187)

(3.188)
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to arrive at the definition

Sy = / " hedg (Z—;%“Hemj . (3.189)
a- ¢
Term 6
J; P = Rip /:Jr h,dq [Z—Z% <Upia(§§) — Upe%;;)>:| . (3.190)
Term 7
R Ny Y LY BT 23] B

This yields the expression for Jy:
~ 10® R3BUE o® RIBUH
_ s (192 BpboYr ) 5 [O TtEPOYs
Js F (R % TR ) "\ 6R R}

— goZmy + J, T+ JJF (3.192)

3.4.2 Integrated Number Density Definitions
Following the same integration technique outlined above, we must also con-
sider the results of the continuity equation in integrated form to get an integrated

number density. This begins by equating the integrated form with the local form of
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the equation,

N - .-
(%+V-NV=@th¢de¢

= /On
/ (E TV- nv; = 0) hehyh,dgdpdy
.

(3.193)

This allows for definitions of N and N, where we use the same argument as before

to eliminate the integration along the field line, ¢, from

N
8@ hrhydRd = / O hohphodgdpd (3.194)
and
1 [0 9 /-
i |om (MVahy ) + @ (NV¢hR)] hrhsdRde
—/q+ L9 uhoha) + 2 (nunohoh,) | hohohodgdpd (3.195)
= . hhh a n'l)zp agp nvup qllp D qapay .

Starting with the time derivative, we can say that the equation is time independent

so the derivative can be ignored. Then, substituting in the same relationships for the
differentials calculated earlier we have

q+
NROREdpckp:/ nhqh,h,dqdpdy
—

to arrive at the definition

(3.196)

N =

1 q+
h,h,) . 1
o / " hoda (nhyhy) (3.197)
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Then, we have two equations that can be used for N. First, we have to derive the

drift velocity of the ions in the integrated coordinate system as

= E X B E¢> ER
V=—"7-—% Vir = = — , (3.198)
‘B€q|2 |B€Q“ ? ‘Beq’
where B,, = B%’# is the magnitude of the magnetic field at the equatorial crossing
0

altitude. Starting with the equality for the R — p direction

o /- “ g
p— (Nth¢) dRde = /q  hadag (nuighyhy) dpdy (3.199)

the equation cam be reduced to

~ a+
NVaRy = / hodq (hunviy) | (3.200)
-
then
N E
N = ) 201
gt /q " hyda (hwn B) (3.201)

Substituting for £, B, and B, we get the definition

q+
/ hodq (hyn) - (3.202)

Equation (3.202) gives us the relationships needed for our integrated number densi-

ties.

3.4.3 Divergence Equation and Numerical Form
The integrated divergence equation with polar coordinate scale factors in-

cluded takes the form:
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=0, (3.203)

which leads to the equation

=~ -~ 9 od  |BoRLUL Tod ByRLUH
V-J=—{Ry|-Sp| = — S o - LR
aR{ L KaR R} + H(Ro 9 R} )

+ gong + J]I;P + Jgp} }

- 1 0 ByR3LUE ® BoRLUH
L0 _EP<_8_¢LF§UR>_EH 02 _ Doltly
— goZug+J) T+ U] =0, (3.204)

Looking at the cross derivative terms, we see that

0 I3 10) o L)
o @%D T (2%)
_ 0Xy 00 82d 09Xy 00 52

3R 90 “"3RB6 06 OR  “"900R (3-205)

where the two cross terms cancel because the equipotential assumption makes the

derivatives interchangable. Then, we define the source terms:

ByR}

S = ORsE (ZpUg — ZuUE) H goZpy + 5~ + Jg© (3.206)
ByR} -

52 = st (EHU¢ ZPU};) — goZug + 5T+ I (3.207)

and this yields the final equation:

. (3.208)

0 (s 0O\, 0 (2p0®) 0%z 0 0% 00 _0(RSy) | 09
0P 96 \ Ry 06 d¢ OR OR 8¢  OR d¢
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This is an elliptical equation that can be made into a simple five point centered-
difference equation. For the numerical equation, let ¢ be indexed by the letter 4 and

R by the letter 5. Then, Equation (3.208) becomes

1 [R(j)Xp(6j)+ RG+ 1) Xp (4,5 +1)
a7 | :
G, +1)-9G ) ®(5) P71

AR B AR
2
Sp(i,)+Sp(i+1,7) ®GE+1,7)—®(3,5)

2 Ag
Sp (i) + Sp (i — 1,5) @@ﬁ—@@—Lﬁ]

L1
A¢

2 Ad
L Salit1.4) = Zal—1.5) (5 +1) = 805~ )

206 ' 2AR
S j+1) = Su(ij—1) ®i+1,5) -G —1,5)
a 2AR ' 2A6
R+ 1S5+ — R -1, —1)
29AR
So(i+1,7) — Sa(i — 1, 7)

27 ’

(3.20)

which can be simplified down to the equation
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@ (i +1,5) {208 [Sp (i,5) + Sp (i +1,)
— R())ARAG[Sy (4,5 +1) = Zu (4,5 — D]}
+@(i—1,5) {288 [$p (1,5) + Sp (1 1.5)]
+ R(J)ARAG[Zy (i,7+1) =Xy (i, — D]}
+{2R() AG°[R(J)Zp (1,5) + R(j+ 1) Zp (i, 5 + 1)]
+ R(J)ARAG[Zy (i +1,5) = Zu (i =L@ (G5 + 1)
+{2R () AP*[R(j)Zp (4,5) + R (7 — 1) Zp (i,5 — 1)]
— R())ARAG[Ey (i +1,5) = Zu (i - L)} P (4,7 - 1)
@ (i,7) {2R (j) Ad* [2R (5) Zp (i, )
+RG+1D)Ep(6,j+ 1)+ R(G—1)Ep (4,5 —1)]
+ 202 255 (i,5) + Bp (14 1,5) + Sp - 1,5)] }
=2R(j)ARAG* [R(j +1)S1 (4,7 +1) = R(j — 1) S1 (i, 5 — 1)]

+ 2R (jYAR?AG[Sy (i +1,5) — Sa (i — 1,5)] . (3.210)

& Then, we

To further simplify these equations, we define the unitless value L = Eo

can expand the vertical spacing by utilizing the coordinate [ = In(L), where we take
advantage of the logarithmic nature of the atmospheric density. This allows us to

derive the equations in the form:

a< aq>) ) < aq>> 0%y 00 95 0% _ O (FoS) | 0 (RoS))

Bl 89 Yp 9 + 96 8 ol 86 @l 96 . (3.211)

This is an elliptical equation that can be made into a simple five point centered-

difference equation. For the numerical equation, let ¢ be indexed by the letter ¢ and
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[ by the letter j. Then, Equation (3.208) becomes

Y I ES USRI AELIE)

Al 2 Al
CZp () + e (1) <I><z',j>—<1><z',j1>}
2 Al
L L2 a) +5p (4 1)) P(i+1,)) - (i)
Ao 2 Ad
SR (4) FEp(i—1,4) ®(i,5) —P(i—1,5)
2 A¢
S 1.0) = Bl 1.0) i+ 1)~ (i~ 1)
2\ ¢ 2Al
2Al 2A¢
_ R+ DS, +1) = R(j —1)81(6,5 — 1)
N 2Al
R(j)Sa(i + 1, 5) — R(j)Sa(i — 1, 5)
+ A : (3.212)

Putting this into the standard form of an elliptical pquation in numerical methods,

a(i, N GE+1,7)+b3,)®6G—1,5)+c(,5) D3G5 +1)

it can be simplified down to the equation
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O(i+1,5) {2Al2 [SP (i,7)H Sp (i + 1,j)}

— AlAG[Zy (4,5 + 1) — Zg (1,5 — 1))}

Y B(i—1,9) {2A12 [ip (i,7) +Sp (i — 1,j)}

+ AlAG [Zg (4,5 + 1) — S (3,5 — 1))}

+®(i,7+ 1) {2A¢* [Sp (3,[/) + Tp (4,5 + 1)]

+ AIAG[Eg (14 1,5) — By (1 — 1,5)]}

+® (1,5 — 1) {2A¢° [Zp (i, ) + Zp (i, 5 — 1)]

— AlAG[Zg (iH-1,5) = Zg (i — 1,5)]}

— (i, 7) {28¢7 [25p (i, ) # Zp (1,5 + 1) + Zp (4.l — 1)]
+ AL [2Sp (1,7) + Sp(i+1,5) +Sp (i - 17]‘)]}
=2AIAG*[R(j+1)S1 (6,5 +1) —R(j— 1)1 (4,5 — 1)]

+ 2APAGR () [So (i +1,5) — Sy (i — 1,5)] . (3.214)

Finally, we apply a checkerboard method simultaneous overrelaxation solver
similar to the one presented in Press et al. [1992] with defined spacing in Al and A¢
to arrive at a kolution for the potential. This [potential can then he converted back
into electric fields and currents for use in physical studies of the Earth’s ionosphere
via the relations

1 0® 1 0®

These equations will allow comparison of the results of the vertical plasma drift in

the unperturbed atmosphere with the results after the gravity wave perturbation.
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CHAPTER 4
GRAVITY WAVE PARAMETERIZATION

Gravity waves have long been considered as a possible seeding mechanism for

plasma bubbles and equatorial spread F. One of our objectives is to investigate the

electrodynamic response of the low-latitude ionosphere to gravity waves with respect
to seeding of plasma bubbles. Here we will review some of the thermospheric gravity
wave theories. We will discuss the travelling ionospheric disturbance (TID) research
that had been attributed to atmospheric gravity waves (AGW). Most of the previous
work examines AGWs in the mid-latitude atmosphere, but some connections can

be made to the low-latitude atmosphere. Finally, the parameterization derived for

our gravity wave model is presented as a tool for determining the effects on the

low-latitude electrodynamics.

4.1 Thermospheric Gravity Waves

The source of tropospheric gravity waves propagating upward into the strato-
sphere, mesosphere and thermosphere from intense convection has been hypothesized
and studied for many years. The mechanism for this energy transport to the upper
atmosphere has not been well understood. The study of gravity waves in the thermo-
sphere at F-region altitude is more difficult and fewer studies have been accomplished
to describe these waves fully. Early two-dimensional studies show three primary grav-
ity wave generators. They are known as the mechanical oscillator, like that caused
by a wind shear [Clark et al., 1986; Alexander et al., 1995], a deep heating source
such as that in tropical convection [Walterscheid et al., 2001; Holton et al., 2002],
and the obstacle effect as seen from orographic lift [Pfister et al., 1993; Alexander and

Vincent, 2000; Vincent and Alezander, 2000]. |A1l three sources produce a spectrum
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of frequencies and wavelengths in the gravity waves they generate. Tropical thunder-
storms are a significant energy source for generating gravity waves in the low-latitude
atmosphere. Walterscheid et al. [2001] showed that a thunderstorm was calculated fo
release 4.5x10% J from latent heating. They went on to show that small-scale waves
(15 km < X;, < 90 km; where ), is the horizontal wavelength) are able to propagate
to thermospheric heights, but tend to get trapped in the thermospheric duct between

95 km and 140 km. Anderson et al. [1982] theorized that mechanically generated

gravity waves on the order of a few hundred kilometers can be produced by the large
neutral wind shear that has been observed fin the evening low-latitude thermosphere.

Fritts and Alezander [2003] published a review of gravity wave dynamics above
the troposphere. This paper was essential to the development or our parameterization
scheme. It provided the basis of the fluid equations and assumptions needed to utilize
this technique. They also covered the concepts of gravity wave parameterization and
some of the different parameterization schemes currently in use. They presented the
components as: “(1) specification of the characteristics of the waves at the source
level, (2) wave propagation and/or spectral evolution as a function of height, and (3)
wave dissipation and calculation bf the effects on the background atmosphere.” They
discussed the commonalities and differences of many schemes to illustrate these three
components. Our parameterization is based on a linear wave solution of the fluid
equations presented in Fritts and Alexander [2003]. The necessary assumptions leave
the wave solution under-specified. The remaining physics of thermospheric gravity
waves is obtained from observational literature, which implies a constant amplitude
with height [Kirchengast, 1996], and the relation between wavelength and period
[Hunsucker, 1982]. The resultant putput is the perturbation winds, temperatures,

and densities that can be added to the background atmosphere.
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A good gravity wave primer is the textbook written by Nappo [2002] that

covers the fundamentals of gravity waves, including dynamics and numerical model-
ing techniques. It provides a means of understanding gravity waves and the theory
behind the dynamics before leading the reader to a reasonable two-dimensional grav-
ity wave model. Both sources cover topics like gravity wave sources, interaction of
the waves with the mean flow to include the effects of tides on the waves, observa-
tional techniques, the spectral characteristics of gravity wave production, and the
atmospheric dynamics of gravity wave theories.

Vadas and Fritts [2004] discuss the thermospheric response to gravity waves
from mesoscale convective complexes (MCC). An MCC is a large-scale thunderstorm
complex that has large vertical motions and is usually associated with intense rain
and severe weather. Ray tracing techniques showed that only the high frequency
(10 min—20 min), long vertical wavelength (25 km—65 km) gravity waves were able
to penetrate to thermospheric altitudes. They also determined that momentum flux
could contribute to the local generation of gravity waves in the thermosphere through
body forces. They note that the long vertical wavelengths translate to larger phase
speeds, which are able to pass through the layers of critical-level absorption unlike
slower waves. Deep convection with strong heating and large vertical motion gener-
ates the most energetic and longest wavelength gravity waves, illustrating that the
intertropical convergence zone is an important location for the generation of waves
that penetrate to thermospheric altitudes. Other research also shows waves can pen-
etrate to 400 km or above with observed periods of 40 minutes to 2 hours and vertical
wavelengths from 30-50 km in the lower thermosphere with higher scales at higher
altitudes [Hocke and Schlegel, 1996].

Vadas and Fritts [2005] derive a gravity wave anelastic dispersion relation-
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ship that includes viscosity and thermal diffusivity. The relationship is impossible to

solve analytically without a number of limiting assumptions. The resulting gravity
waves with large vertical wavelengths (like the ones that are able fo penetrate fo
thermospheric altitudes) have decreasing wavelength with height when viscosity and
thermal diffusivity are included. This is different from the Boussinesq approximation
where the wavelength remains constant in height [Kirchengast, 1996]. They also cal-

culate a [reflecting altitude of 160 km, which is lower than observed for thermospheric

gravity waves. While some of the intial assumptions differ from what is observed in
the thermosphere, their solution does demonstrate that gravity waves energy from
convective thunderstorms can penetrate to thermospheric heights. Their simplified
equation requires an isothermal atmosphere with 7" = 250 K. This is much lower
than the F-region neutral temperatures of over 1000 K. A temperature gradient and
a temperature that is eventually four times greater will probably result in higher
reflection heights.

Vadas and Fritts [2006] looked at the issue of increasing temperatures in the
thermosphere during solar minimum and solar maximum conditions. They were
studying the question of whether deep convection gravity waves could impact the
thermosphere. They found that, since deep convection has gravity waves with phase
speeds above 100 m/s, these gravity waves could propagate, dissipate, and have
momentum flux divergence in the thermosphere. Gravity waves generated by deep
convection had increases in the vertical wavelength as the wave propagated into the
thermosphere. The increase was dependent on the intrinsic frequency of the gravity
wave. One example was a gravity wave with the vertical wavelength A\, ~ 60 km,
which, under active solar conditions increased to A, ~ 150 km for A, > 400 km.

They also found that strong body forcing at altitudes as high as 360 km in their ray
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tracing model could generate larger scale gravity waves in the thermosphere, with

An ~ 100-3000 km, A, ~ 10—400 km, and periods of 1-6 hours. This is a new area
of study that needs further research and could have an important impact on gravity
wave interaction with the ionosphere.

Vadas [2007] continued to use the ray tracing method of AGWs to discuss
thermospheric gravity wave propagation and dissipation from bhoth tropospheric and

thermospheric sources. This work focused on the two main sources of dissipation in

the thermosphere, kinematic viscosity and thermal diffusivity. The new dispersion
relationship derived for the thermosphere with these terms shows that the gravity
wave propagation can exceed 500 km from body forcing in the thermosphere.

We have chosen to use a wave solution parameterization of gravity waves to
describe our perturbation fields for this initial work. This is a method that allows for
computationally quick modeling bf the wave without the full dynamics of the neutral
atmosphere or a rigorous ray tracing technique. The parameterization provides a
sufficient representation of the wave based on the comparison of the magnitudes
and phase of the wave characteristics to those in Kirchengast [1996], that will be
discussed in Section 4.2, to justify the perturbation solution as a result of gravity
wave structure in the neutral winds. The dispersion relationship of Vadas and Fritts
[2005] was not necessary in this initial investigation, but future work will need to
include the dissipative terms. Instead, we apply a balance of wave amplitude growth

and wave dissipation with altitude to the full model.

4.2 |Gravity Wave Ionospheric Interaction
The relationship between atmospheric gravity waves and traveling ionospheric

disturbances began with the comprehensive work of Hines [1960]. Beer [1977], and
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reference therein, discussed the relevance of atmospheric gravity waves to the equato-

rial ionosphere. He noted that fthe large horizontal phase velocity of gravity waves in
the equatorial zone would make them insusceptible to critical layer absorption, thus
allowing waves from tropospheric sources to reach ionospheric heights. Generally, it
is thought that most low-latitude gravity wave events are auroral zone waves that
propagate down to the equator [Richmond, 1978; Hocke and Schlegel, 1996]. This

is evidenced by the progression of this signature in mid-latitude large-scale traveling

ionospheric disturbances from the poles to the equator [Chimonas and Hines, 1970].
A review of gravity waves generated in the high-latitudes was written by Hunsucker
[1982] that covers all the observational techniques and shows a cause and effect re-
lationship between gravity waves and TIDs. Balthazor and Moffett [1997] studied
auroral zone generated gravity waves as they reached the magnetic equator. They
clearly state that a TID is the ionospheric signature of a gravity wave as the ions
are forced along the field lines by the wave in the neutral wind. They also noted
that the family of gravity waves will constructively interfere at the equator to create
stationary perturbations above and below the Fy peak that decay over time.

It has been suggested that these waves arriving from the higher latitudes could
be trigger mechanisms for ESF. However, Réttger [1977] shows that the gravity waves
in the equatorial zone are most likely caused by penetrating cumulus convection.
His work continued [Rdéttger, 1981] to show that the intertropical convergence zone
has a causal relationship that can be modeled to initiate ESF. This provides a di-
rect relationship between larger regions of tropical convection and a possible trigger
mechanism for plasma plumes and the associated ESF.

The original work on AGW seeding of ESF employed a spatial resonance the-

ory that suggests the downward phase velocity of the gravity wave just matches the
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downward E x B plasma drift velocity, allowing time for plasma wave amplification
of the bottomside F-region | Whitehead, 1971; Beer, 1973; Rétiger, 1978]. A series of
studies on the nonlinear theory of ESF and gravity waves was conducted by Huang
and Kelley [1996a,b,c,d] that investigated a gravity wave density and velocity per=
turbation in the coupled continuity and momentum equations. They performed nu-
merical simulations in an idealized two-dimensional ionosphere-thermosphere model
covering the altitude range of 300-550 km and 400 km horizontally. Huang and Kelley
[1996a] showed that the spatial resonance theory is hot required for AGWs to seed
ESF, and is actually inefficient as a seed for ESF. The necessary process is plasma
structure seeding that develops into plasma bubbles associated with ESF through
the Rayleigh-Taylor instability mechanism. |[Huang and Kelley [1996b] found that
gravity waves could be a sufficient seed for plasma bubbles and that different scales
of perturbations to the neutral density can lead to the bifurcation of plasma bubbles.
They also concluded that a perturbation in the electric fields could generate plasma
structuring that leads to bubbles and that the electric field perturbations could be

caused by gravity wave impacts on the E-region [Huang and Kelley, 1996¢|. They

also found that the height of the F-region peak electron density and the bottomside
electron density can create as much variation in bubble production as the gravity
wave seed structure [Huang and Kelley, 1996d]. They illustrate this result through
a gravity wave interacting with a descending ionosphere that produces large-scale
structures, but not plasma bubbles. Tt is likely that gravity waves with differing
wavelengths and periods interacting with both the F-region and the higher conduc-
tivities of the E-region will have important impacts on plasma bubble generation
and the observed nonlinear bifurcation of the depletions usually seen as smaller scale

structures on the west wall [Huang and Kelley, 1996d]. A similar theory of E-region



81

gravity wave influence on ESF through coupling to the F-region was proposed by

Prakash [1999], where he states that electric field perturbations in the E-region could
be caused by changes in the electron density and the associated Hall conductivity.
Satellite measurements that depict seasonal and longitudinal variations in plasma
bubbles seem to indicate that a relationship between convective sources and bubbles
does exist [McClure et al., 1998]. The AGW/TID relationship through the conti-
nuity, momentum and energy equations is explored in detail by Kirchengast [1996],
supporting his ongoing study and modeling of the phenomenon [Kirchengast et al.,
1995; Kirchengast, 1997]. Kirchengast [1996] showed that the AGW amplitude re-
mains approximately constant with altitude, because the natural amplitude growth
of the AGW above 300 km was offset by viscosity effects. We use this assumption of
no amplitude growth in our parameterization. The polarization equations derived in
the appendix of Kirchengast [1996] is an excellent avenue for future work, because
they allow for the inclusion of a stress tensor which accounts for viscosity and ion

drag.

4.3 Parameterization Derivation

This section describes the derivation of the parameterization equations used
to simulate a gravity wave in the thermosphere. This section is based on the gravity
wave development presented in the review article by Fritts and Alezander [2003]. We
will assume that a Cartesian grid in longitude, latitude, and height is a sufficient z,
y, z system on our nested grid. This requires us to calculate all distances (s) using

the great circle route length between two points on Earth.

\/(cos 0 sin Aw)® + (cosf,sin 67 — sinf, cos B cos Ayp)
s = R -arctan

4.1
sin @, sin 0 + cos 8, cosy cos Ay (41)
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where Ay = (pf — ©,), @ is the longitude, 6 is the latitude, and R is the radius from

the center of the Earth. The fluid equations of momentum in three directions, mass

continuity, and energy for a Cartesian grid are

u 10p
_ SO _ .
% fot oo (4.2)
Dv 10p
- —-—-— =Y .
Dt+fu+p8y (4.3)
Dw 10p
ﬁ%—;&—kg—o K44)
1Dp Ou Ov Ow
oDt Tar ey T 0 [4.5)
Do
E—Q (4.6)

where (u, v, w) are the winds in the (x, y, z) directions respectively, p is the mass

density, p is the partial pressure, and X, Y, and @) are forcing functions. The total

derivative is defined as % = % 1% -V in these equations. They also include the
Coriolis parameter, f, and the potential temperature, 6, which are given by the
equations

f =2Qsin(8¢) (4.7)

and

Fp/cn
D [ Do
f=—|— . 4.8
pR (p ) (48)

where pg is the pressure at the definition layer of 1000 hPa, © = 7.2722x107° 57!
is the Earth’s rotation, 6 is the geographic latitude in the Coriolis parameter, and
R =287 J-’kg7* K™, ¢, = 1005 J kg '-K™!, and ¢, = 3519.25 J-kg™*-K~! are the gas

constant, specific heat at constant pressure and specific heat at constant volume of



83

air, respectively.

Now we apply a wave perturbation technique to these equations. This assumes

that all the perturbations take the form

'’ - - _ .
u' = 1exp [z (kx +ly + mz — wt) + QH'} (4.9)

where lthe background amplitude is @, the perturbation is defined as u = a+wu’, which

is the mean plus the perturbation, or as a percentage where E =1+ %I is the density

perturbation. These equation utilize the three components of the wave vector with
k in the z-direction, I in the y-direction, and m in the z-direction. The frequency is
given by w, with time ¢, and the scale height H. We also assume that the forcing
functions are zero and subsonic background velocities, thus eliminating the impacts
of curvature, the stress tensor, and other higher order terms to the fluid equations.
After eliminating the nonlinear perturbations and dividing by the exponential wave

solution, we are left with the algebraic equations

—iT — [T+ ikp=0 (4.10)
—iT + fi+ilp=0 (4.11)
i+ (im— —— ) 5= —gp (4.12)
W m ¥ p=—gp .
N N2
—if + (—) W =0 (4.13)
9

1
—ip + ikl + il H (z’m —~ ﬁ> i =0 (4.14)
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(4.15)

and
i=r 5
Cs
(4.16)

_9do

from the fluid equations, where we have defined the buoyancy frequency,
N?=12
0 dz

(4.17)

¢, = /’Y]{?BT
m

o=-5"
mg

the speed of sound, which we will assume to be infinite later in the derivation,

(4.18)

the scale height,
(4.19)

=w—ku—10.

and the relative (or intrinsic) frequency
w

(4.20)

1

From these equations, we can derive the dispersion relationship in terms of
(k% 4+ 12) (N? — &%)
4H?

the vertical wavenumber.
(@? — f?)

2:

Then, we can use the dispersion relationship [Equation (4.20)] and the perturbation

solutions [Equations (4.10)—(4.15)] to derive the polarization relationships between
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the five gravity wave characteristics. The polarization relationships are given by

(m’k — ﬂj o (4.21)

S\l fR
(212 _ f2
= (2= )5 4.22
p (wz —z’fk) Y (4.22)
o M 4.23
D= TN P (4.23)
-~ ) 2
i— N (4.24)
wg
and
p=—60. (4.25)

The wave is defined to be the real part of the equation, resulting in the parameterized

solutions for the fundamental perturbation properties @, @, @, 71, and T.

b= A, exp (%) cos (kx + ly + mz — wt) (4.26)

=
I

P 2kl — 2K
Ao eXp <ﬁ> [(m) COSs (k.fl' + ly +mz — (.Ut)
- <@fk2 L OfR

T ) sin (kx + ly + mz — wt)] (4.27)

=i
Il

P B3 — £l
Ao eXp <ﬁ> [(m) CcOS (kx + ly +mz — (.Ut)
- (w? Fle— 3k
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) p om Al — 20l
W= A,exp (ﬁ) {N2 — [(@%2 n f2k2) cos (kx + ly + mz — wt)

~92 k— 3k
B (%) sin (ke + 1y +mz = wt)}
w W2 fk — £k
TvE—en K&ﬂp T f2k2> cos (kz + Iy +mz — wi)

A3l_ 2~l
+<w f2o

~ z mN? O fk— f2k
0= A,exp (ﬁ) {0<N2_@2) [<w2l2+f2k2>cos(kx+ly+7’rrz—wt)

Sl— 200\ .
H (W) sin (kx + ly + mz — wt)}
- N2 S — 20
2gH (N2 — %) |\ @22 + f2k2

(1]2 _£3
- <%> sin (kz + ly + mz — wt)} } (4.30)

) cos (kx + ly + mz — wt)

and

=p=—0. (4.31)

To convert the potential temperature to an actual temperature perturbation useful

to the study we must use

(4.32)

As stated earlier, the derived description is underspecified. We employ ob-
servational data to impose missing physics on our AGW representation. First, we
utilize the work in Hunsucker [1982], to constrain the period based on the horizon-
tal wavelength of the gravity wave. This can be seen in Figure 4.1, which shows

observational data from four different studies applying different observational tech-
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Figure 4.1. AGW/TID horizontal wavelength as a function of wave period [Hun-
sucker, 1982].

niques throughout the mid- and low-latitude ionosphere. The Thome study used
the Arecibo incoherent backscatter technique [ Thome, 1966); Toman used a Doppler
method on carrier wave transmissions between widely seperated stations [Toman,
1976]; Calderon utilized ionosondes in New England [Morgan et al., 1978]; and Litva
employed phased-interferometry of solar radio in London, Canada [Litva, 1974]. The
line describing the observed relationship between the period and wavelength we de-

termined to be:

log(Ap,)+0.12
1.574

T = 10[ (4.33)

where the period, 7, is in minutes land the horizontal wavelength, A, is in kilometers.
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Because this relationship is created from a broad geographic distribution of observa-
tions, we have confidence in this constraint on our AGW representation. Secondly,
we make the assumption for the convective source results that & = | = kj,, and that

the energy is primarily spreading horizontally thus,
2mr A2 = 27y AS (4.34)

so that the amplitude of the perturbation follows the relationship

V e

This will provide cylindrically symmetric perturbations to represent AGWs from a
large thunderstorm. Thirdly, we assume that the viscous terms, v, approximately
cancel the amplitude growth with height, so that v - exp (ﬁ) ~ 1 as suggested
by Kirchengast [1996]. This assumption keeps the amplitude bf the perturbations
constant with height within the gravity wave model layer of 80 km to 500 km. For
boundary stability in the electric field model, we linearly decrease the amplitude to

zero from 500 km to 600 km.

4.4 Atmospheric Gravity Wave Model

The nested grid utilized within the two-dimensional electrodynamics study
focuses on the equatorial F-region. The two-dimensional grid is in altitude and lon-
gitude along the magnetic equator. We limit the model domain from 150 km to
2500 km altitude with a logarithmic height scale starting at 5 km spacing and 75°
to 135% E longitude at 0.2° resolution. For the 12 UT run on 26 September 2002,

which is predominately used fin this study, we get a local time domain of 17 LT to
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21 I.T allowing us to focus on the region just before and just after sunset. This places
the study over the Western Pacific sector where the magnetic field declination is ap-

proximately zero. This date was chosen because of relatively active solar conditions

(F'10.7 = 152), but a quite geomagnetic (a, = 4) period near equinox. The equinox
period will have primarily zonal neutral background winds. The evening sector for
our chosen universal time is in the Western Pacific, where large convective thunder-

storms are known to generate AGWs. The placement of the gravity wave central

perturbation is able to be randomly set within the model to allow ffor easier studies
of the perturbation source impacts on the equatorial electric fields land subsequent
plasma drifts. The standard input for the model runs to be shown have an amplitude
of 10 m/s, a horizontal wavelength at 500 km, a vertical wavelength around 115 km,

and a period of about one hour when the relationship in Equation (4.33) is applied.

4.4.1  Gravity Wave Model with Zero Background Wind

The two-dimensional electrodynamics model frequires a three-dimensional de-
scription of the thermosphere and ionosphere in order to calculate the flux tube
integrated quantities. This requires a three-dimensional gravity wave parameteriza-
tion model. [n these first results, we set the background winds to zero (& = w). For
example, in Figure 4.2 we see horizontal east-west (u') wind perturbations at 200 km
altitude caused by a gravity wave with an incident angle on the magnetic field lines
of 20°. This was done to allow for easier visualization of the wave.

Examples of the model’s plane wave output are shown here to illustrate the
different aspects of the gravity wave parameterization. A slice was taken along the
equator (Figure 4.3) to show the relative magnitudes and phases of the horizontal

(u/, v") and vertical (w') wind perturbations with longitude. The next two figures
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Figure 4.2. Gravity wave induced horizontal wind perturbation at 200 km altitude
(red is 10 m/s and blue is —10 m/s).

highlight the difference in relative magnitudes and phases of the vertical wind with the
temperature (7") perturbation (Figure 4.4) and the density (n’) perturbation (Figure
4.5). Then, we see in Figure 4.6 the wind perturbation as a function bf height, which
varies slightly with altitude. The chart on the right has a latitudinal coordinate
whereas the chart on the left is longitudinal. The variability in the lower altitudes is
a result of the rapidly increasing temperature in that region of the thermosphere that
changes tthe buoyancy frequency, thus altering the vertical wave number in each of the
~5 km vertical steps of the model. These results compare very well with the physical
gravity wave model used by Kirchengast [1996], providing a great deal of confidence in
this parameterization method. Finally, the results of the parameterization scheme for
a conically symmectric gravity wave representing a thunderstorm source are presented
in Figure 4.7. Here we see the symmetric nature of the source in a horizontal plane

at 200 km and in a vertical plane along the magnetic equator.



91

Amplitude (m/s)

Amplitude (K,m/s)

100 110
Longitude (Deg)

Figure 4.4. A comparison of the vertical wind magnitude to the temperature per-
turbation.
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Figure 4.5. The percent density perturbation compared to the vertical wind mag-
nitude.
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Figure 4.6. a) The horizontal wind perturbation shown in altitude and latitude
at 105° E, and b) the horizontal wind perturbation shown in altitude and longitude
through the equator (red is 10 m/s and blue is —10m/s).
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Figure 4.7. a) The thunderstorm source parameterization results for 200 km al-
titude, and b) the thunderstorm source parameterization in altitude and longitude
along the magnetic equator (red is 10 m/s and blue is —[l0m/s).
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4.4.2  Gravity Wave Model with HWM and Tidal Winds
The effects of the thermospheric horizontal winds are evident in the gravity

wave pattern illustrated in Figure 4.8. This figure shows the difference in the effects
of a tidal wind pattern at 200 km versus the structure at 300 km from the HWM.
The background neutral winds have an extreme influence on the gravity wave pattern
when compared to the example where the background winds were neglected (Figure
4.7) by changing the relative frequency, Equation (4.19), at each point in the grid.
The vertical structure of the horizontal wind pattern is shown in Figure 4.9 land
shows that the local thermospheric winds cause a very distinct shift to the gravity
wave pattern in comparison to the case with no background winds (Figure 4.7).
The difficulty of observing gravity waves in the thermosphere makes it impossible to
verify this result.

The gravity wave parameterization creates a description of the perturbation
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Figure 4.8. a) The thunderstorm source parameterization results for 300 km alti-
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Figure 4.9. a) The thunderstorm source parameterization results in altitude land
latitude at 105° E, and b) the thunderstorm source parameterization in altitude and
longitude along the magnetic equator (red is 10 m/s and blue is —10 m/s).

that assumes an infinite source in both height and time for the wave. This means that
the wave is not started in a set time and location nor allowed to propagate through
the medium. The parameterization calculates the five components of the AGW at
each location in the model grid, independent of the results in adjacent grid points.
This could be the reason for the potentially questionable results seen in Figures 4.8—
4.9. The unique structures here could be a result of this technique not maintaining
the three-dimensional phase information at each point in the grid, which is not nec-
essary when background winds are zero. These gravity wave results will limit the
scope of this research to the areas of gravity wave impacts on ionospheric electrody-
namics where the frequency of the gravity wave is not allowed to change with the
background neutral winds. One way to solve this problem could be to develop a
perturbation fluid mechanics model, rather than a parameterization of the five AGW

components, based on a background thermosphere and winds (NRLMSISE-00 and
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HWM93). A source heating or density term could be imposed to drive the gravity

wave. Then, the atmosphere would be described by the zeroth order background
solution and the first order linear perturbation result. The problem would be that
a residual must be calculated, because of the differences in the two input models
could produce non-physical forcing on the perturbation model, because it is not self
consistent. A better method would be to utilize just the empirical temperatures and
densities from the NRLMSISE-00 as the input and let those densities and temper-
atures drive the winds through the equations of motion for the background result
that can then be used for the inputs to the physical perturbation model. This is the
direction that future work on gravity wave interactions should progress for our elec-
trodynamics research. The optimal method for examining the gravity wave impacts
on ionospheric electrodynamics would be through a coupled, high resolution model
of the thermosphere-ionosphere-electrodynamic system. A benefit of this method is
that it will take into account physical processes like diffusion and thermal diffusivity
as part of the fluid equations. These results could then determine the validity of our
simple parameterization when background winds are included. However, this method

is well beyond the scope of this dissertation.
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CHAPTER 5
GRAVITY WAVE PERTURBATION STUDY

This section discusses the results of the perturbation study on the integrated

conductivities, conductivity weighted neutral winds, and resultant electric fields through

the investigation of the plasma drifts they induce. A vertical plasma drift of 3-4 m/s
was determined to be sufficient to generate plasma plumes in [Fecles, 1999]. The
case for these studies is a region from 75° E to 135° E for 12 UT on 26 September
2002. This will place the terminator at 105°E or 19 LT as a reference for the study
figures. The gravity wave perturbation study first considered the relevance of the five

perturbation parameters of temperature, density, vertical wind, meridional wind, and

zonal wind. [t then covered the effects of the angle of the wavefront to the magnetic
field line, the effective height of the perturbation in three-dimensions, and effect of
perturbation height on the integrated model. Then, it examined the differences be-
tween a planar wave source, like in Figure 4.2, and a cylindrically symmectric wave
source that could result from a large thunderstorm (Figure 4.7). The electrodynam-
ics modeling technique is the one presented in Chapters 2 and 3, with the empirical
NRLMSISE-00 atmospheric and HWM93 wind models as thermospheric inputs and
the physics-based IFM as ionospheric inputs. The gravity wave model is the pa-
rameterization technique discussed in Chapter 4 that can quickly specify a gravity
wave pattern. The magnitude of the flux tube integrated neutral winds, U, and un-
perturbed plasma drifts, V', in polar coordinates (R, ¢) are shown in Figure 5.1 to
give a reference for comparison to the perturbation results in Figure 5.2 and those in

Section 5.2. The results shown in this figure will be referred to as the “background
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Figure 5.1. Background neutral winds and plasma drifts where ¢ is the zonal com-
ponent, R is the radial direction which includes the meridional and vertical compo-

nents through the flux tube integration, and the P superscript denotes the Pedersen
conductivity weighted integrated neutral winds.

values” throughout the analysis of the study results. The superscript P indicates
the neutral winds that are weighted by the Petersen conductivity in the integration
process, as shown in Equations (3.169) and (3.183). The radial direction, R, includes
both the vertical and the meridional components of the neutral wind when integrated
along the flux tube, whereas the angular direction, ¢, includes just the zonal wind.
This means that U is not a two-dimensional neutral wind. U represents the electro-
static influence of the three-dimensional wind field (u, v, w) given the assumption of
highly conductive field lines. [This assumption does not hold true in the region below
~100 km in altitude, thus the neutral winds are not exactly representative of U for

that part of each magnetic field line flux tube. See Figure 3.3 for the relationship
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Figure 5.2. Neutral winds and plasma drifts for a gravity wave perturbation ampli-
tude of 10 m/s and a 500 km horizontal wavelength.

between the three-dimensional dipole coordinates and the two-dimensional polar co-
ordinate, and Figure 3.4 for the geometry of flux tube volume that integrates into an

area in polar coordinates.

5.1 Two-Dimensional Results

Examples of the perturbation results are given in Figure 5.2 and 5.3. These
examples are for a planar gravity wave that has a direction of motion that is per-
pendicular to the magnetic field lines and the same at all altitudes, so that the same
phase of the wave will impact the lentire flux tube simultaneously. For example, the
entire flux tube at 105° E will be influenced by a 10 m/s eastward wind perturba-
tion at all altitudes. The initial gravity wave perturbation amplitude, Ay, is 10 m/s

and a horizontal wavelength, Ay, of 500 km, was assumed. These parameters result



99

Altitude (km)

300

500 600

400 500

400
Altitude (kim)

E
=
]
°
-
<

200
300

o
Bt
o

19
Locai Time {hrsj Locai Time (hrs;]

Figure 5.3. Difference between the background (Figure 5.1) and perturbed (Fig-
ure 5.2) neutral winds and plasma drifts.

in a gravity wave with a period of about one hour and a wertical wavelength, A,
of 115 km when the dispersion relationship [Equation 4.20] and experimental rela-
tionship [Equation 4.33] are applied. Applying Equations (4.26)—(4.32) provide the
perturbation winds, density percentage, and temperature percentage for the gravity
wave in the three-dimensional grid that covers +30° latitude, 75°E-135°E longitude,
and 80 km to 600 km in altitude. These perturbations are added to the background
neutral winds, temperature, and density, then integrated along the field lines through
the ionospheric conductivities to arrive at the elliptical electric potential equation in
polar coordinates (R, ¢) of the two-dimensional electrodynamics model described in
Section 4.4. As shown in Figure 4.3, the perturbation zonal and meridional winds

are in phase with a magnitude range of +10 m/s, while the perturbation vertical

wind is 180° out of phase with a magnitude range of about £+3 m/s. The pertur-
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bation temperature has a variation of about £2.5%, as seen in Figure 4.4, and the
density perturbation range is about £1.5%, as illustrated in Figure 4.5. The neutral
winds and plasma drifts (Figure 5.2) are similar fo the background (Figure 5.1), but
with enhanced and reduced regions. The actual difference between the two figures
is provided as AU for the neutral winds and AV for the plasma drifts (Figure 5.3).
By comparison with Figure 2.12, we can see in Figure 5.4 the impact of the gravity
wave perturbation on the vertical and horizontal plasma drifts for the nested grid at
400 km altitude running along the magnetic equator. It is the perturbations on the
vertical plasma drift that can modulate the height of the equatorial F-region and sub-
sequently enhance the development of the R-T instability driven plasma [Tsunoda,
2007].

Most of the results in the perturbation analysis sections that follow uti-

lonospheric Plasma Drifts

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

150

Drift Velocity (m/s)

Longitude (Deg]

Figure 5.4. The horizontal (V) and vertical (Vg) plasma drift versus longitude
along the magnetic equator for the nested grid at an altitude of 400 km.
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lize these standard setup variables for the amplitude and horizontal wavelength
(Ag = 10 m/s, Aj, = 500 km). They were chosen for being approximately the values
seen fin recent observations of gravity wave perturbations fo the plasma drift velocity

[Eccles, 2004a).

5.2 Neutral Wind, Density, and Temperature
Perturbation Influence

Temperature, density, vertical wind, meridional wind, and zonal wind are the
five parameters that were perturbed by the gravity wave model. The perturbation
quantities were either directly added to the background value, as in the winds, or
added as a percentage of the background value, as in the case of the temperature
and density. In this study, each of these quantities was added separately to the
background and then the resultant change in the vertical plasma drift was calculated

through the process outlined above. The procedure was to compute the gravity wave

perturbation quantities from Equations (4.26)-(4.32) and then set them all to zero
except the desired perturbation parameter. This study utilized the same values to
the setup parameters as listed above (Ag = 10 m/s, A\, = 500 km). It is important
to note that the gravity wave perturbation is hot strongly dependent on wavelength.
Only about a 10% difference fin perturbation vertical plasma drift was detected for
horizontal wavelengths from 200 km—-1000 km.

Flux tube integrated neutral winds and plasma drifts due to the application
of only a zonal wind perturbation, meridional wind perturbation, and vertical wind
perturbation are shown in Figures 5.5, 5.7, and 5.9, respectively. The influence
of the perturbation can be readily identified when the difference is taken between
these results and the background neutral winds and plasma drifts (Figure 5.1). The

differences for the three cases are seen in Figures 5.6, 5.8, and 5.10, respectively.
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Figure 5.7. Resultant neutral winds land plasma drifts from a meridional wind-only

perturbation.
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Figure 5.10. Vertical wind-only perturbation difference between the background
(Figure 5.1) and perturbed (Figure 5.9) neutral winds and plasma drifts.
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The three plots of the zonal wind, meridional wind, and vertical wind differences

(AU), where zero difference is shown over the entire grid by the color blue, is the
desired result, because it indicate that no other wind directions are included in that
test. These graphs also show how both the meridional and vertical components
of the neutral wind perturbation influence the R direction plasma drift in the flux

tube integrated results (Figures 5.8 and 5.10). The zonal neutral wind perturbation

results show that a perturbation in the ¢ direction presents itself in both the R and ip

direction plasma drifts, due to the electric fields that produce the drifts (Figure 5.6).
The plasma drifts are relatively large from the zonal wind perturbation (+3m/s),
but it is interesting to see that the banding in the neutral wind difference (AU, (f ) is
not in the same altitudinal range as the banding in the vertical plasma drift (AVg).
The meridional perturbation results with the same initial conditions shows a much
smaller influence in the neutral winds and almost no change in the plasma drifts.
Obviously, these results will be different when the gravity wave is at an angle to
the magnetic field lines. Then, we will see some influence from the meridional wind
on the drift velocities, as evidenced in the angle study in Section 5.4. The vertical
wind perturbation results display a unique pattern, with relatively strong variations
in the neutral winds that correspond to relatively strong perturbations in the plasma
drifts. Unlike the zonal wind perturbations, these results show an agreement in the
altitudinal range of the banded region. This means that the vertical perturbation in
the neutral winds directly causes the vertical plasma drift.

Density and temperature are the two remaining parameters of the gravity wave
perturbation that can influence the ionospheric electrodynamics. Their impact on the
neutral winds and plasma drifts can be seen in Figures 5.11 and 5.13, respectively,

while the results relative to the background are seen in Figures 5.12 and b.14.
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Figure 5.11. Resultant neutral winds and plasma drifts from a density-only pertur-
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ure 5.1) and perturbed (Figure 5.11) neutral winds and plasma drifts.
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The density perturbation fluctuations bf the neutral winds appear to be nearly non-

existant in both directions, but a band is seen between 250 km and 350 km in the
zonal wind when the difference from the background is calculated. The [plasma drift
perturbations look more pronounced and influence the entire layer below the F-region
electron density peak of about 400 km. The temperature, like the density, has a slight
impact in the 250 km to 350 km band of the zonal wind. However, it has virtually

no impact on the plasma drifts. Therefore, temperature perturbations are not a nec-

essary part of the electrodynamics of gravity wave seeding of plasma plumes. This is
interesting, because both the temperature and density impact the collision frequency,
but the density perturbation has a much greater contribution to the conductivities
in order to obtain this result.

The effect of the gravity wave in three-dimensions for each of the variables has
provided some unique insight. To further elucidate this effort, a study of the angle
and height dependence of the gravity wave perturbation is needed. Determining the
relative importance of each variable in the gravity wave formulation, the variation
with angle to the magnetic field line, and the influence of the gravity wave pertur-
bation at different height levels provides an understanding about the impact of the

gravity wave on the electrodynamics.

5.3 |Gravity Wave Component Study

This case study will examine the relative importance of each variable to the
overall average magnitude of the perturbation vertical plasma drift. In order to
compare the effects of the gravity wave for different conditions, we define a “region
of influence” from 1815 LT to 1915 LT and from 250 km to 450 km. This “region of

influence” is where plume seeding is most likely to occur. In the flux tube integrated
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electrostatic model, this region includes the bottomside of the F-region, where the
Rayleigh-Taylor instability has kignificant growth rates for plasma bubbles to develop
[Huang and Kelley, 1996a]. The “region of influence” was used fo calculate the
magnitude of the average perturbation in the vertical plasma drift, V. This plasma
drift was calculated as the square root bf the difference in total plasma drift, Vi, from

the background plasma drift, Vg, squared, then averaged over the number of points

)

Vi =

in the grid, m,

(5.1)

m

This was done so that the upward and downward plasma drifts within the region of
influence caused by the perturbation did not negafe each other’s impact in the result.
This provides a relative measure of contribution to the vertical plasma drift from the
particular aspect of the gravity wave perturbation being studied. The figures in this
chapter label this as the “Average Deviation from Background.”

For this analysis, electrodynamics simulations were conducted with all of the
gravity wave perturbations included simultaneously, then they were each included
individually to find their relative influence. Table 5.1 shows that the most important
contribution is from the zonal wind. This contribution is about 88% at the peak

region of influence, where the direction of propagation of the gravity wave lis directly

Table 5.1. The magnitude of the average perturbation drift velocity for each com-
ponent of the gravity wave individually.

Perturbation Drift Velocity (m/s)
ANl Zonal Meridional Vertical Density Temperature
Wind Wind Wind
1077 155  0.02 0.31 0.15 ~()
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perpendicular to the magnetic field lines at all altitudes. The electrodynamically

relevant part of the process appears to be the modulation of the zonal neutral wind
perpendicular fo the magnetic field lines. The temperature contribution, on the other
hand, has almost no impact on the electric fields despite the fact that it changes the
collision frequencies, resulting in a change in conductivity. The density, vertical wind,
and meridional wind individually have about 10%-20% of the impact imparted by

the zonal wind. This means that the changes in neutral density have a much stronger

impact on the conductivities, most likely through increased and decreased collisions,
than the temperature perturbation. [t is hlso interesting to see that the vertical wind
makes up most of the remaining influence on the perturbation plasma drift. This
could mean that the lack of a background vertical wind in the empirical model used
as an input may underestimate the importance of the AU model results. This being
said, thermospheric vertical winds are not extremely large and are usually close to
zero with a variability of only 10 m/s-20 m/s in the low-latitudes [Spencer et al.,
1982].

The electrodynamics features associated with the gravity wave perturbation
of the zonal neutral wind are highlighted in Figure 5.15. The focus is on the plume
seeding and generation region just before nightfall. Therefore, the figure shows the
18.7 LT to 19 LT time domain and the 200 km to 500 km altitude range for a gravity
wave perturbation with A, = 500 km, Ay = 10 m/s, and the direction of gravity
wave propagation perpendicular to the field lines. The top graph highlights the large
regions of upward (~ 18.9 LT) and downward (~ 18.7 LT) plasma drift generated by
a fpassing gravity wave, showing a large circulation pattern from the perturbation in
the ionosphere. The middle graph highlights the most important driving source for

the plasma drift velocity, which is the gravity wave perturbation zonal wind (seen in
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the variation from east to west in the perturbation). Overlying those source winds

are the perturbation plasma drift velocity vectors. These plasma drift vectors show
a distinct convective circulation pattern in the regions with large wind gradients. It
is easy to see how these plasma Welocities contribute to the vertical plasma speed
regimes in the top graph. The bottom graph is to illustrate some important aspects
of the overall ionosphere, with the recombination in the lower ionosphere leading to
a decrease in Pedersen conductivity as nightfall approaches and the raising of the
bottomside of the ionosphere (indicated by the upward slope of the electron density
contours). Together, all of these factors indicate a prime condition of plasma plume

development.

5.4 Angle of Influence Study

The influence of the angle between the magnetic field line and the direction

of gravity wave propagation is investigated to determine the impact of gravity waves
from different source directions. The angle being described is illustrated in Fig-
ure 5.16, where « is the angle that varies from —90° to 90° and k is the wave vector
of the gravity wave. The equator shown is the magnetic equator, as evidenced by the
perpendicular relationship to the magnetic field line.

Figure 5.17 shows the influence of angle as a function of the magnitude of
the average perturbation plasma drift for all of the components of the gravity wave.
Effects of the gravity wave on the perturbation vertical plasma drift falls below half-
strength at a propagation angle with the magnetic field line of around H30¢ and
down to a quarter-strength near +55°. It is important to note that the strength of
the perturbation vertical plasma drift scales linearly with the amplitude of the gravity

wave perturbation. When a 20 m/s initial gravity wave perturbation amplitude, A,,
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as a function of gravity wave propagation angle with the magnetic field line.
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was applied for a test, where all of the variables were used, the value of the average
deviation from the background was exactly double those shown in Figure 5.17. This
could mean that a sufficiently strong gravity wave incident af an angle to the magnetic
field line is still capable of triggering the R-T instability needed to create plasma
plumes. There is also an important constructive and destructive interference pattern
from the meridional wind when the direction of propagation is at a slight angle to
the terminator. This means that the total horizontal wind vector is important in
determining the influence of gravity waves to atmospheric electrodynamics.

Figure 5.15 illustrated the electrodynamics of a planar gravity wave with prop-
agation perpendicular (0°) to the magnetic field lines. A review of the same plasma
dynamics for the variation with angle from —90° to 90° between the wave front and
the magnetic field line flux tube in 10° increments are shown in Figures 5.18-5.26 (the
0° angle, Figure 5.15, is not repeated). A quick review will highlight the breakdown in
the plasma perturbation’s convective circulation patterns due to the changing angle

in the zonal neutral wind gradient.

5.5 Height Study

The height of the gravity wave perturbation is very important both to the
resulting plasma drift and to the potential to generate plumes. The height study
had two different steps to help determine the important altitudes of gravity waves
for vertical plasma drift perturbations. The first step looked at introducing a gravity
wave perturbation in 10 km layers over the three-dimensional nested grid domain
impacting all the flux tubes as they pass through that layer. A series of simulations
were run for 10 km layers from 80 km to 350 km in altitude, utilizing the same

Ag =10m/s and )\, = 500 km. This produced a zonal perturbation wind of 10 m/s,
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Figure 5.18. Plasma dynamics as portrayed in Figure 5.15, but with the wave front
at a 90° (left) and 80° (right) angle to the flux tube from the South.
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Figure 5.20. Plasma dynamics as portrayed in Figure 5.15, but with the wave front
at a 50° (left) and 40° (right) angle to the flux tube from the South.
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Figure 5.21. Plasma dynamics as portrayed in Figure 5.15, but with the wave front
at a 30° (left) and 20° (right) angle to the flux tube from the South.
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Figure 5.22. Plasma dynamics as portrayed in Figure 5.15, but with the wave front
at a 10° (left) angle to the flux tube from the South and a 10° (right) angle to the
flux tube from the North.



120

asma VeloCIly rFerturpation

Altitude (km)

Altitude (km)
300

Altitude (km)
Altitude (km)

=
j=]
L3

— —
3 ES
x £%
@ @
o °
= =
=o =
= o = o
< L

200

18.7 18.8 18.9 19 8.7 18.8 18.9 19
Local Time (hours) Local Time (hours)

Figure 5.23. Plasma dynamics as portrayed in Figure 5.15, but with the wave front
at a 20° (left) and 30° (right) angle to the flux tube from the North.
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Figure 5.24. Plasma dynamics as portrayed in Figure 5.15, but with the wave front
at a 40° (left) and 50° (right) angle to the flux tube from the North.
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Figure 5.25. Plasma dynamics as portrayed in Figure 5.15, but with the wave front
at a 60° (left) and 70° (right) angle to the flux tube from the North.
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Figure 5.26. Plasma dynamics as portrayed in Figure 5.15, but with the wave front
at a 80° (left) and 90° (right) angle to the flux tube from the North.
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a meridional perturbation wind of +10 m/s, a vertical perturbation wind of +3 m/s,
a temperature perturbation of £2.5%, and a density perturbation of £1.5%. Then,
the perturbation was added to the background and the results were integrated to
solve in the two-dimensional klectrodynamics model. As seen in Figure 5.27, the
three-dimensional results show an important contribution to the perturbation vertical
plasma drift from an E-region gravity wave near 130 km and then a significantly

larger contribution from an F-region gravity wave around 320 km. Comparing this

result to the ionospheric electron density at the center of the nested grid shown
in Figure 2.2, it indicates that the [perturbation must occur below the peak of the

electron density, which is around 400 km. This could indicate that a direct gravity

wave perturbation to the bottomside of the F-region, where the long, near horizontal,

Perturbation Drift Velocity
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Figure 5.27. Positive, average, perturbation drift velocity, V}, due to three-
dimensional height variations in 10 km layers. The three-dimensional results were
integrated and used in the two-dimensional electrodynamics model.
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field lines interact with the zonal jgravity wave perturbation wind, is the major factor

in the seeding mechanism. However, there is also an indication that a perturbation
in the highly conductive E-region, through an E-region fo F-region coupling effect in
the electrodynamics, could also be a factor in gravity wave seeding.

The second step was to examine the addition of the gravity wave perturbation
in the flux tube integrated results in 10 km [ayers. To accomplish this, the gravity
wave perturbation was calculated for the entire nested grid, using the same setup
conditions as the first height series, and an integrated set of terms for the elliptical
numerical solver was derived. These terms were subtracted from the background
terms to arrive at the gravity wave perturbation in each flux tube. Then, the pertur-
bation was added to the background terms for flux tubes in 10 km layers defined by
the equatorial crossing height of each magnetic field line flux tube. Finally, a series
of simulations was performed to examine the addition of the flux tube perturbations
in the 10 km layers from 150 km to 600 km. This step was included to examine the
relative importance of a set of field lines to the solution. A consequence of this tech-
nique is that an E-region perturbation (~120 km) on a field line some distance (~10°)
away from the magnetic equator will be seen as an impact to the vertical plasma drift
at the altitude where that field line crosses the magnetic equator (~300 km). The
two-dimensional flux tube integrated results shown in Figure 5.28 are less conclusive.
They indicate that the bottomside of the F-region, around 280 km to 320 km, is
the most important set of magnetic field line flux tubes to perturb for gravity wave
contributions to the vertical plasma drift. This could be a result of the direct interac-
tion of the gravity wave with the plasma in the long, F-region flux tubes that would
show in this altitude range. However, as illustrated in the example above, this is also

an altitudinal range where perturbations to the E-region on those flux tubes could
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Figure 5.28. Perturbation drift velocity due to integrated height variations in 10 km
layers.

influence results as well. Future research should investigate these two mechanisms

independently.

5.6 Thunderstorm Generated Gravity Wave Study

This section reviews the effects of gravity wave source on the electrodynamics
and covers the relative location of the center of the thunderstorm generated gravity
wave. A thunderstorm generated gravity wave is circularly symmetric around the
source point, the amplitude dissipates horizonally as the square root of the distance
from the center, and the amplitude remains constant in height like the planar wave
as discussed in Section 4.3. Figure 5.29 shows these results. A local time variation of
the thunderstorm source of the gravity wave shows that the perturbation generating
the wave would need to occur before about 17 LT to be truly effective in the seeding

of the vertical plasma drift. The planar gravity wave perturbation had a much larger



127

Influence of Convective Gravity Wave Source Influence of Convective Gravity Wave Source

6

1

4

1

1.2

Average Deviation from Background {m/s)

0.8
Average Deviation from Background (m/s)

17 18 19 0 10 20 3t
Local Time (hrs) Latitude (Deg;

Figure 5.29. (a) Vertical plasma drift perturbation magnitude in the seeding region
along the magnetic equator for a convective gravity wave source at different local
times, and (b) vertical plasma drift perturbation magnitude in the seeding region for
a convective gravity wave source at 17 I.T for different latitudes.

influence on the vertical plasma drift perturbations than the thunderstorm source,
cylindrically symmetric, perturbation. This could be because the planar wave is able
to perturb a large section of the flux tube at one time, whereas the circular shape
of the thunderstorm source does not have the same phase of the wave impacting
the flux tube simultaneously. Tn fact, the initial perturbation heeded to be nearly
five times as strong in order to have the same effect as the planar source. In the
simulations above, the gravity wave amplitude was reduced because of the energy
dissipation term in Equation (4.35), so that as the wave begins to look more like a
planar source at longer distances, we have required the wave to reduce its amplitude.
To make a comparison of similar sources, the energy dissipation term was removed
and the local time variation was repeated. The results showed that the thunderstorm
source had more effect on the vertical plasma perturbation the earlier it started

in the afternoon, which is similar to the result shown in Figure 5.29. However, it
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reached the peak level of the planar wave results at around 1720 I.T and continued to

increase to 2.8 m/s at 1540 LT, verifying the conclusion that the shape of the wave
is important and the more it resembles a planar wave the more impact it has on the
vertical plasma drift. The latitudinal variation indicates that waves generated from
a thunderstorm centered near the magnetic equator are most effective. This means
that waves centered off the magnetic equator need to occur earlier in the afternoon to

allow them to have more of the wave front with the same phase interact with the flux

tube simultaneously. They also need to have a higher initial perturbation strength.
5.7 Plasma Plume Seeding and Rayleigh-Taylor
Growth Rate
The effect of the gravity wave perturbation on the ionospheric electrodynam-
ics was studied through its impact on the vertical plasma drift. However, that study

did not demonstrate that the perturbation was sufficient to generate plasma plumes.

One way to look at the potential for plume development is to compare perturba-
tion amplitude with the Rayleigh-Taylor growth rate [Equation (2.5)] calculated for
the study region. A large Rayleigh-Taylor growth rate as well as a sufficiently large
perturbation source are required to initiate a plasma plume. Figure 5.30 shows the
region of preferred plume development based on the combination of these two cri-
teria. The Rayleigh-Taylor growth rate in the lower panel indicates the strength
of the instability and region of largest plume growth potential. The magnitude of
the gravity wave seeding mechanism is shown in the average perturbation amplitude
of the center panel. The top panel is a qualitative representation of the region of
preferred plume development determined by a multiplication of the R-T growth rate
and the magnitude of the seeding. It shows that the region of plume development

is much narrower than either the growth rate region or the region of largest gravity



129

Region of Preferred Plume Development

600

500

400

o
f=J
«

Altitude (km)

200

Altitude (km)

Altitude (km)

Local Time (hrs)

Figure 5.30. Preferred perturbation growth zone (top) derived from the average
plasma drift perturbation amplitude in m/s (center) and the Rayleigh-Taylor growth
rate in s7! (bottom).
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wave seeding. Only the lowest altitudes of the unstable F-region are sensitive to
the influence of gravity wave seeding. Based on all these findings, a more detailed

investigation is suggested.

5.8 Plasma Plume Development

To conduct an investigation of gravity wave seeding of plasma plumes, a phys-
ically realistic plume model was needed that could handle the time evalution of the
plume. A nested grid ESF plume model was created by J. Vincent Eccles to investi-
gate plume generation [Fccles, 1999]. Tt is based on the flux tube integrated electro-
static model [Haerendel et al., 1992], but advances it in time to generate physically
consistent plasma plumes. The gravity wave parameterization model was applied to
determine if it is sufficient to seed the plasma plumes. The simulation from that
model can be seen in Figure 5.31. The depletion regions are evident in the bottom

chart by the blue bubbles in the orange (higher density) plasma.

19 198.5 20
Local Time (hours)

Figure 5.31. Plasma bubble from gravity wave seeding. (top) the zonal plasma
drift, (middle) the vertical plasma drift, and (bottom) the density of O¥.
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CHAPTER 6
THREE-DIMENSIONAL ELECTRODYNAMICS MODEL

A three-dimensional electrodynamics model is desired to investigate how the
structure along the field lines, including conductivity gradients, winds, and the elec-
tric potential, affect the solution for the currents and electric fields in the lower
thermosphere. Recall that the divergence of the current must be zero. To get the
equation for this we combine the current divergence [Equation (3.105)] with the equa-
tions for the current in three dimensions; Equation (3.143), Equation (3.145), and

Equation (3.144), which yields

V.j=0=
g hph<p _008_(1) N kBUoia(nﬂ) + kBo-oeaKnTe) + ot Yqg
Oq hgy 0q enh, Oq enh, Y e
0 —op 00 o 0P TP Gy
— S hohy | ——— Bug,, + —— Bu,

+ 8p{q¢[hp ap-l—ap U‘F+h<p8<p+0H Upp + -

B ]{/’BO'piaOlfTi) I ]{/’BO'peaKnTe) - kaO'Hia<niTi) - k;BaHea(nTe)
enh, Op enhy, Op enh, 0Oy enh, Oy
0 —op 00 o 0P THMiGp
il P y — Bu,,, — —WP

+ 8()0qu|:}1§0 agp OpDUpy hpap‘l-OH Unp o
]{/’BO'piaOlfTi) ]{JBO'pea<nTe) kaO'Hia<niTi) ]{/’BO'H88<T?,T8)

— + + (6.1)

enh, Op enh, 0Op enh, Op enh, Op

This provides an equation that can be put into finite difference form for solving in a
three-dimensional elliptical solver. The numerical solver will be a three-dimensional
version of the Simultaneous Overrelaxation (SOR) method solver used in the flux

tube integrated technique (see Section 3.4.3).
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6.1 Three-Dimensional Potential Solver

We begin by breaking up the current continuity equation [Equation (6.1)] into
three terms (A, B, and C) defined by the curly brackets and dividing those terms into
parts (4, 9 and 9) defined by the additive terms within the brackets. Then, apply
a numerical differencing technique, where ¢, p, and ¢ are indexed by i, j, and k,

respectively, to get

Term A

Part 1:

1 {[hpu;j)m(z',j)ao(zyj,k)+Vzpw1pj>h¢<z’+1>j>ao<z'+Lj,k)H

- 2Ag hq (4, 5) he (i +1, )
B+ 1,5, k) =i 5. k) B4 k) — @ —1,5,k)
Agq Agq
_ hy(i,7)hy (i,5) 06 (4, 5,k)  hy (i —1,5)h, (1 — 1,j) 0, (i — 1,4, k)
{ hy (i, ) * hy(i—1,5) H (6.2)

Part 2:

kg { {hp (4,7) hy (3,7) 00i(3,15, k) n hy(i4+1,5)hy (14 1,7) 00 (1 + 1, 7, k)]

2eAq hy (i, 5)n(i, 7, k) he (i 4+ 1,5)n(i + 1,5, k)
n(i+1,7,k) G0+ 1,5, k) —n(i, j, k)Ti(3, j, k)
. v
n(i, j, k)i, 5, k) —n(i — 1,5, k)T — 1,5, k)
Agq

. le<i7j)h90<ivj)o-0i(i:j=k) h;ﬂ(i_1>j)h90(i_1?j)0-0i(i_17‘7-71{‘)
[ gk G- L)l — 15,8 ” (6.3)
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Part 3:
0 ([ ) (1) o0 L L) e 1,38)
2eAq hq (i, 5) n(i, j, k) he(@+1,7)n(i+1,7,k)
n(i+ 1,5, k)T.(i+1,7,k) —n(i, 5, k)Te(i, 5, k)
. g
n(i, 7, k)T.(i,5, k) —n(i —1,7,k)T.(i — 1,5, k)
_ Aq
{hpmﬂ)h@(ia]’)aoe(i,?k) hp(z_17j>hso(i_17.7)‘706(@_171]{7)}} (6.4)
hq (4, §) n(i, j, k) he (i = 1,j)n(i — 1,4, k) '

Part 4:

+ ey e (14 T3) g (41, 3) 0 (14T K) i 4T, K) 9y i+ T,5)

—hy (i —=1,5) he (1 = 1,[j) 00s (e — 1, , k) my (i — 1,5, k) gg (0 — 1, 7)] (6.5)
Term B
Part 1:

B 1 { [hq (i,7) hy (4,5) op (2,7, k) N hg(i,7+1)h, (1,7 +1)op (3,5 +1, k)]
2Ap hp (Z,j) hp (i7j+1)
B, 5+ 1,k) — O, 5,k)  ®@,j,k) — i, —1,k)
‘ Ap B Ap
[ha (i,9) by (i,5) 0p (1,5.8) | by (3,5 = Dby (i,§ = ) ap (i,§ — 1,k)
{ By (i) " By (] — 1) ” 16.6)
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Part 2:

1
+m[hq(z’,j—l—l)@(z}j%—1)ap(z',j+1,k)BKz’,j+1)uW(z',j+1,k)

o E(Zj - 1) h<ﬁ (Z] - 1)073sz o 1ak)B(i:j - 1) Unep (Z] - Lk” K67)

Part 3:
L et g+ Don(j +1,k) = h(i, 5 — Dom(i,j — 1.k)
2Ap
Q1. 7. k+1)—®(1, 5.k —1
2Ap
Part 4:

1

by (65— Vhy (1,5~ Vou (1,5 — LA B(i,G — Vg (5,4 — LK) (6.9)

Part 5:

1

—hg (1,7 =D he (4,7 = 1) opi (i,7 — L k)mi (¢,7 — 1,k) g, (,7 — 1)] (6.10)
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Part 6:

. kB {[hq (Z/]) htﬁ (inj)O-Pi (Z7k)
2eAp hy (i, 7) n(i, j, k)
he (3,7 + 1) hy (4,5 +1)op; (2,7 + 1, k)
hy (i, + 1)n(i,j+1,k)
n(i,j+ 1K)+ 1,k) —n(, 5, k)10 5. k)
. Ay
n(i,J, k)5 5. k) —n(i, ) — TLE)L(GE j — 1,k)
— Ap
hq (Z/J) htP (%.7) ap; (ZU k)
hy (2, 7) (%, , k)
N he (3,7 — 1) hy(i,5—1)op; (4,5 — 1,]-(7)]}
hy (4,5 — 1)n(i,j — 1, k)

(6.11)

Y

Part 7:

+ ks { {hq (4,7) hy (i, §) ope (3, 55 k)
2eAp hy (4,7)n(i, j, k)
hy (3,7 + 1) hy (4,5 + 1) ope (1,5 + 1, k)
hy (1,5 4+ 1)n(i, 5+ 1, k)
n(i,7+1,k)T.(4,17 + 1, k) —n(i, j,k)T.(2, 4, k)
) A
n(z/g k)Te(Z/] k) 7 n(l,j - 1a k)Te(Z,j - 17 k)
_ A
hy (1,7, k) by (3,5, k) ope (4, , k)
hy (i, 5, k) n(i,)j, k)
n hy(i,7 —1,k)hy (1,5 — 1, k) ope (4, ] — 1,/{7)} }
hy(i,7 —1,k)n(i,j —1,k)

(6.12)
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Part &:
kg hy (1, + Domi (5,5 +1,k)  hy (27—1) omi (1,7 — 1, k)
2eAp n(i, j + 1, ) n(ij = 1,k)
2Ap '
Part 9:
_ ks hq (Z/] + 1) OHe (Z>j + ]7k) _ hq (Z/] - 1) OHe (7'7] - ]7k)
2e/Ap n(i,j +1,k) n(i,j —1,k)
n(i, 5,k + D)T.(¢, 5,k + 1) —n(i, j, &k — 1)T.(4,5,k — 1)
E o1
Term C
Part 1:

hq (Z]) hp (Z,]) . .. (I)(Z'Lj,l{; + 1) _ (I)(Z'./j, k)
T oh (i) Ay Uor (i) opli k4 1] [ v ]

—[op (i, 4, k) +op (i,5,k —1)] - [q)(i’j’ k) _Aifi’j’ i 1)] } (6.15)

Part 2:

2A90 [O-P(Z:]:k;_}_]-)B(Z?])unp(z'“?:k;_'_l)

— Op (Z/]k_l)B(Z/])unP (Z/]V{;_l)] (616)
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Part 3:
.. UH(Z'.j,k:—I—l)—UH(Z'.j,k:—l) @(z’.j—l—l,k’)—@(i.j—l,k)
— ) : ’ . ’ ’ 1
) A T (617
Part 4:
he (i) By (,5) . o
! 2Ag§ lor (i, 5,k + 1) B (4, ) tng (4, j, k + 1)
Part 5:
by (2,7) hy (2, 7) . . .
- : i \Z, .k i L2, kK 1 R
S (o (g Dy (o 1) 9, )
Part 6:

_ kphq (1, 4) hy (i, 7) opi(i,4,k)  opi(i,5,k+ 1)
2eh, (i,7) Ay n(i, j, k) (i, j, k + 1)

opi(i,5,k) | opi(i,j,k—1)
n(i, 7, k) * n(i,j k—1) ]} (6.20)
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th'q (27]> h’P (27]) O pe (27]7k) O pe (iajak—i_l)

~ 2eh, (i,§) Ay { [ n(i, j, k) n(i, j, k + 1)
n(i,j, k+ D706, 5.k + 1) — n(i, j, k)T (4, 7, k)

. N

n(i, g, k)T.(i, 5, k) —n(i,j, k — V)T, j, k — 1)
_ Ao
) |:O'pe (’I,,],k) 1 O pe (’I,,j,k‘ — 1):| }

n(i, 7, k) n(i, 7,k — 1)

Part &:

th'q (Z,j) OH; (Z,],k+1) OH; (Z,j,k—l)
2e A H n(i,j,k+1)  n(,j,k—1) }
n(i,j+ 1,06 §+1,k) —n(i,j — 1, k)T, — 1, k)
[ 2Ap }}

Part 9:

N kphy (3, 7) { [UHe (4,5, k+1)  ome(i, gk — 1)]
2e Ay n(i, g, k -+ 1) n(i,j, k —1)
ni g+ 1, k)T, + 1,k) = n(i,j — 1LETG,5 — 1,k)
| o )

These are then put into the format to solve with a 3-D elliptical solver.

B(i+1,4k) {Q(Alq)2 |:hp (4, 5) P
+hp(i—l—ﬂ,j)htp(i—l-l,j)ao(i—l—l,j,k? }
hy (i1, 7)
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(6.21)

(6.22)

(6.23)
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1K) {2 [ (Z(ij))ao(wk‘)
hy (i —1,7) hy (Z 1J)%(Z-HV€)”

(i—1,7)
[ (ZJ)UP(Z7V€)
hy (4, 7)
+h (1,7 F 1) hy zy+1)ap(z 7¥1k)]
hy (3,7 +1)

log (1,5, k+ 1) — oy (i, 7, k;—l)]}

1 hq (27]) htp (%])O-P (2/7 k)

R Eovd (i)

+ hq (2,7_ 1) htp (iaj_ 1>UP (2/7_ 1pk):|
hp(iaj_1>

og(i,75,k+1)— oy (i,7,k — 1)]

p (i, ]

(Ap)

)
log (1,7 +1,k) —op(i,j —1,k)]
)

+®(i,j+1,k)- {2

hq (i, 7)
T iApAY

4ApA<p

-I—QJ(z,j,E—i-l)-{

RCACY)
 4ApAy

hq (i, ] );l Z[ (i,5.k) + op (i,7,k # 1)]

oh, (i

LB, k—1) {h (< >)IZ(Z JZ[ (1,5, k) + op (i, 5,k — 1)]

Ap)
ZAE;A‘” o5 (i, 5+ 1,k) — og (i, j1,k)}}
(i+1,5)h,(i4+1,5)00(i+1,7,k)
20k { [ hy (i 1,9)
00 061 a1 heli L) i i)
h (4,7) hy(i—1,7)

1 hq(i7,j+1)h¢ (t,7+ V) op(i,j+1,k)
2(Ap)? { hy (4,7 + 1)
hq (4,7) he (ZJ) op(i,],k) + hq (4,7 —1) he (Zaj - 1) op(i,j — 1ak):|
hy (4, 7) hy (4,5 — 1)

+ ;Ziz(zjl?€§¢§Z (05 (i, .k + 1) + 205 (i, 5, k) + o5 (i, j, k — 1)]} =5 (6.24)
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This gives us the a, b, ¢, d, e, f, and |g terms to solve the three-dimensional elliptical

equation,

06, J, k) ® (04 1, k) + b (0,5, k) - (i — 1,5, k)

where S is the source term that includes the winds and pressure gradients.

1
8= gaplha i+ 1 he (17 + D oplij+ 1K) B j+ 1) ung (1,7 +1, )

1

hy(2,7)h, (2,7
D e 63 105 k1) B (G, ) un (6,5 F + 1)

2Ap
hg (2,17) hy (2,7
- Q(ZEL;’(Z'” 07 (60, k 4+ 1) B (5,) oy (0. + 1)

— 0p (1,5, k = 1) B (i, )ty (i, 4, k — 1)

+ oy Mo (0 1) B (4 1,9) 001 1, ) s (41,7, K) g i 4+1,5)
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6.2 Model Implementation
The three-dimensional electrodynamics model utilizes a grid in (g, p, ) co-
ordinates described in Section 3.2.1. It then implements a numerical elliptical solver

routine using the Simultaneous Overrelaxation technique (Section 3.4.3) in three di-
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mensions. [The grid spacing in the g-direction is variable with a total of 1000 spaces
for each field Iine. The grid size in the p-direction is 5 km steps from 50 km to the top
field line defined by the model’s latitudinal extent. For a latitude range of + 30°, this
gives a maximum altitude of 2195 km at the equatorial crossing. The grid size in the
@-direction is set at 10? in longitude. This is allowed to be the largest step size be-
cause the variation from longitude band to longitude band is rather small compared
with the vertical gradients. The model uses data from the IFM, HWM93, and the
NRLMSISE-00 for 26 September 2002 at 12 UT as input parameters to calculate the
source terms and conductivities at each step. This allows for direct comparison with
the results of the two-dimensional flux tube integrated model results. Representative
field lines are examined at 100° E with equatorial crossing altitudes of 100 km and

200 km to have a comparison with the integrated model.

6.3 Analysis of Three-Dimensional Model Results

A run was performed with large grid spacing in order to test the model concept
and draw some initial conclusions. The reduced resolution run had 500 steps along the
field line (¢), 10 km spacing between flux tubes (p), and 10° in longitude. The model
ran in a tight equatorial regime of + 10° latitude from the magnetic equator. This
gave the model a maximum height of only 250 km. From this model run, some very
interesting results were obtained. The field line potentials are shown Figure 6.1 with
the distribution along the field line (¢) in the left graph and the distribution wersus
the altitude in the right graph. It is a positive result to see the potential drop off with
decreasing altitude from the 100 km equatorial crossing height field line. This justifies
the development of the three-dimensional model. This will overcome the equipotential

assumption required of the two-dimensional flux tube integrated model. It is also a
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Figure 6.1. (a) The potential along the field lines with equatorial crossing altitudes
of 100 km and 200 km, and (b) the potential along the field line as a function of
altitude for the 100 km equatorial crossing altitude case.

positive sign to see the shape of the potential curve become more “flat” at the top
as the higher altitude flux tubes are examined. The 100 km equatorial crossing
is much more “pointed” versus the field line that crosses the equator at 200 km.
This is a result of the higher F-region field lines having more bf an equipotential
representation before dropping off at lower altitudes. This provides some validity to
the equipotential assumption that makes the integrated model possible. Hopefully,
future research will help develop a parameterized function for reducing the potential
properly in the flux tube integrated model to enable it to be more accurate while

maintaining the computational speed of the the two-dimensional model.
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CHAPTER 7
CONCLUSION

7.1 Results Overview
Two important studies were conducted to examine the low-latitude electro-

dynamics of the Earth’s ionosphere. The first examined the gravity wave seeding

mechanism of equatorial plasma depletions (bubbles or plumes). It attempted to
address questions of the angle of the wave front fo the flux tube, the influence of each
perturbation variable (winds, density, or temperature) to the plasma dynamics, the
effective height of the perturbation to the seeding mechanism, and the effectiveness
of the shape and location of the wave front on the plasma perturbation. The second
study focused on eliminating some of the assumptions required for a two-dimensional
flux tube integrated model of the electrodynamics by examining a three-dimensional
electrodynamics model.

Atmospheric gravity wave seeding of plasma bubbles and the associated equa-
torial spread F are not fully accepted theories in the literature. Some of the limiting
factors in the gravity wave source influence on plume development are the different
perturbation variables, the angle of propagation to the flux tube, the height of the
perturbation, and time and location of occurrence were questions that needed to be
examined. Utilizing a three-dimensional parameterization of a gravity wave pertur-
bation, empirical models for the thermosphere (NRLMSISE-00 and HWM93), and a
physics-based model for the ionosphere (IFM), a two-dimensional flux tube integrated
electrodynamics model was used to examine the impacts of the perturbation on the
vertical plasma drift needed to seed the Rayleigh-Taylor instability that creates the

plasma plume. This research indicated that the most influential variable in the grav-
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ity wave perturbation was the zonal wind, which creates a series of gradients in the

east-west direction. It is also important to note that there is an ~10% contribution
of the vertical neutral wind fo the peak perturbation vertical plasma drift.

The angle dependence of the gravity wave to the electrodynamics was asym-
metric on the magnetic equator, [possibly due to the slight angle of the terminator
to the flux tube for the 26 September 2002 case considered. However, the optimal

angle for obtaining the highest vertical plasma drift perturbation was perpendicular

to the magnetic field lines. This suggests that the vertical plasma drift perturbation
is a function of the percentage of the flux tube perturbed at the same phase in an
east-west direction, with an important contribution from the up/down component.

The height of the gravity wave influence was directly correlated to the bot-
tomside of the F-region af around 300 km altitude. There also appears to be a
contribution from an E-region perturbation at around 130 km. The E-region contri-
bution is likely a result of a perturbation in the high conductivities there impacting
the electrodynamics. Long field lines traverse the bottomside of the F-region and are
perturbed as a whole, creating the majority of the impact on the electrodynamics.

The planar gravity wave characteristics versus the circularly symmectric con-
vective source showed that a larger percent of the flux tube being perturbed at the
same phase resulted in the largest influence on the electrodynamics. This means that
the convective sources need to occur in the thermosphere in the late afternoon and
not fully dissipate before reaching the nighttime ionosphere.

This modeling effort indicates that atmospheric gravity waves are a poten-
tial seed mechanism for the Rayleigh-Taylor instability that leads to plasma plume
development in this case study.

The two-dimensional flux tube integrated electrodynamics model used in the
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gravity wave study was based on a few assumptions that were required in order for
the integration to provide physical results. The equipotential assumption for each
magnetic field line is the most obvious that could be corrected by a three-dimensional
model. The three-dimensional model, in centered dipole coordinates (¢, p, ¢) that
are adjusted to the “best fit” dipole at each longitude, provided the means to study
this relationship. The preliminary results indicate that the potential drops off quickly

in the bottom (~100 km or so) of the atmosphere. A more detailed modeling effort is

required to better understand this relationship and verify that the three-dimensional

and two-dimensional models produce similar results for the same physical situation.

7.2 Future Research

Future research in the area of low-latitude electrodynamics still needs to fo-
cus on the seeding mechanism of plasma bubbles and adequate modeling of these
depletions for incorporation into global ionospheric physics-based data assimilation
models. One very important aspect is the need for accurate thermospheric winds,
since they are the driving force of the electrodynamics. A data assimilation model for
the low-latitude thermosphere would provide the most accurate results regarding this
and should allow for coupling and feedback between the thermosphere-ionosphere-
electrodynamic system. A more detailed investigation of dissipation characteristics
of the gravity wave needs to be performed to see when the convectively-shaped grav-
ity wave would be most influential. A complete modeling of atmospheric gravity
waves with a high-resolution physics-based thermospheric model with dissipation
terms would provide the best results.

As stated earlier, future work with the three-dimensional low-latitude electro-

dynamics model should include an examination of the model to validate the math-



148

ematical method used and the physics in the model, and determine if another nu-

merical method or additional physics are required to enhance the accuracy of the
model. A thorough comparison with observational data could provide the analysis
needed to aid in the validation. A more extensive review of the differences between
the two-dimensional flux tube integrated model and the three-dimensional results
would provide a tool for deciding when the full three-dimensional scheme is required

for future low-latitude electrodynamics research. An investigation that determines

the decay function of the potential is also needed. This will hllow for a more accu-
rate two-dimensional flux tube integrated electrodynamics model while preserving the
speed of solving only the two-dimensional problem. Also, a three-dimensional elec-
trodynamics model would allow for the investigation of other theories for the seeding
of the Rayleigh-Taylor instability, including those presented by Hysell and Kudeki
[2004] and T'sunoda [2006]. Another possible use of the electrodynamics model could
be in conjunction with magnetometer measurements from spacecraft to determine
the winds that drive the currents in the ionosphere. The magnetometer fluxuations
could be used to determine the currents in the ionosphere which are driven by the
neutral atmospheric winds and the conductivity of the ionosphere.

A future step to make the three-dimensional low-latitude electrodynamics
model more useful for operational implementation would involve parallelization of
the code. Also, a faster numerical solver would help speed up the processing time
for possible implementation of the three-dimensional electrodynamics in faster-than-
real-time modeling and coupling with thermosphere and ionosphere models. This
model currently takes over two weeks on a 3 GHz processor for one time step on
the low resolution grid. The coupling would involve the transfer of information from

a global tropospheric numerical model to a global thermospheric model to create
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a global background neutral atmosphere that interacts with a global ionosphere to

make a global electrodynamics analysis. Then a relocatable nested grid would be
embedded o pass the high resolution neutral and ionospheric results needed for the
regional electrodynamics of plasma plume generation and growth. Ultimately, this
should be coupled with a data assimilation technique for both the global and regional
levels of modeling to ensure as accurate an analysis as possible for use in forecasting

applications.
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APPENDIX A

DERIVATION OF HAERENDEL’S 2-D MODEL EQUATIONS

This appendix discusses the original flux tube integrated electrodynamics

equations derived by Haerendel and presented in the appendix of Haerendel et al.

[1992]. This derivation provides an in-depth look at these equations by expanding
on the results presented in that paper to allow future researchers to more easily

understand the two-dimensional flux tube integrated modeling technique.

A.1 Geometry and Coordinates
This section describes the geometry of the system as well as the coordinate

systems used in the derivation. We begin by utilizing the equation for a dipole.

db B @ tand

— = = . Al
“ar T B, T 2 (A1)

The solution to this differential equation is
r = Rysin®f . (A.2)

For our problem, Ry = RgL. This requires a definition of L as the Mcllwain param-

eter, so we can restate the equation for the length of the radius as

r = RpLsin®0 = RpLcos’ X\ = RpL (1 —sin* A) = RpL (1 — (%) (A.3)

where we have defined

2 =sin’ ) . (A.4)
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First we have to define the three-dimensional coordinate system (I, ¢, s) that will

be integrated into the two-dimensional polar coordinate (L, ¢) model domain. The

coordinate that is pointed along the field line is the I-direction. The g-direction

points positive upward in altitude and perpendicular to /. The s-direction points in
the same direction as the longitude in spherical coordinates. Now we must define
the unit vectors that make up our dipole coordinate system. This is all based on
the position of the magnetic field, so we must recall the equations for magnitude

and vector representation of B, Equation (3.31) and Equation (3.28), respectively.

Recalling that [ is in the B direction we define

X B 2mcosé msinHA] r3
b=—=|-"——6— é
B rs re m (14 3 cos? G)P/Q
2 g iné
b= — kA S é . (A.5)

1,6 1
(1 + 3cos?4) 2 (1H 3cos?8)

In order to get the unit vector in the g-direction we recall that it is a function of r
and 6 such that é, = roé, + 6oés. Then we use the inner product to define how two
vectors are related é; - é, = cosa in order to be an orthogonal basis @ = 90°, and

73 + 602 =1, so that

5 )
B cos o sin 8 fo=0. (A.6)

(1 + 3cos? 0)1/2 (14 3cos? 0)1/2

sin 8
2cosf

Then we can say rg = — Oy tto get the relationships

sin?f .,
=1
40052990 +6
4cos?d
92 = " 7 A.
©  (1+3cos?f)’ (A7)
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which results in our two coeflicients

fo = + 2cos@ : (A.8)
(1+ 3cos?6) 2
N sin ‘ (A.9)

(1 + 3 cos? 0)1/2

In order to get ¢ pointed positive upward at the magnetic equator we force the correct

signs and get

) sin @ ) 2cosf
é, = =6r — —
(1+3cos?6) " (1 + 3cos? )

2 . (A.10)

@
)

The final unit vector, é,, is defined by

€s = €1 X €
g é¢
_ 2cosf o sin . 0
(143 cos? 0 (143 cos2 6) 2
sin 6 o 2cos 6 , 0
(143 cos? 9 (1+3cos? §) 2
4cos?d N sin® 6 . (1 +3cos?0) .
= = —¢
(1+3cos26)  (1+3cos?28)) *  (1+3cos26) *

és = qﬁ . (All)

This completes the definition of the basis vectors in relationship to the spherical
coordinate basis vectors. Now we must relate partial derivatives and line segments
in the three directions to the polar (L, ¢) coordinate system placed at the magnetic
equatorial plane. Where L is the Mcllwain parameter and ¢ is the geomagnetic

longitude. Again using the calculation of the magnetic field and our first basis vector



[Equation (A.5)] we can define

2cosf 0

sin 0

(1 + 3 cos? 9)% or (1 + 3 cos? 9)1/2 06

Then we can relate this to our ¢ variable by

o¢ 2 cos 6 ¢

B o¢ sin 6 ¢
ol (1 + 3cos? 0)1/2 or r (1 + 3 cos? 0)1/2 a6

where we utilize the definition of ¢ [Equation (A.4)] to find

o¢ 0 I _ I
or  or (i 1 /REL) N j:2RELCOSH
and
%_ 0

50— 30 (cosf) = —sinb

that combine as above to get

¢ N cos B sin @ (— sin 0)
ol RgLcos@ (1 + 3cos? 0)1/2 RpLsin®6 (1 + 3 cos? 0)1/2
B 2
RrL(1+ 3cos? 0)1/2 7

which simplifies to the line element

dl = RgL (1 + 3cos? 0)1/2 d¢ = _RJQEL (1 + 3€2)1/2 dc |
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(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)
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Now we need to address the g-direction, where

il v
sind | “2cosf 10
- (1+ 300529)1/2 o (1+ 3C0829 ] + 66;%}
_ sinf : N 2cosd o (A.18)
(1 + 3cos?6) 2 Ir r(l+ 3C0829) CX

then the derivative of L with respect to ¢ becomes

oL sinf i( r ) 2 cos 6 2( r )
dq (1+3COS29)% Or \ Rg (1 — cos?p) V’(1—|—3C0829)% 96 \ Ry (1 — cos? 6)

sinf 2 cos6 (—2r cos )
Rp(1—cos?0)(1+ 3(:0820)1/2 rRpsin®6 (1 + Bcos29)1/2
sin®@ + 4 cos* 6 B 1+ 3cos?b

Rpsin®6 (1 + 3(:0529)1/2 Rpsin®6 (1 + 3(:0529)1/2
(1+ 3cos.29)1/2
_ ') % (A.19)
Rgsin® 6

This gives us a relationship for the line element of

dg = Rgsin® 6 JL — Rg (1 — cos? 9)3/2

(1+ 360829)1/2 (1+ 300829)1/2

dL | (A.20)

or, after applying our definition for ¢ [Equation (A.4)], we get

e
1+3¢2) 2

This only leaves the transformation to the s-direction. From Equation (A.11)
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we can derive an equation for an incremental change in that direction. We begin with

Lo
rsin @ d¢

1 1

ds  rsinf REL(l—COSQQ)(l—COSQQ)%

0 =
E_es'v_
99

(A.22)

Now we can get the equation for a line segment in the s-direction. We can also put

it in terms of the ¢ variable by applying Equation (A.4) to get the result
_ 2R g 213k
ds = RpL (1 — Co8 9) d¢ = RpL (1 —C ) do . (A.23)

The next step in the process is To convert our solution for the magnetic field
and its magnitude into the ¢ variable. Using Equation (3.28) for the vector and
Equation (3.31) for the magnitude, we can insert the definition for ¢ [Equation (A.4)],

m [Equation (3.29)], and r [Equation (A.3)] to get

. 2BoRIC . BoRE(1- ()"
B — B . E
el (- [ReL(IL )P "
Bo 2B Bo ., (A.24)

e, +
L3(1—¢2)° I3(1— C2)5/2
Then,

BoR2 (1 +3¢2)
B = 3
[ReL (1 —¢?%)]
o B+ 3@):/2 |
L3 (1 -¢?)

(A.25)

The ionosphere that we are going to examine next is a plasma suspended above the

Earth. An important part of the momentum equation for this plasma is gravity. Here
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we will examine gravity for later inclusion:

2
5= Dfe, (A.26)

3
T2

where we need to convert the é, into our new coordinate system. We have an equation

for é; in terms of é, and é4 in Equation (A.5) that can be changed to

-
. _Aﬁ—l—ScosQ@j/Q _ siné

€r € €q
2cosf 2cosf

(A.27)

and from the equation for é,, Equation (A.10), we have a similar relationship

1
sinf (14 3cos?)
é, —
2cosf ¢ 2 cos 6

~

€g =

(A.28)

Then the two can be combined to get

(14 3cos® 0)1/2 R ( sin )2 R sin0(1+300520)1/2
_ e, ,

rT A 2cos 0 2cosf 4 cos? 0
1 1
e sin? @ (1+3cos26)?  sin6 (14 3cos?6)”
é, =é
4 cos? 6 : 2 cos 6 “a 4cos?6
1 1
.. (1+3cos?0) /2 . sinf (1 + 3cos?0) z
é, =

1 : q )
26089<1+MD 4c0520<1+M)

4cos? @ dcos? 6
1 1
2cosf (14 3cos?6) 2 sin6(1+ 3cos?h)
4cos20 + sin? 6 7 4cos26 +sin’ 0
1 1
2cosf (14 3cos®f) & . sinf (1 4 3 cos? §)
é
1+ 3cos2d 4 14+ 3cos?0

2cos 0 . sin @

1 + ¢4 .
(1 + 3cos? 0)1/2 (1 + 3 cos? 0)1/2

I
>

l

(A.29)

I
>
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We put this into the equation for gravity to get

290 R% cos . goR%sing
L, + Ly 9
T2(1+3C082b) r2 (1 + 3cos? 0)

(A.30)

g =

at the magnetic equator where we will integrate our current equations, and thus we

have 8 = 90°, so only g, remains:

goR%sinf

[ReL (1 — cos? 6)]* (1 + 3 cos? 9)1/2
go (1 — cos? 0)1/2
L2 (1 — cos?0)* (1 + 3 cos? 9)1/2

_ Jo - (A.31)
12 (1 — cos?0) 7 (1 + 3cos? §) 2

Then we arrive at the equation in terms of (:

.= Jo _ A.32
MR- e

The final calculation that we require for our current equations will be the electric
field relationships between the (I, g, s) coordinates and the (L, ¢) coordinates. We

begin with the equation for an electric potential

= = od od d
EFE=-Vb=—-¢——-¢é,——¢ , A
G — e eq% (A.33)
S0, in the s-direction
p_ b 1 9
ds  rsinf 0¢
1 0P 1 0P

B RiL (1 — ?)sinb d¢ B ReL(1—C2)(1— gz)l/za—(ﬁ



1 0d

ReL(1- (206

But we need the definition of the electric field in the ¢ coordinate

so the relationship is

with

to get

_ Lo
 RpLO¢’
1
B=FE,——
-y
20 (1+30)" o0

a7 dq Rp(l— <2)3/2 oL

1 0
b= "hor

14 3¢2)%

E,=FE .
C -

A.2 Electrostatic Equations
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(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

We start with the equations of motion and electrodynamics of the ionosphere.

Continuity Equation:

5 TV (n.u,) =P, — L,

(A.40)
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Momentum Equation:

—

n,m, [%Ej + (Tzz : V) ﬁz] +Vp. + V- T - n.e.(E + 1, x B)
+n.m, [—§ 120 x U, + £ x (Q X F)} = (A.41)
DoV (U — )+ ) Vzt% (ﬁz — §t>

1

t

Electrostatic Equation:

—

; = e(aznz - uene) (A42)

where n;, = n, = n and

e.j:

T <8LJL 8J¢> 0

A4

A.2.1 Assumptions and Scale Analysis

We are making an electrostatic approximation due to the assumptions that
are required in equatorial electrodynamics. We will assume that motions are nearly
steady state and not hypersonic, stresses are small, Coriolis and centripetal correc-
tions are not required, there is no net heat flux, only collisions with neutrals are
important, there is no net production nor loss of ions and electrons fin the plasma,

and no there are pressure gradients. This leaves us with the following from Equa-

tion (A.41):

€y

N

(E+1i, X B) 4§ = Van (Un — 1) (A.44)

m,
The method of solution is to separate the pquation into our s, ¢, and [ coordinates

for each species and then assume a perturbation approximation.
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A.2.2  Ion Momentum Equation

For the ions this becomes,

e R N ~ ~ ~ ~ ~ R ~
f(Eses + Eé, + Eiér + ués X Bép + ué, X Bép) — g,6, H lgié)

My

+ Vin (unsés - uisés + unqéq - Uiqéq + unlél - uilél) =0. (A45)

— )
The next step is to perturb the equation by using u; = ﬂ; Fu, , Eg =0,and B =0.
For the s-direction this would look like a simplified version of Equation (3.107) where

the Ens cancel.

—€

o : !
This will give us an equation for w,,:

= —— [By — (ul, + tng) B] . (A.47)

MiVin

Likewise, our equation for the perturbation flow in the ¢-direction is:

= ——— B, + (), + ups) B] — 2L . (A.48)

MiVin Vin

Realizing that we will be integrating along the /-direction and that the total current
integrated from one pole to the other is zero, we will ignore the derivation of the
equation in that direction. These two perpendicular flow equations are dependent
upon each other and must be solved simultaneously. One simplifying assumption is
to say that the neutral flow times B is just part of the electric field and to define the

parameters £ = F, — u,,B and E(’J = E, + u,sB. This will allow us to combine the
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two equations simply. The result is

B
L ‘(B +u,B) -, (A.49)
milVin MiVin [MVip Vin

which becomes

s By ——594 - A .50

MilVin m2vs mve,

tTm

2
njlj) € o e’B o eB

I I
Uss + Ujs (

Recall the definition for the cyclotron frequency of any charged species

Wey = (A.51)

2= A.52
K = - (A.52)
This is used to simplify the form of Equation (A.50):
AL LTSV W (A.53)
BT B\ R 1A ) T A ) '

Now the gravity term must be addressed. When integrating over the full extent of the
magnetic field line we see that it mostly passes through the F-region where O™ is the
dominant ion and is usually about two orders of magnitude larger density than the
ions in the E-region. Also, the frequency of the ion to neutral collisions is extremely

small at these altitudes. Therefore, we can assume that in the integral w., >> v,
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and thus k2 >> 1, so that we can cancel terms in k; and are left with

1 Ki K2 g
r {2 ! i ! q
Uis = (] n K?ES B /@qu H o (A.54)

Similarly, we can follow the exact same steps for ion flow in the other direction to get

1 K K2 g
= L ) L F ) - —2 A55
Hia B<1+n§ "+1+/<:2 S) (1+ KZ) vin

)

Here we can make the same assumptions about the gravity term which leaves us with

a term that scales as “¢ ~ 0 to leave us with

Wei

1 K K2
== L _F L _FE ). A.56
ulq B<1+/€ZZ q+1_}_/£12 s) ( )

Equation (A.54) and Equation (A.56) are the final bulk ion flow equations that will be
used in determining the current in the two directions perpendicular to the magnetic

field lines.

A.2.8 Electron Momentum Equation

Now we will follow the same steps for the electrons. The equations will be
very similar except for the sign of the lcharge, e, which is now negative and gravity
can be neglected, because the mass of an electron is small in comparison to the mass
of the ion, making an insignificant contribution to the momentum. This gives us a

momentum equation for our second species that looks like

—¢

(Esés -+ Eqéq + Eié; + i€, X Bé + Ueqéq X Bél)
Melen

+ (Unss — Uesls + Unglq — UegCyq + Uni€ — Ugy) = 0 . (A.57)
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We will again utilize the perturbation method to solve this equation for the bulk flow

equations in the two directions perpendicular to the magnetic field. This will allow us
to integrate the current along the magnetic field lines. The result for the s-direction

flow is very similar to Equation (A.45):

—¢

Malon [Es — (u/eq + Unq) B} + [tns — (UL, + uns)] =0, (A.58)

which results in a flow equation of

ul, = —— (B, — (u'eq + upg) B - (A.59)
In the g-direction we get
—e
Uleq = m [Eq + (Ules —+ uns) B] . (AGO)

Solving Equation (A.59) and Equation (A.60) simultaneously will result in the equa-

tion

/
Uy = E, —
meVen mel/en

, e —eB { —e (Ez%—MWBﬂ _ (A.61)

meyen
Using the definitions for the cyclotron frequency [Equation (3.117)] and ratio of ffre-

quencies [Equation (3.118)] and moving all of the flow terms to the right-hand side
we find

1 _ 2
%—§< fe g le '>. (A.62)

1+ K2 S_1+n§ q

Similarly, for the other direction we get

1 —K K2
PR T R ) B A.63
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Equation (A.62) and Equation (A.63) are in the final form like our ion equations

above. Now we have all of the information that we need to calculate the current

density for this problem.

A.2.4 Clurrent Derivation and Integration

Recall that Equation (A.42) gave us a current density for the fwo perpen-
dicular directions. We will use this equation as well as the non-divergence of the
integrated current [Equation (A.43)] to derive our final equation for the model. This
begins by breaking the current density equations into the two perpendicular direc-
tions and then integrating these equations to find J;, and J,, which will be used in

the divergence equation. We start by finding the s-direction current density:

Js = ne (uis - UES) =ne [(u;q + UnS) - (Ui,q + unsn =ne (u;q - u;e)

ne K K2 —K K2 gne
_ e U - Y /3 ¢ [ _ e g
B [(1—1—/1? S q) (1—1—/@@ 1+ K2 q>]$wci

ne K K K2 K2 gne
= — : c £’ S ! E’ . A.64
B[(l—k/ﬁzf—i_l—l—ﬁg) S+<1+/£§ 1—|—/€§> q]+wci ( )

Now we need to define the Hall and Pedersen conductivities to be

_ ne Ki Ke
UP:%<1+/{3+1+KE> (A.65)

2 2
aHET< Fe ) (A.66)

B \1+x2 1+k?

Substitute the conductivities as well as the definitions of £ and E into the current

density equation to arrive at

jo = 0p (By — Bung) + on (B, + Buy,) + 225 | (A.67)

ct
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Similarly, we can find the g-direction current density equation:

Jq = e (u;q - uleq)

e o e K2
- - ? E/ El eEl El
B{(l—k/ﬁzf $1+ ) (1+n§ q$1+ 2 )}

e e " K2 K2
= — : c E — € _ — E | . A.
B[(T—i—/ifq:T—Hﬁg) q (T—i—ﬁg T+/<:> } (A.68)

Then using the definition for the Hall [Equation (A.66)] and Pedersen [Equation (A.65)]

conductivities as well as the definitions of £ and E we get

jq =0p (Eq + Buns) — 0y (Es — Bunq) . (A69)

In order to successfully integrate these current density equations, we must put them
in terms of the fields in the plane of the geomagnetic equator (Er, E,, By, and go in
terms of (), using the following equations: Equation (A.36), Equation (A.39), Equa-
tion (A.25), and Equation (A.32), respectively. We must also recall the definition for
the cyclotron frequency [Equation (A.51)] to come up with a frequency in our new

coordinates. First, we need to define the quantity

B
wo = 11 B0 (A.70)
m
then .
A2 212
o= B _ el By (143" :w&_ A7)
m; moor3 (1—¢2) /2 L3(1— C2>
This leads to the solutions
1 B0 (1+ 342)

‘s: E,—— — 7nq
PO ey (1-¢2)°
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+ o0 EL

(1+3¢)% By (14 3¢2)"
G- B a-ef
gone L3 (1 — §2)3/2 1

A.72
W (143¢)"% 12(1-¢) R (1+3¢2)" AT
and
o kl 13" By (1+3¢2)"
Jg= 0P EL €2 3p L3 ( 42) Uns
. E¢_I BO% nq] (A.73)
Tyt D=y

Now we have To take these equations and integrate into the polar reference
frame of the geomagnetic equator. To do this we use the geometry of the integrated
coordinates as compared to the three-dimensional coordinates to arrive at the rela-

tionship of integration

Cm
J,RpdL = QV jodqdl (A.74)
0

and

Cm
JLRELd(p = 2/ jqudl . (A75)
0

Recall that we have geometric relationship pquations for ds [Equation (A.23)], dl

[Equation (A.17)], and dg [Equation (A.21)] that we heed to apply:

J, = 2RgL / " (1—¢?) e (A.76)
0

and

Ji, = 2RyL / T =) 14+ 3¢) B dc (A.77)
0

All the parts are in place to complete the integral equations. Then we can apply the



definitions in Haerendel et al. [1992]

Cm
N = ZREL/ n(1—¢?)’d
0
y T
N =2RgpL d
g /0 "rrae)®
Cm
Sp= ZREL/ op (14 3¢%)d¢
0
Cm
Ep = 2RFL/ UpdC
0
o YARC.
Yy =2RpgL | on(1+43¢%) “d¢
0
Cm 1 2
$pUF = 2RI / opu, LT3
0 (1—¢2) /2
- Cm 2\ /2
EPUI{D_ZREL/ Opuq<1+3< )3
0 (1—¢?) /2

H _
SyUY = 2R, L S

o\f\ :>\;
3
_
+
[N
N
N

SrUH = 2RgL

to get the final equations:

L359

and

Cm (1 +3c2>1/2d

B
—Uf) + 3y <EL + —OUH> +

egol -

wo

B
J,=Sp <EL + %U;’) — %y <E¢ - ]—;’Uf> .

These two integrated current equations now have to be inserted into the divergence

N

177

(A.78)
A.T9
(A.80)
(A.81)
(A.82)

(A.83)

(A.84)

(A.85)

(A.86)

(A.87)

(A.88)
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equation [Equation (A.43)] to get our final form for the model:
0 0P 0 0P 10 (o 00 0 @
or (12rsp) —ar (055) « 737 (05) + 3 (o)
Oy L3 Oy L3
oL L? oL L?

wo Op
A.2.5 Continuity Fquations by Region

= ByRg

A89

The flux derivation begins continuity equation [Equation (3.100)] that leads
to the final result in the layers required by the model. The F-region is the highest
region with the majority of the electrons and a majority ion of monatomic oxygen,
O7. The E-region is the one where the equatorial electrojet is predominant and has

the highest conductivities.

F-Region Ion Continuity
The first step is to determine the velocity of the species for inclusion in the

flux term. The primary drift velocity is the E x B term. This gives us
. ExB EB. E,B

U = €q —

= és . (A.90)

When this is included with the velocity due to the current we get

E, Js
e = —— 2T A9l
hs B + e.n, ( )
E, Jq
g = — + —— A.92
u q B + e,n, ( )
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This does not include g x E, ep X é, and B x VB drifts.
Then, defining the integrated flux similar o the integrated current density we

obtain

Cm
FrRpLdp = 2/ nu,dsdl | (A.94)
0

which gives

2 [ 3 dp I
F= ReL (1— ()" =ZRpL (143¢%) *d
T, RF)L/(] nqu( C) d(pRE(‘i‘C) ¢
o 2\ 3% 2\ 14
=2RpL [ nu,(1—-¢) 7 (1F3¢) 7 d¢ (A.95)
0
and
Cm
F,RpdL = 2/ nusdqdl | (A.96)
0
which gives
3
2 [ (1-¢*)™ dL 2\
F,=— s Re———————RgrL(1+3 d
Y RgJ, o E(1+3€2)1/2 " ( C) ¢
Cm 3
= 2RgL / n, (1— ¢2)2dc . (A.97)
0

Substituting the velocities into the integrated flux equations leads to

Cm .

1 Pa-¢
1- )" Bo(1 430"

Cm
—9R,L / B (1-¢3) ™ (1+3¢%) 2
0

Cm .
n ZREL/ B 1 - ) (14 3¢3) 2 ac
0

= (E%DL >2REL/ n (11— d¢+ Ji-
B 0 e

0
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E,L? 1
£ N+ Jp- (A.98)
€

Fr,

Cm E ; 3
Js 2
F¢ = 2RFL/O n <_§q + ;) (1 - CQ) dC
(m

Cm N
= QREL/ Eq( —(2)%dc+2REL/ nls (1 —(2)%@
0 B en

Cm 1 3 2 /2 L3 1 — 2
o la- ¢ B

E L3 Cm 1
:( L >2REL n(1—c)Pdc+ L,
B(] 0 (&
E, L3 1
F,=— ; N+-J,. (A.99)

0 €

ey b,

Now we use this calculation with the continuity equation [Equation (3.100)],

to make a specific equation for the F-region:

8_77, + 2nuS + gnuq 0 —nuy =S5

ot s dq ol

on 19 (1+3)E 9

ot RpL(1— §2)3/2 do° Rp(1— C2)3/2 oL

N L9 =5, (A.100)

ReL (14 3¢2)29¢

where we know from before that u; = 0. Now, rearrange the metric to make the

integration obvious.

0 3p O

azRFL (]. — CQ) n+2 (1 - CQ) 2 %nuq
2\ 12 230 0

+2L (14+3¢%) " (1-¢) PG,
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3 ON 1 0 1 0
got 1 9y 19
ot " RpLop T RpoL

Cm
= ZREL/O (1-¢)°sdc (A.101)

=2RpL (1-¢?) 13

where we know that the main chemistry in the F-region is O recombination pro-
cesses. This is a factor of the chemical reaction rates and the concentration of parti-

cles. This can be expressed as 5 = nf, allowing us to utilize

QRpL [
N 0

f= (1—¢%)*npdc (A.102)

so the continuity equation becomes

ON [T 8 T 9 .
| F 4+ _— __ F, = NA. Al
ot "ReLos ¢ T Rpor' " P (4.103)

Now all that is required is a simple substitution for the flux as previously calculated

by Equation (A.98) and Equation (A.99).

ON 1 0 E, L3 1 1 0 (EL? 1 =
o iy N+ - — [ 22X N+ -J ) =NA. (A
ot * RpL 0¢ By * eij * Rp 0L < By * egj NB - (A104)

Then making the substitutions for the electric field with the potential equations and
neglecting the current terms that are negligible, the equation for the O™ ion in the

F-region becomes

ONE, 1 9 » o 0D 19

9 (panr ) 02 00
ot  BoR2L Oy 97V 0L  ByR2LOL

(L*NE.) 7 = AN,  (A.105)

thus completing our set of equations for this derivation.
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vironment, Air Force Geophysics Laboratory, Document Accession Number: ADA
167000. No copyrights are held on government documents.

Figure 2.8, Reprinted from Physics of the Earth and Planetary Interiors, Vol.
10, S. Matsushita, Morphology of slowly-varying geomagnetic external fields—a re-

view, Page 14. Copyright (1975), with permission from Elsevier. See Figure B.1 for

license fterms and conditions.

Figure 2.13, Reprinted from lonospheres: Physics, Plasma Physics, and Chem-
istry, R. W. Schunk and A. F. Nagy, Copyright (2000), Cambridge University Press.
Reprinted with the permission of Cambridge University Press. See Figure B.2 for
Cambridge University Press copywrite permissions.

Figure 4.1, Reprinted from Reviews of Geophysics and Space Physics, Vol.
20, R. D. Hunsucker, Atmospheric gravity waves generated in the high latitude iono-
sphere: A review, 293-315. Copyright (1982). See Figure B.3 for American Geophys-

ical Union permissions and Figure B.4 for the permission request sent.
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