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.Figure 5:  Total Fluorescence and Experimental Comparison 
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Simulating The Doppler-Free Fluorescence Spectrum For The Potassium D1 Transitions  

Abstract: 

Radiation theory (absorption, spontaneous emission, and 
stimulated emission) is applied to Potassium (39K and 41K) to 
examine details of the D1 lines, Figure 1, in the near IR at 770 
nm.  When examining the resonance fluorescence from two 
counter-propagation laser beams in a K cell, Figure 2, three 
prominent “Doppler-free” features—dips at the D1a and D1b 
resonances and spikes at their crossover frequencies—stand 
out superposed on the fluorescence background.  They are 
examined with a detailed simulation, Figures 3 and 4, and 
compared to observations, Figure 5.  Parametric studies of the 
Doppler-free features, Figures 6–8, indicate how to maximize 
their prominence, and thus their importance as frequency 
references for laboratory and atmospheric observations. 

Figure 1:  Hyperfine Structure of Potassium 
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An energy-level diagram of K can be described by three 
related models.  The basic model is a two level system.  The 
intermediate model includes electron spin, splitting the excited 
state into a doublet for the D1 lines and a quartet (not shown) 
for the D2 lines.  The final model includes the nuclear spin of 
3/2 and the associated hyperfine interaction, leading to  
hyperfine splitting.1 

Calculating The Fluorescence:   

To make the simulations we modified a C++ code developed at 
the University of Illinois2.  An outline of the code is given in 
Figure 3 and the physical properties for potassium are given in 
Table 13. 

Figure 3:  Flow-chart indicating how the fluorescence is 
calculated.  Beside each step is the symbolic representation of 
what is being calculated. 

Results: 

The simulated fluorescence response for each isotope as a 
function of frequency is shown in Figure 4.  (At this wave-
length, a frequency difference of 1.0 GHz is equivalent to a 
wavelength interval of 1.98 pm.)  Figure 5 compares the 
measured and simulated responses.  The main fluorescence 
and Doppler-free features are present in both curves.  
However, the calculations exhibit a higher frequency reso-
lution, while the observations show wider shoulders near the 
cross over and weaker shoulders near, at least, the D1a dip.  

Conclusion: 

This is the first comparison for potassium of a Doppler-free 
simulation and observation.  They show good agreement, thereby 
confirming the main features of the simulation.  An extra dip was 
found in the middle of both the D1a and the D1b dips.  The effects of 
parameter variation enable us to optimize the experimental set up, 
which will be used shortly to provide an absolute wavelength 
standard for a new ALO lidar system for temperature and wind 
observations in the mesosphere. 
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In the above equations, a y  subscript indicates a given 
transition, flu is the oscillator strength, Sy is the line strength of 
each transition, fy is the offset frequency of each transition, Δfy = 
Ay / 2π, and Ao is the inverse of the lifetime.    
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Figure 2:  Experimental setup.  A CW laser beam is split in two 
by a half-silvered mirror.  One beam is sent through a 
potassium cell in one direction; the other in the opposite 
direction.  The frequency (wavelength) can be varied to 
examine the Doppler-free features.  The detector records the 
fluorescence output from the four resonances. 
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 Table 1:  Potassium Properties 

Isotope        39K        41K

% Occurrence 93.26% 6.73%

Lifetime = 1 / Ao         26.2 ns

Oscillator Strength  0.339

Center Wavelength 770.1093 nm

Transition        n4 to n1        n3 to n1        n4 to n2        n3 to n2

Line Strength 5 1 5 5

Spontaneous Emission Rate, Ay          Ao / 2          Ao / 6          Ao / 2        5 Ao / 2

Offsets for K39 (GHz) 0.31 0.254 -0.152 -0.208

Offsets for K41 (GHz) 0.405 0.375 0.151 0.121

Calculate cross-section 
for each transition, σy 

Calculate intensity 
of the laser pulse, I 

Calculate excitation for 
each transition,ξy 

Calculate fluorescence 
rates as functions of r  
and v 

Integrate over the beam 
radius. 

Integrate over the on-axis 
velocity. 
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Calculate steady state 
populations for all four 
levels 
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System of 4 rate equations including radiative 
processes and a transport process characterized 
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Figure 6:  Effects of Power 
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Figure 7:  Effects of Temperature 
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Figure 8:  Effects of Transport .
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.Figure 4:  Fluorescence for each isotope 
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