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ABSTRACT

Analysis of Chemical Bonding in Clusters by Means of the

Adaptive Natural Density Partitioning

by

Dmitry Yu. Zubarev, Doctor of Philosophy
Utah State University, 2008

Major Professor: Dr. Alexander 1. Boldyrev
Department: Chemistry and Biochemistry

Models of chemical bonding are essential for contemporary chemistry. Even the
explosive development of the computational resources including, both hardware and
software, cannot eliminate necessity of compact, intuitive, and efficient methods of
representing chemically relevant information. The Lewis model of chemical bonding,
which was proposed eleven years before the formulation of quantum theory and preserves
its pivotal role in chemical education and research for more than ninety years, is a vivid
example of such a tool. As chemistry shifts to the nanoscale, it is becoming obvious that a
certain shift of the paradigms of chemical bonding is inescapable. For example, none of
the currently available models of chemical bonding can correctly predict structures and
properties of sub-nano and nanoclusters. Clusters of main-group elements and transition
metals are of major interest for nanotechnology with potential applications including
catalysis, hydrogen storage, molecular conductors, drug development, nanodevices, etc.

Thus, the goals of this dissertation were three-fold. Firstly, the dissertation introduces a



v
novel approach to the description of chemical bonding and the algorithm of the software
performing analysis of chemical bonding, which is called Adaptive Natural Density
Partitioning. Secondly, the dissertation presents a series of studies of main-group element
and transition-metal clusters in molecular beams, including obtaining their photoelectron
spectra, establishing their structures, analyzing chemical bonding, and developing
generalized model of chemical bonding. Thirdly, the dissertation clarifies and develops
certain methodological aspects of the quantum chemical computations dealing with
clusters. This includes appraisal of the performance of several computational methods
based on the Density Functional Theory and the development of global optimization
software based on the Particle Swarm Optimization algorithm.

(431 pages)
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CHAPTER 1

INTRODUCTION

The concept of a pair of electrons with antiparallel spins as the central object of
the chemical bonding theory' is the cornerstone of contemporary chemistry. Recent
commemoration” of the general theory of chemical bonding proposed by Lewis, which
has been forming the landscape of chemistry for more than ninety years, demonstrated
both the viability of this model and the existing tendency to go beyond its framework.
The search for new approaches to define and describe chemical bonding is motivated
both by conceptual difficulties of the issue, such as the lack of observables directly
associated with chemical bonds,”® the constant development of basic quantum chemical
theoretical techniques,” and the existence of chemical objects that can’t be satisfactorily
described by any of the currently available models of bonding.

Clusters of the main group elements and transition metals represent one of the
biggest challenges to modern theoretical and experimental chemistry. Clusters are
generally metastable and their synthesis and characterization under ambient conditions is
extremely difficult. Studies of clusters in mass spectrometer ion sources and molecular
beams do not provide structural information. The structure and properties of clusters
strongly depend on their size and even a difference in one atom or one electron can lead
to tremendous structural rearrangements and change of properties, both chemical and
physical.*'* The forces responsible for holding clusters together range from van der
Waals to ionic. The intermediate position of clusters with respect to single molecules on

one side, and condensed phase on the other, makes it difficult to utilize theoretical tools
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applicable in the limiting cases. Actually, all of the stages of cluster research pose very
puzzling problems, ranging from distinguishing multiple isomers in the photoelectron
spectra to the rationalization of the patterns of cluster growth. But all these difficulties are
worth overcoming because the advent of the nano-era is impossible without fully
understanding nano-objects that include clusters among others.

This dissertation deals with the complete cycle of sub-nanocluster research.
Chapter 2 is a review of previously performed studies in the field of models of chemical
bonding in clusters. Chapter 3 is dedicated to the Adaptive Natural Density Partitioning
(AdANDP) algorithm, which is a conceptually new approach to the description of chemical
bonding in main-group element and transition metal clusters. The concept, theoretical
formalism, and the algorithm implemented in the developed software are discussed
together with examples of application of this method. Chapters 4 and 5 are literature
review of application of the concepts of localized and delocalized
(aromaticity/antiaromaticity) bonding to certain chemical systems. Comprehensive
analysis of chemical bonding in planar and quasi-planar boron clusters is performed in
Chapter 4. It is shown that the rationalization of the structures and properties of the
family of planar boron clusters requires considering o-localized and o- and n-delocalized
bonding. The topic of Chapter 5 is utilization of the concepts of aromaticity and
antiaromaticity in the description of chemical bonding in transition-metal systems. The
possible origin and types of the aromatic/antiaromatic bonding encountered in transition
metal systems are discussed with consideration and analysis of examples of the various

bonding situations reported previously.
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Chapter 6 opens the part of the dissertation dealing with studies of individual
clusters. The studies combine photoelectron spectroscopy of clusters in molecular beams
and ab-initio or Density Functional Theory (DFT) calculations. The emphasis is made on
the development of chemical bonding models for the systems under investigation. The
identification of 0-aromaticity in the Taz;Os cluster, which is a new mode of chemical
bonding, is the topic of Chapter 6. Chapter 7 describes the observation and theoretical
characterization of the conflicting aromaticity in triatomic AlSi,” and AlGe, species.
Chapter 8 reports analyes of the interesting phenomenon of gold atoms “aping” hydrogen
in bonding with planar boron units within B;Au,” and B;Au, clusters. Chapter 9 contains
a further study of the analogy between gold and hydrogen in bonding with boron atoms in
the case of auro-boron oxide clusters AuyBO™ (x=1-3). The utilization of the analogy
between gold and hydrogen atoms for the theoretical prediction of a new class of boron
compounds — deltahedral closo-auro-boranes ByAu,” (x=5-12), is discussed in Chapter
10. Chapter 11 reports the observation and theoretical characterization of the spherical
Sni,” species “stannaspherene,” which is analogous to the famous deltahedral closo-
borane Bj,H;,”. Chapters 12 and 13 present a series of studies into the chemical bonding
in 3-dimensional silicon anionic clusters. The peculiarity of the Si,> clusters is a strong
deviation of the geometry of most of the systems from the highly symmetric spherical
cages typical of the isoelectronic deltahedral closo-boranes ByH,”. Thus, Chapter 12
reports study of Siss and NaSiss by means of the combination of photoelectron
spectroscopy and theoretical calculations and Chapter 13 reports joint experimental and
theoretical study of the structure and chemical bonding of Si¢> and Sis> in NaSig upon

+ . .
Na' coordination.
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CHAPTER 2

LITERATURE REVIEW

2-1. Introduction

The theory of chemical bonding is the language of chemistry. It is being enhanced
constantly through the entire history of chemical science in order to meet the challenges
of contemporary research. This evolutionary process occurs through shifts of paradigms
of chemical bonding and the formulation of more and more sophisticated models of
chemical bonding. From the earliest attempts to understand how substances are formed
and transformed, leading to ideas of “clective affinities” (Lemery, 1675)" and “chemical
affinities” (Geoffroy, 1718)', through the “dualistic” chemical theories of Davy and
Berzelius,” the theory of chemical bonding evolved into theory of electronic structure in
the form of the Lewis bonding model.> The emergence and development of quantum
mechanics led to reformulation and to deeper theoretical understanding of the Lewis
hypothesis in the works of Heitler and London,4 Pauling,5 Slater,6 and others. One way or
another, the Lewis model of chemical bonding, operating with lone-pairs (LP) and 2-
center 2-electron (2c-2e) bonds according to the octet rule, has been dominating both
chemical education and research for more than ninety years. The key to this long-
standing success is the intuitive simplicity of the idea of the localized bonding (or non-
bonding) pair of electrons, availability of the rules for constructing Lewis structures
(simple enough to be taught in freshmen chemistry class), very clear graphical

representation of the bonding pattern. The obtained picture of chemical bonding can be
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easily connected with properties of the species and its reactivity, providing the Lewis
model of the bonding with not only descriptive, but also predictive power.

Nevertheless, there are situations when chemical bonding and, thus, properties of
chemical species, can’t be satisfactorily described by a set of lone-pairs or 2c-2e
(localized) bonds. Studies of a huge classes of compounds now are impossible without
the concept of aromatic/antiaromatic (or delocalized) bonding, initially used to explain
properties of benzene.” This concept has been extensively reviewed® and the discussion
of its general aspects is far beyond the scope of the present work. Another example of
non-Lewis systems is boron hydrides (boranes) with 3-center 2-electron bonds.’

In chemistry, the word “cluster” is used for a group of atoms or molecules held
together by a range of interactions, with weak van der Waals forces on one end and
strong ionic bonds on the other. Active studies of clusters started in the1950’s, though
related phenomena were referred to even in the 1930’°s. Clusters are usually produced
using mass spectrometer ion sources' or the laser vaporization technique.'' The latter
allows a researcher to “assemble” species of virtually any composition and go beyond
studies of clusters of volatile materials. From the structural point of view, clusters
constitute a form of matter intermediate between atoms and the solid phase. The
properties of clusters are extremely sensitive to their composition and charge and can be
altered dramatically due to the difference of a single atom or electron.'” This peculiarity
makes it especially hard to create bulk counterparts of the species observed in molecular
beams. For example, among doubly charged anionic clusters of silicon only Sis*” and Sis™
have been synthesized and characterized by X-ray crystallography."” Photoelectron

spectroscopy in molecular beams can be carried out for clusters of any size.
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On the way from atoms to solid phase a deficiency of electrons available for
bonding occurs. In other words, in covalently bound clusters there are not enough
electron pairs to form two-center two-electron (2c-2e) bonds between each pair of atoms
that are located close enough to each other. When structures of clusters are reported in the
scientific literature, the lines connecting atoms in the pair-wise manner are drawn on the
basis of interatomic distances. These structures thus do not necessarily represent any
bonding pattern and should be seen only as connectivity diagrams in the geometric sense.

14,1 .
15 which recovers the

The application of the Natural Bonding Orbital (NBO) analysis,
Lewis structural description from the charge density distribution in a priori manner,
usually leads to chemically senseless results. Very often NBO software fails to finish the
analysis at all when dealing with clusters. The electron deficiency of clusters is the main

source of difficulty for those who try to relate their geometries and properties to their

electronic structure in some rational manner.

2-2. Chemical Bonding Models for Clusters

A fine line exists where the electronic structure methods for quantum chemical
calculations should be separated from the models of chemical bonding in clusters. For
example, in this dissertation the canonical molecular orbitals of the Hartree-Fock-
Roothaan method will not be viewed as a model for chemical bonding unless they are
used within the concept of aromaticity/antiaromaticity applicable in the case of
delocalized bonding. In the same way, the Valence Bonding method of the quantum

chemical computations will not be viewed as a model for chemical bonding, unless the
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resonance structures emerging in this approach are used for description of the delocalized

bonding.

2-2.1. Jellium Model

To work satisfactorily, a model of chemical bonding in clusters should be able to
deal with delocalization of valence electrons in these species. Somewhat similar behavior
of electrons is encountered in surface regions of metals, which can be considered as
nearly-free-electron systems. It was shown that the lattice of positive ions in a model
metal surface could be replaced by a uniform background charge (jellium).'® The positive

background representing smeared ions, can be written as follows

n,(r)=n0O(r) 2.1)
with average valence-electron density

n=3/(4mr’) 2.2)
where 15 1s Wigner-Seitz radius (bulk density parameter). In the expression (2.1) O(r) is 1
inside and 0 outside a zero-thickness surface. The jellium background is neutralized by
the valence electrons with density n(r) everywhere but a region of atomic thickness
around the surface. The jellium is stable for ry = 4 bohr and gives a good description of
cohesive and surface properties of simple metals, but anomalies are encountered in the
non-equilibrium regions: for r, = 2 bohr the jellium surface energy is negative,'* and for
ts = 6 bohr the jellium bulk modulus is negative.'” The introduction of pseudopotential

corrections'®'” helps to fight the deficiencies of the jellium model, but eliminates its

simplicity and universality since they introduce the dependence of properties on the
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valence, crystal structure, and r,, or at least ry in the case of a structureless
pseudopotential *°

The pioneering work on the application of the jellium model to metal clusters was
performed by Knight et. al.”' The relative abundance of the neutral sodium clusters in
mass spectra was explained on the basis of a one-electron shell model in which
independent delocalized valence electrons were bound in a spherically symmetric
potential well. Since then the studies of clusters on the basis of the jellium model have
been reviewed.'”****” The nature of the jellium model suggests that the most reliable
results should be expected for systems with near-free behavior of the valence electrons,
such as metal clusters, or systems at the nano-scale with developed surfaces and
electronic structure close to the structure of bulk metals. Limitations on the success of the
jellium model for metal clusters were reviewed by Jena and co-workers.?® In recent years
the jellium model has been utilized in studies of metalloid (elementoid) clusters,”
structural and electronic properties of medium-size gold clusters,” shape evolution of
intermediate size silver clusters,’' stability and symmetry breaking in metal nanowires,’>

3 and so on. It

evolution of electronic structure and properties of aluminum clusters,’
proved to be useful in the description of “superatomic” systems — certain clusters
behaving like atoms of certain elements in the periodic table.**

Though the jellium model is more “physical” than “chemical” and does not
introduce “chemical bonds” per se, it is one of the major theoretical tools used nowadays

in depicting electronic structure of clusters and revealing their structure-property

relationships.
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2-2.2. Aromaticity/Antiaromaticity

A long-standing tradition of dealing with delocalized bonding exists in organic
chemistry. The concept of aromaticity was initially introduced to explain the unusual
structural and chemical properties of benzene.””> As a property, aromaticity does not

8a,36-38

have a clear definition. Discussions of the criteria of aromaticity as well as its

42 . . . . . . .
82.3842 are extensive. From the theoretical point of view, aromatic/antiaromatic

types
bonding can be approached via either resonance structures of the Valence Bonding
method*®* or delocalized canonical molecular orbitals (CMO) of the Hartree-Fock-
Roothaan self-consistent field (SCF) method.* Resonance structures are Lewis (classical)
structures. The system with delocalized bonding can be seen as intermediate (or
“resonating”) with two or more such limiting structures. When CMO language is used,
aromatic bonding emerges as the result of occupation of a certain set of CMOs and this
fact can be expressed through counting rules for the amount of electrons involved in the
delocalized bonding (e.g. rules of Huckel,* Zintl,*® Mingos,*”” Wade,* Jemmis,* graph-
theoretical approach™ etc.).

The discovery of aromaticity/antiaromaticity in clusters was made on the basis of
CMO analysis.”"** To identify a certain cluster as aromatic/antiaromatic it is necessary to
outline the sets of the CMOs that can’t be transformed into the classical Lewis bonding
objects, such as LPs and 2c-2e bonds. These orbitals are compared with prototypical
aromatic systems on the basis of overlap type and separated into subsets, corresponding
to different types of aromatic bonding (e.g. s-, p-, d-). Then aromaticity/antiaromaticity is

established on the basis of counting rules specific for the delocalized bonding of each

type.”® In this way numerous clusters were recognized as aromatic (multiple-aromatic,
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spherical aromatic), antiaromatic (multiple-antiaromatic, spherical antiaromatic), and
conflicting aromatic. The binary lanthanide hydride clusters Ln;Hg and LnsH;, (Ln = La,
Gd, and Lu) were predicted to be stable and significantly aromatic.’’ The five-membered
cyclic tellurium species Te;N,S was studied with the purpose of analysis and
quantification of the electron delocalization.”® The Hf3" anionic cluster was shown to
possess unique triple (s-, p-, and d-) aromaticity.”® The study of Al;C and Al,O™ was
performed to analyze the possibility of aromatic behavior, stability and reactivity of these
systems.”” The double-aromatic character of selected monocyclic carbon, boron, and
borocarbon rings was demonstrated.®’ A new class of “all-metal” aromatic hydrido-
bridged binary coinage metal heterocycles was predicted by Tsipis et al.** Sandwich-like
compounds were theoretically designed using all-metal aromatic Al,* unit and the main
group metals (Li, Na, K, Be, Mg, Ca) as building blocks.® Apparently, the utilization of
the concepts of aromaticity/antiaromaticity for the description of electronic structure of
clusters is very benefitial. The amount of the cluster research using these concepts to
explain properties of clusters is constantly increasing.

Certain difficulties of the analysis of delocalized bonding using CMOs exist
though. It is not a trivial task to separate “localizable” CMOs from those responsible for
the delocalized bonding. It is also tricky to determine the pattern of the localized bonding
derived from the “localizable” CMOs. There are no tools created specifically to solve this
problem, though NBO can be tricked into doing this in some cases. Separation of the
subsets of CMOs according to the overlap type is not always possible. For example, a
cluster has to be planar to have o/x separation; 0-MOs originating from s-atomic orbitals

can always mix with 0-MOs originating from p-atomic functions; o-radial CMOs can
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mix with o-tangential CMOs etc. Taking into account the overwhelmingly huge number
of low-symmetry three-dimensional clusters (C; point group), the overlap-type separation
of CMOs is, in fact, generally impossible. The electron counting rules derived for certain
chemical systems might not work in the case of other systems. An excellent example is
the counting rules for spherically aromatic species (i.e. Wade-Mingos, Hirsch). While
closo-borane Bj,H;,” is an icosahedral cage, the valence isoelectronic silicon cluster
Sip” is not, nor is Gei,”. The most stable isomers of Snj,> and Pby,> are icosahedra
again. All of these species have identical structures of the occupied CMOs and thus
electron counting, but different stability of the icosahedral isomers. Another example is
the Als” octahedral cluster,** which violates Wade’s rule by having only eight instead of
fourteen m-electrons responsible for the skeletal bonding. It is also hard to expect the
counting rules to be applicable and CMO analysis to be feasible when dealing with
clusters of large size (hundreds of atoms) with distinguishable external (“surface”) and
internal (“bulk”) regions.

The approach utilizing ideas of aromatic/antiaromatic bonding in the description
of clusters is in general the most successful in bringing “chemistry” into studies of
clusters. There is a very strong correlation between the delocalized bonding pattern, the
structure of the species, and its properties. For example, aromaticity pronounces itself in a
highly symmetric geometry, high first singlet vertical excitation energies, highly negative
NICS values, high atomization energies, and high abundance in molecular beams.
Antiaromaticity is related to the first-order Jahn-Teller effect and geometric distortions
leading to the formation of islands of aromaticity, low first singlet vertical excitation

energies, NICS values close to zero or positive, and low atomization energies.
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There are attempts to use Valence Bond theory for the description of the
delocalized bonding in clusters. The Al system was studied by Zhan et al.** and
Havenith et al.*® The first group reported 16 relevant resonance structures, the second
only 6 with highest contribution from 2 Dewar-type structures. Description of the
delocalized bonding in fullerene Cgp in terms of valence bond representation would
require 12500 resonance structures.®’ As the Valence Bond method can be successfully
used for electronic structure calculations of small and medium-size clusters, the above-
mentioned examples demonstrate its apparent deficiency from the point of view of
chemical bonding analysis. When a single existing structure has to be represented by a
handful of non-existing resonance structures, it is neither a simple, nor intuitive way to

solve the problem.

2-3. Conclusion

Initially studies of clusters were concentrated on obtaining relative abundances of
species of different size in mass spectra and finding “magic” numbers. The discovery of
fullerenes definitely shifted the interest towards establishing structures of the observed
clusters and studying structure-property relationships. It should be realized though, that
the fast development of computational techniques (including algorithms, software, and
hardware) makes it simpler to use a brute force approach to the theoretical studies of
clusters, which is based on the extensive amount of calculations without analysis of the
obtained results. The number of publications reporting just sets of isomers (local minima)
for a cluster of given size and composition is still higher than the number of papers trying

to explain structures of different clusters and families of clusters on the unified
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conceptual basis. The field of models of chemical bonding for clusters is not too rich.

There is the “jellium model” originating from physical theory of the solid state and

reflecting the physical origin of cluster research. The “aromaticity/antiaromaticity model”

is of a chemical nature since it is rooted in the concept actively and successfully used in

organic chemistry. The incredible diversity of clusters inevitably leads to the

development of this concept. The result of such development is a new approach to the

description of chemical bonding in clusters as described in the following chapters.
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CHAPTER 3
DEVELOPING PARADIGMS OF CHEMICAL BONDING:

ADAPTIVE NATURAL DENSITY PARTITIONING'

Abstract

A method of description of the chemical bonding combining the compactness and
intuitive simplicity of Lewis theory with the flexibility and generality of Canonical
Molecular Orbital theory is presented, which is called Adaptive Natural Density
Partitioning. The objects of chemical bonding in this method are n-center 2-electron
bonds, where n goes from one (lone-pair) to the maximum number of atoms in the system
(completely delocalized bonding). The algorithm is a generalization of the Natural
Bonding Orbital analysis and is based on the diagonalization of the blocks of the first-
order density matrix written in the basis of Natural Atomic Orbitals. The results obtained
by the application of the algorithm to the systems with non-classical bonding can be
readily interpreted from the point of view of aromaticity/antiaromaticity concepts. The
considered examples include Liy cluster and a family of planar boron clusters observed in

molecular beams.

3-1. Introduction
It has been slightly more than 90 years since G. N. Lewis proposed the most
successful and generally accepted theory of chemical bonding.! Almost a century later the

development of the general theory of chemical bonding is still far from completion.” The

! Coauthored by Dmitry Yu. Zubarev and Alexander I. Boldyrev. Reproduced with permission from Phys.
Chem. Chem. Phys. 2008, 10, 1-10.
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diversity of ideas and concepts co-existing in this area is absolutely remarkable. The
theory of molecular orbitals (MO) by Mulliken and Hund’ leading to delocalized
description of electrons in the chemical systems turned out to be compatible with more
intuitive and practically applicable Lewis description after utilizing various localization
techniques. The possibility of such localization procedures proposed by Foster and Boys,”*
Edmiston and Ruedenberg,’ Pipek and Mezey® is based on the fact that the wave function
is invariant under unitary transformations. Valence bond (VB) theory coined by Heitler,
London, Slater, and Pauling,” ® being an alternative to the MO theory, naturally
incorporates such important bonding concepts as hybridization and resonance structures.
It can be very useful for the explanation of the systems with multireference character,
representation of the potential energy surfaces for chemical dynamics, quantitative
characterization of the electron delocalization, etc.” '* A huge segment of the chemical
bonding field belongs to the theories, avoiding references to the “chemical bonds” as
objects that do not have physical definition and are imprecise. Instead, they rely on
different forms of analysis of charge density, such as studies of the topological properties
of the Laplacian of the electron density within the framework of Quantum Theory of
Atoms in Molecules (QTAIM), ' or local quantum-mechanical functions, related to the
Pauli exclusion principle such as Fermi Hole (FH), Electron Localization Function (ELF)
and their various flavors.'>?” Analysis of chemical bonding can be performed according
to Coulson’s definition’' of bond order in polyatomic molecules, which was extended
beyond the m-electron level by Wiberg,”> who used the term bond index instead of bond
order. For nonorthogonal basis sets, the appropriate definition of bond order/index was

2324

proposed by Mayer. The three-center bond index was first proposed by Giambiagi et
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al.”® and independently also by Sannigrahi and Kar.”® Various electron sharing indexes

23,24,29-31

such as Fulton’s Electron Sharing Index (ESI),”*® Mayer’s bond-orders, and

3233 were reviewed by E. Matito et al.** One of the most

Delocalization Indexes (DI)
important tools in the chemical bonding toolbox is Natural Bonding Orbital (NBO)
analysis by Weinhold.* Developed to construct Lewis structure of a given molecule in an
a priori manner and being extremely computationally efficient, the method is the first
choice in dealing with the widest range of systems.™

Without comprehensive reviewing the existing methods of chemical bonding
analysis it should be clear that there is a great diversity of views on the topic and very
different paradigms can be chosen to meet conceptual/motivational requirements of a
particular scientist or scientific task. None of them can be regarded as ultimate though
due to the conceptual difficulties, interpretational subtleties, computational demands etc.
As a reference point of the localized description of chemical bonding Lewis theory has a
well-known deficiency. Sometimes single Lewis structure is not sufficient for the
adequate representations of the electronic structure of a system and multiple resonance
Lewis structures are necessary. These cases are also dealt with utilizing idea of
delocalized or aromatic/antiaromatic bonding.’’ From the physical point of view,
aromaticity and antiaromaticity are even more ill-defined than the chemical bond itself.
The literature dedicated to these concepts is truly enormous and its reviewing as well
discussing the concepts themselves is far beyond the scope of this paper. The most recent
discussion of aromaticity and antiaromaticity can be found in Ref. 38-41 Aromaticity as
an electronic structure related phenomenon can also be described using various

42a

aromaticity indices, for example para-delocalization index (PDI),” the aromatic
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fluctuation index (FLU),*® and MO multicenter bond index (MCI).*® Using a slightly

447 confirmed that six-center bond index indeed

different approach, Ponec and coworkers
a useful quantity to measure aromaticity. Ponec et al.*® further demonstrated that the
multi-center bond index can be used for the quantitative characterization of
homoarmaticity, non-homoaromatic and anti-homoaromatic systems. Normalized
variants of MCI as a measure of aromaticity were proposed by Cioslowski et al.* Among
widely used probes for aromaticity/antiaromaticity there are ones based on the response
to the presence of external magnetic field such as Nuclear Independent Chemical Shifts
(NICS) pioneered by Schleyer and co-workers,” the Aromatic Ring-Current Shieldings
(ARCS)”' and the Gauge-Including Magnetically Induced Current (GIMIC)>* proposed
by Sundholm and co-workers, and maps of current density induced by a perpendicular
magnetic field developed by Fowler and co-workers.”® From the practical point of view,
the comparison of a given system with prototypical one within MO theory is often
enough to assign some certain type of the delocalized bonding, as it is done in the case of
main-group elements or transition-metal clusters.”*>’

Another significant adjustment is that due to the development of the chemical
bonding theory for boron hydrides™® the set of Lewis objects of the localized bonding was
extended to include three-center two-electron (3c-2e) bonds in addition to lone-pairs (LP)
and two-center two-electron (2c-2e) bonds. What has to be kept in mind is that the Lewis
theory, formulated eleven years prior the emergence of quantum theory, has assumed the
central role as chemical language in education and research. So, it is good idea for the

new approaches to the extraction and representation of the chemically relevant

information to preserve connection with the Lewis theory by perhaps generalizing the
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34355758 that combination of the localized and delocalized

latter. It was shown lately,
(aromatic/antiaromatic) description can consistently explain structures and properties of
the main group element and transition metal clusters. The objects of bonding in this case
have to be lone-pairs, 2c-2e bonds, and electron pairs, localized over bigger fragments,
such as 3-, 4-, and more atomic, up to the entire cluster. The electron pairs that are
localized over the maximum available number of atoms should actually be called
“delocalized” and their presence is a sign of aromatic/antiartomatic bonding. The
assignment of aromaticity or antiaromaticity in this case can be performed on the basis of
counting rules. Electron pairs, localized over smaller molecular fragments usually point
to the island aromaticity in globally antiaromatic systems. In this way Lewis description
is extended to include n-center 2-electron bonds and can be naturally reconciled with
concepts of aromaticity and antiaromaticity. The procedure of obtaining such a
description of chemical bonding, which we call Adaptive Natural Density Partitioning
(AdANDP) and examples of its application are presented below.
3-2. Adaptive Natural Density Partitioning
(AANDP) Algorithm

From the computational point of view AdANDP is a generalization of NBO
analysis by Weinhold.” The latter is based on some optimal transformation of a many-

electron wavefunction into a localized form consistent with Lewis-theoretical picture. If

the spinless first-order reduced density operator y(1|1') for a closed-shell system
y(111") = wa(l,Z,...,N)w*(l',2,...,N)d2...dN (3-1)
where 1 and 1’ are abbreviations for x; and x;” and the matrix element is

Py = [ %,y 1)y, (1)d1dr (3-2)
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then y(1|1') can be expanded in a complete orthonormal basis set of atomic orbitals {yx}

as follows

Y1) = Y Pyt (D (1) (3-3)
kl

Diagonal elements Py of the density matrix P={Py} correspond to the occupation
numbers (ON) of the orbitals . If xx are bond orbitals with maximum occupancies,
the set of the atomic hybrids forming them should be considered as optimal in the sense
that the approximate wavefunction constructed using the found bond orbitals will have
the best overlap with the original wavefunction. The search for these “maximum-
occupancy” hybrids can be performed numerically based on the condition of maximum
occupancy but it is computationally expensive procedure, so alternative approach is used.

The density matrix P is represented in the block form

B, P, .. P,]
p, P, .. P,
I P o
P, P, .. P,
_PNI PN2 PNN_

where block Pj; corresponds to the j-th atomic center. As natural spin orbitals with
maximum occupancies are eigenvectors of the full density matrix P, it is possible to
obtain hybrid orbitals, maximizing the occupancy on a given atomic center by
diagonalizing sub-blocks of P, involving this center. If the following eigenproblem

P,k = n"S (3-5)
where P;; is the density matrix sub-block on the j-th center, S;; is overlap matrix, h¥ and

@

n? are the I-th eigenvector and eigenvalue of P;;, respectively, gives n? close to 2, the
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eigenvector h/¥’ can be seen as describing a lone-pair on center j (of course, if core
electrons are already removed from the picture and the density due to the valence
electrons is considered). Eigenvalues significantly lower than 2 correspond to the vectors
available for the bonding with other centers. The vectors describing these bonds can be
recovered, in their turn, by diagonalizing the density matrix sub-blocks, including the
centers of interest and corresponding off-diagonal blocks, i.e. 2 x 2 sub-blocks of the

form

i I)ij

Pji ij

P = (3-6)

can reveal 2c-2e bonds between centers i and j (eigenvectors h” with eigenvalues n,™”

close to 2), 3 x 3 sub-blocks

P, P, P
P =P, P, P, (3-7)
P, ki P, kj P, kk

can reveal 3c-2e bonds between centers 1, j and k, and so on. After n-center eigenvectors
(on the centers 1,j,...,k — total n) are obtained, it is necessary to deplete the full density
matrix P from the density associated with the found bonding objects (n-center

eigenvectors with eigenvalues close to 2)

i) =P- ngijmk)hl(zj.“k)h;ij..Ak)f (3-8)

After depletion the search for (n+1)-center occurs without mixing near degenerate n- and
(nt+1)-center eigenvectors. Found in this manner bonding orbitals are generally
nonorthogonal and can be orthogonalized using Léwdin symmetric transformation.”

So, NBOs are obtained as local block eigenfunctions of the one-electron density
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matrix and have optimal convergence properties for describing the electron density. From
this point of view the obtained orbitals are “natural” in Lowdin sense.®” The procedure is
numerically efficient since it involves only a series of diagonalizations of density matrix
blocks. It is unbiased in the sense that no preliminary ideas of the bonding pattern are
required to perform analysis. In the mean time, the presumption that bonding in the most
general systems can be satisfactorily described using the set of Lewis theoretical objects
(LP, 2c-2e, and 3c-2e bonds) makes the method inflexible. When delocalized bonding is
encountered only one of the possible resonance structures is reported or delocalized part
is represented in the form of low-occupancy lone-pairs. In its current implementation®
NBO analysis does not go beyond 3c-2e bonds, but apparently the search can be easily
extended to any number of atomic centers in the way it is described above. The
implementation of the algorithm for the search of n-center 2-electron bonding objects is
called Adaptive Natural Density Partitioning. AANDP is based on the diagonalization of
the n-atomic sub-block of the density matrix (full or depleted) of N-atomic molecular
system written in the basis of Natural Atomic Orbitals (NAO). NAO are the orthonormal
one-center orbitals of the maximal occupancy for the given molecular wavefunction,
derived from atomic sub-blocks of the density matrix.® The blocks are formed for all the
possible combinations of n elements out of N available. In this way the obtained
eigenvectors are consistent with the point-group symmetry of the molecule since the full
density matrix has the symmetry of the molecule. For the given n-atomic block those
eigenvectors are picked out whose occupation numbers (eigenvalues) exceed the
established threshold value, usually close to 2. The threshold values are set individually

for each n (number of centers in the atomic block) to ensure flexibility of the algorithm.
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When search over all n-center blocks is over, the picked eigenvectors are ranked
according to their occupation numbers again. Ranking is performed to form the set of
vectors with the highest occupancies within some preset tolerance. This group of vectors
is then accepted as n-center 2-electron bonds and the full density matrix is depleted of
their density. For the rest of the n-center eigenvectors with high initial occupancies the
diagonalization is performed again to obtain corrected eigenvalues and thus avoid over-
counting the density associated with the shared elements of the different n x n density
sub-blocks. If the corrected occupation numbers are still above the threshold, the vectors
are picked out to go through the ranking again and so on. When no n-center eigenvectors
with acceptable occupancies are found, the search starts for (n+1)-center blocks. If some
part of the density cannot be localized into n<N center bonds, the N-center eigenvectors
or completely delocalized bonds are reported. They usually closely resemble the
canonical MOs (CMO), that are regarded as aromatic when the description of the bonding
in the particular system is given on the basis of MO theory and the concept of
aromaticity. It should be mentioned that the accepted n-center vectors are not
orthogonalized in the current implementation of the AANDP algorithm. The primary goal
of the code is not to form an orthonormal basis set for subsequent perturbation theory
analysis, multireference calculations etc. The goal is to reveal the regions of the
localization of electron pairs. Certainly, the orthogonalization can be performed if
necessary using some of the existing algorithms.”® Also, the accepted eigenvectors are
allowed to have overlaps with each other within the AANDP procedure. These overlaps
can be projected out but we believe that they are manifestations of the delocalized

bonding and thus can be used for qualitative characterization of the degree of
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delocalization. More rigorous analysis of the possible overlaps of localized nc-2e bonds
and its connection with aromatic nature of bonding is subject of the future work. If the
standard NBO method were extended to nc-2e blocks, it would still produce resonance
structures in certain cases, because it rejects vectors with significant overlaps. As the
result these resonance structure would have bonding patterns inconsistent with the point
group symmetry of the studied system. The AANDP avoids this problem. By accepting
overlapping eigenvectors it produces bonding pattern, which is always consistent with the
symmetry of the system. “Bonding pattern” here is the set of all bonding elements
recovered by the AANDP analysis and placed on the molecular framework. Results of the
AdNDP analysis are dependent on the choice of the threshold values for the occupation
numbers. This kind of dependence is inherited from the parental NBO analysis. The
results of the application of the standard NBO code also depend on the occupation
number threshold, which can be adjusted using documented features of the code. The
only difference is that NBO can operate in “black-box” manner changing thresholds
without participation of the user, while AANDP requires explicit specification of the
thresholds. If inappropriate threshold values are selected, the analysis cannot be
successfully accomplished, because the amount of accepted bonds exceeds the amount of
valence electron pairs. Though the dependence on the threshold values is intrinsic for
“Natural Orbital” — based methods, there are all the reasons to expect, that AANDP
provides unique partitioning of electron density into nc-2e bonds. Apparently, acceptance
of a certain set of n-center vectors and consequent depletion of the density matrix
influences results of the search for (n+1)-center vectors. With individual threshold values

for each size of the atomic block AANDP algorithm provides high flexibility.
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3-3. Theoretical Methods

The AANDP algorithm is implemented using Fortran 77 standard. The geometry
optimization and normal mode analysis for the studied systems were carried out using
hybrid density functional B3LYP®™® method with 6-311+G*°%® polarized split-valence
basis set as implemented in Gaussian 03% software package. The full density matrix in
the basis of the natural atomic orbitals as well as the transformation between atomic
orbital and natural atomic orbital basis sets were generated at RHF/STO-3G"*"" level of
theory by means of NBO 3.0°>*%6272™ ¢ode incorporated into Gaussian 03. It is known,
that the results of NBO analysis do not generally depend on the quality of the basis set, so
the choice of the level of theory for AANDP application is adequate. In the most general
case, the results might be dependent on the basis set. However, in all our calculation we
found that the pattern of nc-2e bonding remains qualitatively the same, when we used
STO-3G, 3-21G or 6-31G* basis sets. The only difference was the variation of the values
of the occupation numbers, which did not exceed 0.1 |e|. The visualization of the results

of calculations is performed using MOLEKEL 4.37 and MOLDEN 3.4 software.

3-4. Numerical Application and Discussion

The choice of the systems for the analysis by means of AANDP code was made
based on their non-classical chemical bonding. “Non-classical” in the context of the
present work means that the bonding cannot be satisfactorily represented by a single
Lewis structure and normally requires either invoking description in terms of resonant
structures (within the paradigm of the localized bonding) or in terms of CMO and

aromaticity/antiaromaticity concepts (within the paradigm of the completely delocalized
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bonding). AANDP leads to the description, combining these two paradigms. For instance,
the application of the AANDP to the benzene molecule leads to the textbook description
with six 2c-2e C-C bonds with the occupation number 1.99 |e|, six 2c-2e C-H bonds with
the occupation number 1.99 |e| and three completely delocalized m-bonds closely
resembling Hartree-Fock n-MOs. The application of AANDP to organic molecules will
be discussed in forthcoming paper. For the present paper we selected systems, which are

particularly complex and cannot be described in a straightforward manner.

3-4.1. Lis cluster

The first system to be considered is neutral Lis cluster. In its rhombus Dy, (lAg,
lag2 1b,,>) (Fig. 3-1a) configuration the cluster is o-antiaromatic.”*’”" Antiaromaticity
originates from the bonding HOMO-1 1a, and antibonding HOMO 1by, and is expected
to lead to the formation of the islands of o-aromaticity. AANDP shows these 3-center
regions of island o-aromaticity as two 3c-2e bonds with occupation numbers 2.0 |e| (Fig.

3-1b). Standard NBO software also cracks this case, since the bonds are 3-center.

3-4.2. B4 cluster

The second system B4 Doy, (lAg, 1ag21b1u21b2u2lbggzlbguZZagz) (Fig. 3-2a) belongs
to the family of planar all-boron clusters extensively studied before and recently reviewed
(Ref. 57, 58 and references therein). The rhombus shape of the global minimum
structure” in this case is the result of the second-order Jahn-Teller effect and even at

80,81

moderate temperatures the cluster is effectively square. Most general considerations

of the structure of CMOs lead to the conclusion that the bonding can be
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Figure 3-1. a) Structure and CMOs of Lis Dy, (lAg) cluster; b) results of the AANDP
localization.
described as the combination of four 2c-2e peripheral B-B bonds, a completely
delocalized o-aromatic bond (originating from the completely bonding HOMO 2a,), and
a completely delocalized m-aromatic bond (originating from the completely bonding
HOMO-1 1b3,). These predictions are confirmed by the results of AANDP analysis (Fig.
3-2b). The part of the electron density due to the valence electrons is partitioned into four
2c-2e B-B bonds with occupancies 1.99 |e|, one aromatic 4c-2e o—bond (ON = 2.0 |e|),
and one aromatic 4c-2e m-bond (ON = 2.0 |e|). The completely delocalized bonds
obviously are very close to the corresponding CMOs.

The overall bonding pattern is consistent with D, symmetry of the cluster,
description of which would otherwise require several resonance structures. Standard

NBO software in this case does report classical 2c-2e bonds, but represents two
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Figure 3-2. a) Structure and CMOs of By Dy, (lAg) cluster; b) results of the AANDP

localization.

completely delocalized bonds as a set of eight lone-pairs with occupation numbers around

0.5 |e| (see Table 3-1).

3-4.3.B5 cluster

The Coy (‘A 1a,°1b,°2a,%3a,%1b,°2b,%4a,%3b,”) global minimum structure of Bs”

cluster (Fig. 3-3a) is a system with conflicting aromaticity as it follows from the analysis

of CMOs.”™ The o-antiromaticity originates from the completely bonding HOMO-1 4a,

and partially bonding HOMO 3b,, the m-aromaticity - from the completely bonding

HOMO-3 1b;. The remaining five valence CMOs are expected to be transformable into

five 2c-2e peripheral B-B bonds. These five localized bonds can be recovered by standard

NBO, together with one 3c-2e bond involving atoms 1, 2, and 3, two low-occupancy LPs
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Table 3-1. Results of the NBO analysis for B4 Doy, (lAg) cluster.

Center Hybrids composition,
Type ON, el (contribution, %) (function, %)
1.98 1 (49) s49,p 51
2(51) $50,p 50
1.98 1 (49) s49,p 51
3(51) $50,p 50
2c-2¢ 1.98 2(51) s 50, p 50
4 (49) s49,p 51
1.98 3(51) $50,p 50
4 (49) s49,p 51
0.57 1 s0,p 100
0.54 1 s2,p98
0.46 2 s0,p 100
LP 0.43 2 s0,p 100
0.46 3 s0,p 100
0.43 3 s0,p 100
0.57 4 s0,p 100
0.54 4 s2,p98

NBO, together with one 3c-2e bond involving atoms 1, 2, and 3, two low-occupancy LPs
on atoms 4 and 5 (ON = 1.57 |e|, composed out of 65% of 2s and 35% of 2p functions
each), and five low-occupancy LPs on atoms 1, 2, 3, 4, and 5 (ONs from 0.18 |e| to 0.62
le|, almost pure p-functions). Application of AANDP algorithm leads to chemically
reasonable results (Fig. 3-3b).

Indeed, five peripheral 2c-2e bonds are recovered. Antiaromatic o-system gives
rise to two islands of o-aromaticity which reveal themselves as two 3c-2e o-bonds
(centered on atoms 1, 3, 5 and 1, 2, 4). The completely delocalized 5c-2e m-bond is the
consequence of the aromaticity in the m-system of the cluster. One important remark
should be made here. The difference of the results of NBO and AANDP analyses for the
number of centers higher than 3 is understandable, since NBO does not carry out

localization for more than 3 centers in principle. The difference for the 3c-2e bonds is due
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Figure 3-3. a) Structure and CMOs of Bs Cay (lAl) cluster; b) results of the AANDP
localization.



36

to the fact that NBO does not accept eigenvectors with significant mutual overlaps. We
believe that for the multi-center bonds derived from aromatic or antiaromatic MOs the
overlap of the conjugated n-center bonds is a phenomenon closely related to the nature of
aromaticity/antiaromaticity in the particular system and thus should not be removed from

the bonding picture but preserved and studied.

3-4.4. Bgz_ cluster

Doy (lAg, 1ag21b1u22ag21b2u21b3g21b3u23ag22b2u22b1u21b2g2) structure is the global
minimum for B> dianion (Fig. 3-4a).**® Analysis of the chemical bonding in this system
on the basis of ring currents,*** CMOs,*? and topological resonance energy (TRE)* leads
to the conclusion that the cluster is doubly antiaromatic with HOMO-3 3a, (completely
bonding) and HOMO-1 2b,, (partially bonding) responsible for the o-antiaromaticity, and
HOMO-4 1bs, (completely bonding) and HOMO 1by, (partially bonding) responsible for
the m-antiaromaticity. Double antiaromaticity (in o- and m-systems) is expected to lead to
the formation of the islands of o- and m- aromaticity, so that the globally antiaromatic
system nevertheless has large resonance energy.” In addition to the island-aromatic
bonding, analysis of CMOs suggests formation of six peripheral 2c-2e bonds. AANDP
results for B> cluster are shown in Figure 3-4b. The bonding picture clearly supports the
idea of formation of two doubly aromatic (0- and m-) triangular subunits within globally
antiaromatic cluster. Two 3c-2e o-bonds and two 3c-2e m-bonds recovered during the
analysis do not contribute to the bonding between two 3-atomic units but are responsible
for the doubly aromatic bonding within each of them. Six 2c-2e B-B bonds responsible

for the peripheral bonding and holding two aromatic subunits together are also present in
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Figure 3-4. a) Structure and CMOs of B¢> Dy, (1Ag) cluster; b) results of the AANDP
localization.
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the picture. There is consistency between the AANDP and NBO results in this case, since
bonding can be described by a combination of 2c-2e and 3c-2e bonds. NBO analysis is
indeed considered as a standard within the ranges of its applicability, so the above-
mentioned consistency is very important for the benchmarking the performance of the
new tool. Our conclusion on antiaromaticity of the B¢> D (lAg) structure is supported

by the results of Havenith et al.*

who studied the induced ring current maps. They
demonstrated that in both the m-only and (o+) maps, a strong paramagnetic current is

discernible in the inner square of the molecule, consistent with the expected anti-aromatic

nature of this system.

3-4.5. By cluster

The outlandish global minimum Dygy, (1a; g21e1u41e2g41e3u42a1 g21b2g21a2u22e1u41e1 g4)
wheel-shaped structure and CMOs of the By cluster are shown at Figure 3-5a. The
system is doubly o- and m-aromatic according to the analysis of CMO structure.® Three
o-radial MOs (HOMO-1, HOMO-1' 2e;,, and HOMO-4 2a;,) are responsible for o-
aromaticity and three i-MOs (HOMO, HOMO' 1e;,, and HOMO-2 1ay,) are responsible
for m-aromaticity. The rest of the CMOs are responsible for the peripheral bonding and
are expected to be localizable into eight 2c-2e B-B bonds. Localization by AdNDP
algorithm shows that this expectation is correct (Fig. 3-5b) and these eight 2c-2e bonds
are recovered. At the current state-of-art on the aromaticity research field it is not clear if
the description of the aromatic system, including not only completely but also partially
bonding orbitals, is possible in terms of some localized bonding objects. Thus AANDP

reports three completely delocalized 9c-2e o-radial “bonds” and three completely
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Figure 3-5. a) structure and CMOs of By Dgy (lAlg) cluster; b) results of the AANDP
localization.
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delocalized 9c-2e m-“bonds™ that closely resemble parental o-aromatic and m-aromatic
CMOs. The discussion of the peculiarities of the aromatic bonding due to both
completely and partially bonding MOs is far beyond the scope of the present study, but it
is remarkable that localized and delocalized descriptions now complement each other in a

seamless manner.

3-4.6. By cluster

According  to  Zhai et al® By cluster has C, (‘A
la,’1b,°2a,%3a,°2b,*3b,%4a,%5a,°4b,?6a,° 1b,°5b,77a,’8a, > 1a,°6b,72b,%)  global minimum
structure (Fig. 3-6a). Structure of CMOs suggests, that ten of them (from HOMO-7 to
HOMO-16) should give rise to ten 2c-2e bonds (nine peripheral and one between two
internal atoms) after localization, four 0-MOs (HOMO-1 6b,, HOMO-3 8a;, HOMO-4
7a;, and HOMO-5 5b,) make the systems o-antiaromatic, and three 7-MOs (HOMO 2b,,
HOMO-2 1la,;, and HOMO-6 1b;) make the system m-aromatic. According to this
tentative assignment™® Bj;” Ca, cluster is a system with conflicting aromaticity. The
AdNDP localization (Fig. 3-6b) produces somewhat different bonding pattern. First, only
nine 2c-2e peripheral bonds are encountered, all between the peripheral boron atoms.
Second, five 3c-2e o-bonds on five locally aromatic fragments suggest that there are
totally five 0-CMOs involved into the o-aromatic bonding, so the cluster should be
considered as o-aromatic. Finally, three completely delocalized 11c-2e n-“bonds”
originate from three m-aromatic CMOs and closely resemble them. So, our previously
made assignment”® of conflicting aromaticity to B;;” Cay (‘A}) cluster, which was based

on the visual analysis of the CMOs structure, structure, should be corrected and the
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Figure 3-6. a) structure and CMOs of Bj;” Cyy (1A1) cluster; b) results of the AANDP
localization.
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system should be considered as doubly (o- an m-) aromatic according to the results of
AdNDP analysis. Again, the question why m-aromatic system does not give rise to bonds
with higher degree of localization in this low-symmetry structure is left open till further

research.

3-4.7. B;;" cluster

Figure 3-7a represents the famous C,, (‘A,, lal’1b2?2al1?3a12?b2%4al?3b2’
5a1%4b2%6al*7a1?5b2*1b1°8a179a16b2%1a1°2b1?10a1?) global minimum structure®’ and
CMOs of Bj3' cluster. The remarkably high stability and low reactivity in comparison

with other cationic boron clusters has been reported by Anderson and co-workers.*"*

% and later Aihara® related this exceptional stability to the

First Fowler and Ugalde,
aromatic character of the m-electronic system of the cluster. It has been demonstrated
recently”® that aromaticity of the o-electronic system should also be taken into account.
Tentative description of the chemical bonding in Bj;" Cay (‘A;) based on the visual
analysis of its CMOs’® is as follows. Three orbitals (HOMO-4 9a;, HOMO-3 6b,, and
HOMO 10a,) are assumed to belong to o-aromatic system, three more (HOMO-6 1b,,
HOMO-2 la;, and HOMO-1 2b,) — to m-aromatic system, and remaining ten CMOs are
supposed to be transformable to ten 2c-2e peripheral bonds. The cluster is therefore
doubly (o- and m-) aromatic. Again, the application of AANDP in this case leads to a
different bonding picture (Fig. 3-7b). Eleven lowest CMOs (from HOMO-18 to HOMO-
8) are localized into ten 2c-2e bonds between peripheral boron atoms and one 3c-2e bond

(I, Fig. 3-7b) between three internal boron atoms. Remaining five 0-CMOs (HOMO-7,

HOMO-5, HOMO-4, HOMO-3, and HOMO) are transformed into five 3c-2e
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localization.
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o-bonds (II, III, TV, V, and VI, Fig. 3-7b) binding internal three-atomic and external ten-
atomic cycles. Finally, three 1-CMOs (HOMO-6, HOMO-2, and HOMO-1) are localized
into three Sc-2e conjugated m-bonds. While mt-system is now fragmented into three 5c-2e
conjugated m-bonds, it remains overall globally aromatic similarly to the coronene, where
three Clar’s sextets are associated with individual six-membered rings preserving global
aromaticity of this system. Similar logic applies to the o-delocalized bonding in By3": five
3c-2e o-bonds responsible for bonding between the external ten-membered ring and the
internal three-membered ring should be considered as forming globally aromatic o-
framework with ten electron satisfying the 4n+2 rule. Finally, there is one more 3c-2e
bond within the internal three-atomic cycle responsible for local o-aromaticity of this
fragment. In spite of some difference in details both the previous tentative assignment on
the basis of visual inspection of CMOs and “instrumental” analysis using AANDP agree

with each other on the globally doubly o- and m-aromatic nature of the By3" cluster.

3-5. Conclusion

The newly developed Adaptive Natural Density Partitioning algorithm is an
attempt to combine the ideas of Lewis theory and aromaticity. If the bonding is
essentially due to a pair of electrons with antiparallel spins and description of a huge
number of molecules can be given in terms of electron pairs localized at one (LP) or two
(2c-2e bonds) atoms, then it seems only natural to assume that “localized bonds” should
not be limited to two atoms (or three, as in the case of boron hydrates). This approach
leads to partitioning of the charge density into the elements with highest possible degree

of localization of electron pairs — nc-2e bonds. If some part of the density cannot be
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localized in this manner, it is left “delocalized” (localized on the maximal number of the
available centers) thus incorporating the idea of a completely delocalized (globally
aromatic) bonding. Thus, AANDP achieves seamless description of the chemical bonding
in the systems of the most general type. AANDP was developed to have a philosophy of a
pry-bar rather than a black-box. It is intended to help a researcher to get inside the
studied system and analyze it and work with it, but simultaneously provide certain level
of the conceptual and interpretational comfort. From the computational point of view,
AdNDRP is a generalization of the Natural Bonding Orbital analysis and inherits pros and
contras of the latter. The method is resource-efficient, since essentially involves only
eigenproblem solving by diagonalization. It can be paired with any quantum chemical
software that reports electron density matrix. The found bonding objects can be easily
visualized using existing graphical software. It should be kept in mind, that just like its
parent, AANDP is sensitive to the choice of the occupation number threshold. This fact
leaves the researcher responsible for the choice of the search strategy and acceptance of
the final bonding pattern. The reported eigenvectors with high eigenvalues should not be
regarded as “orbitals” in the sense of NBO, since they are not orthonormalized. This is
the reason for the choice of the name of the algorithm. Its primary task is to provide
partitioning of the electron density consistent with the concept of electron pair
responsible for the bonding via technique related to the “natural orbitals" of Lowdin. The
reported examples show, that indeed the approach, allowing for the nc-2e bonds, works
consistently. The results of the AANDP application agree with the NBO results for the
systems that can be treated by both methods. For other systems, the results agree with

earlier made predictions and in some case clarify or correct them. Consideration of the
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chemical bonding in this article is limited to clusters only, since the purpose of the paper
is to introduce a new tool for the analysis of chemical bonding. Also, only closed-shell
systems have been analyzed due to the current limitations of the code. The extension of
the method to the analysis of the open-shell and multiconfigurational systems is possible
and will be done in the subsequent papers. For open-shell systems a- and 3- density
matrices are analyzed separately with maximum occupation numbers being equal to one
instead of two. Indeed, AANDP can be applied to any chemical system. Moreover, we
expect that it would help to get theoretical insight into the nature of the delocalized
bonding. We strongly believe that ANDP will find its place in the toolboxes of both

theoreticians and experimentalists.
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CHAPTER 4
COMPREHENSIVE ANALYSIS OF CHEMICAL BONDING

IN BORON CLUSTERS'

Abstract

We present a comprehensive analysis of chemical bonding in pure boron clusters.
It is now established in joint experimental and theoretical studies that pure boron clusters
are planar or quasi-planar at least up to twenty atoms. Their planarity or quasi-planarity
was usually discussed in terms of m-delocalization or m-aromaticity. In the current article
we demonstrated, that one cannot ignore o-electrons and that the presence of two-center
two-electron (2c-2e) peripheral B-B bonds together with the globally delocalized o-
electrons must be taken into consideration when the shape of pure boron cluster is
discussed. The global aromaticity (or global antiaromaticity) can be assigned on the basis
of the 4n+2 (or 4n) electron counting rule for either - or o- electrons in the planar
structures. We showed that pure boron clusters could have double (o- and nt-) aromaticity
(By, B4, Bs', B¢’", Bs", By, B, Bs™, By, Big, Bii", Bis, and By3"), double (o- and -)
antiaromaticity (B>, Bis); or conflicting aromaticity (Bs’, o-antiaromatic and mt-aromatic
and B4, o-aromatic and m-antiaromatic). Appropriate geometric fit is also an essential
factor, which determines the shape of the most stable structures. In all boron clusters
considered here the peripheral atoms form planar cycles. Peripheral 2c-2e B-B bonds are

built up from s-p hybrid atomic orbitals and this enforces the planarity of the cycle. If the

' Coauthored by Dmitry Yu. Zubarev and Alexander I. Boldyrev. Reproduced with permission from J.
Comput. Chem. 2007, 28,251-268.



54

given number of central atoms (1, 2, 3, or 4) can perfectly fit the central cavity then the
overall structure is planar. Otherwise, central atoms come out of the plane of the cycle

and the overall structure is quasi-planar.

4-1. Introduction

In organic chemistry a vast majority of molecules can be represented by a single
Lewis structure (classical molecules) with either single or multiple two-center two-
electron (2c-2e) bonds and with an appropriate number of lone pairs on electron-rich
atoms. Chemical bonding in many inorganic molecules also can be represented by a
single Lewis structure, but generally in inorganic chemistry such a description encounters
significant problems. If, however, a single Lewis structure description is not sufficient,
then the resonance of Lewis structures is used. The last approach is particularly important
for description of the chemical bonding in aromatic compounds. The major advantage of
the above mentioned chemical bonding model is that we can predict possible isomers of
classical molecules using just paper and pencil and with high certainty we can also
predict which isomer could be the most stable one for a given stoichiometry. We can also
draw a possible mechanism of chemical reaction using the above mentioned chemical
bonding models, which makes them irreplaceable in chemistry.

Homoatomic and heteroatomic clusters today represent the final frontier for
developing unified chemical bonding theory. However, we do not have similar chemical
bonding models allowing us to use the “paper and pencil” approach for predicting
isomers of homoatomic and heteroatomic clusters. The brute-force techniques based on

genetic algorithm, molecular dynamics, and hopping models can help us to find global
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minima of small clusters as well as their low-lying isomers, but they quickly run into
computational problems in larger systems. Without robust chemical bonding models
capable of predicting global minimum structures and stable isomers of clusters our
progress in understanding cluster structure and the rational design of molecular/cluster-
level electronic and mechanical devices is seriously limited.

There was some progress in recent years in developing chemical bonding models
for clusters."® Boron clusters are the best understood clusters of the main group
elements. Today we are capable of explaining and predicting their geometric structures
and other molecular and spectroscopic properties, because of recent advances in
developing chemical bonding model for these systems.’*® 71424
Pioneering works on pure boron cations have been done by Anderson and co-

25-31
workers. >

These authors produced boron cluster cations in molecular beams using
laser vaporization and studied their chemical reactivity and fragmentation properties.
They initially postulated the three-dimensional structures for boron clusters. Subsequent
quantum chemical calculations®** have shown that boron clusters prefer planar or quasi-
planar structures. However, these computational predictions were not verified
experimentally. In a series of recent articles joint experimental and theoretical studies
have been reported for a number of boron clusters, B;” and B4',14 B5',]5 B(,',l6 B7',17 By
and By,'® Blo'-B]5',]9 and their neutrals. The structures of these clusters have been
studied computationally and verified through comparisons of experimental and
theoretical photoelectron spectra. These studies have confirmed the two-dimensional or

quasi two-dimensional structures of all these clusters. Pure boron clusters have been

recently reviewed.”
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The planarity of boron clusters has been primarily discussed in terms of mn-

43,44 5a,6,7b,14-24

delocalization and m-aromaticity. It has been shown that high symmetric
planar boron clusters By~ (Dsp), By (effectively Day), Bg* (D7w), B (Dsy) have either 2
(B; and By) or 6 (B and Bo) m-electrons similar to the prototypical hydrocarbons
C3H;" (Dsy, with 2 m-electrons) and C¢Hg (Den, With 6 m-electrons). Thus they formally
satisfy the 4n+2 Huckel rule and could be considered as m-aromatic clusters. Boron
clusters with 4n m-electrons such as B¢ (4 m-electrons) and B4 (8 m-electrons) can be
considered as m-antiaromatic. Aihara and co-workers™ recently performed analysis of the
aromaticity of boron clusters By (x=3-15) in terms of the topological resonance energy
(TRE) and concluded that all boron clusters are highly m-aromatic including systems with
4n m-electrons.

In order to resolve the controversy about aromaticity or antiaromaticity of closed
shell boron clusters with 4n electrons and also to include o-electrons into the discussion,
in the current work we present a comprehensive chemical bonding analysis of the pure

0,+1,+2,-1,-2
boron clusters By~ 7

(x=2-15). We will consider here only clusters with an even
number of electrons. For neutral and anionic boron clusters with 3-9 atoms, the o-
aromaticity has been previously considered,'*'®*'* however, the influence of the o-
electrons on the geometric structure of boron clusters with 10-15 atoms has not been

. 2 .. . .
discussed yet.”**'"2% Also, the use of the concept of aromaticity in cationic boron clusters

was limited primarily to the By3" cluster.”*®

4-2. Theoretical Methods

In our current study we used previously determined geometries for B;", B3, By,
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B42', Bs', By, B, B62', B+, Bs, Bgz', By clusters which have been summarized in a recent
review.” Their structures are shown in Figure 4-1. Chemical bonding analysis was
preformed using the Natural Bond Analysis (NBO)* (at the B3LYP/6-311+G* level of
theory®®”), pictures of Hatree-Fock canonical MOs (RHE/6-311+G*), and Nuclear
Independent Chemical Shift (NICS)” (B3LYP/6-311+G*). We also calculated the first

singlet vertical excitation energies at TD-B3LYP/6-311+G*’""?

as a probe of the
aromaticity or antiaromaticity. All calculations were performed using the Gaussian 03

program.”” MO pictures were made using the Molden 3.4 program.”* Results of our

calculations are summarized in Table 4-1.

4-3. Chemical Bonding Analysis

In our chemical bonding analysis we adopt the following approach. First, we use
the NBO analysis to determine which canonical MOs can be localized into 2c-2e
chemical bonds. Second, MOs, which cannot be localized into 2¢c-2¢ bonds, are identified
as o-delocalized or m-delocalized. Third, the m-aromaticity (or ;t-antiaromaticity) and the
o-aromaticity (or o-antiaromaticity) is assigned to a cluster on the basis of counting of
the delocalized electrons according to the 4n+2 rule for aromaticity (the singlet coupling
of the electrons) and the 4n rule for antiaromaticity (the singlet coupling of the electrons).
For the triplet coupling of electrons we use the inverse 4n counting rules for aromaticity.
Thus in our analysis we mix two ways of describing chemical bonding in boron clusters:
localized MOs and delocalized MOs. In the result chemical bonding is expressed in terms
of 2c-2e bonds and lone pairs as well as multiple aromaticity, multiple antiaromaticity or

conflicting (o-aromaticity and m-antiaromaticity or o-antiaromaticity and st-aromaticity)
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&AL TS

By (D, 'A) B;(Dy,'A) B,(D,'A) B (C,'A) B;(C,'A) B&(D, Ay

@@@%%

s (Cse A B2 (D, 1%] B.* (C,. 'A,) B, (C,. 'A,) B.Z (D, 'A,)
By (D, "Ajg) B, B, (C, 'A) B, (C,."A)
B (G, 'A) By (G, A B, (C,.'A) By (C,, "A)

Figure 4-1. Global minimum structures of B;', By, Bs, Bs', Bs, B62+, B, B62‘, B;', B7,
Bgz-, Bg-, B]o, B11+, B11-, B]z, B13+, B14, and B15- as reported in ref. 63.



Table 4-1. Computed features of the chemical bonding in boron clusters.”
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Cluster Ng.g delocalized s- delocalized p- o kcal/mol per
MOs MOs ppm excitation atom
energy, eV
. -66.3 (0.0)
BFA Ds 3 0 1 -46.3 (0.5) 0.77 56.4
(A -15.9 (1.0)
. -73.6 (0.0)
BFAD,“‘ 3 1 1 -57.9(0.5) 2.65 88.43
(CAY) -28.2 (1.0)
-35.6 (0.0)
B: Do (‘Ay) 4 1 1 -24.5(0.5) 3.08 79.65
7.7 (1.0)
B-D -36.2 (0.0)
(FA ,)5“ 5 1 1 -31.0 (0.5) 2.97 88.04
! -18.8 (1.0)
Bs C -10.8 (0.0)
) 5 2 1 -16.9 (0.5) 1.10 98.10
(A1) -14.3 (1.0)
B2 D -29.6 (0.0)
(ﬁA )6“ 6 1 1 -26.2 (0.5) 1.94 70.02
s -17.8 (1.0)
B C -59.1 (-0.15)
(ﬁA )5V 8 3 1 -41.9 (-0.65) 2.34 89.18
‘ 233 (-1.15)
B.2 Dy, -3.6 (0.0)
(A 6 3 2 3.4(0.5) 0.88 93.57
¢ 8.9 (1.0)
B C -42.3 (-0.1)
(17A )"’“ 6 3 1 -36.0 (-0.6) 1.99 98.74
‘ 20.4 (-1.1)
B2 D -84.7 (0.0)
(1; ,)7“ 7 3 3 -27.0 (0.5) 1.75 106.31
! -24.8 (1.0)
B D -28.3(0.0)
(1; )*“ 8 3 3 -23.3(0.5) 2.79 110.62
s -13.7 (1.0)
B’ C -17.0 (0.0)
(IX) » 9 3 3 -15.2(0.5) 1.95 105.19
e -13.3 (1.0)
B, C -19.6 (-0.0)
(IX,) ) 10 3 3 -20.0 (-0.5) 1.34 108.20
-15.3 (1.0)
. -18.5 (0.0)
(IX ) » 10 4 3 -20.1 (0.5) 1.81 114.27
! -17.0 (1.0)
B.OC -28.4 (-0.04)
(IX) 3”‘ 9 6 3 -27.1 (-0.54) 2.57 107.24
! -19.9 (-1.04)
B C -17.2(0.0)
(IX) » 10 6 3 21.5(0.5) 2.09 111.21
! -20.2 (1.0)
-, -14.5 (0.6)
(IX )ZV 10 7 4 -19.0 (0.1) 1.50 108.74
! -11.9 (-0.4)
B G, -11.4(0.0)
(&) 11 8 4 -12.0 (0.5) 1.02 114.5
8.8 (1.0)

® All data at B3LYP/6-311+G*
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aromaticity. Such a mixed analysis is not new in chemistry. It is constantly used in
organic chemistry. For example, in benzene, o-electrons are treated as forming localized
2c-2e C-C bonds, while m-electrons are treated as completely delocalized over six carbon
atoms.

The concept of “double aromaticity” was initially introduced in 1979 by Schleyer
and co-workers to explain the chemical bonding in the 3,5-didehydrophenyl cation.”
Double aromaticity and antiaromaticity in small carbon rings was discussed by Martin-
Santamaria and Rzepa.”® (n+0)-Double aromaticity and (7,0)-mixed aromaticity have
been used by Berndt and co-workers for explaining the chemical bonding in planar boron

compounds.”’

4-3.1. B;" and B; Clusters

The Bs' cluster is a perfect triangle in the closed shell ground spectroscopic state
(Dan, 'A1, 1a,7?1e712,7%)2%%*2% (Figure 4-1). The molecular orbital picture of four
valence MOs is presented in Figure 4-2. The HOMO (1a,”’) is a n-MO, formed by the
out-of-plane overlap of 2p,-AOs of the three B atoms. We localized the remaining set of
valence MOs (1e’-HOMO-2 and 1la;’-HOMO-3) into three 2c-2e B-B bonds with the
occupation numbers (ON) 1.89 |e| using NBO analysis at the B3LYP/6-311+G* level
of theory in the putative Bs*" cation (1a,’*le’* electronic configuration) at the geometry
of the B;" cluster. The strong s-p hybridization in the B;>* cation (occupation numbers

96 1.
are 2s’ 962p 0

) is responsible for bonding character of the lowest three valence MOs
[correction to our statement in the Ref. 14a where we stated that the bonding effect from

these MOs should be small]. The two electrons in the fully delocalized t-HOMO make
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B;" m-aromatic, obeying the 4n+2 Hiickel rule for n = 0. Three other MOs represent 2c-
2e bonds, even though their ON (1.89 |e|) are somewhat lower than 2.00 |e| for the
classical 2c-2e bonds. Its aromatic character is confirmed by highly symmetric structure
and highly negative NICS values: NICS(0)=-66.3 ppm; NICS(0.5)=-46.3 ppm, and
NICS(1.0)=-15.9 ppm (Table 4-1). The small first singlet vertical excitation energy (0.77

eV, Table 4-1) reflects the presence of low-lying completely bonding o-aromatic LUMO

(231’).

HOMO1a,” . HOMO-21a’

HOMO-1 1¢’

Figure 4-2. Molecular orbitals of the B; " cation.

14,4 .
4933 the extra pair of

In the triangular ground electronic state of the Bs™ cluster,
electrons occupies the 2a,’-MO (LUMO in B;’, Figure 4-2) which is a o-molecular
orbital formed by the radial overlap of the 2p-atomic orbitals on boron atoms (Figure 4-
2). The two electrons in the fully delocalized o-HOMO make B;~ o-aromatic. The
doubly occupied i-HOMO-1 is responsible for sw-aromaticity in B;". The 1a;> HOMO-3
and the 1e’ HOMO-2 can be transformed into three 2c-2e B-B bonds. Thus, B3 is a

doubly (o- and m-) aromatic system. Its doubly aromatic character is confirmed by NICS
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value: NICS(0)=-73.6 ppm; NICS(0.5)=-57.9 ppm, and NICS(1.0)=-28.2 ppm (Table 4-

1). High symmetry and a rather high first singlet vertical excitation energy (2.65 eV at

TD-B3LYP/6-311+G*, Table 4-1) also confirm the doubly-aromatic character of Bs'.

4-3.2. By and B42' Clusters

The structure of neutral By was carefully studied by Martin et al.” They
predicted the Doy lAg rhombus global minimum structure (Figure 4-1). Such a distortion
from the perfect square comes from the second-order (or “pseudo’) Jahn-Teller effect, as
discussed by Martin et al.”> Because of the nature of the distortion, the barrier for

“squareness” is rather small (0.7-0.8 kcal/mol'**®

) and even at moderate temperature the
By, cluster is effectively square.

The molecular orbitals of the Dy, (]Ag, lag2 1b1u2 1b2u2 1b3g2 1b3u22ag2) structure of
By are shown in Figure 4-3. The lowest four MOs (HOMO-2 (1bsgs), HOMO-3 (1b,,)
HOMO-4 (1b;,), HOMO-5 (lag)) can be localized, as it has been shown by NBO
analysis, into four classical peripheral 2c-2e B-B bonds (Table 4-2). Again, the strong s-p
hybridization on the both types of boron atoms: 2s"*°2p"'* and 2s"**2p"** (from HOMO-
2 through HOMO-5) is responsible for the formation of four classical B-B bonds. The
remaining two MOs are globally delocalized and participate in the global bonding in the
cluster. NBO analysis in this case shows eight lone pairs with the occupation number 0.5
e (Table 4-2) on each atom. The HOMO-1 (1bs,) is a completely bonding st-molecular
orbital formed by the out-of-plane overlap of 2p,~AOs on the B atoms. The two electrons

populating this MO make the cluster m-aromatic. The HOMO (2a,) of By is a o-radial

molecular orbital, just like the HOMO (2a;’) of B;", formed by the radial overlap of 2p-



Table 4-2. Localized MOs' of the Doy, ' A, structure of By.
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LMO type ﬁiﬁggﬁt;zri Composition
1. Bi-B, 1.977 50.49% By: 2s — 47.79%; 2p — 52.03 %
49.51% By: 25 —49.93%; 2p —49.91 %
1. B;-B; 1.977 50.49% By: 2s — 47.79%; 2p — 52.03 %
49.51% B;: 25 —49.93%; 2p —49.91 %
1. B»-B, 1.977 49.51% By: 25 —49.93%; 2p —49.91 %
50.49% By: 2s — 47.79%; 2p — 52.03 %
1. Bs-B, 1.977 49.51% B;: 2s —49.93%; 2p —49.91 %
50.49% By: 2s — 47.79%; 2p — 52.03 %
5. Lone pair B, 0.576 B;: 25 - 0.0%; 2p —99.5 %
6. Lone pair B, 0.529 Bi:2s-5.1%;2p—-93.9%
7. Lone pair By4 0.576 B4: 25 — 0.0%; 2p —99.5 %
8. Lone pair B4 0.529 B4: 25 —5.1%;2p-93.9 %
9. Lone pair B, 0.503 B,: 25 — 1.6%; 2p —97.7 %
10. Lone pair B, 0.424 B>: 25— 0.0%; 2p — 99.6 %
11. Lone pair B; 0.503 B;: 25 = 1.6%; 2p —97.7 %
12. Lone pair B; 0.424 B;: 25— 0.0%; 2p — 99.6 %

"LMO calculated at B3LYP/6-311+G* using the NBO analysis.
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AOs. The system thus can be characterized as o-aromatic, i.e., B4 is a doubly-aromatic
molecule as it was first recognized by Zhai et al.'* This conclusion is supported by an
effective highly symmetric (square) structure, calculated the first singlet vertical
excitation energy (3.08 eV X 'A; —A 'Bs, at TD-B3LYP/6-311+G*, Table 4-1) and
calculated NICS index, which is highly negative at the center of the cluster (-35.7 ppm),
but quickly diminishes and changes the sign at 1.0 A above the center (+7.7 ppm) (Table

4-1).

LUMO 3a, HOMO 23, HOMO-11b,, HOMO-2 1b, HOMO-3 1b,, HOMO-4 1b,, HOMO-5 1a,

Figure 4-3 Molecular orbitals of the B4 cluster.

The doubly charged B, cluster has a square planar Dg, 'A, .
(laig ley 1big 1byg 221, 1a3,) structure according to Sundholm and co-workers™ who
used the isoelectronic analogy with Aly", where an extensive search for the global
minimum structure has been performed'®'® and the Day lAlg square planar structure was
found to be the most stable isomer. The Aly> dianion has been studied extensively and it
was shown using a variety of criteria that it is a doubly (o- and m-) aromatic system [la
and references therein]. Thus, the isoelectronic, isostructural B4* is also a doubly (o- and

18a

n-) aromatic system with four 2c-2e peripheral B-B bonds. Sundholm et al.™ also

confirmed aromaticity in B4 by calculating the ring-current susceptibility, which was
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found to be 7.4 nAT™'. That is only 10% smaller than the value of the prototypical

aromatic benzene molecule, thus confirming the aromatic nature of the dianion.

4-3.3. Bs" and Bs Clusters

Kato et al.*® and Rica and Bauschlicher*” reported that in the global minimum Bs"
adopts a C,, structure, which is a slightly distorted planar pentagon. Rica and
Bauschlicher stated that the Dsy ('A;’, 1a;"*1e;”* e, *1a,7?2a,°) planar pentagon has two
imaginary frequencies at the B3LYP/cc-pvTZ level of theory and in the global minimum
Cav (‘A5 la’1b,°2a,%3a,°1b,’2b,%4a,?3b,%) structure B-B bonds are only slightly
distorted. This distortion is due to the second order Jahn-Teller effect. According to our
calculations (CCSD(T)/6-311+G*), the global minimum Ca, (‘A;) structure (Figure 4-1)
is only 0.365 kcal/mol lower in energy than the second-order saddle point Ds, (‘A;%)
planar pentagon structure and after ZPE correction (harmonic frequencies at CCSD(T)/6-
311+G*), the vibrationally averaged Ds, (‘A;’) structure is actually lower in energy than
the vibrationally averaged Ca, (‘A;) structure by 0.010 kcal/mol. Thus, for all practical
purposes we can consider the Bs' cluster as a planar pentagon.

The beautiful planar pentagonal structure of Bs' can be understood from its
molecular orbital analysis (Figure 4-4). The NBO analysis showed that HOMO-2 and
HOMO-2’ (1e;’), HOMO-3 and HOMO-3' (1e;'), and HOMO-4 (1a;") can be localized
into five peripheral 2c-2e B-B bonds. The HOMO (2a;’) in Bs' is a globally bonding o-
MO and HOMO-1 (1a;”) is a globally bonding n-MO. Thus, they make the cation doubly
(o0- and m-) aromatic. Double aromaticity in conjunction with the presence of five 2c-2e

B-B peripheral bonds is responsible for the vibrationally averaged highly symmetry Dsy,
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structure of the Bs' cluster. Also, double aromaticity in Bs" manifests itself in the high
first singlet vertical excitation energy (2.97 eV at TD-B3LYP/6-311+G*, Table 1), highly
negative values of NICS: NICS(0)=-36.2 ppm; NICS(0.5)=-31.0 ppm, and NICS(1.0)=-
18.8 ppm (Table 4-1) and most importantly it explains why Bs' is a magic cluster in
collision induced dissociation (CID) experiments by Anderson and co-workers.”> The
distortion of the Ds, (‘A;") structure can be explained by the second-order Jahn-Teller
effect, because there is nothing in occupied MOs (Figure 4-4) of the pentagon indicating
the deviation from high symmetry. That case is similar to the distortion of the B4 cluster
into rhombus and like in that case, the second-order distortion makes the Bs  potential

energy surface very shallow.

LUMO+1 2e” LUMO1e” HOMO2a' HOMO-11a,” HOMO-21e, HOMO-31e' HOMO-4 1a’

Figure 4-4. Molecular orbitals of the Bs" cation.

For the Bs cluster we can predict the global minimum structure if we start with
the Bs" cluster. The 1e;”-LUMO in Bs" Ds, (‘A;’) is a doubly degenerate 7t-MO which is
a partially bonding/antibonding orbital related to the completely bonding 1a,”-HOMO-1
n-MO. These three MOs are a part of the set of 5 MOs formed by the 2p,-AOs of B and

responsible for global m-bonding. Occupation of one of the doubly degenerate LUMO by
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two electrons should lead to distortion of the Ds;, structure to the C,, structure due to the
first order Jahn-Teller effect. Our calculations have shown that the resulting Ca, (‘Aj,
la,’1b,°2a,%3a,°1b,%2b,%4a,% 1a,%) structure is 50.6 (B3LYP/6-311+G*) kcal/mol higher
than the global minimum and it is a first order saddle point. Geometry optimization
following the imaginary frequency normal mode led eventually to the global minimum
structure.

In the global minimum structure the LUMO+1 (2¢,’-MO) is partially occupied
instead of LUMO (le,”). The singlet 1la,*le;”*ley’*1a,%2a,7%1e,”  electronic
configuration of the Dsy structure of Bs™ should also lead to the first order Jahn-Teller
distortion. Indeed it was shown that the Ca, (‘A1, 1a,°1b,°2a,°3a,°1b,°2b,*4a,°2b,”) planar
structure is the Bs™ global minimum structure. The LUMO+1 in Bs" belongs to a partially
bonding/antibonding c-orbital related to the completely bonding o-HOMO (2a;’). These
three MOs are a part of the set of five MOs formed by the 2p-radial AOs of B and
responsible for global o-bonding. Thus, Bs™ has four electrons on globally o-delocalized
HOMO-1 (4a;) and HOMO (3b;) and two electrons on globally delocalized HOMO-3
(1b;), which makes Bs a system with conflicting aromaticity (o-antiaromatic and -
aromatic). NBO analysis for the Bs’" cation at the geometry of Bs and with the
la,’1b,°2a,%3a,°2b,” electronic configuration shows that there are five 2c-2¢ B-B
peripheral bonds (ON=1.76-1.91 |e|). The C,, 'A; structure of Bs has been
experimentally established in a joint photoelectron and ab initio study by Zhai et al.’
Because the geometric structure of the o-antiaromatic and ;t-aromatic Bs™ anion has lower
symmetry we believe that antiaromaticity overwhelms aromaticity in this case and we

prefer to call this cluster “net antiaromatic.” The low first singlet vertical excitation



68
energy (1.10 eV, at TD-B3LYP/6-311+G*) provides us additional support in our overall

assignment of aromaticity in spite of negative values of NICS in this case (Table 4-1).
The Bs™ anion is a remarkable example showing that if we would limit our chemical
bonding analysis to m-electrons only, we will not be able to explain why the ;t-aromatic
(2 m-electrons) Bs’ cluster has low C,, symmetry and a low first singlet vertical excitation

energy.

4-3.4. BgH, Bg, and 862' Clusters

The six-atomic cyclic analog of the Bs" cluster should be the B62+ dication. It
has 16 valence electrons and assuming the formation of six peripheral 2c-2e B-B bonds
out of HOMO-2 (1b,,), HOMO-3 and HOMO-3’ (1le;;), HOMO-4 and HOMO-4’(le,),
and HOMO-5 (1a;,) we should have four electrons on two completely bonding c-HOMO
(2a1g) and w-HOMO-1 (lay,) (Figure 4-5a). This makes the Be>" dication doubly
aromatic. Our calculations proved that the B¢*" D, (lAlg) structure indeed is a minimum
at three levels of theory (B3LYP/6-311+G*, MP2/6-311+G*, and CCSD(T)/6-311+G*).

In the By cluster in addition to cyclic structures we observe the emergence of a
new type of structure - pentagonal pyramid, which now corresponds to the global
minimum.'® The planar pentagonal structure with the boron atom located at the center of
the five-atomic ring is not a minimum because the cavity inside of the pentagon is too
small to favorably accommodate a boron atom at the center. However, as we will see in
the large boron clusters (Bg and By'), with the increase of the size of the central cavity a
boron atom can be favorably accommodated at the center of the appropriate polygon

leading to planar highly symmetric global minimum structures. The most accurate
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Figure 4-5. (a) Molecular orbltals of the Dgp (Alg) structure of the Bs®' cluster; (b)
molecular orbitals of the Cs, ( A)) structure of the Bg cluster; (c) molecular orbitals of the
Dsy, ( A7) structure of the By cluster; (d) molecular orbitals of the B¢ dianion.
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calculations'® reveal that the global minimum structure of By is the pyramid Cs, (‘Aj,
la,’1e,*2a;%1e,*3a,%2¢,*) structure with the boron atom located 0.94 A above the center
of the Bs perfect pentagon. The triplet Cap, *A, (1a,°1b,°2a,2b,"3a, 1a,°3b, 4a,” 4b,' 1b,')
and the singlet C, 'A (1a’1b*2b*2a?3a’4a’3b%5a’4b?) structures originating from the
cyclic Bs geometry upon Jahn-Teller distortions were found to be 7.2 kcal/mol and 8.2
kcal/mol (CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*), respectively, higher in energy.'®
In order to simplify the interpretation of the molecular orbitals let us first perform
MO analysis for the Ds, (‘'A1’, la;%le; *1ay”1e,7%2a,°2¢e,°*) structure (Figure 4-5) in
which the central atom is pushed into the center. The set of five MOs (HOMO-2 and
HOMO-2’ (1e;’), HOMO-4 and HOMO-4’ (1e;’), and HOMO-5 (1a;”)) can be localized
into five 2c-2e B-B bonds, so they are responsible for the peripheral bonding. The
HOMO-3 (1a,”) is formed by 2p,-AOs and it is responsible for the global m-bonding. The
HOMO and HOMO’ (2¢,’), and HOMO-1 (2a;’) are formed from 2p-radial AOs and they
are responsible for global o-bonding in the By cluster. Thus, Bs in the Dsy 'A;’
configuration is a doubly (o- and m-) aromatic system with 2m- and 60-electrons.
However, as we mentioned above, the central cavity in the Bs pentagon is too small to
favorably accommodate the central boron atom and therefore a Cs, 'A; pyramidal
structure corresponds to the global minimum. While in the pyramidal structure o- and -
MOs are mixed, we believe that the bonding picture developed for the Dsy 'A,” structure
is still qualitatively valid and can explain why the B cluster adopts such a structure.
When two extra electrons are added, the planar Dy A,
(lag2 lb]UZZagzlbzuz1b3g21b3uz3ag22b2uz2b1u2 lbzgz) structure becomes the global minimum

for the Bs~ dianion.”™'® This structure is originating from the Dg, hexagon, which
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underwent the first order Jahn-Teller distortion. Molecular orbital analysis helps us to
interpret the chemical bonding in B¢” (Figure 4-5d). Six MOs (HOMO-2 (2b,,), HOMO-
5 (1bsg), HOMO-6 (1bs,), HOMO-7 (2a,), HOMO-8 (1b,,), and HOMO-9 (1a)) can be
localized into six 2c-2e B-B bonds so they are responsible for the peripheral bonding in
this cluster. The remaining four MOs are responsible for the global bonding in the Bg™
cluster. The HOMO-1 (2b;,) and HOMO-3 (3a,) are o-radial MOs, with the HOMO-3
being completely bonding, and the HOMO-1 being partially antibonding. Thus, B> has
two globally delocalized 0-MOs, which makes this dianion o-antiaromatic. The two
other delocalized orbitals HOMO-4 (1bs,) and HOMO (1by,) are 7-MOs. The HOMO-4
is completely bonding, and the HOMO is a partially bonding orbital. The B> dianion has
4 o- and 4 m-electrons on the globally delocalized MOs and six 2c-2e peripheral B-B
bonds. Thus, we can assign B> to doubly (o- and 7t-) antiaromatic systems. The question
may arise, why a doubly antiaromatic structure is the global minimum. We believe this is
because the Bs> cannot favorably support six delocalized electrons in either o- or mt-
subsystems. Electrostatic field from the screened boron nuclei does not provide enough
stabilization for six electrons in either o- and m-subsystems and that leads to a
compromised globally doubly antiaromatic structure.

In recent paper Aihara et al.”’ claimed that the boron B¢* cluster is highly
aromatic on the basis of topological resonance energy (TRE). The calculated TRE for
B¢~ in terms of the resonance integral between two bonded boron atoms (|Bgg|) is 0.549
|Bes|. This value expressed in terms of the resonance integral between two bonded
carbon atoms (|Bcc|) is 0.478 |Bcc|. For reference the TRE for benzene is 0.273

| Bcc |- Thus, according to Aihara et al. % the B¢ cluster is clearly showing the presence
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of aromaticity. However, this large resonance energy does not contradict our assignment
of B¢® to a doubly antiaromatic system. Our assignment of B> to a m-antiaromatic
system is based on the presence of four m-electrons, its highly distorted (D) structure,
and paratropic ring currents calculated by Fowler and co-workers (see ref. 16 for details).
We see this cluster as being antiaromatic globally. 1t does not however mean that this
cluster cannot have positive resonance energy. In fact, according to our MO analysis, we
can consider the wt-system in B¢” as being split into two subsystems, with two m-electrons
localized over each of two triangular regions. -MOs of B¢™ cluster can be viewed as
composed of two aromatic Bs clusters (see ref. 16 for detailed discussion). Indeed, 1byg-
HOMO and 1b3,-HOMO-4 are a pair of bonding and antibonding m-MOs in Bj3". Thus, -
MOs do not contribute to chemical bonding between two B3 groups. That allows us to
speculate that 7-MOs in B¢” give rise to an island m-aromaticity in this cluster. Similar
analysis for the delocalized 0-MOs reveals that we also have an island o-aromaticity in
Bs”. Thus, the globally antiaromatic B> system can be considered as having two island
aromatic subunits. The island m-aromaticity is responsible for positive TRE in Bs* in the
Aihara et al.? calculations. Indeed, Aihara et al.”® stated that three (a2-a4) out of four
circuit currents (Figure 4-6), are paratropic indicating antiaromaticity and the al circuit
current, which is located over triangular region, is highly diatropic. It overwhelms the
antiaromatic contributions from the a2-a4 al circuit currents and results in the overall
positive TRE. This result clearly supports the presence of island aromaticity in Bg”.
Alexandrova et al.*' have shown that for Li,Bs molecule in the gas phase, the global
minimum structure is Con (‘A;) with two Li" ions located above and below the Bj

triangular areas in Bs”. The Dy (]Ag) structure, containing one Li’ cation above and
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another Li" below the plane of B62' dianion, was found to be a saddle point on the
potential energy surface. These results confirmed the presence of the m-island aromaticity

in the globally antiaromatic system.

Bs (1) q """ i -::fjj ‘"'::;;;- < "':j'::.

al a2z a3

a4
Figure 4-6. Nonidentical circuits in Bs> (adopted from ref. 20).

4-3.5. B;" and B+ Clusters

The global minimum structure of the cationic B, cluster is the Cgy, A,
(1a*1e;*1e,*2a,%1b,%3a,%2¢,*) pyramid*®***!">% with the central boron atom located 0.72
A above the plane (Figure 4-1). In order to simplify the interpretation of the molecular
orbitals we performed MO analysis of the Dy (‘A1g, laig len, lesg 1y, 2214 122,°2€1,")
structure (Figure 4-7), in which the central atom is pushed into the plane. The set of six
MOs (HOMO-3 (1by,), HOMO-4 and HOMO-4’ (1e5,), HOMO-5 and HOMO-5" (1ey.)
and HOMO-6 (1a,,)) is responsible for the peripheral bonding and can be localized into
six 2c-2e B-B bonds. The HOMO-1 (lay,) is formed by 2p,-AOs and is responsible for
the global nt-bonding. The HOMO and HOMO’ (2e1,), and HOMO-2 (2a;,) are formed
from 2p-radial AOs and they are responsible for global o-bonding in the B;" cluster.

Thus, B;" in the Dg, 'A; ¢ configuration is doubly (o- and m-) aromatic system with 2-
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and 60-electrons. However, the central cavity in the B¢ hexagon is too small to favorably
accommodate the central boron atom and therefore the Cg 'A; pyramidal structure
corresponds to the global minimum. While in the pyramidal Cgy 'A; structure o- and m-
MOs are now mixed, we believe that the bonding picture we developed for the Dgp lAlg

structure is still qualitatively valid.

33090330

LUMO 3e, HOMO Ze, HOMO-13a, HOMO-Z 1b, HOMO-2 Za, HOMO-4 1e, HOMO-5 e, HOMO-6 1a,
by

3] e

LUMO fe,  HOMO 2e, HOMO-11a, HOMO-2 2a, HOMO-3 1b, HOMO-4 Te, HOMO-5 1e,, HOMO-6 1a,,

Figure 4-7. (a) Molecular orbitals of the Ce, (‘A;) structure of the B;" cluster; (b)
molecular orbitals of the Dg, (1A1 o) structure of the B, cluster.

The seven-atomic cyclic structure of the B-" cluster is a local minimum with the

3 5 92 ’4 ’4 ’4 992 52 992 :

Ay’ (la;7le™ 1ey’ " 1es™ 1ay’’ 2a;, " 1e1”’7) spectroscopic state. It has 20 valence electrons
and assuming the formation of seven peripheral 2c-2e B-B bonds from HOMO-3 and
HOMO-3’ (1les’), HOMO-4 and HOMO-4’(1e,’), HOMO-5 and HOMO-5" (le;’) and
HOMO-6 (1a,”) we should have six electrons for global bonding. Two of them occupy

the completely bonding o-HOMO-1 (2a;’). Two electrons occupy the completely
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bonding n-HOMO-2 (1a,”) and two electrons occupy the partially bonding doubly

degenerate t-HOMO (1e,”) with the triplet coupling. This makes the B;" dication doubly
aromatic in the cyclic structure. However, the B;” D7y (PAy’) structure is significantly
higher (63.4 kcal/mol at B3LYP/6-311+G*) in energy than the global minimum Csgy
('A}’) structure because of unsupported dangling electron density at the center of the
cycle. Thus, the cyclic structures are not favorable anymore beyond six boron atoms.
According to the Alexandrova et al.'” calculations the B7 cluster has a very flat
triplet Cey *As (lai’le;*le,*2a,%3a,21b,72¢,*3¢,%)"® pyramidal structure similar to the B
structure  as  the global minimum. The second lowest C,, 'Aj
(1a,°1b,21b,”2a,% 1a,"3a,°2b,%4a,” 2b,°3b,°3b,%) structure (Figure 4-1) was found to be
just 0.7 kcal/mol higher (RCCSD(T)/6-311+G(2df)//RCCSD(T)/6-311+G*) in energy
than the global minimum structure. Thus, these two structures are almost degenerate. The

combined photoelectron spectroscopic and ab initio study'’

suggests that at least two
isomers Cgy *A; and C,y 'A; could coexist in the B; beam and contribute to the
photoelectron spectra of B7.

MO analysis was performed for the planar B; Degy 3A2g (1a1g21e1u4
1e2g41b2u22a1 g21a2u22e1u41e1 gz)78 model system (In ref. 17 the *A; spectroscopic state was
reported for the la;”le,*1e,*2a,°3a,21b,°2e,*3e,” electronic configuration of the B, Ce,
structure as determined by the Gaussian 03 program. However, the correct spectroscopic
state for such electronic configuration is *A,. Similarly, in ref. 17 the *A, ¢ was reported
for the 1a1g21e]u41e2g41b2u22a1g21a2u22e1u41e1g2 configuration of the B; Dg, structure,

while the correct spectroscopic state is 3Azg.). NBO analysis showed that the set of low-

energy MOs (Figure 4-6): HOMO-7 (1a;g), HOMO-6 and HOMO-6 (le,), HOMO-5
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and HOMO-5’ (1e,z) and HOMO-3 (1b,,) can be localized into six peripheral 2¢c-2e B-B

bonds, forming the hexagonal framework. HOMO-2 (la,) which is a completely
bonding n-MO and partially antibonding and partially occupied HOMO and HOMO’
(leg) make this cluster sw-aromatic with four m-electrons according to the inverse 4n rule
for triplet states. HOMO-2 (2a,) and HOMO-1 and HOMO-1" (2ey,) are delocalized o-
MOs which make this cluster o-aromatic. Thus, the B; cluster is a doubly (o- and m-)

aromatic system with six peripheral B-B bonds.

4-3.6. B, Bgz_, and By Clusters
The neutral Bg cluster has a triplet perfect heptagon structure D7, Ay’
(1a;*1e,* ey’ 2a,* 1es™* 12,77 %2e,"*1e1?) in its ground electronic state (correction to the

previous statement in ref. 18) as it was established by Zhai et al.'®

Another wheel-type
structure Cs 'A’ was identified as a low-lying isomer."® The Cs 'A’ isomer is a Jahn-
Teller distorted heptagon, because in the heptagon singlet structure only one out of two
doubly degenerate 1e,”-HOMOs is occupied.

In the triplet D7, A, perfect heptagon structure HOMO-3 and HOMO-3’ (les’),
HOMO-5 and HOMO-5" (1le;’), HOMO-6 and HOMO-6’ (le;’), and HOMO-7 (la;’)
(Figure 4-8) can be localized into seven 2c¢c-2e B-B bonds, HOMO and HOMO’ (1e;”),
and HOMO-2 (1a;”) (Figure 4-8) are formed from 2p,-AOs and they are responsible for
the global m-bonding. The HOMO-1 and HOMO-1" (2¢,’) and HOMO-4 (2a;’) are
formed from 2p-radial AOs and they are responsible for global o-bonding in the Bg

cluster. Thus, the D7, A, structure is a doubly (0- and nt-) aromatic system with 4 -

electron (satisfying the inverse rule 4n rule for aromaticity for triplet coupled electrons),
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with six o-electrons (satisfying the 4n+2 rule for aromaticity for singlet coupled

electrons), and with seven 2c-2e peripheral B-B bonds.

B
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Figure 4-8. Molecular orbitals of the Dy, ('A”) structure of the Bs> dianion.

In the singlet Cs 'A’ isomer, one of the doubly degenerate HOMOs is now
occupied by a pair of electrons with another one being empty, which results in the Jahn-
Teller distortion. This system is the one with conflicting aromaticity: there are four -
electron (satisfying 4n rule for antiaromaticity for a singlet coupled electrons) and six o-
electrons (satisfying 4n+2 rule for aromaticity for a singlet coupled electrons), and seven
2c-2e peripheral B-B bonds.

We also optimized the cyclic Bg (Dsp, 5A1’, 1a1g21e1u41e2g41e3u42a1g
21b2g21a2u22e1u2161 gz) doubly aromatic structure and found that it is a local minimum at
B3LYP/6-311+G*. However, it is about 98 kcal/mol higher in energy than the boron-
centered Bg (D7h, “A,”) doubly aromatic global minimum structure.

Thus, the cyclic structures even being doubly aromatic and corresponding to local
minima are getting less and less stable with the increase of the size of the cluster starting

—+ . .
from B; and cannot be considered even as low-energy isomers.



The doubly-charged ~ Bg*  anion  has a planar Dy, Ay
(lal’2161’4162’42:11’2163’4132”2261’4161”4) singlet global minimum structure (Figure 4-1),
in which high symmetry is restored again because the doubly degenerate 1e;”-HOMO is
now occupied by four electrons. While the isolated dianion was not studied
experimentally, its high-symmetric structure was experimentally confirmed in a joint
photoelectron spectroscopy and ab initio calculations of the LiBg’ cluster by Alexandrova

et al.?!

It was shown that the calculated photoelectron spectrum of the half-sandwich
structure of LiBg™ in which Li" cation is located above the slightly distorted Bs> heptagon
agrees well with the experimentally recorded spectra of the anion.

The singlet D7, 'A;” structure of Bg* is a doubly (o- and 7-) aromatic system with
6 m-electron, 6 o-electrons, and seven 2c-2e peripheral B-B bonds. This analysis of
chemical bonding for Bg* was first proposed by Zhai et al.'® Its double aromaticity is also
confirmed by very high values of NICS: NICS(0) = -84.7 ppm, NICS(0.5) = -27.0 ppm,
and NICS(1.0) =-24.8 ppm (Table 4-1).

The anionic By has the perfect planar Dygy, (lAlg, 1a1g21e1u41e2g4163u42a1g
21b2g21a2uz2e1u41e1 g4) wheel-shaped structure as the global minimum (Figure 4-1), which
was established in a joint photoelectron and ab initio study by Zhai et al.'"® The perfect
octagon structure of By is unprecedented in chemistry and represents the first example of
octacoordinated atom in a planar environment.

The remarkable planar octagon structure of By  can be easily rationalized on the
basis of the presence of double (o- and m-) aromaticity (Figure 4-9). The chemical

bonding in By is remarkably similar to the bonding pattern in Bg>. As before eight MOs

(Figure 4-9): HOMO-3 (1b,,), HOMO-5, HOMO-5" (1e3,), HOMO-6, HOMO-6 (les,),
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HOMO-7, HOMO-7’ (1ey,), and HOMO-8 (la;g) can be localized into eight 2c-2e B-B

peripheral bonds. The other valence MOs are delocalized over the octagon and they are
responsible for global bonding between the central B atom and peripheral B atoms. The
three 7-MOs HOMO, HOMO’ (le;;) and HOMO-2 (lay,) are responsible for -
aromaticity and the three 0-MOs HOMO-1, HOMO-1" (2e1,) and HOMO-4 (2a,,) are
responsible for o-aromaticity in By. Again, such chemical bonding analysis for By was
first proposed by Zhai et al.'"® The double (o- and n-) aromaticity in By is supported by
high symmetry, high first singlet vertical excitation energy (2.79 eV at TD-B3LYP/6-
311+G*), and highly negative NICS values: NICS(0)=-28.3 ppm, NICS(0.5)=-23.3 ppm,

and NICS(1.0)=-13.7 ppm (Table 4-1).
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Figure 4-9. Molecular orbitals of the Dgy, (]Alg) structure of the By™ anion.

In addition to the wheel planar structure of By, Minkin and co-workers’**%

reported planar structures and m-aromatic character in the CBg, SiBg, and PBg species.
The authors found, however, that in the case of octacoordinated carbon, the central cavity
1s now too big to be stabilized through the accommodation of only one boron nucleus.
The Dgy, structure of CBg is a second-order saddle point. The normal mode displacements

lead to a Cy (‘A}) structure, in which the central C-atom is shifted to the side. However,
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the barrier on the intramolecular rearrangement is rather small and it allows one to
consider the fluxional CBg system as one with effective octacoordination of the central
atom. The SiBg and PB;' clusters were found to have a perfect octagonal structure. We
would like to stress that on the basis of our analysis of chemical bonding in By, the
valence isoelectronic CBg, SiBs, and PBg" species are also o-aromatic with six oO-
electrons and they also have eight 2c-2e peripheral B-B bonds. m- and o-aromaticity
together with eight peripheral B-B bonds are responsible for the beautiful octagonal

structure of these species.

4-3.7. Byy, B;;", and B;;” Clusters

The By, Bii" and By, clusters in their global minimum structures (Figure 4-1)
have a common feature — two boron atoms located inside either eight- (Bjo) or nine- (By;"
and B;;") membered ring. Therefore, we will consider chemical bonding in these clusters
together.

The global minimum of B according to Zhai et al.'” and Boustani** is the Cay,
1Ag structure (Figure 4-1), which is nonplanar with eight boron atoms forming a planar
cycle around two atoms at the center, with one of the central atoms located above the
plane and the other one below the plane. The chemical bonding analysis of the global
minimum structure of B¢ was performed by Zhai et al." only for the nt-system and it was
shown that this structure has six m-electrons and thus it is m-aromatic. We propose here an
explanation of chemical bonding in B¢ including both o-and m-electrons. As before, let
us first flatten the Cyp 1Ag structure into the planar Dsy 1Ag structure for simplicity and

perform MO analysis (Figure 4-10) for the planar structure. NBO analysis shows eight
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peripheral 2c-2e B-B bonds (ON=1.87-1.93 |e|) and one 2c-2e B-B bond (ON=1.52

|e|) between central atoms, which could be approximately assigned to HOMO-5 (2bsy),
HOMO-7 (2b,,), HOMO-8 (3ag), HOMO-9 (2b;,), HOMO-10 (1bs,), HOMO-11 (2a,),
HOMO-12 (1by,), HOMO-13 (1b;,), and HOMO-14 (la,). Rather low occupation
number for the central B-B bond shows that we should treat the existence of this bond
with caution. Three MOs (HOMO (1by,), HOMO-1 (1byg) and HOMO-6 (1bs,)) are
responsible for the global m-bonding and the remaining three 0-MOs (HOMO-2 (4a,),
HOMO-3 (3by,), and HOMO-4 (3b,,)) are responsible for the global o-bonding. Thus,
Bio 1s a doubly (o- and m-) aromatic cluster with eight peripheral 2c-2e B-B bonds and
one 2c-2¢ central B-B bond. A relatively high first singlet vertical excitation energy (1.95
eV, at TD-B3LYP/6-311+G*) and negative NICS values (Table 4-1) support our

description of the chemical bonding in By.
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Figure 4-10. Molecular orbitals of the Doy, ("A,) structure of the By cluster.

We calculated the Bjo (Dop, 'A;’) planar structure with only one boron atom at the
center of the nine-atom ring. The radius of the external ring was found to be 2.202 A

(B3LYP/6-311+G*) and the central cavity is now too big to be stabilized through the



82

accommodation of only one boron nucleus. Because of that this structure is 60.5
kcal/mol higher than the global minimum structure with two boron nuclei at the center.
Also, this structure is the forth order saddle point. Thus, starting from B, cluster, the
structures with one boron atom at the center are not low energy isomers anymore.
However, the eight membered ring is still small to favorably accommodate two boron
atoms within the plane.

Ricca and Bauschlicher reported a quasi-planar Cs 'A’ structure for the By,
cluster (Figure 4-1). In this case, the nine-atomic ring is again too small to accommodate
two boron atoms within the plane. We plotted MOs of B;," for the flattened C,, 'A;
(1a,°2a,°1b,?3a,°2b,%4a,*3b,75a,%6a,°4b,? 1b,77a,°5b,78a,°2b,* 1a,”) structure in Figure 4-
11a. NBO analysis reveals nine 2¢c-2e peripheral B-B bonds (ON=1.81-1.94 | e|) and one
central B-B bond (ON=1.53 |e|) which could be approximately assigned to the ten
lowest canonical MOs (from HOMO-6 to HOMO-15). Three MOs HOMO (la,),
HOMO-1 (2b;) and HOMO-5 (1b;) are responsible for the global m-bonding and three
MOs HOMO-2 (8a;), HOMO-3 (5b;), and HOMO-4 (7a,) are responsible for the global
o-bonding. Thus, the B;;" cation is a doubly aromatic system with 6 o- and 6 m-
delocalized electrons, nine 2c-2e B-B peripheral bonds and somewhat less pronounced
central B-B bond. The global minimum structure C,, 'A; for B;;” was reported by Zhai et
al' (Figure 4-1). Our MO plots for this dianion are shown in Figure 4-11b. NBO
analysis reveals nine 2c-2e peripheral B-B bonds (ON=1.93-1.96 | e|) and one B-B bond
between central atoms (ON=1.56 |e|). We believe that the lowest ten canonical MOs
(from HOMO-7 to HOMO-16) are approximately responsible for the formation of these

ten B-B bonds. Three MOs: HOMO (2b;), HOMO-2 (la;) and HOMO-6 (1b;) are
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Figure 4-11. (a) Molecular orbitals of the Cp, ('A}) structure of the By, cation; (b)
molecular orbitals of the C,, (1A1) structure of the By;” anion.
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responsible for the global m-bonding, making this cluster m-aromatic as it was initially
reported by Zhai et al."”” Four MOs: HOMO-1 (6b,), HOMO-3 (8a;), HOMO-4 (7a,) and
HOMO-5 (5b,) are approximately responsible for the global o-bonding, making this
system formally o-antiaromatic.

However, the shape of HOMO-1, HOMO-3, HOMO-4 and HOMO-5 hints that
the globally delocalized electrons may in fact break into four localized areas (giving rise
to island o-aromaticity) over the By, cluster, similar to o-delocalized electrons in the B>
cluster, where they are split into two subsystems each localized over three boron atoms.
At this point it is hard to point out which atoms in the B;;” clusters belong to which

regions of island o-aromaticity.

4-3.8. B;; and B;s" Clusters

Zhai et al."” and Boustani® reported that the global minimum for By is the quasi-
planar convex structure Cs, 'A; (Figure 4-1). In this case, three central boron atoms
cannot fit into the plane of the nine-membered ring. As before, let us first flatten the Cs,
'A; structure into the planar D3, 'A,;’ structure for simplicity and perform MO analysis
for the planar structure. NBO analysis shows nine peripheral 2¢c-2e B-B bonds (ON=1.89-
1.94 |e|). Unlike in Big, By;" and By, in Bj; NBO analysis does not show 2c-2e B-B
bonds between three central atoms. Instead, NBO analysis shows the presence of three
“lone pairs” with the average occupation number about 1.1 |e| and with the total
accumulation of 3.2 |e| on each of three central atoms. Such unusual accumulation of
electron density could be a deficiency of the employed NBO method and a hint that two

electrons on every central boron atoms could be involved into the formation of three 2c-
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2e B-B bonds. Let us for now assume that indeed, we have also three 2¢c-2¢ B-B bonds
between central atoms. That makes the total number of 2c-2e B-B bonds twelve. These
twelve bonds take twenty four out of thirty six valence electrons. Molecular orbital
picture (Figure 4-12) also shows the presence of three globally delocalized w-MOs:
HOMO-5 (1a,”), HOMO-1 and HOMO-1" (1¢”), which reveals m-aromaticity, as it was
initially reported by Zhai et al.'”” We have also six electrons on globally delocalized o-
MOs: HOMO-2 (4a,”), HOMO and HOMO?’ (5¢’), which reveals o-aromaticity. With our
previous assumptions, we can assign the B, cluster as being doubly (o- and it-) aromatic
with nine 2c-2e peripheral B-B bonds and three 2c-2e central B-B bonds. We would like
to stress that this description is tentative at this point. The presence of double aromaticity
in By, is supported by high first singlet vertical excitation energy (2.57 eV, at TD-
B3LYP/6-311+G*) and highly negative NICS values (all in Table 4-1).

In alternative explanation of o-bonding in Bj,, one may consider that central
boron atoms donate their electrons to form islands of o-aromaticity where each pair of
delocalized o-electrons is affiliated with three or four boron atoms. We need to develop
new software tools for making o-bonding analysis in such systems more precise.

The By3' cationic cluster attracted a lot of attention, because Anderson and co-

25-31
workers>>

reported that it has anomalously high stability and low reactivity in
comparison with other cationic boron clusters. Initially this high stability was attributed
to Bis" having a filled icosahedron structure.”® Kawai and Weare® have shown that a

filled icosahedra of Bj3" is not even a minimum on the potential energy surface using

Car-Parrinello ab initio molecular dynamics simulations. The global minimum structure
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Figure 4-12. Molecular orbitals of the D3, (1A1’) structure of the B, cluster.

of B3 was established by Ricca and Bauschlicher,42 who predicted the planar C,y A
structure (Figure 4-1). Three boron atoms can fit perfectly into the plane of the ten-
membered ring. Fowler and Ugalde™ were the first who proposed that exceptional
stability and low reactivity of Bis' is related to its aromatic character. On the basis of
plotted MOs Fowler and Ugalde concluded that three doubly occupied t-MOs give six -
electrons in a round system, a situation reminiscent of benzene and the Huckel
aromaticity. Aihara® evaluated the topological resonance energy (TRE) for m-electrons
using his graph theory of aromaticity. He found that the TRE of By;" is positive in sign
and very large in magnitude: TRE = 2.959 |Bgg|. This number can be compared to the
aromatic hydrocarbons of similar size such as the phenalenium (C;3Ho") TRE = 0.410

|Bss|, anthracene (Ci4Hi9) TRE = 0.475 |Bss|, and phenanthrene (Ci4H;9) TRE = 0.576
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IBep|. On the basis of the TRE value, B;;" is much more aromatic than polycyclic
aromatic hydrocarbons of the similar size.

However, like in case of other large boron clusters, the o-bonding has not been
discussed. Molecular orbitals for the B;3" cation are plotted in Figure 4-13. NBO analysis
shows ten 2¢-2e B-B peripheral bonds (ON = 1.89-1.93 |e|) and three “lone pairs” with
the average occupation number about 1.1 |e| and total accumulation of 3.2 |e| on each
of three central atoms. As before, let us assume that we have also three 2c-2e B-B bonds
between central atoms, which makes the total number of 2¢-2e B-B bonds thirteen. These
thirteen bonds take 26 out of 38 valence electrons. Molecular orbital picture (Figure 4-13)
also shows the presence of three globally delocalized n-MOs: HOMO-6 (1b;), HOMO-2
(lap), and HOMO-1 (2b,), which reveals m-aromaticity, as was previously reported by
Fowler and Ugalde® and Aihara.® We can assign six remaining electrons on HOMO-4
(9a;), HOMO-3 (6b;), and HOMO (10a,) to globally delocalized o-bonding. Again, we
would like to stress that such chemical bonding description should be considered at this
point as tentative. However, if we assume that our description is correct, than the
presence of double aromaticity in B3 can explain high first singlet vertical excitation
energy (2.09 eV, at TD-B3LYP/6-311+G*), highly negative NICS values (all in Table 4-
1), and most importantly anomalously high stability and low reactivity of B3  in

comparison to other cationic boron clusters observed by Anderson and co-workers.*>™"'

4-3.9. By and B;5 Clusters
Zhai et al"” reported that the global minimum for By is the quasi-planar structure

Cay 'A; (Figure 4-1). We performed MO analysis for the planar Da, (1Ag) structure
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Figure 4-13. Molecular orbitals of the Cyy (1A1) structure of the B3 cation.

(Figure 4-14). NBO analysis shows ten peripheral 2c-2e B-B bonds (ON=1.88-1.95
|e|). It also shows the presence of three “lone pairs” with the average occupation
number about 1.1 |e| and the total accumulation of 2.9-3.3 |e| on each of four central
atoms. Like before, let us assume that there are four 2c-2e B-B bonds between central
atoms. That makes total number of 2c-2e B-B bonds fourteen. These fourteen bonds
account for 28 out of 42 valence electrons. Molecular orbital picture (Figure 4-14) also
shows the presence of four globally delocalized n-MOs: HOMO-10 (1bs,), HOMO-4
(1b14), HOMO-3 (1byg), and HOMO (2bs,) which reveals global st-antiaromaticity, as it
was previously reported by Zhai et al."”” The global n-antiaromaticity results in formation
of small areas of m-aromaticity (island aromaticity). The remaining six electrons occupy
globally delocalized 6-MOs: HOMO-6 (5a,), HOMO-2 (5b,,) and HOMO-1 (6a,), which

reveals o-aromaticity. Thus, we can tentatively assign the Bj, cluster as having
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Figure 4-14. Molecular orbitals of the Doy, (lAg) structure of the B4 cluster.

conflicting (o-aromatic and m-antiaromatic) aromaticity with ten 2c-2e peripheral B-B
bonds and four 2c-2¢e central B-B bonds.

Zhai et al.”” reported that the global minimum for B,s™ is the quasi-planar structure
C 'A (Figure 4-1). We performed MO analysis for the planar Cyy, ('A)) structure (Figure
4-15). NBO analysis shows eleven peripheral 2c-2e B-B bonds (ON=1.88-1.95 |e¢|). It
also shows the presence of three “lone pairs” with the average occupation number about
1.1 |e| with the total accumulation of 2.9-3.3 |e| on each of three central atoms. Let us
assume that we have also four 2c-2e B-B bonds between central atoms. That makes total
number of 2c-2¢ B-B bonds fifteen. These fifteen bonds take thirty out of fourty six
valence electrons. Molecular orbital picture (Figure 4-15) shows the presence of four
globally delocalized m-MOs: HOMO-11 (1b;), HOMO-5 (1a;), HOMO-2 (2b;), and

HOMO-1 (3b,), which reveals global m-antiaromaticity. We have also eight electrons on
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globally delocalized 0-MOs: HOMO (11a;), HOMO-3 (8by), HOMO-4 (10a;) and

HOMO-7 (9a;), which reveals global o-antiaromaticity. Thus, we can tentatively
consider the Bis cluster as being doubly (o- and m-) antiaromatic with eleven 2c-2e
peripheral B-B bonds and four 2c-2e central B-B bonds. Again the m- and o-

antiaromaticity result in the formation of small areas of aromaticity (island aromaticity).

HOMO 113, HOMO-13b,  HOMO-22b,  HOMO-38b, HOMO-4 10a, HOME-5 1a, HOMO-6 7h,
@O BOP %S
HOMO-T 3a, HOMO- 8a, HOMO-107a,  HOMS-111b,  HOMO-1255,  HOMO-136a,
&S L AN B S0P —
HOMO-14 4b, HOMG-15 58, HOMO-1630,  HOMO-174a,  HOMO-182b,  HOMO-193a,
& &
HOMO.21 1h, HOMO.22 1a,

Figure 4-15. Molecular orbitals of the C,, (1A1) structure of the B;5 anion.

4-4. Overview
On the basis of the chemical bonding analysis performed for B;', By, B4, B4, Bs',
Bs, Bs'', Bs, Bs~, B+, By, Bs, Bs”, By, Bio, Bi1', Bir', B, Bis', Bis and Bys” clusters in
this work we propose the next chemical bonding model for planar or quasi-planar boron
clusters:
L. The number of 2c¢-2e peripheral B-B bonds in all planar or quasi-planar

clusters considered here is equal to the number of peripheral edges.
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II. There are globally delocalized m-MOs which make a cluster either globally -
aromatic if it has 4n+2 m-electrons or globally antiaromatic if it has 4n -
electrons for singlet coupled electrons. For triplet coupled m-electrons the
number of electrons should satisfy the inverse 4n rule for aromaticity.

III.  There are globally delocalized 0-MOs which make a cluster either globally o-
aromatic if it has 4n+2 o-electrons or globally antiaromatic if it has 4n o-
electrons for singlet coupled electrons. For triplet coupled o-electrons the
number of electrons should satisfy the inverse 4n rule for aromatic systems.

This bonding model works well for B;" - By clusters. Some boron clusters can be doubly
(0- and m-) aromatic: B3, By, Bs', B;, By, Bs, Bs~ and By. Some clusters can be
globally doubly antiaromatic, for example, Bs>. Global antiaromaticity can be also
described in terms of formation of areas of island aromaticity. In the B¢™ clusters, the
globally delocalized m- and o- electrons can be localized over two areas composed of
three boron atoms. Some clusters may have conflicting aromaticity, such as Bs™ (which is
m-aromatic and o-antiaromatic). For larger clusters, in addition to peripheral 2c-2e B-B
bonds globally delocalized n-MOs, and globally delocalized o-MOs, we can introduce
one 2c-2e central B-B bond (Bjo, B1", B11"), three 2c-2e central B-B bonds (B, Bi3') or
four 2c-2e central B-B bonds (B4, Bjs). The presence of central 2c-2e bonds was
confirmed up to certain degree only in Bjo, By, and By, clusters. In other large clusters it
was postulated. There is an alternative approach in which electrons located at central
boron atoms are thought to participate in global delocalization resulting in formation of

several areas with island o-aromaticity.
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We also would like to point out that there is no conflict between our assignment
of planar boron clusters with 4n m-electrons to antiaromatic and Aihara et al. assignment
of the same molecules to aromatic. The disagreement is purely semantic. We are talking
about global antiaromaticity of boron clusters with 4n m-electrons. We, however, agree
that a globally m-antiaromatic molecule such as B> could have islands of m-aromaticity.
The island m-aromaticity is responsible for the high TRE=0.549 |Bgs| energy in Bs.
However, in order to explain low symmetry (D, instead of Dg,) of Bg”, we must
consider this cluster as being globally m-antiaromatic. The same is true for larger m-
antiaromatic clusters. Similarly, in Bs’, the high TRE=1.058 |Bgg| cannot explain the
low symmetry (C,, instead of Dsy) of Bs as well as the small first singlet vertical
excitation energy. The o-electrons must be included in chemical bonding analysis. When
the global o-antiaromaticity in the Bs™ cluster is recognized, the low symmetry Cjy
structure and small first singlet vertical excitation energy have rather simple explanation,
which is not possible if only s-aromaticity in this cluster is considered.

Appropriate geometric fit is also an essential factor, which determines the shape
of the most stable structures. In all boron clusters considered here the peripheral atoms
form planar cycles. Peripheral 2c-2e B-B bonds are built up from s-p hybrid atomic
orbitals and this enforces the planarity of the cycle. If the given number of central atoms
(1, 2, 3, or 4) can perfectly fit the central cavity then the overall structure is planar.
Otherwise, central atoms come out of the plane of the cycle.

Initially, from Bj; to Be the cyclic (perfect or distorted depending on their aromatic
or antiaromatic character) structures correspond to global minima. In the B¢ cluster in

addition to cyclic structures we observe the emergence of a new type of structure,
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pentagonal pyramid, which now corresponds to the global minimum. The planar
pentagon structure with the boron atom located at the center of the pentagon is not a
minimum because the cavity inside of the pentagon is too small to favorably
accommodate a boron atom at the center. The cyclic B, Dy, (3A2’) structure is
significantly higher (63.4 kcal/mol at B3LYP/6-311+G*) in energy than the global
minimum Ce, ('A,’) structure because of unsupported dangling electron density at the
center of the cycle. Thus, the cyclic structures are not favorable anymore beyond six
boron atoms. Starting with Bg the central cavity can favorably accommodate one boron
atom at the center of the appropriate polygon leading to planar highly symmetric global
minimum structures. Starting from B cluster, the structures with one boron atom at the
center are not low energy isomers, because it takes more than one boron nucleus to make
a good fit for the central cavity.

We believe that this approach in which we combine 2c-2e bonds (or lone pairs)
with global (or island) - and o-aromaticity is a promising way to characterize chemical
bonding in large boron clusters and could potentially become a useful tool in addition to
n-delocalization and m-aromaticity in case of other new planar clusters such as
hyparenes,”™”* aromatic boron wheels with more than one carbon atom at the center,®"*

and fen-shaped B,E,Si (E=CH, BH, or Si, n=2-5) clusters.*
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CHAPTER 5
AROMATICITY AND ANTIAROMATICITY IN

TRANSITION-METAL SYSTEMS'

Abstract

Aromaticity is an important concept in chemistry primarily for organic
compounds, but it has been extended to compounds containing transition-metal atoms.
Recent findings of aromaticity and antiaromaticy in all-metal clusters have stimulated
further researches in describing the chemical bonding, structures, and stability in
transition-metal clusters and compounds on the basis of aromaticity and antiaromaticity,
which are reviewed here. The presence of d-orbitals endows much more diverse
chemistry, structure, and chemical bonding to transition-metal clusters and compounds.
One interesting feature is the existence of a new type of aromaticity - d-aromaticity, in
addition to o- and m-aromaticity that are only possible for main group compounds.
Another striking characteristic in the chemical bonding of transition-metal systems is the
multi-fold nature of aromaticity, antiaromaticity, or even conflicting aromaticity.
Separate sets of counting rules have been proposed for cyclic transition-metal systems to
account for the three types of o-, m-, and d-aromaticity/antiaromaticity. The diverse
transition-metal clusters and compounds reviewed here indicate that multiple aromaticity
and antiaromaticity may be much more common in chemistry than one would anticipate.
It is hoped that the current review will stimulate interest in further understanding the

structure and bonding, on the basis of aromaticity and antiaromaticity, of other known or

' Coauthored by Dmitry Yu. Zubarev, Boris B. Averkiev, Hua-Jin Zhai, Lai-Sheng Wang and Alexander I.
Boldyrev. Reproduced with permission from Phys. Chem. Chem. Phys. 2008, 10, 257-267.
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unknown transition-metal systems, such as the active sites of enzymes or other

biomolecules, which contain transition-metal atoms and clusters.

5-1. Introduction

Aromaticity in compounds containing a transition-metal atom was first considered
in a pioneering paper in 1979 by Thorn and Hoffmann' on six-membered ring
metallocyclic compounds, that are derived from the prototypical aromatic benzene
molecule with one C-H moiety replaced by an isolobal transition-metal fragment. Just
three years later the first example of a stable, isolable metallobenzene — osmabenzene —
was reported by Elliott ef al.> A large family of metallobenzenes — the iridabenzenes —
was synthesized by Bleeke and co-workers;’” whereas a series of dimetallobenzenes with
two metal atoms incorporated into the benzene ring was synthesized and characterized by
Rothwell et al.*’ Recent advances in metallobenzenes have been reviewed by Bleeke,
He at al.,” Wright,' and Landorf and Haley."" A thorough chemical bonding analysis of
metallobenzene has been recently performed by Fernandez and Frenking.'>? However,
aromaticity in transition metal compounds is not restricted to metallobenzene molecules.
Other molecules, in which the aromatic cycle composed of transition-metal atoms only
and are not based on the prototypical benzene molecule, have also been reported recently,
and they are the subject of the current article.

Before discussing in detail the aromaticity in transition-metal systems, let us briefly
review the concept of aromaticity, since it has been rather controversial, despite the fact

13-21

that it is taught routinely in general chemistry. Many books and numerous reviews>

% have been published, and several conferences’’ have been dedicated to deciphering
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the concept of aromaticity. We would like to adopt a view of aromaticity with which we
hope that most chemists can agree. Aromaticity was initially introduced into chemistry to
describe the lack of reactivity of benzene and its derivatives, in spite of the apparent
unsaturated nature of the carbon-carbon bonds in these molecules. Because all these
molecules have an aroma, the property of chemical stability of the unsaturated bonds in
the cyclic systems was called aromaticity. Nowadays most molecules, which are
considered to be aromatic, do not have any aroma and in order to characterize them as
aromatic a variety of criteria have been proposed in the literature based on molecular
orbital or other considerations. They are summarized in Table 5-1 (we adopt a list of the

properties proposed by Krygowski et al.*

with some small modifications and additions).
These criteria have been proposed for m-aromatic and m-antiaromatic organic
systems, but we will see that many of them are also applicable to o-aromatic and o-
antiaromatic systems, as well as to d-aromatic and d-antiaromatic systems. We stress that
one should not expect that aromaticity/antiaromaticity in transition metal systems will
manifest itself exactly the same way as in organic chemistry. Many specific deviations
are expected. Nevertheless, we believe that the overall delocalized chemical bonding and
most of the molecular properties in certain transition metal species could be understood
using the aromaticity/antiaromaticity concepts.
The discovery and experimental generation of the first all-metal aromatic and
antiaromatic clusters using photoelectron spectroscopy and ab initio calculations®*> have
stimulated much interest in extending these ideas to other metal systems, including

transition metals.’®*’ It has been understood that aromaticity/antiaromaticity in metal

systems has very specific flavors if compared with organic compounds. The striking



Table 5-1. Criteria for ni-Aromaticity and nt-Antiaromaticity.™
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Property Aromatic Olefinic/Classical Antiaromatic

(i) Electronic nature (4n + 2) m-electron cyclic No cyclic conjugation 4n m-electron cyclic
conjugation conjugation

(ii) Energy

Cyclic conjugation Stabilization Standard Destabilization

Delocalization Enhanced Standard Decreased

HOMO-LUMO gap Large Standard Small

(iii) Geometry

Bond lengths Equalization Alternation Alternation

(iv) Magnetic properties

Anisotropy of Enhanced Small

diamagnetic susceptibility

Susceptibility exaltation High Low

"H NMR shifts

NICS (nucleus
independent chemical

shift)

Diatropic (low-field shift)

Large negative Close to zero

Paratropic (high-field
shift)

Large positive

(v) Reactivity
Chemical example

Retention of structure

e.g., benzene e.g., cyclohexadiene

Electrophilic substitution Electrophilic addition

e.g., cyclooctatetraene

Addition

(vi) Spectroscopy
UV spectra
IR/Raman spectra

Photoelectron spectra

High energy Standard
High symmetry

High electron detachment Standard
energies

Low energy
Low symmetry

Low electron detachment
energies




105

feature of chemical bonding in metal systems is the possibility of the multi-fold nature of
aromaticity, antiaromaticity, and conflicting aromaticity.’*** When only s-atomic orbitals
(AOs) are involved in chemical bonding, one may expect only o-aromaticity or oO-
antiaromaticity. If p-AOs are involved, o-tangential (o), o-radial (o), and m-
aromaticity/antiaromaticity could occur.*® In this case, there can be multiple (o- and t-)
aromaticity, multiple (o- and m-) antiaromaticity, and conflicting aromaticity
(simultaneous o-aromaticity and m-antiaromaticity or o-antiaromaticity and -
aromaticity). If d-AOs are involved in chemical bonding, o-tangential (o-), o-radial (o~
), m-tangential (7-), mt-radial (7t,-), and d-aromaticity/antiaromaticity could occur. In this
case, there can be multiple (o-, m-, and 0-) aromaticity, multiple (o-, m-, and 0-)
antiaromaticity, and conflicting aromaticity (simultaneous aromaticity and
antiaromaticity among the three types of o, , and 6 bonds).

One would expect that doubly and triply aromatic molecules would be
significantly more stable with higher resonance energies, shortened bond lengths,
enhanced ring currents, more negative NICS values, and a higher average bifurcation
value of the electron localization function (ELF) than in conventional singly aromatic
molecules. Indeed, Boldyrev and Kuznetsov,” and Zhan et al.*' showed that the doubly
(0- and 7t-) aromatic species Al,*" has a very high resonance energy ~48 kcal/mol*® and
~73 keal/mol*', respectively. For the prototypical singly aromatic benzene molecule the
resonance energy is only 20 kcal/mol.” The ring-current susceptibilities for the doubly
aromatic Al,> dianion was also found to be 10 nA T™', which is higher than 8 nA T™ in
benzene.* Fowler et al demonstrated that the contribution to the ring current from o-

43,44

delocalized electrons is significantly higher than from m-electrons. According to Chen
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et al.,* Aly* has significant negative NICS (-30.9 ppm) compared to that in benzene (-9.7
ppm).*® Santos et al.*’ showed that Al,* has the highest average bifurcation value of
ELF, and ELF, among the set of various singly aromatic systems. Establishing the
overall aromaticity or antiaromaticity in molecules with conflicting aromaticity is
especially challenging task, because of the simultaneous presence of aromaticity and
antiaromaticity in different electronic subsystems.”>** Studies of magnetic properties of
systems with conflicting aromaticity such as LizAls” and LisAls can lead to contradictory

. .. . .. 49-51
conclusions on the overall aromaticity or antiaromaticity of the system.*>**"

Conflicting
aromaticity also results in floppy geometries of the LizAly” and LisAls clusters.” One of
the most interesting features of molecules with conflicting aromaticity is the possibility
of large linear and nonlinear optical properties such as linear polarizability, first
hyperpolarizability, and second hyperpolarizability.**

In the following sections we will consider in details the cases of multiple
aromaticity, multiple antiaromaticity and conflicting aromaticity in recent examples of
transition metal clusters and compounds, including Cus",” cyclo-Cu,H, (n = 3-6),**
cyclo-M,H, (M = Ag, Au; n = 3-6),” cyclo-AusL,Hs., (L = CHs, NH,, OH, and CI; n = 1-
3),°® cyclo-Cu,AgsH, (n = 1-3), cyclo-Cu,Agy,H, (n = 1-4), and cyclo-Cu,Ags.H, (n =
1-5),°" AusZn",”® MyLi, (M = Cu, Ag, Au),”’ M4L, and MyL” (M = Cu, Ag, Au; L = Li,
Na),® Hg,",*' Ms*, NaMs, and Na;M3; (M = Zn, Cd, Hg),”> M5 (M = Sc, Y, La),”

M;0o” and M30¢* (M = W, Mo),* Ta;05",% and Hf;.%
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5-2. s-AQO based o-aromaticity and o-antiaromaticity
in transition metal systems

5-2.1.5-A0 based o-aromaticity and
o-antiaromaticity in M; clusters

The prototypical system with s-AO based o-aromaticity is the Li3" cluster, which
was initially discussed by Alexandrova and Boldyrev,’” and then by Havenith et al.®® and
Yong et al® The Cus” has a similar Ds, ‘A  (la*lelay”
2a,%1e72e’2a,7*3¢’*2¢*32,%3a,°%) global minimum structure.”® As in the case of Lis",
the bonding in Cus" is rooted in 4s-AOs of Cu, because all the bonding and antibonding
MOs (la;%1e’* 12, 2a,* 1e7*2e*2a,23e72¢7*3a,%) composed out of 3d-AOs of Cu are
occupied, hence the contribution to bonding from 3d-AOs of Cu is negligible. The 3a,'-
valence HOMO is a sum of the 4s-AOs of three Cu atoms (Fig. 5-1a). It is completely
bonding and in this sense similar to the completely bonding m-MO in the prototypical m-
aromatic C3Hs" cation (Fig. 5-1b).

The only difference is that the n-MO is a sum of 2p,-AOs of carbons. The
delocalized n-MO in C;H;" renders its m-aromaticity according to the famous 4n+2
Huckel rule. On the basis of the analogy between the m-delocalized MO in C3H3" and the
o-delocalized MO in Cu;" it is reasonable to call the latter o-aromatic (the 4n+2 rule
holds for o-aromatic cyclic systems with valence s-AOs participating in bonding)."
Yong et al.>® considered aromaticity in the Cu;" cation on the basis of nucleus-
independent chemical shift (NICS) indexes.*® Their calculations show NICS(0.0) = -8.22

ppm, NICS(0.5) = -22.59 ppm, and NICS(1.0) = -12.31 ppm at B3LYP/6-311+G*,
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(b)

Figure 5-1. (a) The 3a;-HOMO of Cu;" and its schematic representation as a linear
combination of 4s-AOs of Cu atoms, (b) la,”-HOMO of C;H;" and its schematic
representation as a linear combination of 2p,-AOs of C atoms.

clearly confirming the presence of G-aromaticity in this cluster.”> Yong et al.” also

evaluated the resonance energy in the Cus™ Dy, 'A,” using the following equation:

CusCl (Cay, 'Ay) = Cuz + CuCl (5-1)

where Cu, and CuCl are reference classical molecules. According to their calculations,
the energy of reaction (5-1), which is also the resonance energy for Cus', is 36.8 kcal/mol
(B3LYP/6-311+G(3df)). The calculated resonance energy is certainly very high
compared to the Cu, dissociation energy (41.7 kcal/mol at the same level of theory).

Thus, the use of the o-aromaticity for the description of the Cus" cation is justified.
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Apparently, the concept of o-aromaticity based on the s-AOs should be applicable to
Ag;" and Aus’, though in the last case the s-d hybridization may play a more significant
role.

For o-antiaromatic species (with ns-AQOs participating in bonding) the counting
rule is 4n (singlet coupling). The Cus™ anion is a good example of o-antiaromatic system
with 4o-electrons. The electronic configuration for the singlet state of Cus™ at the Dsj
symmetry is la;”1e'” (only bonding MOs are included), and the triangular structure with
the singlet electronic state must undergo the Jahn-Teller distortion towards linear D,
structure with a lcgzlc;u2 valence electronic configuration.

Two o-delocalized MOs can be approximately localized into two 2¢c-2e bonds and
the linear structure of Cu; can be formally considered as a classical structure. This
situation is similar to the antiaromatic cyclobutadiene structure, which can be considered
as having two double and two single carbon-carbon bonds, and thus can be described
using single a Lewis structure. The antiaromaticity should manifest itself in the reduction
of the stability of the molecule. Two reactions below show that the atomization energy of
Cu;z” (reaction 5-2, CCSD(T)/6-311+G(2df)//CCSD(T)6-311+G*+ZPE/CCSD(T)/6-
311+G*) is indeed substantially lower than the atomization energy of Cus" (reaction 5-3,

CCSD(T)/6-311+G(2df)//CCSD(T)6-311+G*+ZPE/CCSD(T)/6-311+G*).

Cuy (D, 'Zg") = 2Cu (*S) + Cu ('S) AE = +82.4 kcal/mol (5-2)

Cus™ (D3, 'A|") = 2Cu (*S) + Cu™ ('S) AE = +106.3 kcal/mol (5-3)
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5-2.2. 5-AO based o-aromaticity in
M42' clusters

Initially aromaticity in the My* (M = Cu, Ag, Au) dianions as parts of MyLi, (M =
Cu, Ag, Au) neutral species was studied by Wannere et al.”’ They found that the Li;M,
species have distorted octahedral Dap, 1Alg structures (Fig. 5-2) with the M4> dianion
forming a perfect square with two Li" cations located above and below the square on the
C4 axis. The significant charge transfer from Li to M4 was confirmed by the NPA
charges. For example, in CusLi,, the NPA charge on Li is +0.8 |e|. These authors also
reported the NICS values in the centers of CusLi, (-14.5 ppm), Agsli; (-14.1 ppm), and
AuwsLis (-18.6 ppm) (all at PW91PWI1/LANL2DZ) clusters which show the presence of
aromaticity in the M4> dianions. Wannere et al.” stated that the participation of p-orbitals
in the bonding (and cyclic electron delocalization) in these clusters is negligible. Instead,
these clusters benefit strongly from the delocalization of d and to some extent s orbitals.
They also pointed out that d-orbital aromaticity of CuyLi, is indicated by its high (243.2
kcal/mol) atomization energy.

Lin et al.® reported a joint photoelectron spectroscopy and theoretical study of
CugNa’, AuysNa" as well as theoretical results on CusLi’, Agsli’, AgaNa’, AuyLi’, CuyLiy,
AgsLis, AusLiy, and Cus”. They found that the Cu4Li’, CusNa, AgsLi’, and AgsNa
anions have a pyramidal structure consistent with the bipyramidal structure reported by
Wannere et al., while the AuyLi” and AusNa™ anions were found to be planar. The
pyramidal structure of CusNa™ with the Na* cation located above the planar square Cuy>
dianion was confirmed by good agreement between theoretical and experimental VDEs

for this system.
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Cu,Li, Ag,Li, Au,Li,

4

Figure 5-2. Optimized structures of CusLis, AgsLis, and AuyLi,.”

Using the Gauge-Including Magnetically Induced Current (GIMIC) method Lin et
al.®* concluded that strong ring currents are sustained mainly by the HOMO derived from
the Cu 4s-AOs. Thus, the GIMIC calculations show that the Cus* ring is o-aromatic
dueto 4s-AOs and that the d orbitals do not play any significant role for the electron
delocalization effects. This study did not support the notion by Wannere et al.” that the
square-planar Cuy” is the first example of d-orbital aromatic molecules.

If bonding in the Cus” and Ags” rings is primarily due to c-orbitals, than these
systems are examples of systems with six valence o-electrons and should be regarded as
o-aromatic according to the 4n+2 rule, similar to the Lis>, Mgs*™ and Li,Mg, main group
clusters with six bonding o-electrons considered by Alexandrova and Boldyrev.®’

5-2.3. 5-AO based o-aromaticity in
the AusZn" cluster and Aug

The AusZn’ cation was found to be the most abundant cluster in the mass-
spectrum of Au,Zn" (n = 2-44) by Tanaka et al.”® The authors performed MP2/Zn/6-
311+G*/Au/5s5p4d1f calculations and identified three lowest isomers I, II, and III for

158

AusZn" (Fig. 5-3). For the two lowest isomers, Tanaka et al.”® presented MO pictures
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Figure 5-3. Three reported isomers of AusZn".>®

(Fig. 5-4) showing that six valence o-electrons are delocalized over the whole cluster.
The AusZn" cluster is isoelectronic to the Aug cluster and its most stable structure is the
same as the D3, global minimum structure of Aug, which possesses a large HOMO-

LUMO gap and possesses a very stable electronic configuration.®*”°

LUMO+1 LUMO+2 LUMO’

HOMO-I1 HOMO-2 HOMO HOMO' HOMO-1
. . + . . .
Figure. 5-4. Pictures of valence MOs of AusZn  isomers shown in Figure 5-3 a and b.

The MO pattern of AusZn' depicted in Fig. 5-4 resembles those of prototypical
aromatic organic molecules C¢Hg and CsHs', except for their nodal properties in the
molecular plane. The six delocalized electrons with the appropriate nodal pattern in
AusZn’ satisfies the 4n+2 rule for o-aromaticity. Tanaka et al.>® also performed NICS

calculations for all three structures and concluded the negative NICS indexes are larger
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than in the prototypical aromatic organic molecules C¢Hg and CsHs', confirming the
presence of aromaticity in AusZn'. Overall the AusZn" cluster can be regarded as a o-
aromatic bimetallic cluster with six delocalized o-electrons and that the enhanced
stability of AusZn' may be ascribed to its aromaticity.

5-2.4. 5-AO based o-aromaticity in the

cyclo-M,H, (M = Cu, Ag, Au; n = 3-6),

cyclo-AusL,H;., (L = CH3;, NH,, OH,

and Cl; n = 1-3), cyclo-Cu,Agi..H,

(n = 1-k, k = 3-5) clusters

Tsipis and Tsipis™ performed B3LYP/6-311+G* calculations on Cu,H, (n = 3-6)
cyclic species (Fig. 5) as models for the well documented cyclic organocopper (I)
compounds, such as the square planar four-membered ring CusR4 (R = CH,SiMes) with
short Cu-Cu distances of 2.42 A.”" Tsipis and Tsipis™* calculated also the 3D-structures
for Cu,H, (n = 4-6) and concluded that they are significantly less stable than the planar
ones. In follow-up articles,”>™’ Tsipis and co-workers studied cyclo-M,H, (M = Ag, Au;
n = 3-6), cyclo-AusL,Hs., (L = CH3, NH,, OH, and Cl; n = 1-3), cyclo-Cu,Ags.,H, (n = 1-
3), cyclo-Cu,Ags,H, (n = 1-4), and cyclo-Cu,Ags,H, (n = 1-5). The Cu,H, (n = 3-6)
cyclic species are discussed here and the other species are similar.

All Cu,H,, (n = 3-6) species were found to be cyclic with short Cu-Cu distances
(between 2.404 A in CusH; to 2.556 A in CugHg). The authors™ stated that the
equivalence of the Cu-Cu and Cu-H bonds in these species is indicative of the aromatic
character of the cyclic hydrocoppers (I). In addition, they reported binding energies,

NICS values and the electrophilicity index ® (Table 5-2), which also support the

aromatic nature of these species.
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(b)

Fig. 5-5. Optimized planar cyclic structures of Cu,H, clusters.™

The authors®' stated that all the metallocycles exhibit a composite bonding mode
involving o, 7, and 8 components on the basis of their analysis of occupied valence MOs.
However, we found a rather different picture. We performed a NBO analysis of the
representative CusHs (Dap, 1Alg) cluster at B3LYP/6-311++G** level of theory.
According to our NBO analysis the Cu atoms have 4s”°3d*?'4p”** valence atomic
occupations and a effective atomic charge of +0.50 |e|, while the H atoms have 1s"*
atomic occupation and an effective atomic charge of -0.50 |e|. One can see that the 3d-
AOs of Cu are almost completely occupied and thus do not significantly contribute to
bonding. The bonding from completely delocalized §-HOMO-11, n-HOMO-17, -
HOMO-18, 0-HOMO-19 and o-HOMO-20 (Fig. 5-6) will be offset by the effect of

antibonding orbitals composed of d-AOs of Cu atoms. Thus, the net bonding effect from

MOs composed of 3d-AOs cannot be significant. Rather, the bonding in the Cu,H, cyclic
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clusters comes from an ionic contribution between H’*°' and Cu™™' and from
delocalized MOs composed out of 4s-AOs on Cu. In fact, NBO analysis in CusHy
reveals one resonance structure (the same way as NBO produces some of the Kekule
resonance structure for benzene) in which there are four Cu-H 2c-2e bonds composed of
1s-AOs of H and 4s-AOs of Cu with the occupation number 1.744 |e| alternated over the
Cuy4Hy distorted planar octahedron. This confirms the aromatic nature of the Cu,H,
clusters, but the aromaticity is due to delocalization of o-bonds (composed of 1s-AOs of
H and 4s-AOs of Cu) and not due to the delocalized o-, -, and 8-MOs composed of 3d-
AOs of Cu. Thus, aromaticity in the Cu,H, clusters is not & but rather o in nature. Lin et
al.,”" however, reported that they did not find any strong magnetically induced ring
current in CusHy4. This might be a sign of the weak aromaticity in Cu,H, clusters. Due to
relativistic effects, s-d hybridization started to play a bigger role in Ag,H, and Au,H,
clusters, but additional research accounting for the relativistic effects should be
performed before making any conclusions on the bonding nature in these clusters.

Table 5-2. Binding Energies AE; and AE,, GIAO-SCF NICS and Electrophilicity of
Cu,H, (n = 3-6).

Cluster AE;,? kcal/mol AEz,b kcal/mol NICS, ppm w, eV
CusHs, D3 81.5 260.9 -8.4 1.595
CusHy, Dap 137.0 376.1 -4.2 1.743
CusHs, Dsp 180.1 479.0 -1.4 2.040
CugHs, Den 217.5 576.2 -0.2 2.230

“ AE, = E(CuH), — nE(CuH)
® AE, = E(CuH), — n[E(Cu) + E(H)].
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Figure 5-6. (a) s-MOs, (b) p-MOs, and (c¢) d-MOs composed out of d-AOs of Cu in

CugHy (Dap, ‘A, )
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5-3. p-AO based aromaticity and antiaromaticity
in transition metal systems

Double aromaticity (simultaneous presence of o- and m-aromaticity) was
introduced in chemistry by Chandrasekhar et al. to explain the properties of the 3,5-
dehydrophenyl cation.”” Simultaneous presence of aromaticity and antiaromaticity was
first used by Martin-Santamaria and Rzepa’ to explain chemical bonding in small carbon
rings. Prisang et al.”*” have shown that small carborane molecules containing 3- and 4-
membered rings also exhibit both o and 7 aromaticity. The Hg" cluster was the first
transition metal system where double (o- and m-) aromaticity due to p-AOs was
discovered.”

5-3.1. p-AO based multiple aromaticity
in the Hg46’ cluster

Mercury has a closed shell electron configuration (6s”) and therefore a neutral Hg,
cluster is expected to be a van der Waals complex. However, it was shown in the solid
that one particular sodium-mercury amalgam NasHg, contains Hg,* square units as its
building blocks.®' The high stability of the Hg,® building block was explained once we
recognized that it is isoelectronic to the first all-metal aromatic cluster, Aly*.** Basically,
the bonding in Hg," is due to Hg 6p-AO based MOs and the completely occupied Hg d-
AOs do not contribute to bonding.®' Fig. 5-7 displays the seven valence MOs of the
square-planar Hg,”, which are very similar to those in Al*.** The HOMO (1b2y),
HOMO-1 (lay,), and HOMO-2 (2a;,) are completely bonding orbitals formed from the
Hg 6p-AOs and represent p,—MOs (tangential MO), p,-MOs, and p,.—MOs (radial MO),

respectively. The remaining four MOs are bonding, non-bonding, and antibonding
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Figure 5-7. Valence molecular orbitals of Hg,"".

orbitals formed primarily from the filled valence 6s orbitals of Hg and can be viewed as
atomic 6s” lone pairs. Thus, the upper three MOs are mainly responsible for the chemical
bonding in Hg,®. If we split the o- and m-orbitals into two separate sets, we can represent

the MOs formed by the Hg 6p-AOs with the MO diagram shown in Fig. 5-8.

(a) ()  —3a

g
— Ib, - pp— —_— 2c,
le, wm— —_— le, _ﬂ_ Ib,
+ 14, 4 22,
P, Py Ps.

Figure 5-8. Molecular orbital diagram for a) t-MOs and b) 6-MOs for Hg,*".
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The lowest-lying m-MO and the two lowest-lying 0-MOs are completely bonding,
whereas the highest-lying ones are completely antibonding. The two MOs in the m-set
and the four MOs in the o-set that are located in between the completely bonding and
antibonding MOs are doubly degenerate with bonding/antibonding characters. The 2e,-
and 3e,-MOs are composed of p,.- and p,.~AOs. This is the reason why p,.- and p .+
MOs are presented as one set in Fig. 5-8. On the basis of this mixing in the p,.- and p .+
AOs the counting rule for o-electrons for cyclic systems with even number of vertices
should be 4n+4/4n+6 for aromaticity/antiaromaticity, but they are 4n+2/4n for the cyclic
systems with the odd number of vertices. On the basis of two distinct types of MOs, we
can introduce one types of aromaticity: s-aromaticity based on the p, MOs, and two types
of o-aromaticity based on the p, and p,« MOs. The occupation of all three bonding
MOs in Hg," makes its shape a perfect square and renders its doubly aromatic nature.

The finding of the double aromaticity in Hg," establishes a solid bridge between
our gas-phase studies of multiply aromatic clusters and bulk materials containing such
species. It is surprising that such an ancient material as amalgams can be rationalized on
the basis of multiple aromaticity initially discovered in the gas phase studies of the Als*

34,41,76,77

all-metal aromatic cluster, produced in the form of MAl, in the gas phase, where

M =Li, Na, Cu.

5-3.2. p-AO based multiple aromaticity in the
M3, NaMs, Na:Ms; (M = Zn, Cd, Hg)
clusters

Yong and Chi®* have recently shown using B3LYP, B3PW91, and CCSD(T)

calculations that a series of M32', NaM3j', Na;M3 (M = Zn, Cd, Hg) clusters all have the
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Mgz', Dsn 'A;’ core, which is m-aromatic. Like in Hg46', neither 5d- nor 6s-AOs
participate in the bonding in M;”. Its bonding is due to the a, -HOMO, which is
composed of the outer p-AOs of M. This is a completely bonding n-MO similar to the
la; -HOMO in the C3Hs"™ cation (Fig. 5-1b). Thus, in all the Ms*, NaMs", Na,M; (M =
Zn, Cd, Hg) systems bonding in the Ms> core is due to m-aromaticity only, without the
formation of a o-framework. Similar bonding pattern was previously reported for Mgs>,
NaMg;  and Na,Mg; systems by Kuznetsov and Boldyrev.”® Yong and Chi®* also
calculated a sizable resonance energy of 24.8 kcal/mol (Zns;™), 12.9 kcal/mol (Cds>), and
12.1 keal/mol (Hgz>) (either at CCSD(T)/6-311+G* or CCSD(T)/LANL2DZ), as well as
large negative values of NICS: -24.86 ppm (Zn;%), -19.59 ppm (Cds;”), and -15.40 ppm
(Hgs”), further confirming their -aromaticity
5-4. d-AO based aromaticity and antiaromaticity
in transition metal systems

Due to the more complicated nodal structure of d-AOs that can form 6-bond in
addition to o and m bonds, transition-metal systems can provide a more diverse array of
aromaticity-antiaromaticity combinations. We may expect o-tangential (o), o-radial
(or), m-tangential (7,), m-radial (7t;), and 6-MOs. For o- and n-MOs, the counting rules
are 4n+4 (aromaticity) and 4n+6 (antiaromaticity) for cyclic structures with even number
of atoms and 4n+2 (aromaticity) and 4n (antiaromaticity) for cyclic structures with odd
number of atoms. For 8-MOs the counting rule is 4n+2/4n for
aromaticity/antiaromaticity. In general, there can be multiple (o-, -, and 8-) aromaticity,

multiple (o-, m-, and 0-) antiaromaticity, and conflicting aromaticity (simultaneous
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aromaticity and antiaromaticity among the three types of o, 7, and & MOs). So far only
few transition metal systems with d-AO based aromaticity have been reported.®
5-4.1. d-AO based o-aromaticity in the
Mo 30927 and W3092* clusters

The first cases of d-orbital aromaticity in 4d and 5d transition metal oxide clusters,
Mo3;O¢ and W30¢, were reported by Huang ef al. by combining photoelectron
spectroscopy and theoretical calculations.*® They found that the M3;0s, M30o, and
M;09° (M = Mo, W) clusters all have D, structures and each metal atom is bonded to
two bridged O atoms and two terminal O atoms (Fig. 5-9).

The attachment of the first and second electrons to the M3Oq species reduces the
M-M distance significantly (0.25 A for Mo3Oy and 0.29 A for W30y ) and (0.20 A for
Mo30¢> and 0.19 A for W30o™). The large geometry changes induced by addition of one
or two electrons to the M3;Oy species agree with the nature of the HOMO in the singly
M;0, and doubly M30” charged anions (Fig. 5-10).

The completely bonding nature of the 6-HOMO in M3Os and M3;0¢> species
renders their o-aromaticity. Calculations of NICS at the center of Mo3;O¢”™ (-21.5 ppm)
and W30¢> (-20.5 ppm) also support the presence of aromaticity. Huang et al.** also
estimated a sizable (7.6 kcal/mol) resonance energy for W30Oy. These results provide
solid evidence that the anionic Mo03;0y’, W30q M0309Z' and W3092' species with the Dsj
(A’ or 'A)) structure are the first experimentally-confirmed d-orbital aromatic (o)

species.
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Figure 5-9. Optimized structures for M30o (a, d) M309 (b, ¢) and M30” (c, f) (M = Mo,
W) clusters.**
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Figure 5-10. HOMOs in the M350y and M;0¢> species (M = Mo and W).64
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5-4.2. d-AO based o-and - double

aromaticity in X5 (X = Sc, Y, La)
clusters

The first systems with double (0-and m-) aromaticity have been recently reported
by Chi and Liu.* They demonstrated using B3LYP, B3PW91, MP2 and CCSD(T) levels
of theory with 6-311+G* basis sets for Sc and LANL2DZ basis sets with relativistic
effective core potentials for Y and La, that the D3, ('A,’) structures are the global
minimum structures for X3~ (X = Sc, Y, La). All three species have the same valence
electronic configuration la;’*1e’*1a,”*2a,’%, though the order of the MOs varies (Fig. 5-
11). Here the 1a;’- and 1e’-MOs are formed by the ns-AOs and do not contribute to
bonding significantly, because all the bonding and antibonding MOs composed of the ns-
AOs are occupied and the bonding effect from the la;’-MO is compensated by the
antibonding effect from the 1e’-MOs. Valence 1a,”- and 2a;’-MOs are responsible for
bonding in the X5 anions. The 1a,”-MO is a completely bonding n-MO and it renders -
aromaticity. The 2a,’-MO is a completely bonding 0-MO and it renders o-aromaticity in
Xs3". Thus all three anions are d-orbital doubly (o-and nt-) aromatic systems. Chi and

Liu® also reported large negative NICS values for all three anions, thus supporting the

presence of aromaticity in Scs’, Y3, and Laj".

HOMO-3 1a,” HOMO-2 1’ HOMO-2 1¢’ HOMO-1 1a,” HOMO 2a’

Figure 5-11. Valence MOs of X3 (X =Sc, Y, La) anions.
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5-4.3. d-AO based m-and 6- double
aromaticity in the Ta;O; cluster

It was shown by Zhai et al.®’

using photoelectron spectroscopy and theoretical
calculations that the Ta;O;~ cluster possesses a global minimum with a perfect D3, (‘A1)

planar triangular structure (Fig. 5-12a).

o), &
HOMO, 4’ HOMO", 427
F T s
| ~ .
g H‘:;TP. /] :.'_-{: ‘?' 1 "-'J*-:f.'i._.:'i"_:_.,:'
e - =
HOMO-1, 4a.* HOMO-2, 2a." HOMO-3, 3a’
a b

Figure 5-12. Optimized structure (a) and valence MOs (b) of Ta;05".%

The structure and bonding in Taz;O; can be understood by analyzing their
molecular orbitals (Fig. 5-12b). Out of 34 valence electrons in Ta;Os, 24 belong to
either pure oxygen lone pairs or those polarized towards Ta (responsible for the covalent
contributions to Ta-O bonding). The other ten valence electrons are responsible for the
direct metal-metal bonding, as shown in Fig. 5-12b. Among the five upper MOs, three
MOs are of o-type: the partially bonding/antibonding doubly degenerate 4> HOMO and
the completely bonding 3a,> HOMO-3. The antibonding nature of the completely
occupied doubly degenerate HOMO significantly reduces the bonding contribution of

completely bonding HOMO-3 to the o-bonding in the Ta; framework. If the HOMO
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(4¢’) and the HOMO-3 (3a,’) were composed of the same s-d hybrid functions, bonding

due to these MOs would be completely canceled. However, the hybridization in the 4¢’
and 3a;’ orbitals is somewhat different. Therefore, there should remain some c-aromatic
bonding in Ta3;Os3". In the Ta;O3; anion, the HOMO-2 (2a,”) is a completely bonding 5
orbital composed primarily out of the 5d orbitals of Ta, giving rise to m-aromatic
character according to the (4n + 2) Hiickel rule for m-aromaticity for ring molecules with
odd numbers of atoms in the ring. Here, we apply the (4n + 2) counting rule (odd
number of atoms in the metal cycle) separately for each type of aromaticity encountered
in a particular planar system, i. e. separately for o-, 7t-, and 06-type molecular orbitals.

The HOMO-1 (4a;’), which is a completely bonding orbital mainly coming from
the overlap of the d,” orbital on each Ta atom is in fact a 8-aromatic orbital. This orbital
has the “appearance” of a ; orbital with major overlaps above and below the molecular
plane, but it is not a m-type MO because it is symmetric with respect to the molecular
plane. This MO possesses two nodal surfaces perpendicular to the molecular C; axis, and
thus it is a O orbital (see detailed discussion in ref. 65). Therefore, the Ta;O; cluster
possesses an unprecedented multiple (& and ) aromaticity, which is responsible for the
metal-metal bonding and the perfect triangular Ta; framework. The energy ordering of o
(HOMO-3) < x (HOMO-2) < § (HOMO-1)® molecular orbitals indicates that the strength
of the metal-metal bonding increases from § to & to o, in agreement with the intuitive
expectation that o-type overlap is greater than m-type overlap, and &-type overlap is

expected to be the weakest.
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5-4.4. d-AO based o-, m-and 6- triple
aromaticity in the Hf; cluster

Averkiev and Boldyrev®® theoretically predicted that the Hfs cluster in the Dsp,
'A;” (1ay2a,°%1e’*1a,%3a,°) state possesses triple (0-, mt-, and §-) aromaticity. The
valence la;’- and 1¢’-MOs are primarily composed out of 6s-AOs of Hf and as in Ta3;O3
do not contribute to bonding significantly (Fig. 5-13).

Six d-electrons populate completely bonding delocalized o-MO (2a,’), n-MO
(1ay”), and 8-MO (3a;’) (Fig. 5-13b). The former three MOs render o-, m-, and &-
aromaticity just like the completely bonding m-delocalized MO in C3;H;" renders m-
aromaticity in C;H;". Thus the Hf; cluster in the Dsp, 'A,’ state represents the first

example of a chemical system with the triple aromaticity.

5-5. Summary and overview

The goal of this review is to demonstrate that the concepts of aromaticity and
antiaromaticity, initially introduced in organic chemistry, can and should be applied to
the description of chemical bonding in transition metal systems. At the present, systems
containing transition metal clusters are being actively studied both experimentally and
theoretically in chemistry and biochemistry. Apparently there is a need for convenient
tools that connect electronic structure with molecular properties of such systems. We
have shown that aromaticity and antiaromaticity are indeed useful tools for explaining
and understanding chemical bonding in transition metal systems. Aromaticity and
antiaromaticity have been established in the gas phase Cu;’ and Cus clusters. The

aromaticity in Cus’ helped to explain its high symmetry (Dsy,) structure,
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Figure 5-13. Optimized structure (a) and valence MOs (b) of the Hf; cluster in the Dsj,
1
Ay’ state.
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high atomization and resonance energies, and high negative value of NICS. The
aniaromaticity of Cu; helped to explain its linear structure and low atomization energy.
Similarly, aromaticity in cyclo-Cu H, (n = 3-6), cyclo-M,H, (M = Ag, Au; n=3-6),
cyclo-Au,LL, H; , (L = CH;, NH,, OH, and CI; n = 1-3), cyclo-Cu,Ag, H, (n = 1-3), cyclo-
Cu,Ag, H, (n = 1-4), and cyclo-Cu,Ags H, (n = 1-5) helped explain the planar cyclic
structure of these species, high binding energies, and negative NICS. Also, aromaticity in
these model systems was used to rationalize the planar cyclic organocopper (I)
compounds in condensed phase. The recognition of aromaticity in the gas phase AusZn*
cluster helped to understand high abundance observed in the mass spectrum. The
presence of aromaticity in gas phase clusters M,Li, (M = Cu, Ag, Au), M,L, and M,L” (M
= Cu, Ag, Au; L=Li, Na) allowed us to understand the planar square structure of Cu,”
and Ag,” structural units. The presence of double (0- and n-) aromaticity in the Hg,*
building block of Na;Hg, amalgam explains the planar square structure as well as
stability of it in the stabilizing external field of Na* cations. m-Aromaticity in M;>, NaM,,
Na,M; (M = Zn, Cd, Hg) is responsible for their stability. Double (o- and m-) aromaticity
in gas phase M; (M = Sc, Y, La) clusters is responsible for their high symmetry (D,,)
structure, high atomization and resonance energies, and high negative value of NICS.
True d-orbital aromaticity was first observed in M;0,” and M,0,> (M = W, Mo)
metal oxide clusters. The presence of o-aromaticity in these anions is responsible for
their high symmetry (D,,) structure, appreciable resonance energies, and high negative
value of NICS. The high symmetry (D) of Ta;O; and high first VDE could be
explained on the basis of the presence of double (m- and 8-) aromaticity. This oxide

cluster is the first example of d-aromaticity in a transition metal system. Finally, the Hf;
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cluster in the D,, 'A,” (1a,’*2a,’*1e’*1a,*3a,”?) state is the first example of triple (o-, -,
and 9-) aromaticity.

It is clear that aromaticity and antiaromaticity could be very useful concepts in
explaining structure, stability and other molecular properties of isolated and embedded
clusters of transition metals and transition metal oxide clusters. The chemical bonding in
transition metal clusters can come from s-AQOs, p-AOs, and d-AOs, and can be expressed
as a variety of multiple aromaticities and antiaromaticities as well as of conflicting
aromaticities. We believe that transition metal systems with triple antiaromaticity and all
types of conflicting aromaticity outlined in the introduction should all exist and should
represent a research frontier. Furthermore, atomic f-AOs in lanthanide and actinide
clusters offer additional possibility to form ¢-bonds and thus could lead to systems with
even richer variety of ¢-aromaticity/antiaromaticity. Such systems have not yet been
reported and may suggest new research opportunities both computationally and
experimentally.

The counting rules for s-AO based o-aromaticity are the same as the Huckel
4n+2/4n rules for aromaticity/anriaromaticity for all cyclic structures. The counting rules
for p-AO based o-aromaticity are 4n+4 (aromaticity) and 4n+6 (antiaromaticity) for
cyclic structures with even number of atoms and 4n+2 (aromaticity) and 4n
(antiaromaticity) for cyclic structures with odd number of atoms, because there are two
types of o-orbitals: p,,- and p,-MOs which should be considered together. In the
simplest case of the occupation of just one p,,- and one p,-MO the system is also
aromatic.  For p-AO based m-aromaticity the counting rule are 4n+2/4n for

aromaticity/antiaromaticity for all cyclic structures. For d-AO based o- and -
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aromaticity the counting rules are 4n+4 (aromaticity) and 4n+6 (antiaromaticity) for
cyclic structures with even number of atoms and 4n+2 (aromaticity) and 4n
(antiaromaticity) for cyclic structures with odd number of atoms, because there are two
types of o-orbitals: d - and d,,-MOs and two types of p-orbitals: d,_,- and d, -MOs. For
d-AO based d-aromaticity the counting rule is 4n+2/4n for aromaticity/antiaromaticity,
respectively

It is hoped that the introduction of the concepts of aromaticity and antiaromaticity
will stimulate theoretical analysis of chemical bonding in other known or unknown
chemical compounds containing transition metal atoms and clusters in both inorganic
compounds and metallo-biomolecules. Such analysis may establish simple and robust
rules connecting electronic and molecular structures with stability and reactivity. It may
be possible that aromaticity and antiaromaticity may become as useful concepts in

deciphering the chemical bonding in transition metal systems as in organic chemistry.
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CHAPTER 6

8-AROMATICITY IN [Ta;05]"

Abstract

The concept of aromaticity was introduced into organic chemistry to describe
delocalized p bonding in planar, cyclic, and conjugate molecules possessing (4n+2) p
electrons.!"! In recent years, this concept has been advanced into main-group molecules

] and, in

including organometallic compounds with cyclic cores of metal atoms'”
particular, all-metal clusters.””! It has been shown that main-group clusters may exhibit
multiple aromaticity (o and ), multiple antiaromaticity (o and ), and conflicting
aromaticity (o aromaticity and o antiaromaticity or O antiaromaticity and
aromaticity).'*"*! Here, we report experimental and theoretical evidence of & aromaticity,
which is only possible in transition-metal systems. It is discovered in the [Ta3;Os] cluster
through combined photoelectron spectroscopy and ab initio studies. Well-resolved low-
lying electronic transitions are observed in the photoelectron spectra of [Ta3;O3]” and are
compared with ab initio calculations, which show that the [Ta3;Os] cluster has a planar
D3y, triangular structure. Chemical-bonding analyses reveal that among the five valence
molecular orbitals involved in the multicenter metal-metal bonding, there is a completely
bonding & and = orbital formed from the 5d atomic orbitals of Ta. The totally delocalized

multicenter & bond renders 0 aromaticity for [Ta;Os;] and represents a new mode of

chemical bonding. [Ta;O;] is the first 6-aromatic molecule confirmed experimentally

! Coauthored by Hua-Jin Zhai, Boris B. Averkiev, Dmitry Yu. Zubarev, Lai-Sheng Wang and Alexander I.
Boldyerv. Reproduced with permission from Angew. Chem. Int. Ed. 2007, 46, 4277-4280. Copyright Wiley
— VCH Verlag GmbH & Co. KGaA.
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and theoretically, which suggests that 0 aromaticity may exist in many multinuclear, low

oxidation- state transition-metal compounds.

6-1. Introduction

In 1964, Cotton and co-workers published a milestone work on
K>[Re>Cls]-2H,0, in which they showed the presence of a new type of chemical
bond—a 0 bond between the two Re atoms. Since then, a branch of inorganic chemistry
has been developed that involves multiple metal-metal bonding®® with bond orders
higher than three, the maximum allowed for main-group systems. Power and co-workers
recently reported the synthesis of a Cr, compound with a quintuple bond (o”n*8%)
between the two Cr atoms.”” This work, along with recent quantum chemical studies of
multiple bonds in U, and [Re,Clg]* ') has generated renewed interest in multiple metal—
metal bonding."'"™"*! The presence of & bonds between two transition-metal atoms
suggests that multicenter transition-metal species with a completely delocalized cyclic
bond may exist, thus raising the possibility of & aromaticity analogous to m or ©
aromaticity in main-group systems. We have been interested in understanding the
electronic structure and chemical bonding of early transition-metal oxide clusters as a
function of size and composition, and in using them as potential molecular models for

14181 Dyring our investigation of tantalum oxide clusters, we found the

oxide catalysts
presence of O aromaticity in the [Ta3;Os] cluster, in which each Ta atom is in a low

oxidation state of Ta" and still possesses three electrons for Ta—Ta bonding.
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6-2. Experimental Method

The experiment was conducted by using a magnetic bottle-type photoelectron
spectroscopy apparatus equipped with a laser vaporization cluster source.l'” [TanO,]
clusters with various compositions were produced by laser vaporization of a pure
tantalum disk target in the presence of a helium carrier gas seeded with O,, and were
size-separated by time-of-flight mass spectrometry. The [Ta;O3;]" species was mass-
selected and decelerated before photodetachment by a pulsed laser beam. Photoelectron
spectra were obtained at two relatively high photon energies, 193 nm (6.424 e¢V) and 157

nm (7.866 eV), to guarantee access to all valence electronic transitions (Figure 6-1).

a) X

Ih)l

Figure 6-1. Photoelectron spectra of [Ta;O3] . a) 193 nm (6.424 eV); b) 157 nm (7.866
eV).
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Three well-resolved bands (X, A, and B) were observed at the lower-binding-
energy side. The X band is much more intense and shows a discernible splitting at 193
nm (Figure 6-1a). Surprisingly, no well-defined electronic transitions were observed
beyond 3.7 eV, where continuous signals were present, probably as a result of
multielectron transitions. The vertical detachment energies (VDEs) of the observed
transitions at the low-binding energy side are given in Table 6-1, where they are

compared with theoretical calculations by two different methods.

Table 6-1. Experimental VDEs [eV] for [Ta;O3] compared with those calculated for the
D3sp, global minimum.

VDE (exp.)  Final state and configuration VDE VDE
(B3LYP)® (B3PW91)H

X 2.25+0.03" *E' (3a,72a,"%4a,"4e") 2.27 2.25

A 2.89+002 A (3a,72a,74a,"4e™) 2.93 2.96

B 3444003 A (3a,%2a,"4a,%4e™) 3.27 3.36

[a] Using the Ta/Stuttgart+ 2flg/Ofaug-cc-pvTZ basis set. [b] The
adiabatic electron-detachment energy was measured to be (2.22+
0.03) eV.

6-3. Theoretical Methods
We initially performed an extensive search for the [Ta;Os3]" global minimum for
the singlet, triplet, and quintet states at the B3ALYP/LANL2DZ level of theory, and then

recalculated the global minimum structure and the three lowest isomers at three other

levels of theory.
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6-4. Results and Discussion

We found that the [Ta;O;]" global minimum has a perfect D3, (‘A;”) planar
triangular structure I (Figure 6-2). The closest isomer II is 6.6 (B3LYP/Ta/Stuttgart+
2f1g/O/aug-cc-pvTZ) and 1.7 kcal mol” (B3PW91/Ta/Stuttgart+2f1g/O/aug-cc-pvTZ)
higher in energy than the D3, ground state. The theoretical VDEs of the global minimum
at the two highest levels of theory are compared with the experimental data in Table 6-1.
One can see that the calculated VDEs for the global minimum structure I agree well with
the experimental results, whereas those for the three low-lying isomers (see the
Supporting Information) are completely off, thus lending considerable credence to the
theoretical methods and the Djy, structure for [TazOs]” . The highest occupied molecular
orbital (HOMO, 4¢’) of the D3, [Ta3Os3]  is doubly degenerate, consistent with the intense
X band observed experimentally. The splitting of the X band could be a consequence of
either a Jahn—Teller effect or spin— orbit coupling.

To help understand the structure and bonding in [Ta3;Os3] we performed a detailed
molecular orbital (MO) analysis. Out of the 34 valence electrons in [Taz;Os]", 24 belong to
either pure oxygen lone pairs or those polarized towards Ta (responsible for the covalent
contributions to Ta-O bonding). The remaining ten valence electrons are primarily Ta-
based and are involved in direct metal-metal bonding (Figure 6-3). Among the five MOs,
three are responsible for s bonding of the triangular Ta; framework. They include the
partially bonding/antibonding doubly degenerate 4¢’ HOMO and the completely bonding
3a;” HOMO-3. The antibonding nature of the HOMO significantly reduces the s-bonding
contribution to the Tas framework."'®! In the [Ta;O3]" anion, the HOMO-2 (2a,”’) is a

completely bonding p orbital composed primarily of the 5d orbitals of Ta, thus giving
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1.97
2.569
I, D, ('A,) 10, C, (*A™)
AE = 0.0 kcal mol™! AR = 6.6 keal mal™!
[AE = 0.0 keal mol '] [AE= 1.7 keal mol ']

IL, C, (*A) IV, C, ('A)
AE= 120 kcal mol”’ AE= 150 kcal mol!
[AE= 7.5 kcal mol™] [AE=12.7 kcal mol™]

Figure 6-2. Optimized structures for the global minimum of [Ta;Os] (Ds, 'A;’) and
selected low-lying isomers. The relative energies AEiyi[kcal mol'l] and interatomic
distances [A] were calculated at the B3LYP/Ta/Stuttgart+2f1g/O/aug-cc-pvTZ level of
theory (AEwwm at the B3PWO9I1/Ta/Stuttgart+2f1g/O/aug-cc-pvTZ level is shown in
brackets).
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ﬁ.
HOMO 4a

HOMO-1 48,

m
& HOMO-2 2a,”

L)
HOMO-3 3a,

Figure 6-3. The five valence MOs responsible for the metal-metal bonding in [Ta3;O3]
(D3, ‘A1)
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rise to m-aromatic character according to the (4n+2) Huckel rule for m aromaticity.!'”’

The most interesting MO is HOMO-1 (4a,’), which is a completely bonding orbital that
comes mainly from the overlap of the d, orbital on each Ta atom. This orbital has the
“appearance” of a m orbital with major overlaps above and below the molecular plane,
but it is not a m-type MO because it is symmetric with respect to the molecular plane.
However, perpendicular to the molecular C3 axis this MO has two nodal surfaces, and

(200 1 fact, a similar 8-bonding MO exists in the recently synthesized

thus it is a d orbital.
quintuple-bond Cr, complex,” in which it is a two-center bond formed from a d,, orbital
on each Cr atom.!"! Analogous to the circularly delocalized & MO over three carbon
atoms, which renders [C3H3]+ n-aromatic,m the circular delocalization and the bonding
nature of the 4a;”’MO give rise to & aromaticity in [Ta;O3] , which is also consistent with
the (4n+2) Huckel rule."” In the [Ta;0;] cluster, the & MO is a three-center bond, but
similar types of MOs are possible in planar tetraatomic, pentaatomic, or larger transition-
metal systems. Therefore, the [Ta;O;] cluster exhibits an unprecedented multiple (8 and
;) aromaticity, which is responsible for the metal-metal bonding and the perfect
triangular Tas framework. The stability of the Ta; triangular kernel can be seen in all the
low-lying isomers of [Ta3;Os3]" (Figure 6-2), which differ only in the coordination of the
oxygen atoms to the aromatic Ta; framework. Notably, the energy ordering of o
(HOMO-3)<t (HOMO-2)<6 (HOMO-1) (Table 6-1 and Figure 6-3) indicates that the
strength of the metal-metal bonding increases from & to & to o, in agreement with the

intuitive expectation that o-type overlap is greater than m-type overlap, and that 8-type

overlap is the weakest, as is also the case in the multiple bonding of diatomic transition-
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7-13

metal compounds including the classical [Re;Clg]*.""*! Despite the expected weaker

overlap in the 8 MO, it makes important contributions to the overall metal- metal

9, 11-13]

bonding, as shown in the quintuple bonds in the new Cr, complex! or in the U,

[10

dimer.'” The three-center delocalization in the aromatic & MO in [Ta;O3] 1s expected to

provide even more bonding contributions than in the cases of the metal dimers, even
though it is difficult to quantify them. The three-center delocalization in the aromatic
[W300]* ion that results from a d—d o bond was estimated previously to provide about 1

eV additional resonance energy, similar to that estimated for benzene.!*"

6-5. Conclusion

Aromaticity in transition-metal systems has been discussed in the literature,* >*'~

1 particularly since the discovery of aromaticity in all-metal clusters.”! King!** and
Li"**! have considered aromaticity in transition-metal oxides as a result of metal-metal
interactions through M-O-M bridges. The [Hgs]® cluster, which is a building block of
the [NasHg,] amalgam, has been shown by Kuznetsov et al.**! to be aromatic and similar

25, 26]

to the all-metal [Al,]* unit.””! Tsipis et al.l explained the planar structure of cyclic

coinage metal hydrides on the basis of their aromatic character. Aromaticity in square-

planar coinage-metal clusters was discussed by Wannere et al.*”! and Lin et al.,*® and

1.[29]

Alexandrova et a suggested the presence of aromaticity in the [Cu3;Cy4]  cluster. Datta

et al.®” used d-orbital aromaticity to explain the metal-ring structure in tiara nickel
thiolates. Recently, Huang et al.*'! demonstrated the presence of d-orbital aromaticity in
the 4d and 5d transition-metal-oxide clusters [Mo3;Oo]> and [W30s]* . The claim of d-

7]

orbital aromaticity in the square-planar coinage-metal clusters’”! was questioned by Lin
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et al.,[28

I who showed that the completely filled d orbitals do not play any significant role
in the bonding in these clusters. Instead, aromaticity in these systems comes primarily
from o-bonding interactions of the valence s electrons. Thus, today the [Mo3;04]* and
[W309]* clusters are the only examples in which aromaticity comes from d-bonding
interactions, albeit with s character.*"!

In the [Ta;Os] cluster, we have found two new types of d-bonding interactions
that lead to m and 8 aromaticity. The 0 aromaticity in this cluster is a new mode of
chemical bonding that can only occur in multinuclear transition-metal systems. The
current finding suggests that 0 aromaticity may exist in many cyclic transition-metal

systems containing metal atoms in low oxidation states. The next challenge is to find ¢

aromaticity, which may occur in multinuclear and cyclic f-metal systems.
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CHAPTER 7
OBSERVATION OF TRIATOMIC SPECIES WITH CONFLICTING

AROMATICITY: AlSi,” AND AlGe,”

Abstract

We created mixed triatomic clusters, AICGe", AlSi,", and AlGe,’, and studied their
electronic structure and chemical bonding using photoelectron spectroscopy and ab initio
calculations. Excellent agreement between theoretical and experimental photoelectron
spectra confirmed the predicted global minimum structures for these species. Chemical
bonding analysis revealed that the AlSi,” and AlGe, anions can be described as species
with conflicting (o-antiaromatic and m-aromatic) aromaticity. The AICGe anion
represents an interesting example of chemical species that is between classical and

aromatic.

7-1. Introduction

The heavier congeners of carbon with a formal triple bond (XMM’X, where M
and M’ are Si, Ge, Sn, and Pb and X is a monovalent ligand) have remarkably rich
potential energy surfaces with many local minima close in energy to the global
minimum.'? In contrast, C,H, (acetylene) has the potential energy surface with the global
minimum being significantly more stable than other local minima. Electropositive
substitution of H in the HMM’H species can bring additional features to the chemical

bonding in these species.” Previously, we have studied AIC,” and AICSi’, which can be

' Coauthored by Dmitry Yu. Zubarev, Alexander I. Boldyrev, Xi Li and Lai-Sheng Wang. Reproduced with
permission from J. Phys. Chem. B 2006, 110, 9743-9746. Copyright 2006 American Chemical Society.
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viewed as Al” bonded to a C,> or CSi> group.*® Chemical bonding in the two isomers of
AIC," with the m- (global minimum) and o-coordination of Al to C, can be described as
being rather ionic between Al (with a lone pair) and C,*” which in turn can be described
by a Lewis structure with a triple carbon-carbon bond (see the NBO analyses in the
Supporting Information). Ionic bonding between Al” and C,* favors a high symmetry
(Cyy) structure. When both carbon atoms in AlC; are substituted by Si or Ge a significant
electron delocalization between all three atoms occurs (the covalent character of bonding
between Al and Si or Ge increases), and the chemical bonding in the resulting AlSi,,
AlSiGe’, and AlGe, species cannot be described the same way as in AIC, (see the
Supporting Information). That delocalization results in the low symmetry C, (‘A’)
structures (Figure 7-1). Electron delocalization can be described in terms of aromaticity
or antiaromaticity. The name “aromatic compound” was initially bestowed on benzene,
its derivatives, and related compounds because of their aroma. Today, the terms
“aromatic” and “aromaticity” (antiaromaticity) are used to describe cyclic, planar, and
conjugated molecules possessing 4n + 2 (4n) m-electrons and having specific chemical
and structural stability. In addition to widely accepted m-aromaticity and -
antiaromaticity, o-aromaticity and o-antiaromaticity were also introduced in chemistry
(see the detailed discussion in ref 4). In the current communication, we present a
photoelectron spectroscopy study of AICGe", AlSi,’, and AlGe, and ab initio calculations
at the B3LYP/6-311+G*, TD-B3LYP/6-311+G(2df), RCCSD(T)/6-311+G*,

RCCSD(T)/6-311+G(2df), and ROVGF/6-311+G(2df) levels of theory.
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7-2. Experimental Methods

The experiment was performed using a magnetic-bottle time-of-flight
photoelectron spectroscopy apparatus equipped with a laser vaporization cluster source.’
The AICGe’, AlSi,, and AlGe; anion clusters were produced using Al/C/Ge, Al/Si, and
Al/Ge mixed targets, respectively. The cluster anions of interest were mass-selected
before photodetachment by one of two laser beams: 355 nm (3.496 e¢V) and 266 nm
(4.661 eV). Photoelectron spectra were measured using the magnetic-bottle time-of-flight
photoelectron analyzer with an electron kinetic energy resolution of AEk/Ek = 2.5%, that
1s, 25 meV for 1 eV electrons. The spectrometer was calibrated with the known spectra of

Cuand Rh'.

7-3. Theoretical Methods

Theoretically, we first performed the search for the global minima on the potential
energy surfaces using the B3LYP method with the 6-311+G* basis sets. Geometries and
frequencies for local minima were refined using the RCCSD(T) method with the same
basis sets. Relative energies were evaluated at the RCCSD(T)/6-
311+G(2df)//RCCSD(T)/6-311+G* level of theory. We also ran CASSCF(12,12)/6-
311+G* calculations for AlSi,” and AlGe; in order to probe the validity of the one
electron approximation. These calculations showed that the Hartree-Fock configurations
were dominant (Cyr = 0.914 (AlSi;’) and Cyr = 0.912 (AlGe;)) among 427 350
configurations. Thus, methods based on the one-electron approximation (B3LYP,
CCSD(T), ROVGF) should perform adequately. Theoretical vertical detachment energies

(VDEs) were calculated using the RCCSD(T)/6-311+G(2df), ROVGF/6-311+G(2df), and
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TD-B3LYP/6-311+G(2df) levels of theory. Natural Bond Orbital (NBO) analysis was

employed for detailed chemical bonding examination. Molecular orbitals (MOs) were
calculated at the RHF/6-311+G* level of theory. All HF, B3LYP, and RCCSD(T) (for
closed shell species) calculations were performed using the Gaussian 03 program.® The
ROVGF calculations were done using the Gaussian 98 package.” The RCCSD(T) (for
open shell species) calculations were done using the MOLPRO-2000.1 package.® MO

pictures were made using the MOLDEN3.4 program.’

7-4. Results and Discussion

The local minimum structures are presented in Figure 7-1. For all of the anions,
linear structures were found to be second order saddle points. We found only one type of
minimum structure, Cs (1a’* 2a’*3a’*4a’*1a”*5a°%), as shown in Figure 7-1. Surprisingly,
the cyclic Cay (‘A}) structure, which was the global minimum for AIC, (Figure 7-1a),
was found to be a first-order saddle point for both AlSi,” and AlGe,’, though the potential
energy surfaces are rather flat. To verify the obtained global minimum structures, we
compared the calculated VDEs of AlSiy’, AlGe,, and AICGe with the experimental data
in Table 7-1. As shown in Figure 7-2, the photoelectron spectra for all three species are
similar, each displaying two bands (X and A). The calculated VDEs at all three levels of
theory are in excellent agreement with the experimental data, confirming the predicted
global minimum structures. The VDEs calculated at B3LYP/6-311+G(2df) were found to
be somewhat lower.

The unusual global minimum structures of AlSi,’, AlSiGe’, and AlGe, suggest

new modes of chemical bonding, different from that in AIC,". Straightforward application



048
a) !
-0.T4 -0.74
2 3
AIC, (C,'A))
d) 1,96
0.45 0.51
F
2 1
AICGe (C,'A)
g) -0.92

AlGe, (C,'A)

b) az1 138 o059
3 2 01

AIC, (C_'A)
-0.84

)

h] 0.67

0.67 057

s 3

Siff {D:.r.11'ﬂ"1l:'

154

3 2 i

AICSI (C,'A) Key:

I} -0.53

Figure 7-1. Computationally found isomers for AIC,", AICSi’, AICGe’, AlSi,", AlSiGe,
AlGe;, Si32+, and Si3. Effective atomic charges were calculated using NBO analysis.
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Table 7-1. Experimental ADEs and VDEs of AICGe’, AlSiy’, and AlGe, compared with
computed VDEs at different levels of theory.

Feature ADE (eV)* VDE, eV MO ROVGF, eV TD-B3LYP, eV RCCSD(T), eV

AICGe X 241+0.03 2.58 +0.03 S5a’ 2.688 (0.884) 2.430° 2.625
A 3.07 +0.02 la” 3.194 (0.877) 2.884° 3.105

4a’ 3.034 (0.879) 2.930°
AlSi, X 2.19+0.03 2.33+0.03 S5a’ 2.308 (0.878) 2.285 2.323
A 2.85+0.02 la” 2.913 (0.873) 2.725 2.955

4a’ 2.761 (0.863) 2.786
AlGe, X 2.17+0.03 2.32+0.03 S5a’ 2.294 (0.877) 2.277 2.333
A 2.76 +0.02 la” 2.698 (0.877) 2.566 2.773

4a’ 2.746 (0.870) 2.672

“ADE also represents the electron affinity of the corresponding neutral molecule.

® At the CCSD(T)/6-311+G* geometry.

of the NBO analysis to AlSiy’, AlSiGe’, and AlGe, shows that there is deviation from the
two-center two electron (2c-2¢) picture for all three species. The occupation numbers
(ONs) are just 1.80 |e| for the Si-Si, Si-Ge, and Ge-Ge bonds, and Al acquires three
artificial lone pairs with ON ) 0.54, 0.22, and 0.10 |e|. In an ideal 2c-2e bond or an ideal
lone pair, the ON should be 2.00 |e|. These deviations from the ideal 2c-2e bonding
picture are manifestations of appreciable electron density delocalization, and in fact,
these anions are m-aromatic and o-antiaromatic systems. To prove this bonding
description, let us first consider the D3, Al;™ anion, which has two electrons less than
AlSi, and AlGe,". It was recently shown'® that Al is a doubly aromatic system with one
completely delocalized 0-MO (2a,”) and one completely delocalized n-MO (1a,’). Dixon
and co-workers'” have shown that Al;” has a very high resonance energy (between 56
and 79 kcal/mol), confirming the double aromaticity in Als". The various criteria of
aromaticity for clusters of main group elements including metals have been recently
reviewed.'' In the present article, we will use only two criteria, MO analysis and

geometry, because it is very difficult to find appropriate reference molecules for
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Figure 7-2. Photoelectron spectra of AICGe™ (a), AlSiy" (b), and AlGe; (c) at 355 nm
(3.496 eV) and 266 nm (4.661 eV). The vertical bars represent the calculated VDEs for

the global minimum for each species at the ROVGF level of theory (Table 7-1).
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estimation of the resonance energy. We calculated an isoelectronic Dsy (‘'A;") Sis*"
dication as another example of double aromaticity (Figure 7-1h). Its MOs are shown in
Figure 7-3a. The two upper bonding MOs are the same as those in Als", and thus, Sis*" is
indeed doubly aromatic. When two additional electrons occupy the lowest unoccupied
molecular orbital (LUMO) of Si32+, forming the neutral Sisz cluster, a Jahn-Teller
distortion occurs because only one of the two doubly degenerate LUMOs is occupied
(Figure 7-3b). In chemical language, the highest occupied molecular orbital (HOMO) of
Si; adds antibonding character in the o-framework, resulting in substantial elongation to
one of the Si-Si bonds (Figure 7-11). Four o-electrons in Sis render its o-antiaromaticity,
which is resulting in the Dsp-to-C,y structural distortion from Si32+ to Si;, similar to the
transition from the aromatic C4H,*" to the antiaromatic C4H,. Antiaromaticity in C4Hy
manifests itself as a localization of m-electrons. In Sis;, antiaromaticity leads to
localization of o-electrons. In the pure o-antiaromatic triatomic Li;* anion, four o-
electrons lead to a linear structure.'” Though Sis is a o-antiaromatic system with four o-
electrons, it is not linear because of the important influence from the m-electrons. The
HOMO-2 of Si3 is a completely delocalized mt-orbital, making it w-aromatic. Thus, Sis is a
system with conflicting aromaticity, that is, a system with o-antiaromaticity and -
aromaticity. When one silicon atom in Siz is substituted by Al (isoelectronic to a Si
atom), the resulting AISi, structure is very similar (Figure 7-1e). The isoelectronic
AlSiGe™ (Figure 7-1f) and AiGe, (Figure 7-1g) also have very similar structures to that of
Si3. Their valence molecular orbitals are also rather similar to those of Sis (Figure 7-3c¢).
Thus, these hetero-triatomic species all should be considered to possess conflicting

4-13

aromaticity, similar to Als,” ~ which is o-aromatic and m-antiaromatic. In systems with
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conflicting aromaticity, it is difficult to make a judgment about the net aromaticity or
antiaromaticity.'* However, we believe that geometric criteria should be considered to be
paramount relative to other criteria of aromaticity or antiaromaticity. Thus, the structural
distortion in AlSi,’, AlSiGe’, and AlGe, makes them net antiaromatic, again similar to

Al,*" or they should be simply considered as -aromatic and o-antiaromatic.

a)
2a, homo
b)
3a, homo 2b,homo-1  1b, homo-2

)

64’ [UMo 5ahomo 12" homo-1

Figure 7-3. Molecular orbitals of (a) Siz*", (b) Sis, and (c) AlSi,".

The HCC" anion has a classical linear structure (with one 2c-2e H-C bond, three
2c-2e C-C bonds, and a lone pair on the terminal carbon atom), but its derivatives AICC
(Cs, 'A%), AICSI™ (Cs, 'A%), and AICGe™ (Cs, 'A’) are not linear. That deviation from
linearity indicates deviation from the classical structure toward a completely delocalized
aromatic structure such as that in Si32+. The deviation from linearity increases from
AICC to AICSi" and to AICGe™ when the electronegativity of the terminal atoms
equalizes to allow electron delocalization. However, all three of these anions do not yet

have conflicting aromaticity like in AlSi,’, AlSiGe’, and AlGe,’, because there is no
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significant bonding interaction between the terminal atoms. Thus, the AICC’, AICS1’, and

AICGe" anions are neither classical nor aromatic. They are somewhere in between.

7-5. Conclusion

In summary, we established the global minimum structures of AICGe’, AlSi,’, and
AlGe; by comparing their experimental photoelectron spectra and computed VDEs. All
three anions were found to have nonlinear structures (Cs, 'A’). Chemical bonding
analysis revealed that the AlSi,” and AlGe; anions can be described as species with
conflicting (o-antiaromatic and s-aromatic) aromaticity. The AICGe™ anion represents an

interesting example of a chemical species, which is between classical and aromatic.
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CHAPTER 8
GOLD APES HYDROGEN. THE STRUCTURE AND BONDING

IN THE PLANAR B;Au,” AND B;Au, CLUSTERS'

Abstract

We produced the B;Au,” mixed cluster and studied its electronic structure and
chemical bonding using photoelectron spectroscopy and ab initio calculations. The
photoelectron spectra of B;Au,” were observed to be relatively simple with vibrational
resolution, in contrast to the complicated spectra observed for pure B;, which had
contributions from three isomers (Alexandrova et al., J. Phys. Chem. A 2004, 108, 3509).
Theoretical calculations show that B;Au, possesses an extremely stable planar structure,
identical to that of BsH,, demonstrating that Au mimics H in its bonding to boron,
analogous to the Au-Si bonding. The ground state structure of B;Au,” (B7H") can be
viewed as adding two Au (H) atoms to the terminal B atoms of a higher-lying planar
isomer of B;. The bonding and stability in the planar B;Au,” (Bs7Hy) clusters are
elucidated on the basis of the strong covalent B-Au (H) bonding and the concepts of

aromaticity/antiaromaticity in these systems.

8-1. Introduction
Pure boron clusters have received limited attention in the literature over the past
couple of decades (see 1-7 and references therein). A major breakthrough has resulted

from a series of recent joint experimental and theoretical studies that have established

' Coauthored by Hua-Jin Zhai, Lai-Sheng Wang, Dmitry Yu. Zubarev and Alexander I. Boldyerv.
Reproduced with permission from J. Phys. Chem. A 2006, 110, 1689-1693. Copyright 2006 American
Chemical Society.
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that all the small boron clusters are planar or quasi-planar.®*"> These studies have shown
that photoelectron spectroscopy in conjunction with accurate ab initio calculations is a
powerful approach to elucidate the complex structures of atomic clusters. Furthermore,
the theoretical analyses have yielded detailed information about the chemical bonding in
the clusters and allowed the planarity of the boron clusters to be understood on the basis
of w and o aromaticity/antiaromaticity.

Among the small boron clusters, the B;™ cluster is a particularly interesting and
complex system because we observed the presence of three quite different isomers in its
photoelectron spectra:'? (1) a wheel-type quasi-planar doubly (o and ) aromatic triplet
Cs» CA;’) global minimum (structure I in Figure 8-1), (2) a o-aromatic and m-
antiaromatic singlet C», (‘A;) isomer (structure II in Figure 8-1) with a quasi-planar shape

(only 0.7 kcal/mol above the global minimum), and (3) an elongated planar doubly (o

| P b LY

LC,, CA) .0, ('A) ]II("(A)
AE = 0 0 kca]fmol AE= 4 kcal."mol = II kcal!mol
[AE = 0.0 keal/mel]  [AE = 0.7 kcal/mol] [.-AE 7.8 keal/mol]

b) B4 B3
H
B2

v.C, [lA) V.C, (lp.) VLC, (AI
AE = 0.0 keal/mol AE 227 keal/mol AE =30 keal/mol

Figure 8-1. (a) Low-energy isomers of the B; cluster at the B3LYP/6-311+G* level of
theory (relative energies computed at the CCSD(T)/6-311+G(2df) level are shown in
square brackets).'” (b) The global minimum and two low-lying isomers of B;H, at
B3LYP/6-311+G* level.'
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and ) antiaromatic Cs, (‘A ) isomer (structure III in Figure 8-1) (7.8 kcal/mol above the
global minimum). Upon addition of two hydrogen atoms to the B; cluster, it is found
very recently using ab initio calculations that an inversion in stability occurs.'® The
planar B;H,™ (Ca,, 'A) isomer (structure IV in Figure 8-1), formed by the addition of two
hydrogen atoms to the doubly antiaromatic C», (‘A;) B isomer III, is overwhelmingly
favored as the global minimum structure. It is 27 kcal/mol more stable than the lowest
high-energy isomer V of B;H,', originated from the addition of two hydrogen atoms to
the global minimum of B7.

Wang and co-workers have recently discovered that gold atoms exhibit chemistry
similar to that of hydrogen in Au-Si clusters, forming SiAuy and Si;Auy clusters similar
to the corresponding silicon hydrides, SiHy and Si;H,, respectively.'”'® Because of the
similar electronegativity between B and Si, we conjecture that Au may also form Au-B
clusters similar to the corresponding valence isoelectronic H-B clusters. If that is true,
we hypothesized that the B;Au,™ cluster would behave similarly as the B;H,™ system, thus
yielding a predominantly stable cluster similar to the global minimum of B;sH,  (IV in
Figure 8-1). In this case, we would expect to obtain a somewhat simpler photoelectron
spectrum for B;Au, because only the global minimum structure is expected to be present

in the experiment due to its overwhelming stability.

8-2. Experimental Method
We produced the B;Au, anions using a laser vaporization cluster source and

obtained its photoelectron spectra using a magnetic-bottle type photoelectron

19-21

spectrometer. The photoelectron spectra of B;Au,” at 266 and 193 nm photon
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energies are shown in Figure 8-2, compared with that of B;. Indeed, the photoelectron
spectra of B;Au, are substantially simpler and better resolved than that of B;™ despite its
larger size. Most surprisingly, despite the addition of two heavy atoms, the ground state
transition (X) of B7Au, is completely vibrationally resolved at 266 nm (Figure 8-2a) with
the excitation of two vibrational modes, a low frequency mode of 790 + 40 cm™ and a
high frequency mode of 1,380 + 40 cm™. The vibrationally resolved ground state
transition yielded an accurate electron affinity (EA) of 3.52 £ 0.02 eV for B;Au,.
Interestingly, the EA of B;Au, is very close to that of isomer III for B; (3.44 + 0.02)
corresponding to feature X’ in the spectrum of B; (Figure 8-2¢).'* Clearly, only one
dominant isomer was present in the spectra of B;Au,. The observed detachment energies
for the various detachment channels are summarized in Table 8-1. The observed B;Au,

cluster is likely to correspond to the isomer III of B;” by adding two Au atoms to its two

terminal B atoms similar to the ground state structure of B;H,™ as we expected.

8-3. Theoretical Methods

To prove our hypothesis and confirm the observed B;Au, structure, we
performed quantum chemical calculations® for a variety of B;Au,™ structures (VII-XII,
Figure 8-3), which were derived from the low-lying structures of B;H,".'® We initially
optimized geometries at B3LYP/B/cc-pvDZ/Au/LANL2DZ level of theory and found the
structure VII of B7Auy (Cay, 'A}) (Figure 8-3), nearly identical to the ground state of
B-H;', is indeed substantially more stable than the other structures. We then reoptimized
the geometry of the B;Au, global minimum structure VII at the B3LYP/B/aug-cc-

pvTZ/Au/Stuttgart rsc_ 1997 ecp level of theory and found that the two levels of theory
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Figure 8-2. Photoelectron spectra of Au,B7 at (a) 266 nm (4.661 e¢V) and (b) 193 nm
(6.424 eV). The 193 nm spectrum of B (c) is also included for comparison.'
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Table 8-1. Experimental Vertical Detachment Energies (VDEs) of B;Au, from the

Photoelectron Spectra, Compared with Theoretical Calculations.

Feature VDE (expt), eV* MO VDE (theor), eV®
x4 3.52(2) 3a, 3.46
A 427 (2) Oa, 4.21
B 4.38 (3) 8a, 4.36
C 490 (2) 7b, 492
D 5.08 (3) 6b, 5.19
E 5.58(2) Ta, 5.31
F 5.93(2) 3b, 5.75

oo

Numbers in parentheses represent experimental uncertainties in the last digit.

At TD-B3LYP/B/aug-cc-pvTZ/Au/ Stuttgart_rsc_1997_ecp level of theory.

Electron affinity of B,Au,: 3.52 £ 0.02 eV.

Ground state vibrational frequencies for the Au;B7 neutral are measured to be 790 =
40 and 1,380 + 40 cm™.
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give nearly identical structures. We also optimized the geometry for the neutral B;Au,
cluster and obtained its ground state structure similar to that of the anion as summarized
in Table S1. The vertical detachment energies (VDEs) from the B;Au,™ global minimum
structure were computed using the TD-B3LYP/aug-cc-pvTZ/Au/Stuttgart rsc_ 1997 ecp
level of theory and they are compared with the experimental data in Table 8-1. All
valence molecular orbitals of the global minimum structure of B;Au,™ are depicted in

Figure 8-4.

VILC, ('A) VILC, (A} IX. C, (1A
AE=0.0 keal/mol AE=21.6 keal/mol AE=24.5 kcal‘mol
X.C,('A) XLC (A XILC, ('A)
AE=32 4 keal/maol AE=35.3 keal/'mol AE=452 keal/mol

Figure 8-3. The global minimum and low-lying isomers of B;Au,” at B3LYP/B/cc-
pvdz/Au/ level.
8-4. Results and Discussion

The ground state transition in the spectra of B;Au, (X, Figure 8-2) involves
electron detachment from the 3a,-HOMO, which is a  bonding/antibonding orbital over
the B; moiety with some small contributions from the Au 5d orbitals (Figure 8-4). The

calculated VDE of 3.46 eV agrees well with the experimental VDE (3.52 eV) of the X
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HOMO-2 8a,

HOMO-6 3b,

HOMO-15 3b, HOMO-16 4a, HOMO-17 3a, HOMO-18 2b,

HOMO-19 2a, HOMO-20 1b, HOMO-21 1a,

Figure 8-4. Molecular orbitals (B3LYP/B/cc-pvDZ/Au/LANL2DZ) of Au,B7 Cay (IAI).
MOs are ordered  according to  the TD-B3LYP/B/aug-cc-pvTZ/Au/
Stuttgart rsc_1997 ecp level of theory.
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band (Table 8-1). Because both B;Au, and B;Au, have the same symmetry in their

ground state, only the totally symmetric modes (a;) can be active in the detachment
transition. The C,, B7Au; possesses eight symmetric modes, among which the w; (B-B
in-plane stretching) and ws (B-Au stretching) modes with frequencies of 1,358 and 828
cm™ are in good agreement with the two observed vibrational modes (1,380 + 40 cm’
and 790 + 40 cm™). The geometry changes between the anion and neutral ground states
are very small, consistent with the short vibrational progressions observed. The next six
detachment channels are due to electron removal from HOMO-1 to HOMO-6 (Figure 8-
4), respectively, and the computed VDEs for these detachment channels are in good
agreement with the experimental data (Table 8-1).

The good agreement between the experimental and theoretical VDEs confirmed
the theoretical prediction of the global minimum structure VII for B;Au,’, which is the
same as that of BsH,. Why the structure IV is the most stable for B;H,  has been
discussed in detail in ref. 16. The same applies to B;Au, and can be understood from
the MO pictures depicted in Figure 8-4. Among the twenty two occupied valence MOs,
approximately ten are due to the Au 5d orbitals (HOMO-8 to HOMO-16 plus HOMO-18
(although a few of the lower-lying orbitals have significant mixing with the B;
backbone); seven are responsible for the formation of seven 2c-2e peripheral B-B bonds
(HOMO-2, HOMO-4, HOMO-7; HOMO-17, and HOMO-19 to HOMO-21; see ref. 16
for more details); two are primarily responsible for the B-Au bonding (HOMO-3 and
HOMO-5); and two are & orbitals (HOMO and HOMO-6). This leaves the HOMO-1
(9a;), which is a o-orbital delocalized mainly over the five boron atoms that are not

bonded to Au. Thus, B;Au, is m-antiaromatic (4w delocalized electrons) and o-aromatic
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(2 delocalized o electrons) with all others MOs representing the two 2c-2e B-Au bonds
and the seven 2c-2e B-B peripheral bonds. The planar B;Au, structure can then be
viewed as originating from the mixing of the Au hybrid 6s-5d orbitals with one of the
delocalized o orbitals in the B;” isomer III, thus transforming the doubly antiaromatic B7
into a o-aromatic but still m-antiaromitc B;Au,. Essentially, a delocalized o orbital,
forming the original o-antiaromatic pair of orbitals, is transformed to two B-Au localized
bonds, gaining major stabilization to the structure VII for B;Au,. The second most
stable isomer for B;Au,, originated from the quasi-planar doubly aromatic isomer I of
B7’, becomes doubly (0- and m-) antiaromatic and thus significantly less stable. The
stability of the planar structure VII of B;Au, is also reinforced by the two strong B-Au

bonds formed.

8-5. Conclusion

The similarity in stability, structure, and bonding in the global minima of B7Auy’
and B;7H, 1is analogous to the previous discovery of the Au/H analogy in Si-Au
clusters."”"® Similar to the Si-Au bond, which is highly covalent, we found that the B-Au
bonds in B7Au, are also highly covalent with very little charge transfer from Au to B.
This is again due to the close electronegativity between B and Au, as a result of the
strong relativistic effects in Au.>® This study demonstrates that the Au/H analogy may be
a more general phenomenon and may exist in many species involving Au. The Au/H
analogy will not only extent our understanding of the chemistry of Au, but will also be

highly valuable in predicting the structures and bonding of many Au-alloy clusters.
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CHAPTER 9
ON THE CHEMICAL BONDING OF GOLD IN AURO-BORON

OXIDE CLUSTERS AuyBO™ (1 = 1-3)!

Abstract

During an experiment on Au-B alloy clusters, an auro-boron oxide cluster Au,BO
was observed to be an intense peak dominating the Au-B mass spectra, along with
weaker signals for AuBO™ and Au;BO". Well-resolved photoelectron spectra have been
obtained for the three new oxide clusters, which exhibit an odd-even effect in their
electron binding energies. Au,BO" is shown to be a closed shell molecule with a very
high electron binding energy, whereas AuBO and AusBO neutrals are shown to be closed
shell species with large HOMO-LUMO gaps, resulting in relatively low electron
affinities. Density functional calculations were performed for both Au,BO™ (n = 1-3) and
the corresponding H,BO" species in order to evaluate the analogy in bonding between
gold and hydrogen in B-Au clusters. The combination of experiment and theory allowed
us to establish the structures and chemical bonding of these tertiary clusters. We find that
the first gold atom does mimic hydrogen and interacts with the BO unit to produce a
linear AuBO' structure. This unit preserves its identity when interacting with additional
gold atoms: a linear Au[AuBO] complex is formed when adding one extra Au atom and
two isomeric Au, [AuBO] complexes are formed when adding two extra Au atoms.

Since BO' is isoelectronic to CO, the Au,BO™ species can be alternatively viewed as Au,

! Coauthored by Dmitry Yu. Zubarev, Alexander I. Boldyrev, Jun Li, Hua-Jin Zhai and Lai-Sheng Wang.
Reproduced with permission from J. Phys. Chem. A 2007, 111, 1648-1658. Copyright 2007 American
Chemical Society.
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interacting with a BO™ unit. The structures and chemical bonding in Au,BO" are

compared to those in the corresponding Au,CO complexes.

9-1. Introduction

A gold phosphine unit (AuPPhs) is known to participate in chemical interactions
analogous to that of hydrogen. For instance, substitution of covalently bound hydrogen
with AuPPh; results in the same geometry structures in some compounds. This
phenomenon made it possible to interpret various gold-carborane complexes.'> Gold-
containing closo-carboranes reported by Mitchel and Stone," Reid and Welch," and
Baukova ef al.'® represent substances where gold forms classical two-center two-electron
(2c-2e) bonds with carbon. Cluster bonding between AuPPh; and nido-carboranes was
encountered in substances synthesized and characterized by Stone and co-workers.'*'"
Experimental work of Hawthorne and co-workers'' demonstrated that in aurocarboranes
atoms of gold can interact with each other as well as form 2c-2e¢ bonds with carbon.
Gold-stanna-closo-borate compounds synthesized and characterized by Wesemann and
co-workers have Sn-Au bonds.> More detailed information on Au-B compounds can be
found in a recent review.’

The analogy between hydrogen and AuPPh; indeed goes beyond carboranes and
gives rise to various compounds with 2¢-2¢ C-Au, N-Au, and B-Au bonds.*> C-AuPPh;
bonds are encountered in compounds containing the hypercoordinated pentagonal-
bypiramidal C(AuPPhs;)s* and octahedral C(AuPPhs)s>" cations.™® Model systems
BH.(AuPH:).", where n + m = 3 or 4, and charge & is -2,...+1° and model complexes

[(LAW)6Xm]™, [(LAU)sXm]™ ", [(LAU)sXm]™?", (with central atoms X, = B, X, = C,



178

and X3 = N and ligands L = PH; or P(CHs);)’ have been studied theoretically to evaluate
the stabilizing effect of Au-PR; interactions in these systems. Pyykko et al.” investigated
the effect of Au-PR; interaction on chemical bonding in X(AuPPh;),™ systems by
considering pure XAu,”" clusters. A boron-centered gold cluster in the
[(Cy3P)B((AuPPh;),] BF4 salt has been synthesized and characterized by Schmidbaur
and co-workers.”® Gold diboride AuB, compounds, which have hexagonal layers of
boron atoms with gold atoms in between, are well-known as well.”¢™

The analogy of chemical bonding between a bare gold atom and H has been
recently discovered in some binary Au clusters produced in molecular beams.®® First,
SiAus, and SiAu, (n = 2, 3) were demonstrated to have structures and bonding similar to
the silane SiH4 and SiH,, respectively.® Subsequent studies of Si>Au, (7 = 2 and 4) and
SizAus clusters revealed their similarity to Si;H, (n = 2 and 4) and Si3Hj, respectively.’
B-Au bonds in the Au,B7 cluster® turned out to be covalent and similar to the B-H bonds
in the B;H, cluster.” Very recently, we have used the concept of Au/H analogy to
consider the possibility of deltahedral closo-auro-boranes B,Au,” analogous to
spherically-aromatic closo-boranes B,H,> (n = 5-12).!° The challenging question is how
far the Au/H analogy can go in determining the structure and chemical bonding in other
mixed clusters containing Au. Oxides of boron hydrides have been studied
computationally previously'' and can be used as reference systems in further exploration
of the Au/H analogy.

On the other hand, highly dispersed gold nanoparticles are known to exhibit high
catalytic activity in the reaction of low-temperature CO oxidation,'” which made the

research of gold clusters extremely attractive.”  Elucidation of the nature and
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mechanisms of the catalytic activity of nanogold has become a subject of significant

. . 14-24
scientific efforts.

While the role of the oxide support is important in nanogold
catalysis,” there is evidence that the high catalytic activity of nanogold is not based on
the presence of a substrate.'”” Therefore, chemisorbed gold cluster complexes can be
viewed as molecular models of nanogold catalysts. The fact that BO™ anion and CO
molecule are valent isoelectronic suggests that auro-boron oxides can be used as a model
system to provide further insight into the mechanisms of CO chemisorption on nanogold
and nanogold catalytic properties. Studies of the interaction of CO molecules with gold

clusters and gold nanoparticles have been carried out,”’

revealing pronounced size
dependence and chemisorption saturation. Such complexes as Au(CO), (n = 1-5) and
Au,y(CO), (n = 1, 2) have been assigned in the study of infrared spectra of Au-CO
complexes formed in a rare gas matrix.”> Zhai and Wang observed several series of gold
carbonyl cluster anions Au,(CO), (m = 2-5, n = 1-7) in the gas phase and characterized
their electronic structure using photoelectron spectroscopy (PES).*® It was reported that
for a given gold cluster CO adsorption reaches a critical number of saturation that
corresponds exactly to the number of available low coordination apex sites of the
respective bare gold clusters. In a subsequent work,”’ Wang and co-workers reported a
combined PES and ab initio investigation of CO chemisorption on the planar triangular
gold hexamer, Aug(CO), (n = 1-3). They showed that the three CO molecules bind to the
three apex sites with little structural distortion to the triangular Aue parent.

In the current paper a series of auro-borane oxides Au,BO™ (n = 1-3) has been

studied using a combination of PES and density functional calculations. Structures of the

corresponding atomic assemblies are established based on the agreement between
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experimental and theoretical photoelectron spectra. It turns out that the boron atom of the
BO fragment tends to bind with one rather than two gold atoms. Because of this, the BO
unit behaves as a monodentate ligand with respect to gold, similar to CO interactions
with Au clusters. Analyses of molecular orbitals (MO) and natural bond orbitals (NBO)

were carried out to reveal the nature of the chemical bonding in the auro-boron oxides.

9-2. Experimental and Computational Methods

9-2.1. Photoelectron Spectroscopy

The experiment was carried out using a magnetic-bottle-type PES apparatus
equipped with a laser vaporization supersonic cluster source. Details of the apparatus
have been described elsewhere.”>>> Briefly, the Au,BO™ (n = 1-3) mixed cluster anions
were produced by laser vaporization of a '’B/Au mixed target in the presence of a pure
helium carrier gas during experiments aimed at Au-B binary alloy clusters.® In addition
to the desired Au/B alloy clusters, the Au,BO™ species appeared to be a particularly
intense impurity peak in typical time-of-flight mass spectra and drew our attention. The
oxygen impurity was most likely from the target, which was pressed from a mixture of
Au and isotopically-enriched 'B powders. We further noted that two other oxide
impurities, Au,BO™ (n = 1, 3), were also present, albeit at lower abundance than Au,BO".
These impurity clusters were carefully studied to elucidate their structure and bonding.
They were each mass-selected and decelerated before being photodetached by a pulsed
laser beam. Photoelectrons were collected at nearly 100% efficiency by a magnetic bottle
and analyzed in a 3.5 m long electron flight tube. The photodetachment experiment was

conducted at four detachment photon energies: 532 nm (2.331 eV), 355 nm (3.496 eV),
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266 nm (4.661 eV), and 193 nm (6.424 eV). The PES spectra were calibrated using the

known spectra of Au” and Rh’, and the energy resolution of the apparatus was AE/Ex =

2.5%, that is, approximately 25 meV for 1 eV electrons.

9-2.2. Computational Methods

The search for the low-energy structures of Au,BO™ (n = 1-3) was performed
manually because of the small size of the systems. We used the hybrid B3LYP method**
with LANL2DZ*® pseudo-potential and basis sets for the preliminary determination of the
stationary points on the potential energy surface. The obtained results were refined using
Stuttgart relativistic small-core pseudo-potential and valence basis set*® augmented with
two fand one g function on gold (Stuttgart) and aug-cc-pVTZ (AVTZ hereafter)’’ basis
set on boron and oxygen. Computations of the structures of H,BO™ (n = 1-3) were
performed at the B3SLYP/AVTZ level of theory for comparison with the Au,BO" systems.

Theoretical vertical detachment energies (VDEs) were calculated using time-
dependent (TD) density functional theory® at the B3LYP/Au/Stuttgart/B,O/AVTZ (at the
optimized B3LYP/Au/Stuttgart/B,O/AVTZ geometries) level, which proved to be an
inexpensive and reliable method for gold clusters and complexes.®” In this approach, the
VDEs were calculated via the lowest transitions from the ground electronic state of the
anion into the ground state of the neutral species (at the B3LYP level of theory) and the
vertical excitation energies in the neutral species (at the TD-B3LYP level of theory) at
the anion geometry.

Chemical bonding was investigated by means of natural bond orbital (NBO 5.0)*

and molecular orbital analyses. The Gaussian 03*' and NWChem* software packages
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were used throughout this project. The MOLDEN3.4* program was chosen for the

visualization of the molecular orbitals.

9-3. Experimental Results

The PES spectra at various photon energies are shown in Figures 9-1 - 9-3 for
Au,BO™ (n = 1-3), respectively. The observed adiabatic and vertical detachment energies
(ADEs and VDEs) are summarized in Table 9-1 and compared to theoretical results to be

described.

9-3.1 AuBO

The 532 nm spectrum of AuBO™ (Figure 9-1a) revealed a partially resolved
vibrational progression for the ground state transition (X) with a spacing of 430+ 40 cm™.
The 0-0 transition defines the electron affinity (EA) of 1.46 = 0.02 eV for the AuBO
neutral molecule, whereas the 1<—0 transition at 1.51 = 0.02 eV represents the ground
state VDE of the anion. No additional transitions were accessible at higher binding
energies in the 355 nm (Figure 9-1b) and 266 nm spectra (not shown). The first excited
state (A) of AuBO turned out to be located at a rather high binding energy of 4.78 = 0.03
eV and was only accessed at 193 nm along with more features beyond 5 eV (Figure 9-
Ic). The ADE difference between features X and A defines large excitation energy (3.27
eV) for the first excited state of AuBO, which can also be viewed as HOMO-LUMO gap
for the AuBO molecule. This HOMO-LUMO gap for AuBO is substantially greater than

39,44

for any bare gold clusters or bare boron clusters,” suggesting AuBO is a very stable

closed shell molecule. The features beyond 5.0 eV were more congested and three well-
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Figure 9-1. Photoelectron spectra of AuBO™ at (a) 532 nm, (b) 355 nm, and (¢) 193 nm.
Vertical bars in (a) represent vibrational structures.
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Table 9-1. Experimental and Theoretical Vertical Detachment Energies for Au,BO™ (n =
1-3). All energies are in eV.

Species ADE (Exp.) TD-
Feature VDE (Exp.) Final Configuation
B3LYP/Au/
Stuttgart
/B,O/AVTZ

AuBO X 146 = 0.02 1.51 +0.02 IS (18%40°50%) 1.48
Coy (29

A 478 £ 0.03 37 (18%06'50") 4.56

B 5.07 +0.05
C 5.26 = 0.03 's" (18%6'50") 5.33
D 5.55+0.05

Au,BO° X 4.32 +0.02 4.33 +0.02 5" 28%3n*50%60") 4.08
Co (‘29

A 5.31+0.02 5" 28%3n56'60%) 5.19

B 5.50 + 0.03 1 (26*37°56°667) 5.56

C 5.69 = 0.02 ’A (28°31%50%60%) 5.86

Au;BO X 3.08 = 0.02 3.13 £ 0.02 'A| (3a,°5b,°9a,%6b,") 3.07
C CBy)

A 4.96 = 0.03 ’B, (3a,°5b,79a,'6b,") 477

B 5.11£0.05 'B, (3a,°5b,79a,'6b,") 4.90

C 5.29 +0.03 A1 (32,°5b,'9a,%6b,") 5.34

D 5.56 = 0.03 A1 (3a,'5b,79a,%6b,") 5.64

E 5.68 +0.03 'A} (32,°5b,'9a,°6b,") 5.75

F 5.80 = 0.02 'A; (32,'5b,°9a,%6b,") 5.97

AusBO X’ ~3.4 'A’ (13a°%14a*152°%) 3.67
C, CA?)

A’ (132%14a’'15a°") 4.89

'A’ (13a°%14a°'15a°") 5.51

A’ (13a’'14a°%15a°") 5.60

'A’ (132’ 14a2%152°") 5.85
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defined bands were discernible: B (5.07 = 0.05 e¢V), C (5.26 = 0.03eV), and D (5.55 =

0.05 eV).

9-3.2. Au,BO

The electron binding energy of Au,BO™ was found to be extremely high and only
266 and 193 nm photons were able to induce electron detachment, as shown in Figure 2.
A sharp ground state transition (X) was observed in the 266 nm spectrum with a VDE of
4.33 = 0.02 eV. Since no vibrational structures were resolved, the ground state ADE was
estimated by drawing a straight line along the leading edge of the X band and then adding
the instrumental resolution to the intersection with the binding energy axis. The ADE
thus evaluated is 4.32 + 0.02 eV, which also represents the electron affinity of the Au,BO
neutral species. The extremely high electron affinity suggests that the Au,BO neutral is
an open shell system, resulting in a highly stable closed-shell Au,BO™ anion and its
special mass abundance in our cluster source. The 193 nm spectrum (Figure 9-2b)
further revealed three well-resolved features: A (VDE: 5.31 = 0.02 eV), B (VDE: 5.50 =
0.03 eV), and C (VDE: 5.69 + 0.02 eV). The band B appeared to be broader and contain
a shoulder on the higher binding energy side, whereas band X, A, and C were relatively
sharp. The overall PES pattern of Au,BO™ is quite simple, consistent with the closed-

shell nature of this anion.

9-3.3. AusBO
Au3BO also exhibits a rather high electron binding energy (Figure 9-3), although
it is much lower than that of Au,BO". The 355 nm spectrum revealed only the ground

state transition X with a VDE of 3.13 + 0.02 ¢V and ADE of 3.08 + 0.02 eV, which also
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defines the EA of neutral AusBO. A broad shoulder (labeled X*) was observed at ~3.4

eV in the 266 nm spectrum, but it became very weak at 193 nm, suggesting it was likely
due to a minor isomer, as borne out from our theoretical calculations (vide infra).
Numerous additional spectral features were observed at higher binding energies in the
193 nm spectrum (Figure 9-3c) and were reasonably well-resolved. In particular, the first
excited state A is located at a rather high binding energy of 4.96 = 0.03 eV, defining a
large HOMO-LUMO gap of 1.83 eV for the Au;BO neutral cluster. Beyond band A, the
spectrum appears to be congested. Nevertheless, numerous well-defined sharp bands
were resolved: B (5.11 = 0.05 eV), C (5.29 = 0.03 eV), D (5.56 = 0.03 eV), E (5.68 =

0.03 eV), and F (5.80 = 0.02 eV).

9-4. Theoretical Results

9-4.1. AuBO and HBO

The most stable C..y (*27) structure I of AuBO" is represented in Figure 9-4a and Table 9-
2. The geometry of the lowest-energy Coy (*27) structure II of HBO™ (Figure 9-4a) is
consistent with previous results obtained for the neutral species,'' but the anion is
unstable towards the spontaneous electron detachment (ADE = -0.58 eV at the level of
B3LYP/H,B,0/AVTZ). Search for C,, structures of AuOB" and HOB  where the
gold/hydrogen atom is bound to the oxygen atom in both cases resulted in second-order
saddle points. Further optimization along the doubly degenerate imaginary vibrational
modeled to the C.y ((=") structure I in the case of AuBO". In the case of HBO we
obtained a bent C, (*A’) isomer III that is 38.6 kcal/mol higher than the C., (*=")

structure II.
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Figure 9-4. Structures of the most stable isomers of auro-borane oxides Au,BO™ (n = 1-3)
and boron hydride oxides H,BO™ (n = 1-3): (a) AuBO™ and HBO', (b) Au,BO" and H,BO',

(c) AusBO™ and H;BO'.
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Table 9-2. Calculated molecular properties of the lowest-energy structures of auro-borane
oxides Au,BO™ (n=1-3).

AuBO C.,, (=9

B3LYP/Au/Stuttgart/B,O/AVTZ

Au,BO C, (‘=9
B3LYP/Au/Stuttgart/B,0/AVTZ

-Etot, a.u. 236.150966 -Etot, a.u. 372.169882
R(B-0), A 1.222
R(B-0), A 1.225
R(Au;-B), A 2.013
R(Au-B), A 2.061
R(Au-Auy), A 2.659
w,(0), cm’” 131 (3.2)*
o,(0), cm™ 327 (42.3)° w,(0), cm’ 386 (16.4)°
w,(0), cm™ 1829 (270.3)* m5(0), cm’”! 1859 (354.0)°
w5(7t), cm’” 188 (43.0)* (), cm” 53 (4.6)"
os(m), cm’™ 356 (8.3)°
AU3BO_
B3LYP/Au/Stuttgart/B,0/AVTZ
Cay (Bo), C, CA),
508.111203 508.109561
-Etot, a.u. -Etot, a.u.
R(B-0), A 1.219
R(B-0), A 1.220
R(Au;-B), A 2.010
R(Au;-B), A 2.004
R(Au,-Auy), A 2.715
R(Auy;-Auy), A 2.809
R(Aus-Auy), A 2.671
L(AUQAlllAU3), © 57.8
L(AusAwmAu), ° 160.0
w,(a;), cm’’ 88 (0.4) y(2’), em” 12 (0.8)
os(a;), cm’” 127 (0.5) w,(a’), cm” 89 (0.7)
ws(ay), cm’! 395 (6.0) ws(a’), em’” 141 (0.1)
w,(ay), em’” 1869 (437.8) wy(a’), cm’! 386 (21.8)
os(by), cm™ 50 (4.4) wy(a’), cm’ 1873 (419.5)
we(by), cm 350 (7.2) we(a”), cm’! 39 (4.4)
o,(b,), cm™ 30(7.3) w,(a”), cm’ 41 (4.4)
wg(by), cm”! 61 (0.2) wg(2”), cm” 335(7.2)
wy(bs), cm 336 (1.1) wy(a”), cm” 335 (8.4)

? Infrared intensities (km/mol) are given in parenthesis.
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9-4.2. Au;BO" and HBO

The ground state of Au,BO™ has a linear C..y (‘") structure IV (Figure 9-4b and
Table 9-2). The energetically closest C, 'A; isomer (structure V, Figure 9-4b) is 25.0
kcal/mol less stable. On the contrary, the C,, 'A, structure VI of H,BO is the most
stable isomer. H,BO™ also has two higher-energy isomers with C., symmetry. The first
one is the Cy (12+) structure VII (AE 1 = 20.4 kcal/mol) that represents a van der Waals
complex between H, and BO. The second one is the Cey (12+) structure VIII (AEw =
41.6 kcal/mol) that corresponds to a Van der Waals complex of H and HBO. The
different energetic preference of the isomers, or the tendency of the boron atom of the BO
fragment to bind to one atom of gold (monodentate behavior), but to two atoms of
hydrogen (bidentate behavior) is remarkable and will be considered in details in the
chemical bonding section (see below).

H,BO" also has stable cis and trans configurations where one hydrogen atom is
bound to the boron atom and the other to the oxygen atom (structures IX and X, Figure 9-
4b). The trans-isomer IX (Cs 'A’) is found to be 56.2 kcal/mol higher than the ground
state structure VI and the cis-isomer X (Cs 'A’) is 60.0 kcal/mol higher. Analogous
isomers of Au,BO™ were not found in our search. When starting from the corresponding
cis- and trans- configurations of Au,BO’, our optimization led to the ground state

structure IV or to an unbound Au atom and AuBO".

9-4.3. Au;BO™ and H;BO
The Cay (°B,) structure XI (Figure 9-4c, Table 9-2) was found to be the most

stable isomer for AusBO". The next isomer, the Cs (*A”) structure XII (Figure 9-4c, Table
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9-2), is only 1.0 kcal/mol higher in energy and is expected to contribute to the
photoelectron spectrum of Au;BO". Again, while in the ground state of AusBO’ the
boron atom behaves in a monodentate manner towards gold, it exhibits bidentate
behavior towards hydrogen in the C; (*A”) global minimum structure XVI of H;BO"
(Figure 9-4c). The anionic C, (*A’) H;BO" is unstable towards spontaneous electron
detachment (ADE = -0.41 eV). A similar isomer was found for AusBO™ (C, (*A’)
structure XIV, Figure 9-4c), but it is 39.3 kcal/mol higher than structure XI. The Cs (*A”)
structure XVII of H3;BO', which is 15.9 kcal/mol higher, can be considered as
corresponding to both structures XI and XII of AusBO™. While the Cs (PA’) structure XV
is another isomer of AuzBO™ with a relative energy 40.4 kcal/mol, the similar structure
XVIII Cs PA’) for H3BO' is a first-order saddle point. The imaginary mode leads to the
global minimum structure XVI. Two more similar structures are present among the
isomers of AusBO™ and H;BO™: C; (*A”) structure XIII (Eretaive = 32.6 kcal/mol) and C
(A structure XIX (Erelative = 21.5 kcal/mol), respectively (Fig. 9-4c).
9-5. Interpretation of the Experimental
Photoelectron Spectra
9-5.1. AuBO

The C.y (*=") doublet ground state of AuBO™ cluster has a valence electron
configuration of 21*18"40%56" and can give rise to either singlet or triplet final states
upon electron detachment. The first calculated VDE corresponds to the removal of the
unpaired electron from the 50 orbital, resulting in the 'S" final state. The calculated VDE

of 1.48 eV is in excellent agreement with the experimental value of 1.51 eV (Table 9-1).
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The calculated vibrational frequency for the Au-B stretching in neutral AuBO [w(0) =
430 cm’'] also agrees well with the resolved vibrational frequency for the ground state
transition (430 = 30 cm™). The second detachment channel involves the 40 orbital (the
HOMO of the neutral species) and leads to the *S" final state. The computed VDE value
of 4.56 eV agrees well with that of feature A at 4.78 eV (Table 9-1). There is another
detachment channel for the 40 orbital, which results in a singlet final state. The
computed VDE (5.33 eV) for this detachment channel is in excellent agreement with the
observed peak C (VDE = 5.26 eV). The relative intensity ratio of bands A and C and
their similar shape are consistent with the assignments that they are due to the
triplet/singlet pair from detachment from the same orbital. Detachments from deeper
orbitals, which correspond to features B, D, and the congested signals at higher binding
energies (Figure 9-1c¢), involve Au 5d-based orbitals and are complicated by the strong
spin-orbit coupling (SOC) effect. The calculated VDEs for detachments from the 5o and
40 orbitals are in good agreement with the experiments because these two orbitals are
mainly from Au 6s orbital, which is not subject to the SOC effect. However, without
including the SOC effect, the calculated electron detachment energies corresponding to
removing electrons from the Au 5d-based 18 and 2m orbitals are inconsistent with the
experiment. Calculations of VDEs including the SOC effect is beyond the scope of the

current work.

9-5.2. Au,BO
The ground state of Au,BO" is a singlet with Coy ('=7) symmetry and possesses a

closed shell configuration, 28*37*50660°, which leads only to doublet final states upon
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electron detachment. The first detachment channel involves the 60 orbital and the
computed VDE o0f 4.08 eV is in good agreement with the ground state transition observed
experimentally at 4.33 eV (Table 9-1). The observed band A (VDE: 5.31 eV) should
correspond to detachment from the 50 orbital and again computed VDE (5.19 eV) agrees
well with the experimental VDE. The observed bands B and C should correspond to
detachments from the 3;t and 20 orbitals, respectively. Even without including the SOC
effect, the computed VDEs agree fortuitously well with the observed VDEs (Table 9-1).
The SOC effect is expected to be relatively small for the “IT state because of the BO
contribution to the 3x orbital. In fact, band B appeared to contain two components with a
shoulder on the higher binding energy side, which might be due to the spin-orbit splitting
of the °IT state. However, the SOC effect of the A state is expected to be very large
because the 20 orbital is predominantly of Au 5d character. Thus, band C, which was
fairly sharp, might correspond to one spin-orbit component of the A state with the other

component at a higher binding energy beyond the 193 nm photon energy.

9-5.3. AusBO

The lowest energy structure of Au;BO™ is “B, with an electron configuration of
3a,°5b,°9a,%6b,', which can lead to both singlet and triplet final states upon electron
detachment (Table 9-1). The ground state transition (X) should correspond to
detachment from the 6b, orbital and the calculated VDE (3.07 eV) is in excellent
agreement with the experimental value of 3.13 eV (Table 9-1). The 6b, orbital is an
antibonding orbital between two Au atoms (Figure 9-8) and the X band should contain an

unresolved low-frequency Au-Au vibrational progression, which explains the difference
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between the ADE (3.08 eV) and VDE (3.13 eV) of the ground state transition (Figure 9-3

and Table 9-1). The band A should correspond to electron detachment from the 9a;
orbital leading to the triplet final state °B,. The computed VDE (4.77 V) is lower than
the experimental VDE (4.96 ¢V) by almost 0.2 eV (Table 9-1). The corresponding 'B;
singlet final state with a computed VDE of 4.90 eV (Table 9-1) should be then assigned
to the B band at a VDE of 5.11 eV, which was only partially resolved from the more
intense A band (Figure 9-3¢). The next detachment channel is from 5b, orbital, resulting
a triplet °A; (VDE: 5.34 eV) and singlet 'A; (VDE: 5.75 eV) final states. The computed
VDEs are in good agreement with the observed VDES of bands C and E, respectively
(Table 9-1). And the next higher binding energy photodetachment channel is from the
3a, orbital, which give rise to a triplet °A; (VDE: 5.64 eV) and a singlet 'A; (VDE: 5.97
eV), which are in good agreement with the measured VDEs for bands D and F,
respectively. Band F is more intense than band D, suggesting that it might contain
contributions from other detachment channels

The C, (*A”) isomer (structure XII, Figure 9-4c) of AusBO" is very close in energy
to the Cay (°B,) ground state and might be present experimentally. Indeed, the calculated
VDE from the 152 SOMO (Figure 9-9) of the C, (*A”) isomer is in reasonable agreement
with the broad feature X’ observed in the 266 nm (Figure 9-3b and Table 9-1). The
contributions of the Cy (*A’) isomer to the 193 nm spectrum (Figure 9-3c) appear to be
greatly diminished and should not interfere with the above assignment of the main

isomer.
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9-6. Chemical Bonding in Au,BO"
and H,BO™ (n =1-3)

The overall agreement between the theory and experiment (Table 9-1) is
gratifying for all three Au,BO" species, lending credence to the obtained global minimum
structures. In this section, we discuss the details of the chemical bonding in Au,BO™ and

compare with that in the corresponding H,BO™ and Au,CO species for n = 1-3.

9-6.1. AuBO and HBO

To simplify the analysis of the chemical bonding in the open-shell AuBO", we
first consider the neutral AuBO species. Our NBO analysis of AuBO at the geometry of
AuBO' is summarized in the Table S1 of the Supporting Information. The 56 SOMO of
AuBO" (Figure 9-5) becomes the LUMO of AuBO, whereas the 40 orbital becomes the
HOMO of AuBO species. NBO analysis shows a relatively simple bonding picture in
AuBO, because it involves only two-center two-electron (2c-2e) bonds and lone pairs.
There is a triple bond in the BO moiety and a single o-bond between Au and BO. Five
nearly pure d-character lone pairs are encountered on Au and one on oxygen with sp
hybridization. The charge distribution is as follows: -0.84 |e| on oxygen, 0.70 |e| on
boron, and 0.14 |e| on gold, indicating a fairly strong covalent bond between Au and B
with only a slight charge transfer from Au to BO. In AuBO’", the 50 SOMO, which is
pretty much the 6s AO of Au but with antibonding character in the Au-B fragment
(Figure 9-5), is singly occupied. Our NBO analysis of the open-shell AuBO™ (Table S2)
shows that while the triple B-O bond, the lone pair at the oxygen, and the five lone pairs
at the gold are preserved, the occupation number (OC) of the bonding orbital responsible

for Au-B bond drops to only 1.00 |e|compared to 2.00 |e| in the neutral AuBO. The
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Figure 9-5. Molecular orbitals of AuBO™ C..y (*=").

oxygen atom carries a negative charge of -0.96 |e|, the Au and B have almost equal
charges of opposite sign (-0.39 |e| and 0.35 |e|, respectively). The additional electron is
almost equally distributed over the Au (0.53 |e|) and B (0.35 |e|) atoms with just 0.12 |e|

42 S0, in the ground state

acquired by O. The natural configuration of B is 2s"'*2p
structure of AuBO’, the Au atom is still covalently bound to the B atom of the BO
fragment, though the chemical structure is halfway down to the elimination of the Au-B
o-bond and formation of a complex between Au and BO™ similar to the bonding in
AuCO.

The linear anionic HBO™ (structure II, Figure 9-4a) is unstable and detachment of
an electron lowers the energy of the system by approximately 13 kcal/mol. This is

because the 50 orbital in AuBO can easily accommodate an extra electron, whereas H in

HBO does not possess an equivalent accepting property. Thus, the Au/H analogy still
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holds in neutral AuBO, but it reaches its limit in the anion due to the inability of

hydrogen to accept any significant part of the extra electron.

9-6.2. Au,BO" and H,BO

We start our analysis of the chemical bonding in the Au,BO™ system by first
considering the Au,BO" cation, which has two electrons less than the anionic system.
Reoptimization of the anionic structures of the C., (‘=") isomer IV and Cay ('A) isomer
V at the B3LYP/Au/Stuttgart/B,0/AVTZ level of theory shows that for the cation the C.y
('=") structure becomes a second-order saddle-point and the Cay (‘A ) structure remains a
local minimum. The same C,, ('A;) local minimum structure is achieved if the
imaginary mode of the C..y ('2") structure is followed. The geometry of the Ca, structure
of the cation is more “compact” compared with the C,, anion: the Au-Au distance is
2.664 A in the cation vs. 3.235 A in the anion, the Au-B distance is 2.103 A vs. 2.098 A,
and the B-O distance is 1.207 A vs. 1.240 A. These structural changes are
understandable because the HOMO (5by) of the C,, Au;BO  has strong Au-Au
antibonding character (Figure 9-6). Molecular orbitals of the Ca, ('A;) Au;BO™ are
similar to those of the Cyy ('A)) structure V of Au,BO™ (Figure 9-6), except that the 5b,
orbital is no longer occupied in the cation. The fourteen lowest occupied orbitals can be
attributed to the triple B-O bond, the oxygen atom lone pair, and the ten lone pairs of the
two gold atoms. Even though the d,, orbitals (2a; ad 3a;) have considerable contributions
to the bonding of the Au,B framework, the 6a, orbital is a three-center two-electron (3c-
2e) bond for the bonding in the Au,B fragment, rendering c-aromaticity to the Au,BO"

cation. Indeed, our NBO analysis is consistent with this interpretation of the chemical
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bonding in the Ca, ('A)) structure of Au,BO™ (Table S3), revealing a 3c-2e bond with OC

= 2.00 |e| between the two Au and the B atom. The triple B-O bond, the lone pair of the
oxygen, and the five lone pairs on each gold atom can be identified as well. NICS
indexes calculated at the center of the Au,B triangle support the assertion of aromaticity
in Au;BO™: NICS(0) = -40.0 ppm, NICS(0.5) = -29.6 ppm, and NICS(1.0) = -13.8 ppm.
The estimated interaction energy between the Au, and BO fragments in Au,BO” is 85.1
kcal/mol at the B3LYP/Au/Stuttgart/B,0/AVTZ level of theory, indicating that they are

indeed strongly bound by chemical bonding.

é'n.
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Figure 9-6. Molecular orbitals of Au,BO™ C,y (1A1).

It is straightforward to understand the changes in the bonding pattern as a pair of
electron is added to Au,BO" to form Au,BO". There are two options to add the pair of
electrons. The first option is to have the electron pair occupy the 5b, orbital to yield the

Coy (1A1) isomer V of Au;BO". Since the 5b; is antibonding between the two gold atoms,
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the C,y isomer of Au,BO™ becomes antiaromatic. Consequently, two localized 2c-2e Au-
B bonds are formed in Au,BO", compared to one 3c-2e Au,-B bond in Au;BO’. Our
NBO analysis clearly shows that this is indeed the case (Table S4). Two Au-B bonds
with OC = 1.74 |e| are formed now. The triple bond between oxygen and boron
undergoes some minor changes. One of the m-bonds becomes more polarized toward
oxygen and its occupation number drops from 1.95 |e| to 1.92 |e|. Its composition reveals
some contribution of d- and f-functions (10% and 10% respectively) on B in addition to

p-functions (80%). The natural configuration of the boron atom is 2s”*2p'%®

. Hence,
the polarized mt-bond between boron and oxygen is actually a p-lone pair of oxygen. The
antiaromaticity of the Au-B-Au fragment of the Coy, (‘A}) structure V is confirmed by the
obtained NICS values: NICS(0) = -15.0 ppm, NICS(0.5) = 18.0 ppm, and NICS(1.0) =
13.0 ppm.

Alternatively, the pair of electrons can occupy the 7a; orbital (Figure 9-6), which
i1s bonding between two gold atoms and antibonding between Au, and BO fragments.
This occupation will cause the transformation of the 3c-2e Au,-B bond into a lone pair on
the boron atom and a 2c-2e Au-Au bond. Optimization of the C,, structure with this
electron configuration leads to a second-order saddle point, where the Au-Au, Au-B, and
B-O distances become 2.547, 3.099, and 1.230 A, respectively. NBO analysis of this
system confirms that an Au-Au bond with OC = 1.97 |e| and a lone pair on the boron
atom (OC = 1.92 |e|) are formed, instead of a 3c-2e Au,-B bond. The presence of two
imaginary normal modes can be attributed to the electrostatic instability of the system.

Charge distribution shows that the Au, unit is almost electro-neutral (total charge is -0.04

le[; -0.02 |e| on each gold atom), while OB™ unit has a dipole with strongly negative
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charge of -1.03 |e| on the oxygen atom and an almost neutral boron atom (0.07 [e]).
Following the largest imaginary mode, we found that the C,, geometry transforms into
the Coy ('2") global minimum structure IV of Au;BO". Results of the NBO analysis
show that the charge is redistributed: the terminal gold atom has negative charge of -0.63
le|, the other gold atom is almost neutral with 0.06 |e|, the boron atom becomes
significantly positive (0.52 |e|), and the oxygen basically preserves its negative charge (-
0.94 |e|). In the neutral C.y species the charge on the terminal gold atom is 0.12 |e|, the
other gold is almost neutral with 0.01 |e|, the charge on boron is 0.70 |e| and is -0.84 |e| on
oxygen. Comparison of the charge distribution in the anionic vs. neutral species clearly
shows that the extra electron is almost completely acquired by the terminal gold atom

(0.86 |e[). The natural configuration of the boron atom is 2s"*2p'**

and the bonding
pattern reflects these changes. The lone pair of the boron atom obviously transforms into
the Au-B bond (OC = 2.00 |e|) and the Au-Au bond transforms into the sixth lone pair of
the terminal gold atom (OC = 1.64 |e|). The low occupation number of this lone pair
suggests that it possibly contributes to the bonding between the terminal Au™ and the
AuBO unit. The estimated energy of this bond is 57.5 kcal/mol. The molecular orbitals
of this isomer are presented at Fig. 9-7. Indeed, the 60 orbital is mainly responsible for
the formation of the lone pair on the terminal Au, but it also has some bonding character
in the Au-B region. Second order perturbation theory analysis available within NBO
shows that there is significant donor-acceptor interaction between this lone pair and the
low-occupation Au-B bond (OC = 0.34 |e|). So, the ground state C,, ('=") isomer IV of

Au;BO’ can be reasonably described as a stable neutral AuBO cluster bound with an Au’

anion by a donor-acceptor interaction.
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LUMO 7o HOMO B HOMO-1 5o~ HOMO-2 3x HOMO-3 24 HOMO-4 4u

HOMO-T 1a HOMO-8 307 HOMO-8 207 HOMO-10 1o”

Figure 9-7. Molecular orbitals of Au,BO™ C..y (‘7).

The Ca (‘A}) ground state structure of H,BO™ (structure VI, Figure 9-4b) is a
classical molecule and has a very simple bonding pattern, which is confirmed by our
NBO analysis. There is a double bond between oxygen and boron, two B-H bonds, a
lone pair with contribution from s- and p-functions (44% and 56% respectively) as well
as an additional pure p-lone pair at the oxygen atom. The natural configuration of the
boron atom is 2s™*2p"*'3p"7°. Interestingly, the comparison of the charge distribution in
the anionic and neutral C,, species shows that the extra electron is mainly acquired by
oxygen (-0.99 |e| vs. -0.44 |e|) and the two hydrogen atoms (-0.24 |e| vs. 0.00 |e|), while
boron preserves its charge (0.47 |e| vs. 0.44 |e|). So the stabilization of the extra charge
occurs due to its delocalization, in contrast to the C.y, isomer IV of Au,BO", where the

extra electron density is stabilized by the terminal gold atom.
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9-6.3. AusBO" and H;:BO

Au;BO’ cluster is also an open shell system so again we first consider the neutral
Cyy AuzBO with an electron removed from the SOMO of the Cyy (2B2) ground state
(Figure 9-8). As shown in Figure 9-8, the twenty lowest molecular orbitals consist of a
triple B-O bond, a single Au-B bond in the AuBO fragment, a lone pair at the oxygen
atom, and five 5d lone pairs at each gold atom. The 9a; orbital accounts mainly for Au-
Au bonding between the outer gold atoms. Thus AuzBO is a classical molecule, which is
supported by our NBO analysis. The expected bond between the outer gold atoms has
OC equal to 1.76 |e| and the other bonding pairs all have OCs of 2. The natural
configuration of the boron atom is 250'902p1'48. Therefore, the C,, structure of Auz;BO can
be represented as a complex of a Au, and a AuBO unit. The Au, moiety carries a
positive charge of 0.26 |e| equally distributed between the two atoms, and the AuBO unit
has a dipole with a total charge of -0.26 |e| [O: -0.85 |e|; B: +0.58 |e|; Au: +0.01 [e]].
Thus, AusBO can be viewed as a Au;[AuBO] complex. The estimated interaction energy
between Au, and AuBO is 23.0 kcal/mol. In the anion Au;BO’, the extra electron enters
the 6b, orbital (Figure 9-8), which is antibonding between the Au, moiety. Thus in
Au;BO’, the bonding in the Au, unit will be weakened, but not eliminated completely,
which is consistent with our NBO analysis of the Ca, (*B,) isomer of Au;BO". The
additional electron (0.98 |e|) is equally distributed over the two Au atoms in the Au, unit.
No changes occur in the bonding pattern of the AuBO unit, but in Au, unit the OC of the
Au-Au bond is decreased to 0.88 |e|. The total charge on the Au, is -0.72 |e|, whereas that

on the AuBO unit is -0.29 |e|. Thus, the Cyy, (2B2) 1somer XI of Au;BO™ can be considered
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Figure 9-8. Molecular orbitals of AuzBO™ C,, (2B2).
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as a complex of Auy” and AuBO, i.e., Au; [AuBO]. The estimated interaction energy is

47.6 kcal/mol, which is twice as strong as the Au, and AuBO interaction in AuzBO. A

second order perturbation theory analysis shows significant interaction of the Au-Au

bond (OC = 0.88 |e|) with the low-occupation Au-B bond in the AuBO fragment (OC =

0.26 |e]).

Molecular orbitals of the low-lying C (*A”) isomer XII of Au;BO™ are presented

at Figure 9-9. Interestingly, our analyses show that identical sets of orbitals are occupied

for both isomers XI and XII, i.e. it is not a switch of orbitals from occupied and

unoccupied spaces that causes distortion of the geometry from C,, to Cs symmetry. The

bonding pattern revealed by the NBO analysis supports this idea. Except for the charge
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redistribution, the Cs structure XII does not differ too much from the C,, structure XI.
We found that only low-occupancy lone-pairs at the gold atoms of the Au, unit
contribute to the donor-acceptor interaction with AuBO in the Csisomer. The interaction

energy is 47 kcal/mol, which identical to that in the C,, Au;BO".

LUMO 162" SOMO 152" HOMO-1 14’ HOMO-2 13a" HOMO-3 12a’ HOMO-4 7a"

ﬁ sﬁg ‘ﬁﬁ l_se%% W,@@é %ﬁ

HOMO-5 112" HOMO-6 Ba” HOMO-7 102" HOMO-8 82" HOMO-98a" HOMO-10 4a™

R

HOMO-11 8a° HOMO-127a HOMO-13 38" HOMO-14 6a° HOMO-15 2a” HOMO-16 5a’

HOMO-1¥ 18" HOMO-184a' HOMO-193a" HOMO-202a" HOMO-211&
Figure 9-9. Molecular orbitals of AusBO™ Cs (CA”).

The open-shell C (*A”) isomer XVI of H;BO" is electronically unstable. This
explains the fact that the NBO analysis distributes one electron among several non-
bonding orbitals, so that the bonding pattern in terms of lone pairs and 2c-2e bonds is
identical to one of the neutral C; species: there is a double bond between O and B, two
single H-B bonds, one single H-O bond, and a lone pair at the oxygen atom. The
obtained picture of Lewis bonding is related with bonding in the Cpy, (‘A;) ground state

structure VI of H,BO™ described in the previous section, where one lone pair of the
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oxygen formed a bond with a proton. If compared with the neutral species, in the anion
oxygen acquired 0.06 |e|, boron acquired 0.13 |e|, hydrogen atoms bound to boron
acquired total of 0.21 |e|, and the hydrogen atom bound to oxygen got 0.59 [e|. Once
again, this demonstrates that hydrogen atoms in H;BO™ cannot electrostatically stabilize

an additional electron as Au atoms do in Au;BO".

9-6.4. Au,BO vs Au,CO
Since BO' is isoelectronic with CO, it is also interesting to compare the bonding
between Au,BO™ and Au,CO. We computed the dissociation energies of Au,BO™ to Au,

+ BO’, as follows:

AuBO (°") —  Au+BO  AE=54.0 kcal/mol 9.1)
AupBO (') -  Aw,+BO° AE =89.1 kecal/mol 9.2)
AusBO (°B;) =  Auz +BO”  AE =97.4 kcal/mol 9.3)

These interaction energies are significantly higher than the Au,CO dissociation
energies, which range from 18.4 kcal/mol for n = 1, to 35.2 kcal/mol for n =2, to 37.3
kcal/mol for n = 3.* The structures of the Au,BO clusters are similar to Au,CO. The
stronger interactions in Au,BO™ are due to the charge on BO". From our chemical
bonding analyses discussed above, we note that the Au,BO" clusters can all be viewed as
Au, [BO], i.e., there is a significant charge transfer from BO™ to the Au, clusters. This
charge transfer is caused by the high electron affinities of the Au clusters. Charge
transfer has also been observed to take place from CO to Au, clusters in Au,CO
complexes and has been suggested to play a central role for understanding the catalytic

mechanisms of low-temperature oxidation of CO on Au clusters and nanoparticles. Thus



207

the Au,BO" clusters are not only interesting chemical species in their own right, but they

are also interesting systems to provide insight into the CO interactions with Au clusters.

9-7. Conclusion

Anions of auro-boron oxides with composition Au,BO™ (n = 1-3) have been
observed in laser vaporization experiments intended to produce Au/B alloy clusters. The
electronic structures and chemical bonding in these species have been investigated by
photoelectron spectroscopy and theoretical calculations. Well-resolved photoelectron
spectra were obtained at various photon energies and the electron affinities and low-lying
electronic excited states of the neutral Au,BO clusters were reported. Ground state
structures of Au,BO™ were identified and confirmed by comparison with the experimental
data. The structures and bonding of Au,BO™ were compared with the borane oxides
H,BO™ (n = 1-3) to test the limit of the Au/H analogy. It was established that both AuBO"
and Au,BO" possess linear structures and Aus;BO™ possesses C,, global minimum
structure with a low-lying quasi-linear C;. Molecular orbitals and NBO analyses showed
that a single Au atom interacting with a bare BO unit indeed mimics hydrogen yielding a
linear structure similar to HBO, though in anions HBO' is not stable because the H atom
does not have an equivalent accepting property compared to Au in AuBO. The neutral
AuBO fragment remains unchanged as the second and third Au atom is added to form
Au;BO” and Au;BO°.  All the Au,BO™ species can also be viewed as Au, [BO]
complexes, i.e., there is a significant charge transfer from BO™ to the Au clusters,
analogous to that in Au,CO complexes, although much stronger interaction exists in

Au,BO due to the extra charge on BO'.
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CHAPTER 10
THEORETICAL PROBING OF DELTAHEDRAL CLOSO-

AURO-BORANES ByAuy” (x = 5-12)'

Abstract

Using density functional calculations, here we show that a series of B,Au,” (x =
5-12) dianions possesses structure and bonding similar to the famous deltahedral closo-
borane cages, Bxsz'. Effective atomic charges on Au in BxAuxz' are very similar to those
on H in Bxsz', indicating that Au in the closo-auro-boranes is indeed analogous to H in
the closo-boranes. The present theoretical predictions of ByAu,> suggest that the closo-
auro-borane species are viable new chemical building blocks that may be synthesized in
the bulk. The Au atoms in the closo-auro-boranes represent highly atomically dispersed

gold and may potentially exhibit novel catalytic and chemical properties.

10-1. Introduction

Since the discovery of boron hydrides (boranes) by Stock in 1912,' these
compounds have played a major role in advancing chemical bonding theory beyond the
classical idea of two-center two-electron bonds. Longuet-Higgins and Lipscomb et al.>?
first put forward the concept of three-center two-electron bonding to explain the
structures of all known boron hydrides, in which the bridging B-H-B bond appeared to be
the key structural unit.* This represents a milestone in establishing the validity of the

molecular orbital theory.

! Coauthored by Dmitry Yu. Zubarev, Jun Li, Lai-Sheng Wang and Alexander 1. Boldyrev. Reproduced
with permission from Inorg. Chem. 2006, 45, 5269-5271. Copyright 2006 American Chemical Society.
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In particular, the closo-boranes (B,H,”) have aesthetically pleasing symmetries
because their structures are based on deltahedral boron cages. Of particular interest is the
icosahedral B ,H ,” dianion, which was first synthesized by Hawthorne and Pitochelli in
1960, shortly after its theoretical prediction by Longuet-Higgins and Roberts in 1955.° In
recent years, Hawthorne and co-workers have synthesized and determined the structures
of many compounds containing substituted closo-Bj;R;»> (R = Me, OH, OCH,Ph,
OCOPh) dianions,’ thus significantly enriching the chemistry of closo-boranes and their
potential applications. Here we predict a new class of substituted closo-auro-boranes
BxAuxz' and present theoretical evidence showing that BxAuxz' can be viable new gold-
rich compounds. While, to the best of our knowledge, there are no published
experimental data on BxAuxz' closo-auro-boranes, there are many known gold-carborane
complexes.g’9 Mitchel and Stone,83 Reid and Welch,8b and Baukova et al.* reported
examples of closo-carboranes with gold bonded to carbon by 2c-2e s-bonds. Stone and
co-workers reported synthesis and characterization of a series of nido-carboranes

interacting with gold via cluster bonding.8d'811

Hawthorne and co-workers synthesized and
characterized aurocarboranes with C-Au 2c-2¢ bonds with and without Au-Au
interactions.”” Wesemann and co-workers reported synthesis and characterization of gold-
stanna-closo-borate compounds with Sn-Au bonds.” Au-B compounds are summarized
in a recent review."”

There are also a few compounds not related to boranes or carboranes, which also
have 2c-2e C-Au, N-Au, and B-Au bonds.'"'? The compounds containing the

hypercoordinated pentagonal-bypiramidal C(AuPPhs)s" and octahedral C(AuPPhs)s*"

cations are examples of interesting species with C-AuPPh; bonds.'*® Theoretical studies
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of model systems BH,(AuPH;).,", where n+m=3 or 4, and charge k is -2,...+1'* and
model complexes [(LAW)6Xm]™, [(LAU)sXm]™ ", [(LA)sXm]™?", (with central atoms
X,=B, X,=C, and X3=N and ligands L=PH; or P(CH3)3;)'** where the authors analyzed
importance of Au-PRj; interactions for the stability of these systems have also been
published. Pure XAu,”" clusters have been theoretically studied'* for the purpose of
understanding the influence of Au-PR; interaction on chemical bonding in X(AuPPh;),™"
systems. The synthesis and characterization of the boron-centered gold cluster in the
[(CysP)B((AuPPh;)s] BF4 salt have also been reported.'” There are also several reports
on gold diboride AuB, compounds, which have hexagonal layers of boron atoms with
gold atoms in between.'*¢'

Our work on the B,Au,” closo-auro-boranes was inspired by the recent discovery
of the Au-H analogy in several binary Au-containing clusters." It was first demonstrated
that SiAuy and SiAu, (n = 2, 3) have structures and bonding similar to the silane SiH4 and
SiH,, respectively.'* The Si;Au, (7 = 2 and 4) clusters were subsequently shown to be

analogous to SiH, (n = 2 and 4)."*® We have recently found that the B-Au bonds in the

AuwB7 cluster'™ are also covalent and similar to the B-H bonds in the B;H,™ cluster.'*

10-2. Theoretical Methods

On the basis of the Au-H analogy we conjectured that the closo-auro-boranes
B,Au,” could be viable new building blocks in chemistry. To test this idea we performed
quantum chemical calculations using hybrid density functional (DFT) method B3LYP"
as implemented in NWChem 4.7'¢ and Gaussian 03'” with three types of basis sets using

also pseudo-potential on gold: 1. LANL2DZ" on B and Au (B3LYP/LANL2DZ); 2. aug-
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cc-pvTZ" on B and Stuttgart pseudo-potential and basis set® on Au (B3LYP/B/aug-cc-
pvTZ/Au/Stuttgart); 3. cc-pvTZ'" on B and Stuttgart pseudo-potential and basis set on Au
(B3LYP/B/cc-pvTZ/Au/Stuttgart). We optimized geometry and calculated frequencies
for B;H,” and B,Au,” (x = 5-12) at B3LYP/LANL2DZ, for BH,” (x = 5-8) at
B3LYP/B/H/aug-cc-pvTZ, B{H,” (x = 9-12) at B3LYP/B/ H/cc-pvTZ, B.Au,” (x = 5-8)
at B3LYP/B/aug-cc-pvTZ/Au /Stuttgart, and B,Au,” (x = 9-12) at B3LYP/B/cc-pvTZ/
Au/Stuttgart levels of theory. Optimized geometries, harmonic frequencies, total
energies and other molecular properties of calculated species are summarized in
supporting materials. B3LYP/LANL2DZ calculations have been performed at USU
using the Gaussian 03 program. B3LYP/B/H/aug-cc-pvtz, B3LYP/B/H/cc-pvtz,
B3LYP/B/ aug-cc-pvtz/Au/Stuttgart, B3LYP/B/cc-pvtz/Au/Stutgart calculations have
been performed at the EMSL facility at PNNL using the NWChem program. The
B3LYP results for B6Au62' were also compared with other DFT functionals and ab initio
calculations to validate the methods used. Preliminary global minimum searches for the
BsAus® and BsAug” clusters were performed using CPMD simulated annealing via the
plane-wave DFT code of NWChem. With various starting geometries and annealing
temperatures we did not find any energetically more stable structures. While a few
structures of B5Au52' and B6Au62' clusters with low symmetry and Au-Au interactions
were found to be lower in energy at the B3LYP level of theory than the deltahedral
structures, they are significantly higher at the MP2 level of theory, indicating that the

structures in Figure 10-1 are likely to be the global minima.
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10-3. Results and Discussion

Selected geometric parameters for BXHXZ' and BxAuxz' (x = 5-12) calculated at our
highest level of theory are summarized in Figure 10-1, with Cartesian coordinates of all
these species collected in the supporting information.

Experimental geometries for the closo-borane Bxsz' dianions from crystal data
are available for x =6, 8, 9, 10, 11, and 12. Our theoretical B-B and B-H distances for
the free B,H,” dianions agree within 0.08 A with the corresponding values for the same
dianions in crystals. Similarly, our Au-B distances (2.056 - 2.072 A) are in reasonable
agreement with the crystal Au-B distance (2.16-2.19 A) in the [(Cys;P)B((AuPPhs),]'BF,
salt.'*

According to our calculations using the B3LYP method with the largest basis sets
the closo-auro-boranes B,Au,” with x = 5-12 have minimal energy structures completely
identical to the corresponding Bxsz' species. The B-B bond lengths for the auro-boranes
B,Au,” are indeed very similar to the corresponding boranes BH,” (Figure 10-1). The
shortest Au-Au distances in BxAuxz' decrease slightly with increasing x from 4.56 A in
BsAus® to 3.95 A in Bj,Aup,”, but they are still significantly larger than the equilibrium
Au-Au distance (2.47 A) in Au, or the Au-Au distance (2.884 A) in bulk gold, indicating
that there is no direct Au-Au bonding in the closo-auro-boranes. The shortest Au-Au
distances in B;Au,” are also outside the range 3.00 + 0.25 A for aurophilic interactions,”
suggesting that the Au-B bonding, analogous to the B-H bonding in the pure closo-
boranes and the Si-Au bonding in the Si/Au binary clusters,”a’13 ® dominate in the B,Au,>
molecules. While it is nearly impractical to prove if these high-symmetry minimum

structures are the most stable among all the possible structures, it is conceivable that the
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Figure 10-1. Optimized geometric structures of BH,” and B.Au,” (x = 5-12) with
selected B-B distances in A (Yellow — Au; Blue — B; Orange — H).
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closo-auro-boranes BxAuxz' might be made if the synthesis starts with the cage boranes or
their derivatives.

To further elucidate the analogy between BxAux2' and Bxsz', we calculated the
effective atomic charges using natural bond analysis (Figure 10-2). We found that the
atomic charges on Au and H in every pair of B,H,"” and B,Au,” dianions are indeed very
similar, although the Au-B bonds are slightly more polar than the B-H bonds. Thus, the
covalent B-Au bonding in the closo-auro-boranes is indeed analogous to the B-H
covalent bonds in Bxsz', indicating that Au indeed apes H in B.Au,”. The relativistic

effects account for the covalent character of the B-Au bonds.”!

10-4. Conclusion

The present research suggests that the closo-auro-borane dianions can be viable
new building blocks in chemistry. We expect that B.Au,” clusters may undergo
catenation in the solid state and thus may require ligand protections, such as the PPh;
groups. While it is hard for us to speculate if Au-B species without donor ligand
protection can be isolated in condensed phase, we believe that B{(AuPPh;),” would be
the most viable species to be synthesized in the condensed phase. The synthesis and
characterization of the boron-centered gold cluster in the [(Cys;P)B((AuPPhs),]'BF,

salt'*

provide additional hope that such synthesis might be feasible. The Au atoms in the
closo-auro-boranes represent highly atomically dispersed gold and may potentially

exhibit novel catalytic and chemical properties.
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Figure 10-2. Calculated natural bond effective atomic charges in |e| (at B3LYP/
LANL2DZ) for B,H,” and B,Au,” (x = 5-12).
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CHAPTER 11

Sn;»>: STANNASPHERENE!

Abstract

During photoelectron spectroscopy (PES) experiments aimed at understanding the
semiconductor-to-metal transition in tin clusters, the spectrum of Sn;,” was observed to
be remarkably simple and totally different from the corresponding Ge;, cluster,
suggesting that Snj,” is a unique and highly symmetric cluster. Structural optimization
starting from an icosahedral (I;) cluster led to a slightly distorted cage with Csy
symmetry. However, adding an electron to Sn;,” resulted in a stable closed-shell Iy-Snj,*
cluster, which was synthesized in the form of KSny,” (K'[Sn;»*]) with a similar PES
spectrum as Sn;5. The I;-Sn,” cage is shown to be bonded by four delocalized radial
bonds and nine delocalized on-sphere tangential o bonds from the 5p orbitals of the Sn
atoms, whereas the 5s® electrons remain largely localized and nonbonding. The bonding
pattern in Sn;»” is similar to the well-known B,H,*" cage, with the twelve 5s° localized
electron pairs replacing the twelve B-H bonds. The Sn;»* cage has a diameter of 6.1 A

and can host most transition metal atoms in the periodic table.

11-1. Introduction and Experimental Method
The PES apparatus, featuring a laser vaporization supersonic cluster beam source
and a magnetic bottle electron analyzer, has been described in detail previously.! A disk

of pure tin was used as the laser vaporization target with a helium carrier gas. Negatively

! Coauthored by Li-Feng Cui, Xin Huang, Lei-Ming Wang, Dmitry Yu. Zubarev, Alexander 1. Boldyrev,
Jun Li and Lai-Sheng Wang. Reproduced with permission from J. Am. Chem. Soc. 2006, 128, 8390-8391.
Copyright 2006 American Chemical Society.
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charged tin clusters (Sn,’) were extracted from the cluster beam and were mass analyzed
in a time-of-flight mass spectrometer. The cluster of interest was selected and then
decelerated before being photodetached by a laser beam (193 nm from an excimer laser
or 266 and 355 nm from a Nd:YAG laser). Photoelectrons were analyzed by the magnetic
bottle time-of-flight analyzer and were calibrated by the known spectra of Cu- and Au-.
The PES apparatus had an electron energy resolution of AE/E ~ 2.5%, that is, 25 meV
for 1 eV electrons.

Different from its lighter congeners, Si and Ge which are semiconductors, the
normal allotrope of tin under ambient conditions (3-Sn) is a metal with a body-centered
tetragonal lattice, but it also has a small band gap semiconducting phase (o-Sn) with a
diamond lattice similar to Si and Ge that is stable at low temperatures.” Prior

17 and theoretical®'" studies suggest that small tin clusters possess similar

experimenta
structures to those of Si and Ge. Small tin clusters were observed to exhibit melting
temperatures exceeding that of the bulk,* consistent with the notion that small tin clusters
have similar bonding configurations as those of the semiconductor Si and Ge clusters.

: . 12-14
Previous PES experiments

also suggested that the spectra of small Sny™ clusters are
similar to those of the corresponding Ge,™ clusters. However, these PES experiments were

all done at low photon energies and under relatively low resolution.

11-2. Results and Discussion
In an effort to elucidate the semiconductor-to-metal transition as a function of size
in tin clusters, we recently re-examined the PES of size-selected Sny clusters with high

photon energies (up to 6.424 eV or 193 nm) and under well-controlled experimental
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conditions. In the size range of x < 20, we indeed observed that the PES spectra of Sny

are similar to those of the corresponding Ge,, with the exception of Sn;,” (Figure S1).

Whereas the spectrum of Gej, is rather congested with numerous poorly resolved

features, the one of Snj, is remarkably simple and well structured (Figure 11-1a). Four

bands were resolved in the binding energy range from 3 to 4 eV, followed by a large gap

and two well-resolved bands around 5 eV. The lowest energy band yielded an adiabatic

detachment energy, that is, the electron affinity of neutral Snj,, to be 3.23 + 0.05 eV and

a vertical detachment energy (VDE) of 3.34 £ 0.03 eV. Although low-symmetry

structures similar to Ge;, have been proposed for Snj,, the relatively simpleand

characteristic PES spectrum of Sn;,” immediately suggested that it should possess a high-

symmetry structure different from that of Ge;, .

In pondering the possible high-symmetry structures for Sn;,’, we started from the
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Figure 11-1. Photoelectron spectra of (a) Snj;” and (b) KSnj;” at 193 nm. (c) Scalar
relativistic (SR) energy levels of the 5p-based valence molecular orbitals of the I, Snj,>
and the correlation to the spin-orbit (SO) coupled levels of Iy* Sn;»>, where the asterisk

indicates the double-group symmetry
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highest symmetry possible for a twelve-atom cluster, the icosahedral cage (for
computational details, see Supporting Information). However, the Jahn-Teller effect led
to a slightly lower symmetry Cs, (*A;) species (Figure 11-2a), which is only slightly
distorted from the I, structure, mainly by the depression of one apex atom. The computed
first VDE (3.27 eV) of the Cs, Snj," is in excellent agreement with the experimental value
of 3.34eV. By adding one electron to Sn;,", we found that the resulting Sn;,> species is a
highly stable I, cage with a closed electron shell (Figure 11-2b)."> Several other low-
symmetry structures, including those suggested for Ge,, have also been calculated for
Sn;,”, but they are all much higher in energy. We were able to make Sn;,” in the form of
KSn>” (K'[Sn;2”]) experimentally by laser vaporization of a tin target containing 15% K.
The photoelectron spectrum of KSn;,™ (Figure 11-1b) is very similar to that of Sniy’,
suggesting that the Sn12,” motif is not distorted greatly due to the presence of K'. The
ADE and VDE for the ground-state transition were measured as 2.99 + 0.05 and 3.08 +
0.03 eV, respectively, for KSnj,". Our calculations showed that the K™ counterion is
outside the Sn;,”" cage with a Cs, ('A;) symmetry (Figure 11-2¢). Indeed, only relatively
small structural perturbations were observed in the Sn;,” cage as a result of the K
coordination. The isomer with K* inside the Sn;»*” cage is much higher in energy by 3.1
eV because of the large size of the K" ion, which expands the cage diameter from 6.07 A
(Figure 11-2b) to ~6.45 A. We also calculated K coordinated to the two lowlying
isomers of Sn;». We found they are both higher in energy and yield VDEs smaller than
the experiment. Only the Cs, KSnj;™ (Figure 11-2¢) yields a calculated VDE (3.0 ¢V) in
good agreement with the experiment (3.08 = 0.03 eV), lending considerable credence to

the stability of the Sn;,> cage. To help understand the chemical bonding in the I,-Sn;»>
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Ky Gy, ('A)

Figure 11-2. Optimized structures: (a) Snj27 (b) Sn;2”7; (¢) KSnyz. The bond distances
and cage diameters are in A.
cage, we analyzed its valence molecular orbitals. Sn has a valence electron configuration
of 5s*5p>. We found that because of the large energy separation between the 5s and 5p
shells there is little s-p hybridization in Sn;;”". The 5s” electron pair is largely localized on
each Sn atom, leaving only the two 5p electrons responsible for bonding on the Snj,”
cage. Figure 11-1c shows the valence molecular orbital diagram at the scalar relativistic
(SR) and spin-orbit (SO) coupled levels. It is shown that the MO levels of Sn;»> with the
SO effect are in excellent agreement with the PES spectral pattern of K'[Sn;,>]; the
observed spectral features (X, A, B, C, D) are labeled in Figure 11-1c¢ next to the SO
levels.

Among the thirteen valence orbitals, four are delocalized radial nt-bonding orbitals
(ag and ty,) formed from the radial p. atomic orbitals. The remaining nine orbitals (g, and
he) are delocalized in-sphere o-bonding orbitals from the tangential px and py, atomic
orbitals. The bonding pattern in Sn;,” is remarkably similar to that in the famous B,H;2*
molecule, which was first predicted to be a stable molecule by molecular orbital theory'
and subsequently synthesized.'” The B, cage in Bj,H;,” is also bonded similarly by four

delocalized radial m-bonding orbitals and nine in-sphere delocalized o-orbitals with 12
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localized B-H bonds, which are equivalent to the 5s” electrons in the Snj,> cage. Because
of the delocalized m bonding in Sn;,> and its spherical symmetry, a name,
stannaspherene, is suggested for this highly stable and symmetric cluster. In fact, our
calculations suggest that the bare Snj,> dianion is electronically stable with a 0.2 eV

electron binding energy, even more stable than C602' or C702'.18

11-3. Conclusion

Small polyhedral Sn clusters are known in inorganic complexes and the Zintl
phases.'””” However, the I,-Sn;»”” empty cage has not been known before. The high
stability of this cluster suggests that it may be synthesized in the solid state using suitable
ligands or counterions. More excitingly, the Snj,> cage has a diameter of ~6.1 A, only
slightly smaller than that of Cs, and can host an atom inside much like the endohedral
fullerenes. Indeed, theoretical calculations have shown that Cd@Sn,; is a stable I cage®',
and several endohedral Pby, clusters, such as Al@Pb;," and Pt@Pb;,>, have been

d.**** A recent report revealed stable Cu-Sn cluster compositions from high-

synthesize
temperature annealing and suggested core-shell-type structures.”> The stability of the

stannaspherene and its large internal volume suggest that Sn;,> may trap many different

types of atoms to form endohedral stannaspherenes.
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CHAPTER 12
CHEMICAL BONDING IN Sis>” AND NaSis” VIA
PHOTOELECTRON SPECTROSCOPY AND

AB INITIO CALCULATIONS'

Abstract

Photoelectron spectroscopy and ab initio calculations are used to investigate the
electronic structure and chemical bonding of Sis and Si52' in NaSis. Photoelectron
spectra of Sis” and NaSis™ are obtained at several photon energies and are compared with
theoretical calculations at four different levels of theory, TD-B3LYP, R(U)OVGEF,
UCCSD(T), and EOM-CCSD(T), all with the 6-311+G(2df) basis sets. Excellent
agreement is observed between experiment and theory, confirming the obtained ground
state structures for Sis” and Sis>, which are both found to be trigonal bipyramid with D3,
symmetry at several levels of theory. Chemical bonding in Sis, Sis, and Sis” is analyzed
using NPA, molecular orbitals, ELF, and NICS indices. The bonding in Sis> is compared
with that in the iso-electronic and iso-structural B5H52' species, but is found to differ due
to the involvement of electron densities, which are supposed to be lone pairs in the

skeletal bonding in Si52'.

! Coauthored by Dmitry Yu. Zubarev, Alexander I. Boldyrev, Xi Li, Li-Feng Cui and Lai-Sheng Wang.
Reproduced with permission from J. Phys. Chem. A 2005, 109, 11385-11394. Copyright 2005 American
Chemical Society.
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12-1. Introduction

The discovery of the C4, buckyball' has generated a great deal of interest to cage-
like clusters, particularly in silicon clusters. However, the obvious valence isoelectronic
Sig, analog does not have the same structure as Cg,.”” Instead of a beautiful soccer-ball
shape, Sig, seems to adopt a rather low symmetry structure.”*”” An alternative approach
to searching for cage-like silicon clusters is to use the isolobal analogy between an HB
unit and a Si atom' and the known fact that boranes, such as B,H,,”, have cage-like

"3 However, our preliminary ab initio calculations of the Si,,”

deltahedral structures.
cluster' indicate indeed that an icosoheadral Si,,” cage is a local minimum, although it is
not the global minimum. Our preliminary results on other Si* clusters" also
demonstrate that many doubly charged silicon anionic clusters adopt low-symmetry
structures rather than the beautiful deltahedral structures. We are interested in
developing a unified chemical bonding picture for silicon clusters and understanding the
deviation of the geometric structures of doubly charged silicon cluster anions from the
isolobal deltahedral B, H > analogs.'"

We begin this endeavor from the Sis> dianionic cluster, which has been recently
synthesized and characterized in the solid state by Goicoechea and Sevov."” The Sis>
cluster was synthesized in the (Rb-crypt),Si;-4NH; crystal and was shown to be a
trigonal-bipyramidal cluster with equatorial distances d., ., = 2.535 A and axial distances

dpxeq = 2.350 A. An isolated Sii dianion is expected to be metastable towards
autodetachment in the gas phase, but it may be stabilized by an alkali metal cation (M")

in MSiy. Kaya and co-workers'® reported experimental observation of NaSis', as well as

its photoelectron spectrum at 355 nm, which displayed one broad spectral band. They
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also presented theoretical calculations for NaSis” and Sis> at the MP2/6-31G* level of
theory and found a trigonal-bipyramidal structure for Sis> and two isomers for NaSis: a
C,, ("'A)) and a C;, ('A)) structure. The C,, structure with the Na* cation coordinated to
the edge of the triangular base was found to be more stable by 0.823 eV (at MP4/6-
31G*//MP2/6-31G*) than the C,, isomer, in which the Na" cation is coordinated to one
apex Si atom of the trigonal-bipyramial Sis> structure. The series of ME, (M = Li, Na,

17,18 WhO

K, and E = Si and Ge) anions have been studied by Li and co-workers,
optimized the geometry for the trigonal-bipyramidal Sis> structure using six different

levels of theory. At their best density functional level of theory (B3PW91/6-

311+G(3d2f)), they obtained d,, ., = 2.53 A and d, ., = 2.75 A and at their best ab initio

ax-eq eq-eq

level of theory (MP2/6-311G*) they got d,,..,= 2.57 A and d,,.=2.76 A. Both are in
reasonable agreement with the Sis> structure in the solid state: Ay g =248 A and Aegeq =
2.69 A.

In the current paper, we present a systematic and comprehensive study of Sis> and
NaSis using a combined experimental and theoretical approach. Photoelectron spectra of
NaSis have been obtained at three photon energies, 355, 266, and 193 nm. The higher
photon energy spectra yielded higher binding energy detachment features, which are
better suited for comparison with the theoretical results. Molecular orbital analyses have
been carried out to understand the detailed chemical bonding in the Sis> species, which

are compared with B5H52'. Even though Sis and Sis” have been extensively studied

19-50 51-109

experimentally and theoretically, we included them in the current study for
completeness and for better evaluation of the theoretical methods, which will be used to

investigate larger multiply charged silicon clusters in the future.
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12-2. Experimental Methods

Details of the photoelectron spectroscopy apparatus have been described

HOIT Both the silicon cluster anions and Na-Si mixed cluster anions were

elsewhere.
generated by laser vaporization of a Si disk target and a Na/Si disk target in the presence
of a helium carrier gas and analyzed by the time-of-flight mass spectrometry. Either the
Sis” or NaSis anions was mass-selected and decelerated before being photodetached by a
pulsed laser beam. Photoelectrons were collected at nearly 100% efficiency by a
magnetic bottle and analyzed in a 3.5 m long electron flight tube. The PES spectra were

calibrated by using the known spectrum of Au’, Pt, and Rh’, and the energy resolution

was AE/Ex= 2.5 %, that is, approximately 25 meV for 1 eV electrons.

12-3. Theoretical Methods

The initial search for most stable structures was performed using our gradient
embedded genetic algorithm (GEGA) program written by Alexandrova.''”> We used the
semiempirical PM3 method for energy, gradient and force calculations. The lowest few
structures in every system were recalculated using a hybrid method known in the
literature as B3LYP'"*"'"° with the polarized split-valence basis sets (6-311+G*).!'¢!18
The lowest structure in every system was then refined using the coupled-cluster method

119-121 .
? with the same

with single, double, and noniterative triple excitations (CCSD(T))
basis sets. Total energies of these structures were also calculated using the extended 6-
311+G(2df) basis sets. Some species have been calculated using the second order Moller-

Plessett (MP2)'* level of theory and the 6-311+G* basis sets. In order to test the validity

of the one-electron approximation, single point calculations were performed using the
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multi-configuration self-consistent field method (CASSCF)'*'** with 8 and 9 active
electrons and 7 active molecular orbitals for Sis and Sis’, respectively, [CASSCF(8,7),
and CASSCF(9,7),] and with 10 active electrons and 8 active orbitals for Sis™
[CASSCEF(10,8) all using the 6-311+G* basis sets].

The vertical electron detachment energies were calculated using CCSD(T)/6-
311+G(2df), the outer valence Green Function method (OVGF/6-311+G(2df))'*"'*° and
UCCSD(T)/6-311+G(2df) at the CCSD(T)/6-311+G* geometries, as well as at the time-
dependent DFT method*"*! (TD B3LYP/6-311+G(2df)) at the B3LYP/6-311+G*
geometries. Core electrons were frozen in treating the electron correlation at the
CCSD(T) and OVGEF levels of theory.

Chemical bonding was analyzed using electron localization functions (ELF)."**"**

All ab initio calculations were performed using Gaussian 98 and 03 programs'>>'*® on a
63 nodes Birch-Retford Beowulf cluster computer built at Utah State University by K. A.
Birch, B. P. Retford and E. Koyle. ELF calculations have been performed using the
TopMod Package."” Visualization of ELFs has been made using MOLEKEL program'*®

and molecular orbital visualization has been done using MOLDEN3.4 program.'”

12-4. Experimental Results

12-4.1. Photoelectron spectroscopy of Sis
Figure 12-1 shows the photoelectron spectra of Sis™ at four photon energies (355,

266, 193, and 157 nm). The photoelectron spectra of Sis” have been reported in a number

25,30,31,34,36

of previous studies. In particular, vibrationally resolved spectra have been
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Figure 12-1. Photoelectron spectra of Sis™ at (a) 355 nm (3.496 eV), (b) 266 nm (4.661
eV), (¢)193 nm (6.424 ¢V), and (d) 157 nm (7.766 eV).
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obtained by Neumark and co-workers.” The current spectra agree with the previous
data, but provide better resolved features beyond 3.5 eV binding energies. The 355 nm
spectrum (Figure 12-1a) showed a broad band with a low binding energy tail. From their
vibrationally-resolved spectra and angular dependent studies, Neumark and co-workers
showed that the 355 nm spectrum contained two electronic transitions, the low energy tail
(X) corresponding to the ground state transition. A long vibrational progression with an
average spacing of 233 = 10 cm” was observed in ref. 31, suggesting a significant
geometry change between the ground state of Sis” and Sis. An ADE of 2.59 eV was
estimated by Neumark et al. from their Franck-Condon simulation. Thus the spectral
onset at ~2.7 eV in the 355 nm spectrum only represents an upper limit for the ADE due
to the large geometry changes between the anion and neutral ground state. The VDE of
the X band is estimated to be around 3.0 eV, which is consistent with the Franck-Condon
simulation by Neumark et al. The intense part of the 355 nm spectrum at the high
binding energy side (A) corresponds to the detachment transition to the first excited state
of Sis. The broad nature of the A band makes it difficult to evaluate its VDE, which
should be around 3.2 eV approximately.

The 266 nm spectrum (Figure 12-1b) indicates that the A band is cut off at 355
nm. This band in fact is shown to extent to around 3.6 eV, suggesting that there is likely
to be another detachment transition. This is labeled as band B with a VDE around 3.4 eV
approximately. As will be shown below, this band is born out in the current theoretical
calculations. Although it was not recognized at the time, the 299 nm spectrum in the
paper by Neumark et al.*! resolved this band more clearly. The 266 nm reveals two more

broad bands. A weak and broad band centered around 4 eV (C) and a more intense and
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sharper band at 4.47 eV (E). A shoulder can be discerned at the lower binding energy
side of the intense band at around 4.3 eV (D). At 193 nm (Figure 12-1c), the band
becomes broad, suggesting an additional band around 4.6 eV, which is cut off in the 266
nm spectrum. A very weak band is also observed around 5.4 eV (G). We also took the
spectrum of Sis at 157 nm (Figure 12-1d), but no new detachment transitions were
observed because of the poor signal-to-noise ratio in the high binding energy side.

The VDEs of all the observed detachment channels for Sis” are summarized in

Table 12-1, where the calculated VDEs at various levels of theory are also listed.

12-4.2. Photoelectron spectroscopy NaSis

The photoelectron spectra of NaSis™ are shown in Figure 12-2 at three photon
energies (355, 266, and 193 nm). The electron binding energies of NaSis™ are lower than
those of Sis’, but the overall spectral patterns for the two species are quite similar. The
low binding energy part of the NaSis spectra shows a very broad band, which also
contains three overlapping detachment transitions (X, A, B) similar to the Sis™ spectra.
The VDE of the A band is assigned to be the most intense feature in this band at 2.67 eV
in the 355 nm spectrum (Figure 12-2a). The X and B bands are assigned to be on the
lower and higher binding energy side of this broad band, and their binding energies are
estimated to be ~2.55 and ~2.9 eV, respectively. The onset of the X band is relatively
sharp for NaSis’, allowing us evaluate an ADE of 2.42 + 0.04 eV, which agrees with the
value of 2.45 + 0.05 eV reported previously by Kaya and co-workers at 355 nm.'
Following the broad band, three well resolved bands are observed (C, D, E). The bands

C and D with VDEs of 3.47 and 3.71 eV, respectively, are relatively weak, whereas the
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Table 12-1. Experimental VDEs compared with the calculated VDEs for the D3, (*A,”)

Sis”.
VDE VDE VDE VDE VDE
Final State (exp) TD UOVGF® CCSD(T)® | EOM*
(eV) B3LYP?
'Ar’ (2a,"%3a,%1e72e72a,™7) ~3.0 (X) 3.06 2.99 (0.91) 3.01 3.01
E” (23,733, % 1e7*2¢%2a,") ~3.2(A) 3.13 2.95 (0.90) 3.24
'E” (2a,"%3a,"% 17 2¢72a,”") ~3.4 (B) 3.52 3.26
3ns 52 921 193~ 04 2l
E’ (2a,%3a,%1e72¢’*2a,™") ~4.1(C) 4.03 3.87(0.91)
'E’ (2a,"%3a,%1¢72¢7*2a,7") ~4.3 (D) 436 4.50
A (2a%3a; 1e7*2e2a,”") | 4.47 £ 0.03 (E) | 4.29 4.31 (0.90)
1 En) 52 51 254 24 91
Ay (2a%3a, 1e72e2a,™") ~4.6 (F) 4.52 481
A, (2a 138,77 1e7*2e*2a,) ~5.4 (G) 5.27 4.92 (0.88)
'A,” (2a,'3a,7% 172’ 2a,") 6.8 6.82

* The VDEs were calculated at the TD B3LYP/6-311+G(2df)//B3LYP/6-311+G* level of
theory.

® The VDEs were calculated at the UOVGF/6-311+G(2df)//CCSD(T)/6-311+G* level of
theory. The numbers in the parentheses indicate the pole strength, which characterizes the
validity of the one-electron detachment picture.

¢ The VDEs were calculated at the CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level of
theory.

4 The VDEs were calculated at the CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level of
theory.
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band E at 3.95 eV is quite sharp and intense in the 266 nm spectrum (Figure 12-2b). At
193 nm (Figure 12-2c¢), the intensity of the E band is significantly reduced and a very
weak band with relatively poor signal-to-noise ratio is observed at ~5.5 eV (F). Overall
the spectral features of NaSis™ appeared to be slightly sharper and better resolved than the
Sis” counterparts, suggesting that the geometry changes between NaSis~ and NaSis are
relatively small. All the observed VDEs for NaSis™ are given in Table 12-2, where they
are compared with theoretical calculations.

It has been demonstrated previously that PES combined with ab initio calculations
is a powerful tool for elucidating the electronic structure and chemical bonding of novel
clusters."” In the following, different levels of theories are employed to investigate the
detailed structures and underlying chemical bonding of Sis” and NaSis™ (Sis>) and to assist

the assignment of the observed photoelectron spectra.

12-5. Theoretical Results

The geometric structures of Si52', Sis, and Sis are well established in the
literature.'**''% We still performed the search for the global minimum structures for
these species primarily to test our GEGA program. While the GEGA search could
potentially be performed for these species at the B3LYP/3-21G level of theory, we used
the semiempirical PM3 method for the energy, gradient and force calculations. We plan
to use the same level of theory for large silicon clusters, for which the B3LYP/3-21G

GEGA calculations would not be possible with our computer resources.
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Table 12-2. Experimental VDEs compared with the calculated VDEs for the C; (‘A”)

NaSi5'.

VDE(exp) | VDE VDE | VDE (eV)
Final State @) |EV) (V) | uccsp(ry
ROVGF* | TD
B3LYP"
2A’(4a’?5a’2a%6a’ 232727228’ | ~2.55 (X) | 2.47 2.52 2.54
(0.88)
2A’(4a’?5a’2a%6a’*3a7 7’ '82°%) | 2.67 + 2.68 2.59
0.04 (A) | (0.88)
’A"(4a>*52°%2a%6a %32 7a’?8a’) | ~2.9 (B) | 2.90 2.74
(0.88)
’A’(4a’?5a’2a%6a’ 327272’ ?8a’%) | 3.47 + 3.29 3.40
0.04 (C) | (0.88)
*A”(4a’*5a’2a”"6a’*3a7* 72’82’ | 3.71 + 3.73 3.43
0.04 (D) | (0.88)
’A’(4a’?5a’2a%6a’*3a7 72’ *8a’%) | 3.95 + 3.83 3.74
0.03 (E) |(0.87)
’A’(4a’'5a72a%6a’*3a7 72’ *8a’%) | 5.50 + 5.83 5.66"
0.06 (F) | (0.83)

* The VDEs were calculated at the ROVGF/6-311+G(2df)//B3LYP6-311+G* level of

theory. The numbers in the parentheses indicate the pole strength, which characterizes
the validity of the one-electron detachment picture.
® The VDEs were calculated at the TD B3LYP/6-311+G(2df)//B3LYP/6-311+G* level of

theory.

° The VDEs were calculated at the TD CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* level

of theory.

4 The electron detachment becomes a strongly multiconfigurational process.
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12-5.1. Sis

The PM3 GEGA search yielded the bipyramidal D3, (‘A’, la;’*1a,"*1e’*2a,”?
3a,"?1e*2e’*2a,”%) global minimum structure I (Figure 12-3a). Two planar isomers were
also obtained II C, (‘A) and III Dy, (]Ag). We then performed B3LYP/6-311+G*
geometry optimization and frequency calculations for the structures I, II and III. Again
the global minimum structure at this level of theory was found to be structure I. We also
performed CCSD(T)/6-311+G* calculations for structure . Both geometric parameters
and frequencies are in good agreement between the two methods, as shown in Table 12-3.
Our optimized deg.eq (2.606 A at B3LYP/6-311+G* and 2.591 A at CCSD(T)/6-311+G*)
and dyx.eq (2.400 A at B3LYP/6-311+G* and 2.389 A at CCSD(T)/6-311+G*) are slightly
longer than the corresponding experimental values deg.eq = 2.535 A and daxeq = 2.350 A
obtained by Goicoechea and Sevov in solid,”” but they agree well with the ab initio
calculations reported by Kaya and co-workers.'® The isomers I, Cy, (‘A;) and III, Dy,
('A}) were found to be higher in energy than the global minimum structure by 37.0
kcal/mol and 41.3 kcal/mol (all at CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*+ZPE
correction at B3LYP/6-311+G*), respectively. Optimized geometry and harmonic
frequencies calculated at the CASSCF(10,8)/6-311+G* level of theory are in good
agreement with the results at B3LYP/6-311+G* and CCSD(T)/6-311+G* (Table 12-3).
The Hartree-Fock configuration was found to be dominant (Cyr = 0.943) among 1176
configurations in the CASSCF wavefunction, thus confirming the applicability of the
used one-electron configuration based methods. We also performed a single point

calculation with the extended active space CASSCF(12,9)/6-311+G*. The Hartree-Fock



247

1, D, ('A) Il, C,'A) I, D, ('A)
AE=0.0 kcal'/mol  AE=37.1 kcal/mol  AE=41.3 kcaldmol
NIMAG=0 NIMAG=0 NIMAG=0
(e) (f)

.—&'
PST=0lAS 520
) )

IV, Dm‘{lﬁl:,“:l v, Ch{?Bi:I Wi, CI{JBJ
AE=0.0 kealimol  AE=29.8 kcalimol  AE=29.8 kealdmol
MIMAG=0 MIMAG=1 NIMAG=0

(@) ? (h)
074
D AS =0
@
by
VI, D, ('A,) VIll, C, ('A,)
AE=0.0 kcalfmol AE=28.1 kcal'mal
HIMAG=0 NIMAG=0

X, C{'A) X, C,['A)
AE=0.0 keal/meol AE=0.T keal'meal
HIMAG=1
n
X1, CJ'A‘} XII, C.ﬂ_{"A‘)
AE=5.8 kealimol AE=16.4 kcal/mol
NIMAG=1 NIMAG=1

XIll, C, ('A,)

AE=1B.1 keal/mal
NIMaAG=D

Figure 12-3. Optimized geometries (B3LYP/6-311+G*) of Sis> (a, b, ¢), Sis” (d, e, f), Sis
(g, h), and NaSis (i, j). Relative geometries are given at CCSD(T)/6-
311+G(2df)//B3LYP/6-311+G*. NIMAG — number of imaginary frequencies.



Table 12-3. Calculated molecular properties of Sis> D3, ('A1”).
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Method B3LYP/ CASSCF(10,8)/ | CCSD(T)/
6-311+G* 6-311+G* 6-311+G*
-E, a.u. 1447.524931 1444.582724 1445.075619
R(Si,-Sis), A 2.400 2.387 2.389
R(Si>-Sis), A 2.606 2.634 2.591
w,(a;’), cm™ 432 (0.0)° 464 452
w,(a;’), cm’ 332 (0.0)* 342 338
ws(az”), cm™! 445 (1.3)° 485 457
w,(e’), cm’ 330 (0.0)* 341 336
ws(e’), cm’ 180 (0.9)° 190 176
wy(e”), cm™ 301 (0.0)* 317 311

* Infrared intensities (km/mol) are given in parenthesis.
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configuration was found to be almost the same (Cyr = 0.943) among 3570 configurations

in the CASSCF wavefunction.

12-5.2. Sis and Sis.

The similar PM3 GEGA search also yielded a bipyramidal D3 (CA,”,
la;*1ay?1e’*2a,"%3a,*1e*2¢7*2a,”") global minimum structure for Sis™ (IV, Figure 12-
3d) with a lowest planar isomer VI C, (°B) (Figure 12-3f). Subsequent B3LYP/6-
311+G* geometry optimization and frequency calculations for the structures IV, V and
VI confirmed that the structure IV (Table 12-4) is the global minimum. We also
performed CCSD(T)/6-311+G* calculations for structure IV (Table 12-4). The D3,
(*A,”) global minimum structure was first predicted by Raghavachari®> and has been
confirmed in numerous calculations later.'®*** Our PM3 GEGA findings and the more
sophisticated calculations are in excellent agreement with the previous results. The lowest
C, (*B) isomer VI (Figure 12-3f) for Sis” found in our calculations is substantially higher
in energy (by 30 kcal/mol at CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*+ZPE
corrections at B3LYP/6-311+G*) and thus should not be significantly populated in the
Sis™ ion beam.

For Sis, our PM3 GEGA search revealed the bipyramidal D3, (1A]’,
la;*lay?1e’*2a,°? 3a,7% 1™ 2¢’*2a,”") global minimum structure (Figure 12-3g, Table
12-5) with a low-lying singlet C,, (‘A;) planar isomer VIII (Figure 12-3h). The
bipyramidal D3, global minimum for Sis was also first predicted by Raghavachari and
Logovinsky® and has been confirmed by numerous subsequent calculations.'®>'-%>3¢-3%

1% The lowest Cay (‘A ) isomer VIII (Figure 12-3h) for Sis was found to be substantially



Table 12-4. Calculated molecular properties of Sis” D3, (CAy”).
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Method B3LYP/6-311+G* | CASSCF(9,7)/6- CCSD(T)/6-
311+G* 311+G*

-E, a.u. 1447.581738 1444.639338 1445.139672
R(Si,-Sis), A 2.356 2.348 2.346
R(Si>-Si3), A 2.778 2.730 2.751
w,(a;’), cm’ 450 (0.0)° 480 467

w,(a;’), cm’ 292 (0.0)° 310 306

ws(az”), cm™! 428 (2.6)° 422 445

w,(e’), cm’ 360 (0.6)* 388 366

ws(e’), cm’ 192 (0.7)° 200 193

wg(e”), cm™’ 328 (0.0)° 333 345

* Infrared intensities (km/mol) are given in parenthesis.



Table 12-5. Calculated molecular properties of Sis D3y (‘A;”).
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Method B3LYP/6-311+G* | CASSCF(8,7)/6- CCSD(T)/6-
311+G* 311+G*

-E, a.u. 1447.492144 1444.580865 1445.060178
R(Si>-Sis), A 2.330 2.330 2.316
R(Si,-Siz), A 3.125 3.173 3.073
w,(a;’), cm’ 456 (0.0)° 474 477

w,(a;’), cm’ 228 (0.0)° 216 239

ws(az”), cm™! 375 (4.6)* 369 404

w,(e’), cm’ 432 (4.5)° 457 435

ws(e’), cm™ 170 (0.6)° 161 164

wg(e”), cm™! 338 (0.0)" 323 364

* Infrared intensities (km/mol) are given in parenthesis.
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(28 cal/mol at CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*+ZPE corrections at

B3LYP/6-311+G*) higher in energy.

We also optimized geometry and calculated harmonic frequencies at the
CASSCF(9,7)/6-311+G* (Sis") and at the CASSCF(8,7)/6-311+G* (Sis) levels of theory
(Tables 12-4 and 12-5). The CASSCF results are in good agreement with the results at
B3LYP/6-311+G* and CCSD(T)/6-311+G*. The Hartree-Fock configurations were
found to be dominant (Cyr = 0.969) among 490 configurations in the CASSCF
wavefunction for Sis” and (Cpyr = 0.953) among 490 configurations in the CASSCF
wavefunction for Sis, thus confirming the applicability of the used one-electron

configuration based methods.

12-5.3. NaSis

For the NaSis anion we expected that the global minimum structure should be
related to the trigonal bipyramid structure I of Sis> (Figure 12-3a), because alternative
structures for the dianion are substantially higher in energy. We placed a Na' cation at
different positions around the D3, Sis™: 1) above a triangular face (Figure 12-3i), 2)
above an edge between two equatorial Si atoms (Figure 12-3j), 3) above an edge between
one axial and one equatorial Si atom (Figure 12-3k), 4) above an equatorial silicon atom
(Figure 12-31), and 5) above an axial Si atom (Figure 12-3m). Geometry optimization
and frequency calculations for these structures were performed at the B3LYP/6-311+G*
level of theory. The lowest energy structure among those is the structure IX (Cs, 'A”).
This structure was reoptimized at the MP2/6-311+G* level of theory and the results agree

well with the B3LYP/6-311+G* results (Table 12-6). We were not able to converge
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geometry optimization at CCSD(T)/6-311+G* because of the numerical calculation
procedure for gradients at the CCSD(T) level of theory and because of a very shallow
potential energy surface. The structure X (Cay, 'A) with the Na* cation located above the
edge was found to be a first order saddle point being just 0.7 kcal/mol (CCSD(T)/6-
311+G(2df)//B3LYP/6-311+G*+ZPE corrections at B3LYP/6-311+G*) above the global
minimum. Thus, the NaSis™ potential energy surface is very flat and the Na+ cation can
almost freely move from a position over the upper face to a position over the lower face
in the Sis™ trigonal bipyramid. The structure XI (C,, 1A’) is also a first order saddle
point corresponding to internal motions of Na™ around the upper or lower part of the Sis™
trigonal bipyramid. The barrier for this motion is appreciably higher (5.8 kcal/mol
(CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*+ZPE corrections at B3LYP/6-311+G*).
Two other optimized structures with Na" coordinated to just one Si atom were found to
be appreciably higher in energy. The structure XII (Cay, 'A;) is a saddle point at
B3LYP/6-311+G*  being 164  kcal/mol (CCSD(T)/6-311+G(2df)//B3LYP/6-
311+G*+ZPE corrections at B3LYP/6-311+G*) higher in energy than the global
minimum and the structure XIII (Csy, 1Al) i1s a local minimum being 18.1 kcal/mol
(CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*+ZPE corrections at B3LYP/6-311+G*)
above the global minimum.

Our finding that the C; ('A’) structure IX is the global minimum for NaSis
disagrees with the conclusion of Kaya and co-workers,'® who reported the structure X
with Na' coordinated to an equatorial edge as the global minimum. However, the

potential energy surface is very flat.



Table 12-6. Calculated molecular properties of NaSis'~ C (‘A”).

Method B3LYP/6-311+G* MP2/6-311+G*
-E, a.u. 1609.923210 1607.003523
R(Si;-Siz4), A 2.519 2.487
R(Si;-Sis), A 2.438 2.400
R(Si;-Sig), A 2.353 2.344
R(Si3-Siy), A 2.698 2.638
R(Sis-Siz4), A 2.389 2.384
R(Sig-Siz4), A 2.456 2.439
R(Na-Si3 4), A 2.831 2.842
R(Na-Sis), A 4.167 4.251
R(Na-Si¢), A 2.959 2.914
w,(a’), cm’ 446 (0.4)" 465 (2.4)"
w,(a’), cm’ 440 (1.1)° 459 (1.1)°
ws(a’), cm’’ 344 (1.9)° 358 (0.7)°
w,(a’), cm’ 305 (5.9)° 342 (0.8)°
wy(a’), cm’ 294 (1.1)* 325 (3.6)°
wy(a’), cm’ 236 (24.9)° 244 (34.9)°
w,(a’), cm 185 (0.9)* 205 (1.3)*
wg(a’), cm 65 (7.0)° 87 (7.4)"
wy(a”), cm™ 346 (1.7)° 365 (0.4)°
w,(a”), cm’ 302 (0.1)° 336 (0.9)°
w,,(a”), cm” 195 (5.4)" 193 (5.6)"
w,(a”), cm’ 97 (1.1)* 89 (0.8)"

* Infrared intensities (km/mol) are given in parenthesis.
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12-6. Interpretation of the Photoelectron
Spectra of Sis and NaSis
12-6.1. Sis

The VDEs of Sis” were calculated at four levels of theory (TD-B3LYP, UOVGF,
CCSD(T), and EOM, all with the 6-311+G(2df) basis sets), as summarized in Table 21-1.
The VDEs calculated at the different levels of theory are surprisingly close to each other
and agree with the experimental data very well. The ground state transition corresponds
to the electron detachment from the singly occupied 2a,”-HOMO, which is the same 2a,”
orbital in Sis> as shown in Figure 12-4a. This orbital is bonding within the equatorial
atoms, but antibonding between the equatorial atoms and the axial atoms. Thus
detachment of the 2a,” electron leads to a considerable geometry change in neutral Sis. It
turns out the largest change is the equatorial Si-Si distances, which increases from 2.751
A in Sis" to 3.073 A in Sis accompanied by a very small contraction of the Si-Si distances
between the equatorial and axial atoms (see Tables 12-4 and 12-5). The huge geometry
changes lead to a very broad band for the ground state transition. Neumark et al. resolved
a long vibrational progression for this transition with an average spacing of 233 cm’,
which is in excellent agreement with our calculated frequency for the v; mode (239 cm™,
Table 12-5). Our calculated ADE energy, i.e., the adiabatic electron affinity of neutral
Sis, is 2.35 eV at B3LYP/6-311+G(2df) and 2.37 eV at CCSD(T)/6-311+G(2df), which is
significantly lower than the calculated VDE (Table 12-1) consistent with the large
geometry changes between the anion and neutral. The large geometry changes between
Sis” and Sis mean that the ADE may not be obtained from the PES spectra because the

Franck-Condon factor for the 0-0 transition may be negligible. Neumark et al. estimated
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Figure 12-4. Valence molecular orbitals of (a) Sis™ (D3, 1A1’) and (b) BsHs> (Dsp, 1Al’)
at the RHF/6-311+G* level of theory.
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and ADE of 2.59 + 0.02 eV from their Franck-Condon simulation.” Our observed
detachment threshold in the 355 nm spectrum (Figure 12-1a) is around 2.7 eV. All of
these should be viewed as upper limit for the ADE. We suspect that the calculated ADE
may be closer to the true value.

The next detachment is from the 2¢’ HOMO-1 orbital, which will result in two
detachment channels, a triplet and a singlet final states. These states are Jahn-Teller
active and are expected to give very complicated spectral features. As given in Table 12-
1, the calculated VDE for the triplet state ranges from 2.95 to 3.24 eV, whereas that for
the singlet state ranges from 3.26 to 3.52 eV. These VDEs are in good agreement with
the estimated VDEs for the overlapping A and B bands. Thus, the first broad feature (X,
A, B) in the photoelectron spectra of Sis* contains three detachment transitions. From
their vibrationally resolved data and angular dependent study, Neumark et al. clearly
resolved the A band. However, they did not recognize the third detachment channel
corresponding to the singlet state ('E”), even though they resolved it more clearly. The
complex vibrational structures observed in their spectra agree with the Jahn-Teller effects
expected for these final states.

The HOMO-2 orbital (1¢”) is also a doubly degenerate MO. Detachment from
this MO will again yield a triplet and singlet state, which are Jahn-Teller active. The
calculated VDE for the triplet state ranges from 3.87 to 4.03 eV, whereas that for the
singlet state ranges from 4.36 to 4.50 eV. These calculated VDEs are in good agreement
with the estimated VDEs for the C and D bands. The HOMO-3 is a non-degenerate

orbital (3a;”). Detachment from this orbital will also lead to a triplet (CA,”) and a singlet
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state ('A,”). The calculated VDEs for these two states agree well with the estimated
VDEs for the E and F bands, respectively.

Finally, the highest binding energy feature observed in the photoelectron spectra
is the weak band G with an estimated VDE of ~5.4 eV, which is in good agreement with
the calculated VDE for the triplet final state from detachment from the 2a;,” HOMO-4
(Table 12-1). The calculated VDE for the corresponding singlet final state is about 6.8
eV. However, the intensity for this detachment channel is expected to be very low,
considering the weak intensity for the triplet channel (G), and is not observed in the 157
nm, which also has very poor signal-to-noise ratios in the higher binding energy part.
However, overall the calculated VDEs for the Dj3;, Sis are in excellent agreement with the
photoelectron spectra, confirming the D3, structure for Sis™ and lending credence for the

TD-B3LYP and the UOVGF methods used to compute VDEs.

12-6.2. NaSis

The C; NaSis IX (Figure 12-31) can be viewed as a D3, Si52' stabilized by a Na©
cation. Sis™ is closed shell and its 11 fully occupied valence MOs are shown in Figure
4a. Thus NaSis is also closed shell and should give simpler photoelectron spectra
because detachment from each occupied MO can only yield one doublet final state (Table
12-2). The HOMO of NaSis is the 82> MO, which corresponds to the 2a,”-HOMO in
Sis™ (Figures 12-4a). This is also the same HOMO in Sis’, albeit it is singly occupied in
the latter. Detachment from the 8 HOMO of NaSis™ yielded the ground state of NaSis
[Na'(Sis))]. Even though the equatorial Si-Si bond lengths are shorter in Sis> (Table 12-

3) than in Sis™ (Table 12-4), the change between Sis™ and Sis™ (2.591 vs. 2.751 A) is only
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half of that between Sis” and Sis (2.751 vs. 3.073 A). Thus the X band of NaSis is

sharper than that in the Sis™ spectra. The calculated VDE for the ground state transitions
at all three levels of theory (ROVGF, TD-B3LYP, and CCSD(T), all with the 6-
311+G(2df)) are in good agreement with the experiment.

The next two detachment channels correspond to the 7a’ and 3a” orbitals, which
can be traced to the pair of doubly degenerate 2¢’-MO in Sis™ (Figure 12-4a). The Na
coordination to Sis> splits the degeneracy of 2¢’ orbitals. However, the calculated VDEs
for these two MOs are fairly close to each other and they are also very close to the ground
state detachment channel. These three closely spaced detachment channels give rises to
the broad band at the lower binding energies in the photoelectron spectra (X, A, B in
Figure 12-2 and Table 12-2). The photoelectron spectra of NaSis  at higher binding
energies exhibit four well separated bands (C, D, E, F), which correspond detachment
from the 6a’, 2a”, 5a’, and 4a’, respectively. The calculated VDEs are all in excellent
agreement with the experimental values (Table 12-2). The 6a’ and 2a” correspond to the
le” MO in Sis”, whereas the 5a’ and 4a’ correspond to the 3a,” and 2a,” of Sis”,
respectively (Figure 12-4a).

The overall agreement between the experimental spectral pattern and the
calculated VDEs is very good, confirming the global minimum structure for NaSis™ (C;,
'A”), in which the Na' counterion is coordinated to the face of the trigonal bipyramidal
Sis” (Figure 12-3i). Again, the two theoretical methods, ROVGF and TD-B3LYP,
performed well for NaSis™ and are planned to be used in the future for large sodium

coordinated silicon clusters.
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12-7. Chemical Bonding in Sis, Sis and Sisz'

Chemical bonding in Sis and Sis> have been previously discussed.””*"'*! In
particular, Wang and Messmer,”’ and Patterson and Messmer®' have interpreted chemical
bonding in Sis using the valence bond model, a key feature of which is that each atom is
surrounded by a terahedrally orientated set of orbitals. Then, pairs of occupied orbitals
are singlet spin coupled into electron pairs, which are spatially separated from one
another due to the Pauli exclusion principle. For the Sis cluster they obtained six
symmetry equivalent bent bonds that arise from the overlap of two orbitals, one from
each of two atoms. These six bonds describe 2e-2¢ bonding between axial and equatorial
Si atoms. Every equatorial atom possesses a lone pair and the two axial Si atoms form a
long bond. According to this valence bond picture the long bond is formed by two
collinear tetrahedral orbitals on the two axial silicon atoms, which are pointing away
from each other, but nevertheless overlap enough to form a bond. Schleyer and co-
workers'* pointed out that the trigonal bipyramid Sis> is a three-dimensional aromatic
cluster similar to the valence isoelectronic B5H52' cluster on the basis of diatropic
NICS(0) values: NICS(0) = -38.5 for Sis> and NICS(0) = -25.9 for BsHs>. These

. . . . 11,12
dianions are also aromatic according to the s#yx Lipscomb rule

and they also satisfy
the Wade’s 2n+2 skeletal electron rule'**'* for aromatic deltahedral systems. However
they do not obey the Hirsch’s 2(N+1)? rule'** for three-dimensional aromaticity.

In our consideration of the chemical bonding in Sis, Sis, Si52', and B5H52', we

used the natural population analysis (NPA), molecular orbital analysis, electron

localization functions (ELF), and nuclear independent chemical shifts (NICS).
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12-7.1. NPA analysis

According to the NPA, an electron density change upon an electron detachment
from Sis” [Q(Sieg) = -0.40 |e| (hybridization 3s"*3p*”") and Q(Sin) = -0.40 |e|
(3s"3p* )] to Sis [Q(Sieq) = -0.20 [e| (35 **3p>**) and Q(Siux) = -0.20 le| (3s'*3p>*%)]
occurs on all five atoms, while upon an electron detachment from Sis™ to Sis [Q(Sieq) =
+0.16 |e| (3s'7*3p*®) and Q(Six) = -0.24 ¢ (3s'°?3p>®")] it occurs primarily on the

equatorial Si atoms.

12-7.2. Molecular orbital analysis

Valence molecular orbital picture for B5H52' is quite similar to that for Si52'
(Figure 12-4), although the order of their occupied MOs is somewhat different. This
similarity at the first glance indicates that the chemical skeletal bonding in the trigonal Bs
or Sis units should be quite similar. Indeed, Schleyer and co-workers calculated NICS(0)
indices at the center of both dianions and reported that they are highly negative (-25.9
ppm for BsHs*") and (-38.5 ppm for Sis>") showing significant aromaticity in both species.
The aromatic nature of deltahedral boranes have been previously discussed by King and

14 : 14
Rouvray'* and Aihara.'*

12-7.3. ELF analysis

The ELFs calculated for B5H52', Si52', and Sis are presented in Figure 12-5. The
local maxima of the ELFs define “localization attractors”, of which there are only three
basis types: bonding, non-bonding and core. Bonding attractors lie between the core
attractors (which themselves surround the atomic nuclei) and characterize the shared-

electron interactions. The spatial organization of localization attractors provides a basis
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for a well-defined classification of bonds. From any point in space the ELF gradient is
followed to an attractor in that region, and this point is then attributed to this attractor.
The collection of all the points in the space that is assigned to a given attractor is called
its basin. The criterion of discrimination between basins is provided by the reduction of
reducible (containing more than one attractor) domains. The reduction of a reducible
localization domain occurs at critical values (saddle points) of the bonding isosurface,
over which the domain is split into domains containing fewer attractors. The localization
domains are then ordered with respect to the ELF critical values, yielding bifurcations.

The ELF pictures calculated for BsHs” (Figure 12-5a) reveal that protonated
attractor domains (sphere-like areas) are separated as the result of bifurcations at ELF =
0.52 (axial domains separated) and ELF = 0.64 (equatorial domains separated). These
domains correspond to the 2e-2¢ B-H bonds. There two more bifurcations can be seen in
Figure 12-5a at the ELF = 0.77 and ELF = 0.85. The first bifurcation yields two
reducible domains in the region of boron-boron bonding and the second bifurcation
reveals the six irreducible domains corresponding to six Bax-Beq bonds. According to the
ELF analysis, there is no Beg-Beq bonding. This chemical bonding picture is consistent
with the styx Lipscomb’s description of chemical bonding in BsHs>".

The ELF pictures calculated for the valence isoelectronic Sis> (Figure 12-5b) are
somewhat different from the B5H52' dianion. First, at the ELF = 0.65 one can see the
system of three attractors in the equatorial plane, which can be tentatively attributed to a
pair of electrons delocalized in the equatorial area. At the ELF = 0.69 one can see the
separation of the two lone pairs corresponding to the axial Si atoms. Finally, at the ELF

=0.77 one can see the separation of the three non-bonding domains corresponding to the
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Figure 12-5. The ELF bifurcations for (a) BsHs> (Dsn, 'A1’), (b) Sis> (Dsh, 'A;’) and Sis
(Dsp, 1A1’) calculated at the B3LYP/6-311+G* level of theory.
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equatorial Si atoms. Simultaneously, the six bonding domains corresponding to the Sieq-
Si.x bonds are revealed. Thus, in Si52' if compared to B5H52', one can see that some
electrons, which are supposed to belong to Si equatorial lone pairs are actually
participating in chemical skeletal bonding.

The bifurcations corresponding to the Sis neutral species are shown in Figure 12-
5c. The major difference in the ELF analysis between Sis and Sis” is the absence of the
system of the three equatorial attractors in the neutral system and the significant
alternation of the non-bonding domains corresponding to the axial Si atoms. It also
should be pointed out that, the interaction between the bonding Sia-Sieq domains and the
axial non-bonding domains is appreciably stronger, because the bifurcation occurs at
relatively high ELF value (0.69 for Sis> and 0.83 for Sis). Thus, the change in the
electron density accompanying the removal of an electron pair from Sis> — Sis
corresponds to the loss of electron density in the area primarily belonging to the

equatorial Si atoms, and that is consistent with out NPA analysis.

12-7.4. NICS analysis

We also performed calculations of the NICS indices (at B3LYP/6-311+G*) for
Sis™, Sis,, and Sis along the normal to the triangular face of the trigonal bipyramid
starting from the center of the cluster. Our results are summarized in Table 12-7. We
found that the NICS(0) values at the center of the cluster are highly negative for all the
Sis™, Sis, and Sis species clearly showing the presence of aromaticity in these clusters.
The NICS(0) value is increasing along the Sis>, Sis, and Sis series. The NICS(0) value

for the Sis> dianion reported by Schleyer and co-workers'*' is very similar to our value.



265

We found that the NICS value is growing along the normal for the Sis> dianion and
reaching the maximum value (-41.9 ppm) at the point of crossing the triangular face.
That could be a manifestation of the additional contribution from the o-aromaticity
(aromaticity originated from the perpendicular 3py- and 3p,-AOs of Si) in the triangular
face of the trigonal bipyramid. When one electron is detached from the 2a,”-HOMO in
the Sis”, the NICS values are substantially higher for almost all calculated points, but the
NICS value at the point of crossing the triangular face is not longer the highest. Finally,
when the second electron is removed from the 2a,”-HOMO in the Si52', the NICS values
are similar to those for Sis’, but now they are steadily decreasing from the center. These
results show that upon the detachment of an electron pair from the 2a,”-HOMO in the

Sisz', the contribution from o-aromaticity in the neutral Sis is diminished.

Table 12-7. Calculated NICS (ppm) indices for Sis*, Sis’, Sis at BSLYP/6-311+G*.

Position * | NICS, Sis (Dsn,'A;) | NICS, Sis ™ (Dsn,°As”) | NICS, Sis’ (Dsn, A1’)
0 -37.0 -48.9 -49.0
1 -37.9 -49.1 -48.8
2 -40.0 -49.4 -47.8
30 -41.9 -48.2 -45.5
4 -41.4 -44.4 -41.0
5 -37.6 -37.9 -343

“NICS are calculated along the normal to the triangular face of the trigonal bipyramid
starting from the center of the cage. Increments are 0.233 A for Sis”, 0.242 A for Sis"
and 0.256 A for Sis° clusters respectively.

® This point in case of all three clusters corresponds to the intersection of the normal and
the triangular face of the trigonal bipyramid.
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12-8. Conclusion

We obtained photoelectron spectra for Sis and NaSis at the various photon
energies. The experimental spectra have been interpreted by comparing with calculated
VDEs at four different levels of theory (TD-B3LYP, R(U)OVGF, UCCSD(T), and EOM-
CCSD(T), all with the 6-311+G(2df) basis sets). Excellent agreement was found between
the experiment and calculations for both anions, confirming their global minimum
structures for Sis™ (Ds;) and NaSis™ (C;), in which Na" is coordinated to the face of a
trigonal pyramidal Si52'. Chemical bonding analysis of Si52', Sis”, Sis and B5H52' was
performed using the NPA, molecular orbital analysis, ELF, and NICS indices. On the
basis of this analysis we concluded that Sis* differs from the BsHs> by involvement of
the electron density, which is supposed to be “lone pairs” in the skeletal bonding in Sis”.
The NICS indices indicated that all Si52', Sis", Sis clusters are highly aromatic. According
to the higher negative NICS(0) value, the neutral and singly charged clusters are more

aromatic than the doubly charged one.
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CHAPTER 13
ON THE STRUCTURE AND CHEMICAL BONDING OF Si¢™

AND Sis>” IN NaSig UPON Na" COORDINATION!

Abstract

Photoelectron spectroscopy was combined with ab initio calculations to elucidate
the structure and bonding in Si62' and NaSis. Well-resolved electronic transitions were
observed in the photoelectron spectra of Sig” and NaSie at three photon energies (355,
266, and 193 nm). The spectra of NaSis were observed to be similar to those of Sig
except that the electron binding energies of the former are lower, suggesting that the Sig
motif in NaSie is structurally and electronically similar to that of Sig. The electron
affinity of Sig and NaSis were measured fairly accurately to be 2.23 = 0.03 eV and 1.80 +
0.05 eV, respectively. Global minimum structure searches for Sis> and NaSig were
performed using Gradient Embedded Genetic Algorithm followed by B3LYP, MP2 and
CCSD(T) calculations. Vertical electron detachment energies (VDEs) were calculated
for the lowest Sig and NaSis structures at the CCSD(T)/6-311+G(2df), ROVGF/6-
311+G(2df), UOVGF/6-311+G(2d), TD B3LYP/6-311+G(2df) levels of theory.
Experimental VDEs were used to verify the global minimum structure for NaSigs .
Though the octahedral Si62', analogous to the closo-form of borane B6H62', is the most
stable form for the bare hexa-silicon dianion, it is not the kernel for the NaSis global

minimum. The most stable isomer of NaSis is based on a Si62' motif, which is distorted

! Coauthored by Dmitry Yu. Zubarev, Anastassia N. Alexandrova, Alexander I. Boldyrev, Li-Feng Cui, Xi
Li and Lai-Sheng Wang. Reproduced with permission from J. Chem. Phys. 2006, 124, 124305. Copyright
2006, American Institute of Physics.
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into C,, symmetry similar to the ground state structure of Sig. The octahedral Sig”
coordinated by a Na" is a low-lying isomer and was also observed experimentally. The
chemical bonding in Siéz_ and NaSis" was understood using NBO, molecular orbital, and

ELF analysis.

13-1. Introduction

Despite significant research efforts of many research groups, there is still not a
consistent theory of chemical bonding to describe silicon clusters, which are important
both in chemistry as potential material building blocks and in nanoscience relevant to
device design in the future. Doubly charged Si,* clusters offer a unique opportunity to
use the isolobal analogy between an HB unit and a Si atom to allow the application of the
chemical bonding models developed for deltahedral boranes (BH),.'” The isolobal
analogy between HB and Si would suggest a series of stable deltahedral Si,> clusters
analogous to the deltahedral B,H,>. However, this straightforward approach does not
appear to work, because even though Sis* is stable enough to be obtained and
characterized in the solid state,4 B5H52' has not been synthesized.l'3 On the other hand,
Si62' has not been synthesized yet, but B6H62' is well known for its stability.]'3 B, 2H122',
the most famous borane, is icosohedral in its most stable form, but the corresponding
Sii,” cage is not the global minimum, albeit it is a higher-lying isomer. According to our
preliminary results, the global minimum of Sij;*” has a lower symmetry structure. Thus
we need to develop a chemical bonding model capable of explaining why valence

1soelectronic systems have different structures. Such chemical models will be the first
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step towards a comprehensive chemical bonding model for understanding the structure of
silicon clusters.

The Si¢™ cluster is the first system, which can be expected to have a highly
symmetric octahedral structure, similar to the closo-borane BsHs>. However, a previous
attempt to characterize the aromaticity of the octahedral Sis> led to the conclusion that it
is antiaromatic’ and thus totally different from the corresponding aromatic B¢Hg” closo-
borane. The difference was explained to be due to the mixing of the terminal hydrogen
orbitals with the symmetry adapted skeletal MOs of B¢He>, which lowers their energies
relative to the corresponding lone pair-dominated Sis> MOs, where such mixing is not
possible.’

The hexa-silicon cluster (neutral or with a negative charge) has been studied in
numerous works with different theoretical methods.”'® It has also been extensively

20-21
021 and

studied experimentally by mass-spectrometry,’’ " IR and Raman spectroscopy,
photoelectron spectroscopy.”*® The vertical detachment energies of Sig” have also been
computed.””*® Of particular interest to the present work was the report by Kishi et al.”
about the photoelectron spectrum of NaSic at 355 nm, which contained two broad
spectral bands approximately at 2.1 and 3.0 eV. Theoretical analysis of the relative
stability of several Si()z' and NaSis i1somers at MP2/6-31G* and MP4(SDTQ)/6-31G*
levels of theory was also carried out by the same authors, who concluded that the most
stable structure of NaSis is based on a C,, Si62' fragment, rather than the O, motif.
However, the experimentally determined VDE (2.10 £ 0.04 eV) and ADE (1.90 + 0.06

eV) for NaSie differ significantly from the calculated VDE (1.518 eV) and ADE (1.446

eV) at MP4/6-31G*. Li and co-workers”™ reported that according to their calculations at
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the B3PW91/6-311G* and MP2(full)/6-311+G* levels of theory, LiSis, NaSic and KSig

clusters have a Cs, ('A)) structure for all three species with a cation coordinated to one
face of an octahedral Sig>. Thus, the global minimum structure of the NaSiq cluster is
still not known.

In the current paper, we present a systematic study of Sig> and NaSig both
experimentally and theoretically focusing on elucidating their structures and chemical
bonding. Well-resolved photoelectron spectra were obtained for NaSis at three photon
energies (355, 266, 193 nm), which allow quantitative comparison with the
accompanying ab initio calculations. The ground state structure of NaSic was
established on the basis of good agreement between the photoelectron spectra and
theoretical VDEs, calculated at several levels of theory: CCSD(T)/6-311+G(2df),
ROVGF/6-311+G(2df), TD-B3LYP/6-311+G(2df), all at the B3LYP/6-311+G*
geometry. We further investigated the chemical bonding in the most stable isomer of
NaSis and its silicon kernel Si62'. Results of MO, NBO, and ELF analyses were
compared with those for the octahedral Si(,z' and B6H62' species. We also included
photoelectron spectroscopic results on Sig primarily to test theoretical methods used for

NaSi6'.

13-2. Experimental Methods
Details of the photoelectron spectroscopy (PES) apparatus have been described

1
elsewhere.>*?

The silicon cluster anions and Na-Si mixed cluster anions were produced
by laser vaporization of a pure Si and a Na/Si mixed target, respectively, in the presence

of a helium carrier gas and analyzed by time-of-flight mass spectrometry. The Sis” and
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NaSis clusters of interests were mass-selected and decelerated before being
photodetached by a pulsed laser beam, 355 nm (3.496 eV) and 266 nm (4.661 eV) from a
Nd:YAG laser or 193 nm (6.424 ¢V) from an ArF excimer laser. Photoelectrons were
collected at nearly 100% efficiency by a magnetic bottle and analyzed in a 3.5 m long
electron flight tube. The PES spectra were calibrated using the known spectra of Au’, Pt’,
or Cu’, and the electron energy resolution was AEy/Ex = 2.5%, that is, approximately 25

meV for 1 eV electrons.

13-3. Theoretical Methods

The search for the global minimum on the potential energy surface of Si,”~ was
started with the gradient embedded genetic algorithm (GEGA) program, developed by
Alexandrova.”*” Semiempirical method PM3 (Refs. 34 and 35) was used for energy,
gradient, and force computations, since it provides reasonable quality at low
computational costs, which will be important for future studies of large silicon clusters.
Our GEGA search produced several low-lying isomers, which were reoptimized at the
hybrid B3LYP method® ™ using the 6-311+G* polarized split-valence basis set,”” ' at the
second order Moller-Plessett (MP2) method,””* and at the coupled-cluster with single,
double, and noniterative triple excitations [CCSD(T)] method*™' using the 6-311+G*
basis set. The total energies of the lowest structures were also estimated at the CCSD(T)
level of theory using the extended 6-311+G(2df) basis set. Several levels of theory were
used to obtain theoretical VDEs: R(U)CCSD(T)/6-311+G(2df), the equation of motion
(EOM)-CCSD(T)/6-311+G(2df),* the restricted and unrestricted outer valence Green

function [ROVGF/6-311+G(2df) and UOVGF/6-311+G(2d)] methods™" (all at the
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B3LYP/6-311+G* or CCSD(T)/6-311+G* geometries, where available), and the time-

dependent (TD) density functional theory™” B3LYP/6-311+G(2df) (at the B3LYP/6-
311+G* geometries). In the last approach the VDEs were calculated as a sum of the
lowest transitions from the ground electronic state of the anion to the lowest electronic
state of the neutral species (at the B3LYP level of theory) and the vertical excitation
energies in the neutral species (at the TDB3LYP level of theory) at the anion geometry.
At the CCSD(T) and ROVGEF levels of theory the electron correlation was treated with
frozen core electrons. Chemical bonding was investigated by means of NBO,” ELF,*%
and MO analyses. GAUSSIAN 98.* GAUSSIAN 03,” and MOLPRO 2000.1° ab initio
software packages were used throughout this project. ELF analysis was carried out using
the TOPMOD package.” MOLEKEL® and MOLDEN 3 .4% programs were chosen for

the visualization of the ELFs and molecular orbitals, respectively.

13-4. Experimental Results

13-4.1. Photoelectron Spectroscopy of Sis

Figure 13-1 displays the photoelectron spectra of Sic at three photon energies
(355, 266, and 193 nm). Five distinct and intense spectral bands (X, A, B, C, D) were
observed at 193 nm (Fig. 13-1¢) and their VDEs measured from the peak maxima are
given in Table 13-1. At 355 nm, the X band was better resolved with a well-defined
onset, which yielded an ADE of 2.23 + 0.03 ¢V and VDE of 2.35 + 0.05 eV. Since no
vibrational structures were resolved, the ADE which also represents the electron affinity
(EA) of neutral Sis, was measured by drawing a straight line at the leading edge of the X

band and then adding the spectral resolution to the intersection with the binding energy
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axis. The X band was quite broad, suggesting significant geometry changes between the
ground state of Sig and the corresponding neutral state. Weak and broad signals were
observed in between bands X and A, in particular, the feature labeled “IS” was shown as
a shoulder on the A band. These weak features could be either due to isomers or
impurities. Since our mass resolution was high enough to resolve the isotopic pattern of
Sic, we could rule out the possibility of impurity contamination. Thus, these features
were most likely due to another structural isomer, consistent with previous theoretical
calculations.”®*’ The X-A band separation defines a HOMO-LUMO gap for the neutral
Sic as 1.05 eV. All the higher energy bands were all rather broad, due to either large
geometry changes upon photodetachment or overlapping electronic transitions.

The photoelectron spectra of Sig” have been reported in a number of previous
studies.””?® The current study presents a more systematic data set at different photon
energies which is in general slightly better than or consistent with the previous
measurements. The best resolved spectrum for Sis” was by Xu ef al. at 355 nm.**  Our
obtained ADE (2.23 eV) and VDE (2.35 eV) are in good agreement with their
corresponding values at 2.22 and 2.36 eV, respectively. However, the shoulder labeled as
“IS” in Figure 13-1 was resolved as a vibrational progression by Xu et al., who assigned
it as the transition to the first excited state of Sis. As discussed below, this weak feature
is most likely due to the D4, isomer of Sis as shown via the molecular dynamics

simulation by Binggeli and Chelikowsky.”’
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Figure 13-1. Photoelectron spectra of Sig at (a) 355nm (3.496 eV), (b) 266 nm (4.661
eV), and (c) 193 nm (6.424 eV).
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Table 13-1. Experimental and theoretical Vertical Detachment Energies for Sig. All
energies are in eV.

Fina B | BILVPE [ oygrg | EOMIE [ CCSD
Configuration VDE? 311+G(2d) )
(2dh (2df) (2dh
Sig' Coy *B2)
'A; (4a,°1a,%52,%3b,22b,%6a,%4b,") | X | 2.35+0.03 2.38 2.17 (0.84)° 231 2.29
3B, (4a,°12,%5a,°3b,°2b,%62,'4b,") | A | 3.38+0.03 3.23 3.15 (0.84)° d 3.30
'B, (4a,%1a,°5a,%3b,%2b,%6a,'4b,") 3.65 ¢ 3.78 ¢
A, (4a,%1a,°52,%3b,'2b,%6a,°4b,") 3.75 3.61 (0.84)° d 3.78
3A, (4a,%1a,°52,%3b,22b, '6a,%4b,") | B | 3.85+0.03 3.80 3.67 (0.83)° d 3.94
'A, (4a,°1a,%52,°3b,°2b, '6a,%4b,") 3.96 ¢ 4.14 ¢
3B, (4a,°12,°5a;'3b,°2b;%62,%4b,") 4.05 3.93 (0.83)° d ¢
'B, (4a,%1a,°5a,'3b,%2b,%6a,°4b,") 421 ¢ 4.44 ¢
C | 4.26+0.03
'A; (4a,°1a,%52,%3b,'2b,%6a,%4b,") 423 ¢ 4.42 ¢
3B, (4a,°12,'5a,°3b,°2b;%62,%4b,") 4.69 4.61 (0.83)° d 4.86
3B, (4a;,'12,%5a,°3b,°2b;%62,%4b,") 4.69 4.59(0.83)"° d ¢
D | 4.89+0.03
'B, (4a,%1a,'5a,%3b,%2b,%6a,°4b,") 4.92 ¢ 5.11 ¢
'B, (4a;'1a,°5a,%3b,%2b,%6a,°4b,") 5.32 ¢ 5.49 ¢
Sis Dan CAz)
'Arg (Barg leg by 2e,22,,°) ~2.78 2.74 2.61(0.92)° f 2.63
*E, (3aig e by, 2e,2a,,") ~3.18 3.04 3.05(0.91)° f 3.17
'Eq (Baig le, 1by,2e,’25,") 3.08 ¢ ! ¢
3Bia Bare le, by, 2¢, 225, ") 4.49 4.53(0.91)"° f 477
g g g
Mg (Bag' leg 1by, 26, 225,") 4.60 4.63 (0.90)° f 491
'Blu Baig leg 1by,'2e,2a,,") 4.61 ¢ ! ¢
*E, (3aig leg by, 2e,*2a,,") 4.68 4.71(0.91)"° f 4.92
'E, (Baig leg 1byg 2e,225,") 5.09 ¢ r ¢
"As (3arg' leg by 2e,2a5,") 5.58 ¢ r ¢

*The adiabatic detachment energy or the electron affinity of Sig is measured to be 2.23 = 0.03 eV.

® The numbers in the parentheses indicate the pole strength, which characterizes the validity of the one-
electron detachment picture.

© Singlet excited states have two-configurational character and therefore are not reported.

¢ EOM-CCSD(T) calculations for triplet excited states cannot be performed within our version of Molpro
program.

¢ These states cannot be calculated using CCSD(T) method implemented in Gaussian.

" These computations were not performed.

€ Broad features in Fig. 1a between bands X and A.
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13-4.2. Photoelectron Spectroscopy of NaSis

The photoelectron spectra of NaSis are shown in Figure 13-2 at three photon
energies (355, 266, and 193 nm). The electron binding energies of NaSis are lower than
those of Sig’, but the overall spectral patterns for the two species are quite similar. Again
five distinct and intense spectral bands (X, A, B, C, D) were observed for NaSis, which
were slightly better spaced than those of Sig. The VDEs of these bands are given in
Table 13-2. There appeared two weak features, labeled as x and a, between bands X and
A in the spectra of NaSis, similar to the weak features observed between the X and A
bands in the spectra of Sig. These two weak features are assigned to be due to a low-
lying isomer (Table 13-2), analogous to Sis (vide infra). The EA of NaSis was measured
from the onset of the X band of the 355 nm spectrum to be 1.80 £+ 0.05 eV, which is 0.43
eV smaller that that of Sig. The X-A band separation of 1.04 eV for NaSis is identical to
that for Sig. In fact, all the five main spectral features of NaSis™ line up well with those
of Sig” with a shift of about 0.4 eV, suggesting that the geometrical and electronic
structure of the Sig motif in NaSig 1s similar to that in Sig .

A very broad and diffuse photoelectron spectrum of NaSis at 355 nm was
reported previously by Kishi et al” The current spectra were considerably better
resolved, making it possible to quantitatively compare with theoretical calculations (vide
infra). As shown previously, the combination of PES with ab initio calculations is a
powerful tool for elucidating the electronic structure and chemical bonding of novel

1
clusters.’®’

In the following, different levels of theories are employed to assist the
interpretation of the observed photoelectron spectra and to elucidate the detailed

structures and the underlying chemical bonding of Sis” and NaSis™ (Sig™).
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Figure 13-2. Photoelectron spectra of NaSis at (a) 355nm (3.496 eV), (b) 266 nm (4.661
eV), and (c) 193 nm (6.424 eV).
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13-5. Theoretical Results

13-5.1. Sig

The two lowest energy Cay (*Bs) I and Day (PAsy) 11 structures of Sig™ (Figure 13-3
and Table 13-3) have been identified in the literature.®'® According to our calculations
the Cay (*By) I and the D4y (*Asy) II structures are almost degenerate. At our highest level
of theory (CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*) the Da, (*Az) Il structure is
slightly more stable (by 0.9 kcal/mol) than the Cay (*By) I structure. Thus, we used both
of these structures for our theoretical calculations of VDEs to help interpret the main PES

spectral features of Sis” (Table 13-1).

13-5.2. Sig”

For Sis~ we performed the GEGA search at the semiempirical PM3 level of
theory, followed by geometry reoptimization and frequency calculations at higher levels
of theory. Two isomers with close energies were obtained: Oy (‘A o) Il 'and Cy, (A) IV
(Table 13-4) as shown in Figure 13-3. The octahedral structure consistently remains the
global minimum at B3LYP, MP2, and CCSD(T) levels of the theory (all at 6-311+G*
basis set). At our highest level of theory (CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*)
the Oy (lAlg) isomer is 12.2 kcal/mol more stable than the Ca, (‘A;) isomer. The Ca,
('A)) isomer IV can be considered as a result of a distortion of the O, (‘A ¢) 1somer 111,
leading to the cleavage of an “equatorial” Si-Si bond and the formation of a Si-Si bond
between the two axial atoms. Alternation of other bond lengths occurs as well, the most

noticeable is the increase of the distance between the axial (S1;2) and bridging-equatorial
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Table 13-2. Experimental and theoretical Vertical Detachment Energies for NaSis. All
energies are in eV.

NaSi{

TD-B3LYP/6-

_ + _
Feature | VDE (Exp.) | (Ca,'Ay) ROV(E%%E“ G 314G ;?igg()l/gb
MO (2df)°
X 1.96 +0.05 4b, 1.96 (0.88)¢ 1.88 1.92
A 3.00 £0.05 6a; 2.78 (0.89) ¢ 2.90 2.94
2b, 3.46 (0.88)° 332 3.45
B 3.60 £0.05 )
3b, 3.45 (0.88) ¢ 3.46
C 3.83 £0.05 5a, 3.64 (0.88)° 3.65 d
la, 442 (0.87)° 426 439
D 4.50 +0.05 )
4a, 4.48 (0.88) ¢ 432
NaSis TD-B3LYP/6-
311+
Feature | YPEEXP) | (0 1A ROV(E%%E“ G 311+G
MO (2df)°
X 2.3240.03 5a, 2.29 (0.88)° 2.26
a 2.5540.03 4e 2.45 (0.88) ¢ 2.48
3e 430 (0.88)¢ 432
4a, 435 (0.88)¢ 432

* The adiabatic detachment energy or the electron affinity of NaSig is measured to be 1.80 £ 0.05 eV.
® At B3LYP//6-311+G* geometry.
¢ The numbers in the parentheses indicate the pole strength, which characterizes the validity of the one-

electron detachment picture.

¢ These states cannot be calculated using CCSD(T) method implemented in Gaussian.
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Figure 13-3. Structures of isomers for Sig (I, I), Sig> (III, IV), NaSis (V, VI), B¢Hg™
(VIL, VIII), and SigHs'" (IX, X).
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Table 13-3. Calculated molecular properties of Cay (°B,) and Dy, (*As,) isomers of Sig.

Ca (By) B3LYP/6- MP2/6- CCSD(T)/6- | Dy (A B3LYP/6- CCSD(T)/6-
Method 311+G* 311+G* 311+G*4 Method 311+G* 311+G*e!
-E, au 1737.107496 | 1734.128300 | 1734.184982 -E, au 1737.103268 | 1734.179554
AE, kcal/mol 0 0 0 AE, kcal/mol 2.7 3.4
R(Si;-Siy), A 2.547 2.525 2.536 R(Si;-Sis), A 2.433 2.414
R(Si;-Sis), A 2.541 2.492 2.527 R(Si;-Siy), A 2.607 2.594
R(Si;-Sig), A 2.402 2.381 2.394 o (arg), em” | 313(0.0)*
R(Si5-Sig), A 2.497 2.471 2.484 wy(arg), em’ | 424 (0.0)*
R(Si5-Siy), A 2.329 2.359 2.328 ws(az), cm” | 342(0.2)°
o,(a;), cm™ 148 (0.1)* 163 (0.2)* w,(byg), cm’! 367 (0.0)*
wy(ar), em’ | 304 (0.2)° 332(0.2)° ws(byg), em™ | 287 (0.0)*
os(ay), cm’ 340 (0.0)* 355 (0.1)* wg(bay), cm’™ 139 (0.0)*
o,(a;),em™ | 418(0.5)° 427 (0.3)* o,(e,), cm’! 95 (0.1)"
oy(a;), em™ | 433 (0.0)° 458 (0.7)* wge,), cm™ | 391 (10.3)®
04(ay), cm”! 110 (0.0)° 111 (0.0)° wy(eg), cm’” 359 (0.0)°
o,(ay), em™ | 340 (0.0)° 406 (0.0)°
wg(by), em™ | 207 (3.4)° 320 (2.7)°
wo(by), ecm™ | 287 (0.1)* 6915°
(b, cm™ | 235 (4.0)° 255(1.2)°
w,(by),em™ | 273 (1.5)% | 306 (1.7)°
wp(by), em™ | 436 (4.1)° 465 (0.6)*

* Infrared intensities (km/mol) are given in parenthesis.

® Symmetry broken problem.
¢ By =-1734.367370 a. u. at CCSD(T)/6-311+G(2df)// CCSD(T)/6-311+G*, <S*>=0.85.

4 <§%>=0.83

® B =-1734.368752 a. u. at CCSD(T)/6-311+G(2df)// CCSD(T)/6-311+G*, <8?>=0.80.

f<§%>=0.78
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(Si34) atoms, and the decrease of the distance between the axial (Si;») and the non-

bridging-equatorial (Sis¢) atoms.

13-5.3. LiSis and NaSis

Due to technical reasons semiempirical GEGA computations could be performed
only for the LiSis" system, whose isomers were then taken as starting geometries for
higher-level calculations for NaSis. The low-lying LiSis" isomers from the GEGA search
contained Si62' kernels with both the Oy and C,, structures. Substitution of Li by Na and
reoptimization of the obtained structures at B3LYP/6-311+G* level of theory gave again
two low-lying NaSis™ 1somers (Figure 13-3). Geometric parameters as well as harmonic
frequencies for structures V and VI are summarized in Table 13-5, where total energies
obtained in single-point calculations at CCSD(T)/6-311+G(2df) are also given. We found
that while for bare Sis> the Oy, (A, ¢) structure III is more stable than the C,, ('A)) isomer
IV, for NaSis the Csy (]A]) isomer VI with the Oy, motif is energetically less favorable
than structure V with the C,, motif. At our highest level of theory (CCSD(T)/6-
311+G(2df)//B3LYP/6-311+G*) the Cy, (‘A}) isomer V of NaSis is only 1.2 kcal/mol
more stable than the Cs, (IAI) isomer VI. We note that Kishi et al. obtained a similar
ground state isomer for NaSig">* But they did not obtain the Cs, isomer; they considered
two much higher energy isomers instead, in which the Na" is coordinated to either an
axial Si atom or to two equatorial Si atoms of the Oy, Sig>". Comparison of the Cs, and Oy,
structures for the bare Sig> with the corresponding fragments in the two NaSis isomers
reveals relatively minor structural changes due to the Na' coordination, suggesting the

robustness of the silicon kernel as a solid building block. In the global minimum C,,
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Table 13-4. Calculated molecular properties of Oy, (]Alg) and Ca, (‘A ) isomers of Sig>".

Method | B3LYP/6-311+G* | MP2/6-311+G* | CCSD(T)/6-311+G*
Sis” On (‘A

-E, au 1737.044100 1734.054245 1734.112726°

AE, kcal/mol 0 0 0

R(Si-Si), A 2.498 2.464 2.475

w,(a,), cm’” 405 (0.0)* 438 (0.0)* 431

w,(eg), cm’’ 334 (0.0)° 322 (0.0)* 332

w5(ty,), cm’” 364 (7.4)° 379 (9.7)° 378

w,(tag), cm” 333 (0.0)° 330 (0.0)° 328

os(tpy), cm™ 137 (0.0)* 168 (0.0)* 146
Sie Cav ('A))

-E, au 1737.031182 1734.045549 1734.099297°
AE, keal/mol 8.1 5.5 8.4
R(Si-Siy), A 2.496 2.461 2.484
R(Si;-Sig), A 2.400 2.384 2.392
R(Si;-Sis), A 2.662 2.595 2.637
R(Si3-Sig), A 2.456 2.453 2.447
R(Sis-Siy), A 2.420 2.407 2.412
w,(a;), cm’ 158 (4.5)" 177 (2.9)* 168

w,(ay), cm’ 287 (4.7)° 312 (2.9)® 297
ws(ay), cm’ 343 (2.1)° 346 (5.9)* 347
w,(a;), cm’ 355(0.1)° 375 (2.2)° 367
ws(ay), cm’ 419 (2.4)° 449 (2.5)° 437
0y(a), cm’” 129 (0.0)* 132 (0.0)* 122
w,( a,), cm” 332(0.0)° 375 (0.0)* 344
wy( by), cm™ 151 (6.7)° 182 (3.0)* 158
wy( by), cm”’ 236 (0.0)° 260 (0.3)° 247
®,4(b), cm™ 217 (0.2)* 227 (0.1)® 221
oy, ( by), cm™ 348 (0.2)° 345 (0.2)* 350
w,,( by), cm’” 436 (3.7)° 461 (10.7)* 450

* Infrared intensities (km/mol) are given in parenthesis.
® Bo=-1734.309096 a.u. at CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*.
“ Bio=-1734.289598 a. u. at CCSD(T)/6-311+G(2df)// CCSD(T)/6-311+G*
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('A}) NaSig, the effect of the Na* coordination appears to slightly increase the Si-Si bond
length between the two axial atoms (Table 13-5). In the Cs, (‘A;) NaSiq isomer, the Na*
coordination has little effect on the three proximate Si atoms, but seems to increase the

Si-Si bond distances for the three distal Si atoms (Table 13-5).

13-6. Interpretation of the Photoelectron Spectra

13-6.1. Sis

Binggeli and Chelikowsky?’ first computed the PES spectra of Sig using
molecular dynamics simulation and compared with the slightly lower resolution PES
spectra reported by Cheshnovsky ez al.”> They found that the simulated spectrum of the
Cyy Sig structure was in excellent agreement with the experimental data, whereas a low-
lying isomer with a distorted octahedral structure might also make minor contributions to
the experimental data. Their study firmly established the C,, ground state structure for
Sic. However, a quantitative interpretation of the PES spectra requires detailed
calculations for each photodetachment transition from the C,, and Ds, ground state
structures to the neutral final states. In particular, since the ground state of Sic is a
doublet with an unpaired electron, both singlet and triplet final states are possible and
they need to be computed in order to make quantitative comparison with the experimental
PES spectra. In the current study, we calculated the VDEs for Sig” (Cay, “Bs) at the
following levels of theory: CCSD(T)/6-311+G(2df)/CCSD(T)/6-311+G*, EOM/6-
311+G(2df)//CCSD(T)/6-311+G*, TD B3LYP/6-311+G(2df)//B3LYP/6-311+G*, and

UOVGF/6-311+G(2d)//CCSD(T)/6-311+G*. The final electron configurations and the
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Table 13-5. Calculated molecular properties of the Cay (‘A;) and Cs, (‘'A}) isomers of

NaSi6'.
Co ('A)) B3LYP/ MP2/ Cy ('A) B3LYP/ MP2/
Method 6-311+G* 6-311+G* Method 6-311+G* 6-311+G*
-E, a. u. 1899.429907° | 1896.020071 -E, au 1899.424291° | 1896.009937
AE, kcal/mol 0.0 0.0 AE, kcal/mol 3.5 6.4
R(Na,;-Si), A 2.875 2.887 R (Na;-Siy) 2.861 2.864
R(Na,-Sie), A 2915 2913 R (Naj;-Sis) 4.705 4.693
R(Na,;-Sis), A 4.578 4.582 R (Si,-Sis), A 2.495 2.471
R(Si,-Siz), A 2.544 2.505 R (Sis-Sig), A 2.548 2.512
R(Si,-Sig), A 2.447 2.428 R (Si,-Sis), A 2.472 2.447
R(Si-Sis), A 2.553 2.524 w,(a;), cm’ 213 (7.4)° 224 (19.0)°
R(Sis-Sig), A 2.443 2.444 w,(a;), cm’ 328 (5.7)° 342 (6.4)°
R(Siy-Sis), A 2.504 2.463 ws(ay), cm’ 359 (31.6)° 377 (28.1)"
w,(a;), cm’ 188 (6.9)" 203 (5.0)° w,(a;), cm 410 (0.0)* 435 (1.7)*
w,( a), cm’’ 230 (19.1)° 235(23.2)° ws( a,), cm 140 (0.0)* 186 (0.0)*
w,( a), cm’’ 292 (4.0)* 314 (4.2)* wy(e), cm 74 (4.2)° 92 (4.9)°
w,( a), cm’ 339 (0.4)* 346 (8.1)* w,(e), cm 162 (0.0)* 197 (0.0)*
ws( ay), cm’’ 350 (3.0)* 368 (0.2)* wg(e), cm 321(0.3)* 316 (0.4)*
w,( a;), cm™! 414 (4.5)° 441 (3.2)* wo(e), cm’ 342 (0.0)* 360 (0.0)*
w,( a,), cm’’ 139 (0.0)* 142 (0.0)* oy(€), cm 375(9.9)* 384 (11.4)°
wg( @), cm’”’ 325 (0.0)* 360 (0.0)*
wgy(b), cm™ 90 (2.1)* 94 (3.4)°
o,4(by), cm™ 180 (6.2)* 204 (2.5)°
o,,(by), cm™ 280 (0.0)* 290 (0.5)*
0,,(by), cm™ 143 (3.4)* 154 (3.9)*
0,5(by), cm™ 235 (11.6)" 247 (8.8)*
0,4(by), cm™ 338 (0.1)* 339 (0.1)*
o,5(by), cm™ 414 (1.8)* 435 (5.9)*

* Infrared intensities (km/mol) are given in parenthesis.
" Eo=-1896.261806 a. u. at CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*
“Eio=-1896.259976 a. u. at CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*
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corresponding detachment energies are given in Table 13-1, compared with the
experimental VDEs. Results at different levels of theory generally agree well with each
other and with the experiment.

As shown in Table 13-1, the LUMO of neutral Si¢ is 4b,, which is singly occupied
in Sig. Detachment of the 4b, electron produces a singlet state ('A;) for the neutral Si.
There is a very good agreement between the calculated VDE values among the different
theoretical methods (Table 13-1). The next detachment channel involves the 6a; orbital,
which is the HOMO of the neutral Sic. Detachment from this fully occupied MO
produces both a triplet and singlet final state. The calculated VDEs for the triplet final
state (°B,) are in good agreement with the VDE of the A band observed experimentally.
The A-X separation, which represents the excitation energy from the ground state of Sig
('A)) to the first excited triplet state (°B,), is an experimental measure of the HOMO-
LUMO gap of neutral Sic. We note that the TD-B3LYP method underestimates the
HOMO-LUMO gap, whereas the CCSD(T) method yields a HOMO-LUMO gap, which
is in excellent agreement with the experimental measurement.

The next five detachment channels, including the singlet final state ('B,) obtained
by removing the 6a; electron, are congested within a narrow energy range from 3.65 to
4.05 eV from the TD-B3LYP calculations. All these detachment channels contributed to
the B band, giving rise to the broad PES band. The next two detachment channels ('B,
and 'A)) are nearly degenerate and their calculated VDEs are in good agreement with that
of the C band. The next three detachment channels involve removal of an electron from
the 1a, orbital and 4a;  orbital. The calculated VDEs to the triplet and singlet states are

in the range of the D band. The last detachment channel calculated was from the 4a; o
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orbital with a VDE of 5.32 eV, which could correspond to the tail part of the D band,

although the signal-to-noise ratio was poor at the high binding energy part.

Overall, the computed VDEs from the C,, Sis" are in excellent agreement with the
experimental PES spectral pattern, consistent with the previous molecular dynamics
simulations by Binggeli and Chelikowsky. These authors were able to obtain simulated
spectral patterns very similar to the experimental PES spectra, even though they did not
do state-to-state calculations. This was because of the congested nature of the PES
spectra and the limited spectral resolution. The current study represents the most
quantitative interpretation of the PES spectra of Sigc. The spectrum for the low-lying
isomer which is a distorted octahedral structure (D4y) was simulated by Binggeli and
Chelikowsky. We also obtained theoretical spectra for Dy (*Ay) at CCSD(T)/6-
311+G(2df)//CCSD(T)/6-311+G*, TD-B3LYP/6-311+G(2df)//B3LYP-6-311+G* and
UOVGF/6-311+G(2d)//CCSD(T)/6-311+G* levels of theory (Table 1). The theoretical
VDE for the ground state transition was ~2.61-2.74 eV, consistent with weak signals in
same energy range in Fig. 1. One main feature from this isomer (triplet final state E,) 1s
in good agreement with the weak feature labeled as “IS” in Figure 13-1 with most of the
simulated features that are buried in the features from the C,, ground state of Sig. Our
calculations show effective degeneracy of the Day (*Asy) and Cay (*Bs) isomers; presence
of the Duy, (*Asy) structure is revealed in all the PES spectra of Sig reported so far,
including the current data. The feature labeled “IS” in Figure 13-1 was vibrationally
resolved by Xu ef al., who did not recognize it as a contribution from an low-lying isomer
and attributed it incorrectly to the first excited state transition from the main Sis” isomer.

Our analysis showed that the theoretical spectrum of Sis” Cay (*B,) was more consistent
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with the experimental data, demonstrating that under the experimental conditions the Cyy

structure was more abundant in the molecular beam than the Dg;, one.

13-6.2. NaSis

The ground state of NaSis can be viewed as adding a Na atom to the C,, ground
state of Sig’, with an electron transfer from Na to the Sig motif to produce the Cyy, Sig”
coordinated by a Na'. The extra electron enters the 4b, SOMO of Sis, producing a
closed shell ground state of NaSis” with a nearly identical MO ordering. The closed shell
nature of NaSis” means that the PES spectrum would be simpler because only doublet
final states are produced and each occupied MO only yields one detachment channel, in
contrast to Sig, where both singlet and triplet final states can be produced after
detachment from a fully occupied MO. Table 13-2 summarizes the calculated VDEs at
several levels of theory for the C,, ground state of NaSi¢s, as well as those for the Cs,

isomer, compared with the experimental values.

13-6.2.1. NaSis (C»y, '4;)

The ground state transition corresponds to an electron detachment from the 4b,
HOMO. The ROVGF and CCSD(T) methods yielded VDEs for the ground state
transition in exact agreement with the experimental values within the experimental
uncertainty (Table 13-2). The second detachment channel is from the 6a; HOMO-1. We
note again the CCSD(T) method yielded a VDE in quantitative agreement with the
experimental value of the A band. The X-A separation measured to be 1.04 eV is also
well reproduced by both the TD-B3LYP and the CCSD(T) methods. It should be pointed

out that the X-A separation measured in the spectra of NaSis is identical to that for Sie’
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(Figure 13-1 and Table 13-1), suggesting that the Na™ coordination has little electronic
effect on these MOs. As can be clearly seen from Table 13-2, the next five detachment
channels are in excellent agreement with the experimental pattern for the B, C, and D
bands, with the B and D bands each containing two detachment channels. Comparison
between the spectra of Sig and NaSic suggests that the detachment channels of both
species are similar. If all the excited singlet states were removed from Sis, one would
obtain almost identical spectra for these two species, which is why the spectra of NaSis’
were simpler and less congested. The excellent agreement between the calculated VDEs
and the experimental PES data confirms unequivocally that the ground state of NaSie is

the Cay ('A)) structure V.

13-6.2.2. NaSis (Cs,, '4;)

The weak features in between the X and A bands clearly do not belong to the C,,
ground state isomer of NaSis. The low-lying Cs, (‘'A,) isomer VI of NaSis™ (Figure 13-3)
is only 1.2 kcal/mol higher in energy (at CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*)
than the global minimum C,, structure and thus could be populated experimentally. As
shown in Table 13-2, our calculated VDEs for the first two detachment channels for the
Csy 1somer are in excellent agreement with the observed weak features (x and a). The
ground state transition from the Cs, isomer corresponds to electron detachment from the
5a; HOMO. The computed VDEs from both ROVGF and TD-B3LYP are in very good
agreement with the experimental VDE from the x feature. The calculated VDE from the

4e HOMO-1 gives rise to the feature a. The two higher binding energy transitions from
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the C;, isomer have similar binding energies with the D band of the main isomer and
might be obscured.

Comparisons of the experimental PES data of NaSis with the theoretical
calculations lead to several conclusions. First, two isomers were indeed observed
experimentally for NaSic, similar to Sig. Second, good agreement between the
experimental and theoretical VDEs confirms the global minimum (Cay, 'A;) structure V
for NaSie and the low-lying (Cgv,]Al) isomer VI. Third, the Sig moiety in NaSis is very
similar electronically and structurally to Sic. Fourth, ROVGF/6-311+G(2df), TD
B3LYP/6-311+G(2df), and CCSD(T)/6-311+G(2df) levels of theory, used to calculate
VDEs, show good agreement with each other and with experiment. Thus, the first two
methods, which do not require as much computer resources as CCSD(T) can be reliably
implemented in the future in analyzing PES of larger Na-Si clusters. We note that the
poor agreement (>0.5 eV) between the calculated and experimental first VDE and ADE
of NaSig reported by Kishi et al.>> was most probably caused by the small basis sets used

in their calculations.
13-7. Chemical Bonding in Siﬁz- and NaSiq

13-7.1. NBO Analysis

We performed NBO analysis for the Si62' Oy (lAl o), Si62' Coy (IAI), NaSis Csy
('A}), and NaSis Cay ('A)) species. Tables with NBO data are available from the authors
upon request. The Si atoms in Sis> Oy, (lAlg) each carry an effective charge Q(Si) = -
0.333 |e| and their hybridization is 3s"*3p*®*. Thus, the 3s” lone pairs on Si show some

hybridization with the 3p-AOs in spite of the excessive —2 charge on the cluster. From
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Sic™ On (‘A g) to Sis” Cay (*A}) some charge redistribution occurs. The two axial atoms
with Q(Si2) = -0.305 |e| (hybridization 3s'>°3p*"®) lose some electron density and some
s-p promotion also occurs. The two bridging equatorial atoms with Q(Si34) = -0.324 |e|

1.66 2.60
3p

(hybridization 3s ) are almost the same as in the octahedral structure. The other

two non-bridging equatorial atoms gain some extra negative charge with Q(Sis¢) =-0.371
le| and hybridization 3s"*"3p>¢’.

The major difference between the Oy, (‘A ¢) and Cy, ('A)) structure is the transfer
of electron density from lone pairs to Si-Si bonds. Occupation numbers in the six lone
pairs in the Oy (]Alg) isomer are 1.965 |e| and 1.964 |e|, compared to two lone pairs (Si;
and Sip) with occupation numbers 1.703 |e|, two lone pairs (Si3 and Sis) with occupation
numbers 1.914 |e|, and two lone pairs (Sis and Sig) with occupation numbers 1.931 |e| in
the Cay (‘A;) isomer. Thus, about 0.5 |¢| were transferred from lone pairs in the Oy,
structure to Si-Si bonds (primarily to Si3-Sic and Si4-Sis) in the C,y structure.

NBO analysis of NaSig” Csy (‘A1) and Cay ('A)) revealed that chemical bonding
between Na* and Si” is highly ionic. The NBO charge for Na is +0.823 |e| in NaSis” Cay
('A)) and +0.709 |e| in NaSig¢ Csy (‘A;). In both isomers there is some charge
redistribution in the corresponding Si¢> kernels due to the coordination of Na™. In the C,,
structure the axial atoms become more negatively charged [Q(Siz3) = -0.419 |e|;

1.55 2.82
3p

hybridization 3s ], the bridging equatorial atoms lose some negative charge

[Q(Siss) = -0.103 |e|; hybridization 3s"*3p®*’], and there is almost no change of the
charge on the two non-bridging equatorial atoms [Q(Sis7) = -0.391 |e|; hybridization
3s%%3p>%®]. In the C;, structure, the Si atoms located on the face closest to Na' gained

1.61 2.74
3p

some negative charge [Q(Siz34) = -0.402 |e|; hybridization 3s ], the other three
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atoms become less negatively charged [Q(Sis67) = -0.168 |e|; hybridization 3508324

13-7.2. MO Analysis

Figure 13-4 displays the MOs of Sig” Cay (‘A;) IV and NaSis Cay (‘A}) V.
Comparison of these two systems shows that the identical sets of orbitals are occupied.
From this point of view the chemical bonding in Sis> Cay (‘A;) and NaSig” Cay (‘A1) can
be assumed to be similar. The same is true for Sig> (O, 1Alg) IIT and NaSis™ (Csy, 1Al)
VI.

Upon transition from the Oy (]Alg) isomer of Sig” to the Cy (‘A;) isomer a
HOMO-LUMO switch occurs, namely, one of the 2t;, triply degenerate HOMO (3b; in
the C,y notation) switches with one of the 1t, triply degenerate LUMO (4b; in the Cyy
notations). One can see from Figure 13-5 that the 2t;,-MO has a significant contribution
from the 3s-AOs of the Si atoms, while the 1t;,-MO is primarily composed of 3p-AOs of
Si. Thus, the 2t;,-MO (3b)) to 1t;,-MO (4b,) switch in the C,, structure should result in
decreasing 3s-AOs and increasing 3p-AOs occupations. That is consistent with our
observation from the NBO analysis.

One can see from Figure 13-4 that the sodium cation can interact more favorably with the
4b,-MO rather than with the 3b;-MO and that makes the NaSis (Cay, ]Al) V structure
more stable than the NaSis (Cay, lAl) VI structure. Molecular orbitals of B6H62' O (]Alg)
VII and Sig” Oy (lAlg) IIT are shown at Figure 13-5. The sets of the occupied MOs are
identical for both systems, but the ordering is slightly different: the HOMO of B¢He> Oy,
is a triply degenerate 1t,, orbital while in Sig” it is 2t1,. Also, le, and 2a;, orbitals switch

their positions.
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3-7.3. ELF Analysis

ELF analysis is a popular modern technique, which reveals the regions within a
chemical system, where pairs of electrons with antiparallel spin can be localized. The
local maxima of the ELFs define “localization attractors,” of which there are only three
basic types: bonding, non-bonding, and core. Bonding attractors lie between the core
attractors (which themselves surround the atomic nuclei) and characterize the shared-
electron interactions. The spatial organization of localization attractors provides a basis
for a well-defined classification of bonds. From any point in space the ELF gradient is
followed to an attractor in that region, and this point is then attributed to this attractor.
The collection of all the points in space which are assigned to a given attractor is called
its basin. The synaptic order of a basin is determined as the number of atomic cores it is
connected with. The criterion of discrimination between basins is provided by the
reduction of reducible (containing more than one attractor) domains. The reduction of a
reducible localization domain occurs at critical values (saddle points) of the bonding
isosurface, over which the domain is split into domains containing fewer attractors. The
localization domains are then ordered with respect to the ELF critical values, yielding
bifurcations.

We studied the ELF of BgHs™ On ('Alyg), Sis” On (‘Ag), Sis™ Cay (‘Ay), and NaSis
Cav ('A)). The ELF bifurcations, leading to the separation of regions with chemical
significance, are shown in Figure 13-6. Let us start with the comparison of the two
octahedral isoelectronic species, BsHs> O, (]Alg) and Sig” Oy (‘A ¢), which are expected
to have similar chemical bonding. The first bifurcation in B6H62' occurs at 0.49 and leads

to the separation of 6 protonated basins (sphere-like regions), which correspond to 2e-2¢
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B-H bonds. There is a similar bifurcation in Si62', but it occurs at a higher ELF value
(0.65), and the separated sphere-like domains correspond to 6 lone pairs of the silicon
atoms. This means, that the interaction of the lone pairs and the skeletal bonds in Oy, Sig™
is stronger than the interaction of the B-H bonds and the skeletal bonds in Oy, B¢H¢>. The
regions of skeletal bonds are different as well. Bifurcation, separating localization
domains in the regions of B-B bonds occurs at 0.84, revealing 8 domains over the center
of each of octahedron faces and 12 domains, connecting these central domains with each
other. The bifurcational value is very close to the maximum value of ELF for these
domains (0.85). Thus, there is very strong interaction between basins of the
corresponding attractors, and effectively one 6-synaptic basin exists around single grid-
like attractor, covering the entire boron cage. In Si62' similar bifurcation occurs at 0.71
and gives rise to 12 separated localization domains. There are no domains over centers of
triangular faces of the cluster, the maximum ELF value at the attractors within 12
disynaptic basins, corresponding to the skeletal Si-Si bonds, is 0.78. Thus, the skeletal
bonding in Oy, Si62' 1s more “localizable” than in Oy B6H62'.

In the C,, Sis> the first bifurcation occurs at 0.64 and reveals a small bonding
domain between the two axial atoms (sheme 0.64(a)), which can be tracked down to the
ELF features of o-antiaromatic Sis’ Cay (‘A}) cluster.”” At 0.71 bonding domain between
bridge-like Si atoms is separated. Bifurcation at 0.73 produces irreducible localization
domains, corresponding to the lone pairs of the axial atoms, and the one at 0.76 finally
separates lone pairs of the bridge equatorial atoms. There are two bonding domains in the
regions of Si-Si bonding between equatorial atoms, and two more lone pairs, which can

be seen after domain reduction at 0.85. So, the interaction between the lone pair domains
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and the bonding domains is stronger in C,y, than in the Oy isomer, which is consistent
with our conclusions from the NBO and MO analysis. The last scheme demonstrates that
maximal ELF values within the basins corresponding to the axial lone pairs are lower
(0.93) than those of equatorial lone pairs (0.98). In other words, the axial lone pairs are
less “localizable”, than the equatorial ones. Scheme 0.64(b) shows ELF saddle points,
characterizing intereaction of the axial lone pairs with the bond between bridge equatorial
atoms. In the Oy, Sig” isomer ELF maxima (attractors) can be found in the same regions,
since irreducible domains exist there. These domains could have disappeared due to the
strong interaction with the lone-pair domains as the Oy, structure transforms into C,,. The
same can be true for bonding domains between the axial and non-bridge equatorial atoms,
since they merge with axial lone pairs at 0.83, but the maximum ELF value for them is
between 0.83 and 0.84.

The pattern of chemical bonding in Si62' C,y somewhat changes after introduction
of Na' into the system according to the ELF bifurcational sequence for NaSis” Ca, isomer.
The bonding domain between the axial atoms separates at 0.58 (vs. 0.64), the bonding
domain between bridge equatorial atoms — at 0.70 (vs. 0.71). Separation of the axial and
two equatorial lone pairs occurs at 0.72 (vs. 0.72) and 0.76 (vs. 0.76) correspondingly.
But there are no bonding domains between bridge and non-bridge equatorial atoms any
more (which appeared at 0.85 in Sig” Ca,), they merge with lone pair domains of the non-
bridge equatorial atoms. Finally, axial lone pairs have lower maximal ELF values (0.91)
than the equatorial ones (0.98).

Chemical bonding analysis of the Oy, (‘A, ¢) 1somer of Sis> and Oy, (]Alg) isomer

of B6H62' revealed that like in our previous study of Sisz' and B5H52' species,73 Si62'
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differs from BsHs> by involvement of the electron density, which is supposed to be “lone
pairs” of the six silicon atoms in the skeletal bonding in Sis>. This tendency of Si atoms
in silicon clusters to favor s-p hybridization rather than 3s” lone pairs is also responsible
for Sig” having two low-lying Oy (‘A ¢) and Cyy ('A}) isomers. When sodium atom is
attached to Si¢> the alteration in stability occurs. The most stable isomer of NaSis™ is
based on the Sis> kernel with the C,, symmetry. The second most stable isomers NaSis
is based on the Sis> kernel with O, symmetry.

The two low-lying Oy, (‘A ¢) and Cy, ('A)) isomers of Sis> inspired us to test the
Cav ("A)) isomer of BgHs”. We found the C,, (‘A;) isomer VIII of BgHg™ (Figure 13-3)
with the same electronic configuration is not a minimum, but a first order saddle point
with the relative energy (compared to the O (]Alg) isomer VII) of 65 kcal/mol (at
B3LYP/6-311++G**). Thus, even Si62' and B6H62' are valence isoelectronic, they have
somewhat different chemical bonding.
13-7.4. Protonation as a Way to Increase the
Relative Stability of the Octahedral Sis™ ?

From the above discussion we inferred that in order to stabilize the high symmetry
On (‘A ¢) structure of Sic> over the C,, (‘A;) structure one has to enforce sp’
hybridization on Si. In the isoelectronic B6H62' dianion, the external hydrogen atoms
enforce almost sp> hybridization on boron atoms. We tested if similar approach will work
for silicon by calculating Cy, (‘A;) IX and Oy (lAlg) X structures of SigHe'™ at the
B3LYP/6-311++G** level of theory (Figure 13-3). We checked that both structures have
the same electronic configurations as Oy (]A]g) and Cy, ('A)) structures of Sig”. We

found that both the Cay (‘A;) IX and Oy (1A1g) X structures of SigHg' ™ are true local
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minima at our level of theory, but the C, ('A}) IX structure of SigHs'™ was found to be
significantly more stable (by 19 kcal/mol at B3LYP/6-311+G*) than the Oy (1A1g) X of
SicHe'" and that is different from Sis> where the Oy, (lAlg) IIT structure is more stable
than the Cay ('A}) IV structure. Thus, protonation is not a solution for stabilization of

high symmetric Si,> clusters.

13-8. Conclusions

Well-resolved photoelectron spectra were obtained for Sic and NaSie at three
photon energies (355, 266, and 193 nm) and compared with theoretical calculations to
elucidate the structure and bonding in Sig and Si¢> in NaSig. Global minimum
structures of Sig” and NaSig” were identified first by using Gradient Embedded Genetic
Algorithm followed by B3LYP/6-311+G*, MP2/6-311+G* and CCSD(T)/6-311+G*
(except NaSis) geometry and frequency calculations. By comparing the theoretical
VDEs with the experimental data we established the ground state structure for NaSis to
be Cyy (lAl), in which the Na" is coordinated to a Cs, Si62'. Though the octahedral Si62',
analogous to the closo-form of borane B6H62', is the most stable form for the bare
dianion, it is not the kernel of the NaSis global minimum geometry. However, the
octahedral Sis> coordinated by a Na” with Cs, ('A;) symmetry is a low-lying isomer only
1.2 kcal/mol higher in energy and it was observed experimentally.

Chemical bonding analysis of the two low-lying Oy, (‘A ¢) and Cyy ('A)) isomers
of Si¢” revealed that they differ by switching one of the 2ty triply degenerate HOMO
(3b; in the C,, notation) with one of the 1ty, triply degenerate LUMO (4b; in the Cyy

notations). Because the 2t;, triply degenerate HOMO in the Oy, (‘A, ¢) 1somer contains
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significant contribution from 3s-AOs of Si and the 1tp, triply degenerate LUMO

composed of primarily 3p-AOs of Si, such MO exchange resulted in s-p promotion with
increasing sp-hybridization and increase in Si-Si chemical bonding in the Cy, (‘A))
isomer. When the Na' is attached to the Si62' cluster in NaSis it more strongly stabilizes
the 4b,-MO than the 3b;-MO, making the Cs, (‘A,) isomer of NaSis” with the Ca, (‘A})
Si62' kernel somewhat more stable than the Cs, (]Al) isomer of NaSig with the Oy (]A1 2)

Si62' kernel.
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CHAPTER 14
APPRAISAL OF THE PERFORMANCE OF NONHYBRID DENSITY
FUNCTIONAL METHODS IN CHARACTERIZATION

OF THE Al,C MOLECULE'

Abstract

In three recent publications it was predicted that an Al4C molecule is planar on the
basis of nonhybrid density functional calculations. These conclusions contradict our
earlier predictions that Al4C is tetrahedral. In order to resolve the controversy we probed
in this paper a potential energy surface of AlLC using a large variety of theoretical
methods including multiconfigurational methods and a variety of one-electron basis sets.
We confirmed that the nonhybrid Becke’s exchange with Perdew—Wang 1991 correlation
functional density functional method predicts that Al4C has a planar structure in
agreement with the reports of the other three groups. However, in this paper we have
shown that high level ab initio calculations at the coupled cluster with singles, doubles,
and noniterative triples and at the complete active space self-consistent field followed by
multireference configurational interaction levels of theory confirm our earlier prediction
that Al4C is indeed tetrahedral. The failure of nonhybrid density functional methods to
correctly characterize the global minimum structure of Al4C demonstrates that it is
dangerous to rely solely on these density functional methods in characterization of new

molecules and clusters, where experimental structure is not known.

! Coauthored by Dmitry Yu. Zubarev and Alexander I. Boldyrev. Reproduced with permission from J.
Chem. Phys. 2005, 122, 144322, Copyright 2005, American Institute of Physics.
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14-1. Introduction

In quantum chemical characterization of new molecules and clusters density
functional theory (DFT) is frequently a convenient choice. In this paper we present
evidence that some nonhybrid DFT methods predict an incorrect global minimum
structure of Al4C. In 1999 we published a combined theoretical and experimental work,'
where we characterized a AlC anion. On the basis of the extensive search, we
concluded that the Al,C™ anion has an almost planar structure (D,q , “B;) with the
inversion barrier through the planar structure (Dap , 2Bzg) being 0.14 kcal/mol. Thus,
when zero-point vibration motion is included, the vibrationally averaged structure is
actually planar. In that paper we also concluded that a neutral Al4C molecule is
tetrahedral on the basis of Becke’s three parameter hybrid functional using the Lee—
Yang—Parr correlation functional (B3LYP), secondorder Moller—Plesset perturbation
theory (MP2), and coupled cluster with singles, doubles, and noniterative triples
[CCSD(T)] calculations, all with the 6-311+G* basis sets. Our theoretical prediction was
supported by a long tail in the experimental lowest electron detachment feature X in the
photoelectron spectrum of Al4C, which confirms a large geometry change from the
quasiplanar structure of AL4C to the tetrahedral structure of Al4C. However, our
conclusions on the tetrahedral structure of Al4C molecule and the perfect square (Dap) or
quasiplanar almost square structure of ALC~ were questioned by four different groups.””

Ashman, Khanna, and Pederson predicted” that Al,C has a planar singlet C,,
structure [we call it Cyy, I in Fig. 14-1(c)]. Their calculations have been carried out using
a nonhybrid density functional formalism. The molecular orbitals were formed from a

linear combination of atomic orbitals, which were expanded as a sum of partially
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contracted Gaussian functions located at the atomic sites. A gradient-corrected density
functional proposed by Perdew, Burke, and Ernzerhof has been used to incorporate the
exchange correlation effects. The calculations were carried out at the all-electron level
and the multicenter integrals required to solve the Kohn—Sham equation were calculated
by integrating numerically over a mesh of points. All the basis sets used in their paper
have been previously optimized for density functional calculations. The basis sets
consisted of 6s, 5p, and 3d Gaussians for Al and 5s, 4p, and 3d Gaussians for C. They
started the search for the global minimum structure using several geometries, which were
minimized by a conjugate gradient approach without any symmetry restrictions. They
also probed several spin multiplicities. From these calculations they concluded that the
global minimum structure is the singlet planar C,, , I structure. They also reported that
the tetrahedral structure was found to be 0.09 eV (2.1 kcal/mol) above the planar
structure.

Rao and Jena predicted’ two nearly degenerate isomers for Al4C. A planar singlet
C,y structure [we call it Cyy, II in Fig. 14-1(e)] and a tetrahedral isomer [Ty4 in Fig. 14-
1(a)]. We would like to stress that the planar structure Csy , II reported by Rao and Jena’
is different from the planar structure Cs, , I reported by Ashman, Khanna, and Pederson.”
Rao and Jena also used the DFT method and the generalized gradient approximations
(GGA) for the exchange correlation functional due to Becke, Perdew, and Wang
(commonly referred to as BPW91) and they used a few basis sets: frozen core orbitals
(LanL2DZ basis), all-electron basis (6-311G**), and 6-311G** basis with added diffuse
functions. Rao and Jena also used geometry optimization without any symmetry

restrictions for various multiplicities and for different random starting configurations.
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Figure 14-1. Optimized alternative structure of an Al4C molecule. Relative energies are
given at the CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* and at the CASSCEF(8,10)-
MRCISD(Q)/6-311+G* levels of theory (in parentheses). NIMAG is the number of

imaginary frequencies.
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They found that the tetrahedral structure is more stable by 7.0 kcal/mol at
BPWO91/Lanl2DZ basis set and by 0.2 kcal/mol at BPW91/6-311+ +G** than the planar
structure. However, the planar structure was found to be 0.15 kcal/mol more stable than
the tetrahedral structure at BPW91/6-311G**. Rao and Jena concluded that these energy
differences are too small to be meaningful at this level of theory and it is, therefore, safe
to conclude that the ground state of neutral Al4C has two nearly degenerate structures,
distorted tetrahedral and the planar.

Li and Gong also predicted’ that Al4C has a planar structure [Cay, II in Fig. 14-
1(e)] similar to what was previously reported by Rao and Jena. They used a DFT method
with the spin-polarized GGA implemented in the Vienna ab initio simulation package.
The wave functions were expanded in a plane wave basis with an energy cutoff of 286
eV. The atomic positions were optimized by conjugated gradient method with the energy
convergence up to 0.005 eV. They used a large supercell with a lattice constant 14 A in
order to make interaction between the cluster and its periodic images negligible. The
Vanderbilt ultrasoft pseudopotential was used to describe the interaction between the core
and valence electrons. Only the G point was used in the summation of the Brillouin zone
of the simulation cell. They mentioned in their search procedure that they used many
initial structures with high and low symmetry. Additional structures with the atom
positions randomly displaced also have been added. The conjugated gradient and
simulated annealing methods have been used in search for the global minimum. Li and
Gong’ reported only one structure for Al;C the singlet planar C, , II structure. Thus,
four different groups reported that the Al4C molecule has either the planar structure [Cy,

I (Ref. 2) or Cyy, II (Ref. 5)] or planar (C,y, II) and tetrahedral structure with almost
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degenerate energies® and that the Al,C™ anion has a carbon-centered planar trapeziform
structure of Al;C".*” These results contradict our conclusion' that the tetrahedral
structure of Al4C is in fact the global minimum structure and that the Al4C anion has a
vibrationally averaged Day, planar structure. We noticed that in the four published papers,
the authors used nonhybrid DFT methods and we decided to check if their disagreement
with our results could be due to failure of these DFT methods to correctly describe an
Al4C potential energy surface. In this paper we present our extensive study of Al4C using
a variety of theoretical methods and our conclusion is that our previous statement, the
AL4C has a tetrahedral structure, is correct. Also, the reason why three other groups
predicted a planar structure for this molecule is indeed due to inherent problems in the

nonhybrid DFT methods that were used.

14-2. Theoretical Methods

In order to avoid human bias, we initially performed the search for the global
minimum of the Al4C molecule using an ab initio gradient embedded genetic algorithm
(GEGA) program recently written in our group by Alexandrova.® The hybrid method,
known as B3LYP,”” with relatively small basis set 3-21G was employed throughout the
execution of the GEGA. Briefly, within the GEGA procedure, the initial geometries of
individuals in the population are randomly generated and further optimized to the nearest
local minima on the potential energy surface, using the GAUSSIANO3 package.'’ If a
saddle point is encountered the normal mode of the first imaginary frequency is followed
until a local minimum is found. Further, the population, composed of the thus selected

good individuals, undergoes breeding and mutations. The mating, implemented in
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GEGA, is performed based on the robust technique originally proposed in 1995 by
Deaven and Ho.'' Probabilities to be bred are assigned according to the best-fit slowest-
energyd criterion. Based on the probabilities, couples of parents are randomly selected.
The geometries of parents are cut by a random cutting plane, and the thus obtained halves
sgenesd are then recombined either in a simple or in a head-to-tail manner to form a new
cluster (child). The number of atoms in the newly generated geometry is checked, and the
new cluster is optimized to the nearest local minimum. After the number of individuals in
the population is doubled within the breeding process, the best-fit group is selected and
convergence of the algorithm is checked. The GEGA 1is considered converged if the
current lowest-energy species sglobal minimum or at least very stable local minimumd
remains for 20 iterations. If the convergence is not yet met, the highest-energy species in
the population undergo mutations with a mutation rate set to 33.33%. Mutations involve
displacements of random atoms of a cluster in arbitrary directions, with the purpose of
changing the initial geometry so as to push the structure out of the current local minimum
to another well on the potential energy surface. Mutants are optimized to the nearest local
minima. After that the algorithm proceeds with the new cycle of breeding. All low-lying
1somers are detected and stored throughout the execution and they are reported to the user
at the end of the run. A few runs of GEGA are done on the system in order to confirm the
found global minimum structure.

The geometry and vibrational frequencies of the thus identified global minimum,
as well as low-lying isomers, were further recalculated at higher levels of theory. The
following set of theoretical methods have been employed: B3LYP/6-311+G*,

B3LYP/aug-cc-pvDZ, B3LYP/aug-ccpvTZ, B3LYP/aug-cc-pvQZ, BPWI1/6-311+G*,
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BPW91/aug-cc-pvDZ, BPWO9l/aug-cc-pvTZ, BPWO9l/aug-cc-pvQZ, MP2/6-311+G*,

CCSD(T) /6-311+G*, and CCSD(T)/aug-cc-pvDZ. Single point energy calculations have
been performed at CCSD(T)/aug-cc-pvTZ using the CCSD(T)/aug-cc-pv-DZ geometry
[CCSD(T)/aug-cc-pvTZ//CCSD(T)/aug-cc-pv-DZ] and at the complete active space self-
consistent field followed by multireference configurational interaction [CASSCF(8,10)-
MRCISD(Q)/6-311+G*] using the CCSD(T)/6-311+G* geometry. The 6-311+G* and 6-
311+G(2df) basis sets were described in Refs. 12—-15 and aug-cc-pvDZ, aug-cc-pvTZ,
and aug-cc-pvQZ basis sets were described in Refs. 16-20. For a description of the
nonhybrid density functional method BPWO91 see Refs. 21 and 22. The description of the
MP2 method can be found in Refs. 23-27. The coupled cluster CCSD(T) method was
described in Refs. 28-32. The description of the CASSCF method can be found in Refs.
33-38. The number of electrons N and the number of orbitals M in the active space for
CASSCF is specified following the keyword: CASSCF(N,M). Finally, the
CASSCF(N,M)-MRCISD(Q) method was described in Refs. 39 and 40.

Molecular orbitals were calculated at the RHF/6-311+G* level of theory. RHF,
B3LYP, BPW91, CCSD(T), and CASSCF(N,M) calculations were performed using
GAUSSIANO3. The CASSCF(N,M)-MRCISD(Q) calculations were done using the

MOLPRO 2000.1 program.*!

14-3. Results of Calculations and Discussion
Our GEGA search using the B3LYP/3-21G level of theory revealed only two
singlet low-lying local minima: the tetrahedral structure (Tq4, Fig. 14-1(a)] and the planar

[Cay, I, Fig. 14-1(c)]. The T4 structure was found to be the global minimum structure
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with the C,y, I structure being 15.1 kcal/mol higher in energy. That is because on the top
of the gradient optimization procedure without any symmetry restrictions, GEGA runs
frequency calculations for every optimized structure and it continues the optimization
procedure further following imaginary frequency modes until it finds a true local
minimum.

We then continued our study of Al4C using the two local minima we found from
the GEGA calculations: T4 (‘Aj,1a1%1t,°2a,°2t,°1e"); CayI (‘Ay,1a,%2a,21b,%3a,%1b,°2b,
4a,*52,°3b,"); and two additional, Da, (‘Ajglarg le,2a1. 12, 1b1g72e, 1bag") and Cay,II
('A1,1a,%1b,°2a,%3a,° 1b,°2b,%4a,*3b,75a,°), structures discussed in previous publications.
For these four structures we used a variety of methods described in Sec. 14-2. Results of
our calculations are summarized in Fig. 14-1 and Tables 14-1 — 14-5.

First, we performed calculations at the B3LYP level of theory using 6-311+G*,
aug-cc-pvDZ, aug-cc-pvTZ, and aug-cc-pvQZ basis sets. Our results at these four levels
of theory were found to be in a good qualitative agreement with the B3LYP/3-21G
results. At all four levels of theory we found only two local minima corresponding to the
Ta (‘A1) and Cay, I ('A)) structures. Tq ('A)) is the global minimum at these levels of
theory with the planar Cay, I ('A;) structure being 7-9 kcal/mol higher in energy. The
planar square Day (lAlg) is a third-order saddle point at all four levels of theory as well as
at the B3LYP/3-21G level of theory. The Day (lAlg) structure was found to be 1617
kcal/mol higher in energy than the Tq (‘A;) structure. The geometry optimization of the
Dap (lAlg) structure following the doubly degenerate imaginary frequency [w7(e,)] mode
leads to the planar Cay, II (‘A}) structure and following the nondegenerate imaginary

frequency [ws(ba)] mode leads to the tetrahedral structure Tg ('A). The planar Ca,, II
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('A)) structure reported as the global minimum structure by Rao and Jena and by Li and

Gong was found to be a first-order saddle point 9—11 kcal/mol higher in energy than the

Ta (‘A)) structure. The geometry optimization of the planar Ca,, II (‘A;) structure

following the nondegenerate imaginary frequency [wo(by)] mode leads to the planar

structure Cay , T ('A)).

Table 14-1. Calculated molecular properties of the Tq ('A,) structure of Al,C.

Method B3LYP/ B3LYP/ MP2/ CCSD(T)/ | CCSD(T)/ | BPWI91/ BPWI1/

6-311+G* | aug-cc- 6-311+G* | 6- aug-cc- 6-311+G* | aug-cc-
pvqz 311+G** | pvdz* pvqz

-Eior, 2.0 1007. 1007. 1005. 1005. 1005. 1007. 1007.
868295 904417 848076 914193 904173 793739 827974

AE, 0.0 0.0 0.0 0.0 0.0 0.0 0.0

kcal/mol®

R(C-Al), A 2.010 1.998 2.003 1.999 2.040 2.021 2.009

o;(ay), cm™ 350 (0.0)° | 350(0.0)° 359 (0.0)° | 363 342 340 (0.0)° | 342 (0.0)°

w,(e), cm’”! 97 (0.0)° 92 (0.0)° 96 (0.0)° 95 97 83 (0.0)° 76 (0.0)°

0s(t), cm’™ 610 608 (239.9) | 637 640 590 590 593 (212.7)
(246.2)°¢ ¢ (268.8) ¢ (217.71)°¢ ©

04(t), cm’™ 170 (10.1) | 166 (10.0)¢ | 175 (12.2) | 175 162 154(9.2)¢ | 148 (9.0)¢

* Eo= -1005.899090 a.u. at the CASSCF(8,10)-MRCISD(Q)/6-311+G*//CCSD(T)/6-311+G* level of
theory; Ei,=-1005.851570 a.u. at the CASSCF(8,10)-MRCISD/6-311+G*//CCSD(T)/6-311+G* level of

theory.

® E=-1005.969079 a.u. at the CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level of theory.
“ Bio=-1005.994426 a.u. at the CCSD(T)/aug-cc-pvtz//CCSD(T)/aug-cc-pvdz level of theory.

4 Relative to the tetrahedral structure. Relative energies corrected for zero-point energy.

¢ Infrared intensities (km/mol) are given in parenthesis.

In order for the second local minimum, corresponding to the structure Cay, I (‘Ay),

to be a viable isomer it should be separated by a high barrier from the global minimum T4

('A)) structure. We found a saddle point on the intramolecular rearrangement Ca,, I (‘A})

— T4 (‘A)). The calculated barrier was found to be 3.7 and 3.2 kcal/mol when not

including and including, respectively, the zero point energy (ZPE) correction (all at

B3LYP/6-311+G*). The transition state structure has a Cs ('A’) geometry [Fig. 14-1(f)],
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Method B3LYP/ B3LYP/ MP2/ CCSD(T)/ CCSD(T)/
6-311+G* aug-cc-pvqz | 6-311+G* 6-3114G**" | aug-cc-pvdz®

-Eiot, a0 1007.838190 | 1007.876556 | 1005.816996 | 1005.882368 | 1005.873442

AE, keal/mol” | 17.1 15.7 17.7 18.2 17.6

R(C-Al), A |2.034 2.024 2.033 2.029 2.078

wi(ajy), cm” | 345 (0.0)° 347 (0.0)¢ 354 (0.0)° 359 332

wy(az), cm™ | 238 (0.4)°¢ 232 (7.8)°¢ 115(5.1)° 118 208

w3(big), em™ | 232(0.0)° 236 (0.0)° 252 (0.0)° 257 225

w4(be), ecm™ | 138 (0.0)° 140 (0.0)° 175 (0.0)° 186 174

ws(bay), cm” | 65i 65i 92i 95i 71i

weley), em’ | 322(17.0)° | 326 (14.7)¢ | 404 (34.2)° | 408 351

ws(e)), ecm’ | 479i 496i 223i 2171 2501

*Ex=-1005.867751 a.u. at the CASSCF(8,10)-MRCISD(Q)/6-311+G*//CCSD(T)/6-311+G* level of
theory; Ey,=-1005.817351 a.u. at the CASSCF(8,10)-MRCISD/6-311+G*//CCSD(T)/6-311+G* level of
theory.

® Eo=-1005.941679 a.u. at the CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level of theory.

“ Bio=-1005.966481 a.u. at the CCSD(T)/aug-cc-pvtz//CCSD(T)/aug-cc-pvdz level of theory.

4 Relative to the tetrahedral structure. Relative energies corrected for zero-point energy.

¢ Infrared intensities (km/mol) are given in parenthesis.

which is almost in between the two geometries of the Coy I ('A;) and the Ty (‘A))
structures. Thus, the second Cay, I (*A}) isomer should have a rather short lifetime.

Then, we studied the same four structures using the nonhybrid BPW91 method
with the same set of basis sets: using 6-311+G*, aug-cc-pvDZ, aug-cc-pvTZ, and aug-cc-
pvQZ basis sets (see Tables 14-1 — 14-4). At this level of theory we have found three
structures corresponding to three local minima: Tq (‘A}), Cav, I (‘A1), Cav, IT ('A1). We
were not able to reach convergence at any of these levels of theory for the planar Dy
1Alg) structure. The planar Ca,, I ('A;) was found to be the global minimum at the
BPW9I1/6-311+G*, BPW91/augcc-pvDZ, BPWI9l/aug-cc-pvTZ, and BPW91/aug-cc-
pvQZ levels of theory. The tetrahedral structure was found to be only slightly above the
Cav, I ("A)) structure: 0.3 kcal/mol (BPW91/6-311+G*), 1.4 kcal/mol (BPW91/aug-cc-

pvDZ), 1.5 kcal/mol (BPW91/aug-cc-pvTZ), and 1.5 kcal/mol (BPW91/aug-cc-pvQZ).
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Table 14-3. Calculated molecular properties of the Ca,,I, ('A)) structure of Al4C.

Method B3LYP/ B3LYP/ MP2/ CCSD(T)/ CCSD(T)/ | BPWIl/ BPWI1/
6-311+G* | aug-cc- 6-311+G* | 6-311+G**° aug-cc- 6-311+G* | aug-cc-
pvqz pvdz’ pvqz
-Eqor, 2.0 1007. 1007. 1005. 1005. 89205 | 1005. 1007. 1007.
85497 89310 83295 88642 79456 83071

AE, 8.4 7.2 9.3 13.6 11.1 -0.3 -1.5

kcal/mol®

R(C-Al), A | 2.702 2.688 2.693 2.593 2.748 2.713 2.699

R(C-Aly), A | 1.956 1.947 1.962 1.960 1.998 1.963 1.954

R(C-Alyys), 1.914 1.906 1.930 1.928 1.956 1.927 1.918

A

<AL CAlys, | 67.4 67.5 65.9 69.2 67.2 66.3 66.5

degrees

wi(ay), 731 736 (473.7) | 761 732 695 722 726 (355.3)

cm’! (473.6)° ¢ (526.9)° (351.6)° ¢

wy(ay), 392 (10.8) | 395(10.2)° | 394 (17.9) | 395 372 386(8.5)° | 389(8.0)°
-1 € €

cm

ws3(ay), 255(4.2)° | 257 (4.1)° 266 (3.1)° | 252 250 267 (3.2)° | 268 (3.0)°
-1

cm

wy(ay), 112 (12.5) | 110 (13.1)° | 144 (6.8)¢ | 119 119 120 (5.9)¢ | 117 (6.4)°¢
-1 e

cm

ws(by), 218 (4.7)° | 211 (1.9)° 130 (5.3)° | 121 176 201 (4.4)° | 195(1.6)°
-1

cm

wg(by), 51(0.1)° 51(0.2)° 100i 85i 47 52(0.1)° 49 (0.3)°
-1

cm

w7(by), 793 (23.1) | 801 (22.4)° | 779 (22.6) | 787 742 766 (13.3) | 774 (13.2)°
-1 € € €

cm

wg(by), 262 (20.6) | 266 (21.1)° | 312 (8.6)° | 279 263 282 (14.0) | 284 (14.2)¢
-1 € €

cm

wy(by), 105 (2.0)°¢ | 102 (2.1)° 75(1.6)° 88 99 81(2.3)° 75(2.4)°
-1

cm

?Ex=-1005.879573 a.u. at the CASSCF(8,10)-MRCISD(Q)/6-311+G*//CCSD(T)/6-311+G* level of
theory; Ei,=-1005.828057 a.u. at the CASSCF(8,10)-MRCISD/6-311+G*//CCSD(T)/6-311+G* level of

theory.

® Eo=-1005.954798 a.u. at the CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level of theory.
“ Bio=-1005.979732 a.u. at the CCSD(T)/aug-cc-pvtz//CCSD(T)/aug-cc-pvdz level of theory.

4 Relative to the tetrahedral structure. Relative energies corrected for zero-point energy.
¢ Infrared intensities (km/mol) are given in parenthesis.
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Finally, the second planar structure Cay, II (‘A;) was also found to be slightly
higher in energy than the Cay, I ('A}) structure at these levels of theory: 0.7 kcal/mol
(BPW91/6-311+G*), 1.4 kcal/mol (BPW91/aug-cc-pvDZ), 0.5 kcal/mol (BPW91/aug-cc-
pvTZ), 0.4 kcal/mol (BPW91/aug-cc-pvQZ). Thus, our findings using the nonhybrid DFT
(BPWO91) method generally agree with the previous DFT results reported by three other
groups. However, they do not agree with our results with the hybrid DFT method
(B3LYP).

As the next step we performed calculations using conventional ab initio methods
such as MP2/6-311+G*, CCSD(T)/6-311+G*, and CCSD(T)/aug-cc-pvDZ. At these
three levels of theory we found the T4 (‘A )) structure to be the global minimum structure.
The planar C,,, I ('A}) structure was found to be a local minimum at the CCSD(T)/aug-
cc-pvDZ level of theory being 11.1 kcal/mol higher in energy than the tetrahedral
structure. It is, however, a first-order saddle point at the MP2/6-311+G* and CCSD(T)
/6-311+G* levels of theory. Geometry optimization following the we(b;) imaginary
frequency mode ended up at the Cs ('A’) structure [Fig. 14-1(d) and Table 14-5], which is
only slightly nonplanar. The barrier for planarity is 0.16 kcal/mol (MP2/6-311+G*) and
0.14 kcal/mol [CCSD(T)/6-311+G*] which is smaller than the difference in ZPE
corrections between the planar Cay, I ('A}) and the quasiplanar C, ('A’) structures: 0.22
kcal/mol (MP2/6-311+G*) and 0.21 kcal/mol [CCSD(T)/6-311+G*]. Therefore, when
zero-point vibrational motion is considered, the vibrationally averaged structure is
actually planar at these two levels of theory. The recalculated energy of the structure C
('A’) at the CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level of theory was a little bit

higher (0.2 kcal/mol) than the planar structure at the same level of theory. The deviation



Table 14-4. Calculated molecular properties of the Cay,I1, (*A,) structure of ALC.
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Method B3LYP/ B3LYP/ MP2/ CCSD(T)/ CCSD(T)/ BPWI1/ BPWI1/
6-311+G* | aug-cc- 6-311+G* | 6- aug-cc- 6-311+G* | aug-cc-
pvqz 311+G*** | pvdz* pvqz
-Eior, 2.0 1007. 1007. 1005. 1005. 1005. 1007. 1007.
851317 889884 827658 888292 880154 793453 830121

AE, 10.5 9.0 12.6 15.7 14.7 0.4 -1.1

kcal/mol®

R(C-Aly3), | 2.135 2.123 2.167 2.129 2.188 2.147 2.137

A

R(C-Alys), | 1.926 1.918 1.928 1.936 1.969 1.934 1.926

A

<ALCAL;, | 73.9 74.1 70.4 74.5 74.1 76.7 72.8

degrees

<Al,CALs, | 123.0 122.8 132.9 121.2 121.7 128.2 128.0

degrees

wi(ar), cm™ | 649 654 (342.8) | 650 658 611 639 644 (296.3)

! (351.7)°¢ ¢ (495.4)° (302.8) ¢ ¢

wy(ar), em” | 370 (10.1) | 373 (10.2)° | 380 (5.0)° | 372 347 373 (7.0)° | 376 (7.5)°

1 e

w3(ay), em” | 301 (11.4) | 306 (11.7)° | 359 (17.0) | 296 281 328 (8.8)° | 331(8.9)°

1 e e

wy(ar), em™ | 174 (0.0)° | 175(0.1)° 169 (13.4) | 154 148 186 (1.5)° | 188 (1.5)°

1 e

ws(ay), em™ | 71 (0.0)° 71 (0.0)° 87 (0.0)° 42 58 85 (0.0)° 85 (0.0)°

1

wg(by), 213 (0.0)° | 210(0.3)° 122 (0.2)° | 127 172 185 (0.0)° | 183 (0.5)°
-1

cm

w7(by), 757 (81.7) | 762 (78.1)¢ | 794 (44.2) | 755 701 759 (46.7) | 764 (45.5)°
-1 € € €

cm

wg(by), 238 (1.2)° | 242 (1.5)° 266 (9.2)° | 240 223 258 (2.4)° | 262 (2.6)°
-1

cm

wo(by), 65i 53i 105i 111i 133i 69 (9.0)° 76 (8.8)°
-1

cm

?Ex=-1005.874865 a.u. at the CASSCF(8,10)-MRCISD(Q)/6-311+G*//CCSD(T)/6-311+G* level of
theory; Ei,=-1005.823786 a.u. at the CASSCF(8,10)-MRCISD/6-311+G*//CCSD(T)/6-311+G* level of

theory.

® E=-1005.950976 a.u. at the CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level of theory.
“ Bio=-1005.975784 a.u. at the CCSD(T)/aug-cc-pvtz//CCSD(T)/aug-cc-pvdz level of theory.

4 Relative to the tetrahedral structure. Relative energies corrected for zero-point energy.
¢ Infrared intensities (km/mol) are given in parenthesis.
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from the planarity in the Cay, I (‘A}) structure could be an artifact due to the 6-311+G*
basis sets. The planar structure Cay, I (‘A}) is appreciably higher in energy than the Tq
('A)) structure: 9.3 kcal/mol (MP2/6-311+G*), 13.6 kcal/mol [CCSD(T)/6-311+G*],
11.1 kcal/mol [CCSD(T)/aug-cc-pvDZ]. We also used more extended basis sets for
evaluating the relative energy difference between the Cp, I (‘A;) and the Ty (‘A))
structures. At our highest level of theory the Ca,, I (‘A}) is higher than the Ty (‘A))
structure by 9.0 kcal/mol [CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*] and by 9.2
kcal/mol [CCSD(T)/aug-cc-pvTZ//CCSD(T)/aug-cc-pvDZ]. The quasiplanar C, (‘A’)
structure is higher than the Tg ('A) structure by 9.2 kcal/mol [CCSD(T)/6-311+G(2df)
/ICCSD(T)/6-311+G*]. We also probed the multiconfigurational contribution to this
difference. We used CASSCF(8,10)-MRCISD/6-311+G* and CASSCF(8,10)-
MRCISD(Q)/6-311+G* methods. We found that Ca,, I ('A}) is higher than Tg (‘'A}) by
14.8 kcal/mol [CASSCF(8,10)-MRCISD/6-311+G*//CCSD(T)/6-311+G*] and by 12.2
kcal/mol  [CASSCF(8,10)-MRCISD(Q)/6-311+G*//CCSD(T)/6-311+G*].  We used
Davidson’s corrections for accounting for higher order excitations. The Hartree—Fock
functions were found to be dominant in the CASSCF expansions: Cyr=0.924 for Ty (‘A)),
Cur=0.918 for Cay, I ('A)). Thus, the use of the CCSD(T) method is justified. All our ab
initio methods [MP2/6-311+G*, CCSD(T)/6-311+G*, and CCSD(T)/aug-cc-pvDZ]
clearly demonstrated that the Dgp, (lAlg) structure is a third-order saddle point and the C,,,
IT ('A)) structure is a first-order saddle point.

At B3LYP, MP2, and CCSD(T) levels of theory the Al4C potential energy surface
is almost the same. There are two local minima Ty ('A;) and Cay, I (‘A}) [or Cs (‘A%)]

with the tetrahedral structure being the global minimum and being appreciably more
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Table 14-5. Calculated molecular properties of the Cs, (‘A”) structure of AL,C.

Method MP2/6-311+G* CCSD(T)/6-311+G**
-Eqop, 8.1 1005.833209 1005.892274
AE, kcal/mol” 9.4 13.6
R(C-Al), A 2.693 2.596
R(C-Aly), A 1.962 1.959
R(C-Alys), A 1.931 1.928
<AlL,CAlys, degrees 65.8 69.2
<Al,CAls, degrees 131.7 138.3
<Al;CAlys, degrees 113.2 110.3

<AL CAl;, degrees 165.7 165.5
wy(a’), em” 757 (518.1)° 731

wy(a’), em’” 400 (16.1)° 399

ws(a’), cm’ 269 (2.0)° 255

w4(a’), cm’ 199 (8.7)° 196

ws(a’), cm’ 147 (6.6)° 123

we(a’), cm™ 73 (0.2)° 61

w,(a”), cm’ 776 (22.2)° 786

wg(a”), cm’ 312 (8.7)° 278

wo(a”), cm’ 83 (1.7)° 95

?E,=-1005.954367 a.u. at the CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level of theory.
® Relative to the tetrahedral structure. Relative energies corrected for zero-point energy.
¢ Infrared intensities (km/mol) are given in parenthesis.
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stable that the Ca, I (‘A;) [or Cs (‘A”)] isomer. The barrier to the intramolecular
rearrangement Ca,, I ('A;) — T4 ('A}) was found to be rather small and the second, Cay I
('A)), isomer should have a rather short lifetime. The C,, II (*A}) structure, reported by
Rao and Jena as a local minimum and by Li and Gong as the global minimum, is in fact a
first-order saddle point. Finally, the perfect square Day (‘A ¢) structure is a third-order
saddle point. Calculated optimal geometric parameters, harmonic frequencies, and
relative energies at the B3LYP, MP2, and CCSD(T) levels of theory agree reasonably
well with each other (Tables 14-1 — 14-5).

On the basis of the confirmations of our previous results' for the neutral Al,C
molecule, we concluded that our prediction of the planar square (Dap szg) structure for
ALC at the B3LYP/6-311+G* and MP2/6-311+G* and quasiplanar almost square (Dygq
’B)) structure [we would like to stress one more time that the energy difference between
(Dag, “B1) and (Dap, szg) is very small and the vibrationally averaged structure is actually
planar at this level of theory] at the CCSD(T)/6-311+G* is also correct. Thus, we
disagree with the conclusions about a carbon-centered planar trapeziform structure of
AlC predicted by Ashman, Khanna, and Pederson,2 Rao and Jena,3 by Zhao and co-

workers,” Li and Gong,” which were based on nonhybrid DFT methods.

14-4. Conclusions

On the basis of all our calculations we conclude that a Al4C molecule has the Tq4
('A}) global minimum structure, which is appreciably more stable than the planar or
quasiplanar C,, I (*A}) [or Cs (*A”)] isomer. The planar Cy, II (‘A)) structure, which was

found to be a local or even a global minimum structure by Rao and Jena and Li and
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Gong, is in fact a first-order saddle point. The reason why these groups failed to correctly
identify the global minimum structure of Al4C is a weakness in the nonhybrid DFT
methods used in describing the Al4C potential energy surface. Because nonhybrid DFT
methods are frequently used for characterizing new molecules and clusters we believe it

could be dangerous in such studies to solely rely on these methods.
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CHAPTER 15
GLOBAL MINIMUM STRUCTURE SEARCHES VIA

PARTICLE SWARM OPTIMIZATION'

Abstract

Novel implementation of the evolutionary approach known as Particle Swarm
Optimization (PSO) capable of finding the global minimum of the potential energy
surface of atomic assemblies is reported. This is the first time the PSO technique has been
used to perform global optimization of chemical systems. Significant improvements have
been introduced to the original PSO algorithm to increase its efficiency and reliability
and adapt it to chemical systems. The developed software has successfully found the
lowest-energy structures of the LJ,s Lennard-Jones cluster, anionic silicon hydride SioHs,
and triply hydrated hydroxide ion OH™ (H,O);. It requires relatively small population
sizes and demonstrates fast convergence. Efficiency of PSO has been compared with

Simulated Annealing, and the Gradient Embedded Genetic Algorithm (GEGA).

15-1. Introduction

Determination of the topography of potential energy surfaces of various atomic
assemblies is a “hotspot” of modern computational chemistry. In certain cases it can be
important to establish all the possible isomers of a given stoichiometry,’ but generally
only the lowest-lying isomers (the global minimum structures) and their closest

competitors are of the practical interest. The number of stable atomic arrangements grows

' Coauthored Seth T. Call, Dmitry Yu. Zubarev and Alexander I. Boldyrev. Reproduced with permission
from J. Comput. Chem. 2007, 28, 1177-1186.
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extremely fast as the size of the system increases, especially in the case of heteroatomic
assemblies. As a result, manual search procedures become highly unreliable creating
demand for automated procedures based on human-unbiased algorithms. For example,
the search for isomers and conformers can be performed using fast and comprehensive
“kick” method developed by Saunders,” or similar random search and minimization
technique proposed by Lloyd and Johnston.” “Conformation flooding” by Grubmuller®
may be used to study conformational transitions in macromolecular systems. The search
for global minimum structures can utilize different implementations of several major

151617 multicanonical

algorithms, such as simulated annealing,”'* basin hopping,
methods,"® and genetic algorithms.'®"*****® Minima hopping algorithm has been
proposed recently.”’

This paper presents an original implementation of the Particle Swarm
Optimization (PSO) strategy, which before now has not been used to solve the problem
of finding the global minimum of the potential energy surface of chemical systems. PSO
is a relatively new evolutionary approach, developed by Eberhart and Kennedy in 1995.%%
PSO has been the focus of much research including but not limited to References 29-36.
In a survey paper,’> the authors report that within only five years of its invention, the
general-purpose algorithm was being actively researched and utilized in over twelve
countries. PSO has been used with neural networks to diagnose patients with human
tremor, including Parkinson’s disease. It has been used in a Japanese electric utility for
optimizing discrete and continues variables managing power control strategies. PSO has

also been used to manage the mix of ingredients used for growing strains of

microorganisms that secrete products of interest to manufacturing companies.
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In adapting PSO to find global minimum structures, the work presented here has
several notable benefits. These include
* flexible random initialization procedure controlling the quality of the initial
population in terms of the fragmentation of the generated structures. Starting with
non-fragmented structures helps to avoid exploring insignificant configurations.
* measurement of the similarity of structures using a distance metric. This metric
ignores irrelevant translation and rotation information and solves the problem of
revisiting configurations.
* enforcement of user-defined minimum distance constraints between atoms with
different minimum distances between different types of atoms. This provides a
flexible way to control the size of the search space.
This PSO application allows atoms to be grouped into sets that are moved and rotated as
rigid units. This makes the application useful in analyzing chemical systems consisting of
atomic groups preserving their structure, e.g. solvated molecules or ions. The Potential
Energy Surface can be specified either explicitly by an analytical expression or via
sampling performed by external quantum chemical software. The developed software
runs in parallel and can be easily stopped and restarted. Previous research®® indicates that
PSO requires smaller population sizes to find global minimum structures than genetic
algorithms. Population based methods are advantageous because they can be run in
parallel.

Several chemical systems were chosen to test the ability of PSO to find lowest-
energy structures, to estimate its performance, and to compare its efficiency with

alternative algorithms. The first chemical system was the LJ,s cluster. This is a
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representative of a family of LJ; clusters whose potential energy surface can be described
by the Lennard-Jones potential and which serve as a model of, for example, noble gas

clusters. The relative simplicity of Lennard-Jones clusters and significant number of

15, 37-89

studies on their possible low-energy structures up to n=1000 make them an

excellent test system for various global optimization techniques. Lennard-Jones clusters

51,62,64-67

have been studied by means of genetic algoritms, various hypersurface

68-75 15,76-84

deformation methods, annealing methods, the “pivot method”, ***’ the “taboo

search”,**" and other techniques.”® The second studied system was Si;Hs silicon hydride
anion. Silicon hydrides SiHy (x=1-3) and Si;Hy (x=1-6) in both neutral and anionic forms
are systems of high practical importance because they are used in semiconductor industry
in silicon chemical vapor deposition processes.”’ They are believed to participate in the
chemical reactions of circumstellar envelopes of dying carbon stars.”> From the
theoretical point of view, silicon hydrides are attractive due to their peculiar bonding

93,94

characteristics in comparison with isovalent carbon congeners. So, various silicon

95-109

hydrides and corresponding anions have been actively studied experimentally and

theoretically.'*'*® Geometry of anionic Si,Hs has been reported, for example, by
Schaefer and co-workers.'”” The third test system was hydroxide ion coordinated with
three water molecules OH™ (H,0);. The OH™ anion and its solvation complexes play an
essential role in aqueous chemistry.'*® Theoretical studies of the structure of the solvation
complexes OH(H,O), (n = 1 - 17) have been performed by various groups. Parrinello

131, 132

and co-workers reported results of ab initio molecular dynamics investigations,

133-135

while other authors reported results of systematic manual searches for the lowest-

energy isomers. In the combined experimental and theoretical work of Johnson and co-
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workers'*® the composition and structure of complexes of OH™ and water molecules were
finally established.

All three test systems have been previously studied and their structures are
known. Their size is big enough to make the search non-trivial but small enough to allow
testing in a reasonable time. These systems represent different classes of atomic
assemblies which can be successfully studied by the developed PSO software. Ll is a
cluster which is described by analytical Lennard-Jones potential and serves as a model of
clusters of noble gases, Si;Hs" is a regular ion with covalent bonding, and OH™ (H,O); is a
system consisting of three independent chemical subunits which preserve their chemical
identity.

The structure of the present paper is as follows: Section 15-2 is an analysis of the
size of the search space, Section 15-3 discusses current techniques for finding global
minimum structures, Section 15-4 discusses the PSO algorithm, Section 15-5 discusses
the details of the computational experiments on Si;Hs, OH(H,O)s, and LJ,6, and Section

15-6 summarizes and concludes the work presented.

15-2. Size of the Search Space

This section analyzes the size of the search space. This analysis supports previous
results, which state that the problem is nondeterministic polynomial-time hard (NP-
hard)."” This means for every known algorithm, the function representing the time
necessary to find the correct solution is non-polynomial (i.e. exponential) in terms of the
number of atoms and the volume of space in which the atoms may roam. In this

application, sets of one or more atoms are placed in groups that are moved and rotated
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[3

together as rigid units. Sometimes, these “units” are actually molecules, and in other
situations, they are simply groups of one or more atoms. Most applications limit
coordinates within a sphere or cube, and for simplicity, the newly developed application
uses a cube. It is also helpful to measure the search space as discrete rather than
continuous since continuous search spaces are infinite. Let the length, width, and height
of the cube be w. Let the x, y, and z coordinates of each unit’s center of mass be
multiples of d lying in the range [0, Ld] where w = Ld and where L + 1 is the number of
possible values each coordinate can have. Note that in this analysis of the search space
size, only the center of mass of each unit is confined within the cube, and some atoms
may lie slightly outside the cube. Also note that the application itself requires that both
atom coordinates and unit centers of mass are within the cube.

Three angles are used for representing the rotation of units. In aviation terms,
these angles are roll, pitch, and yaw. Rotation around the vertical axis is called yaw.
Rotation around the side-to-side axis is called pitch. Rotation around the front-to-back
axis is called roll. Roll and yaw can have values in the range of [0, 2x), while pitch can

have values in the range of [0, «]. Letting angles be a multiple of some angle 0, there are

(Lﬂ) possible values for roll and yaw and ( id +1) possible values for pitch. The size of the
) )

search space S can be defined as follows:

m

S=(L+1)’<"+’")((%”)2(£+1)] (15-1)

0

where n is the number of units containing one atom and m is the number of units

containing multiple atoms. It should be noted that this simple equation does not handle
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duplicate solutions that arise due to translation and rotation, but it does provide a
representative concept of how the search space grows.

In choosing 0 for the units with multiple atoms, it is desirable to have a choice not
allowing changes in any atom’s coordinates greater than d. Let U be the unit with atom F
furthest from the unit’s center of mass, f be the distance from F to U’s center of mass, C
be a circle of radius f, and let R be an arc on C of length d and angle 0. The angle 6 can

be computed using the formula:

0= (15-2)

d
f
where 0 is measured in radians. Substituting Equation 15-2 into Equation 15-1 and

simplifying yields:

343 2 2\
S=(L+1)“”*’”’(4”df +4”d2f) (15-3)

As indicated, the size of the search space grows exponentially as L, m, n, and f get larger
and as d gets smaller. This means if an exhaustive search of every possible structure
where to be tried, and if coordinates were a multiple of d, the number of times energies
would have to be evaluated would increase exponentially with the number of units and
the volume of the cube. Similarly, the time required for a successful PSO, genetic
algorithm, basin hopping, or other run also grows exponentially with the number of units

and with the volume of the search cube.



344

15-3. Current Techniques for Finding
Global Minimum Structures

The most common methods for finding global minimum structures of chemical
systems include simulated annealing, basin hopping, and genetic algorithms. Simulated
annealing, basin hopping and multicanonical methods have a common foundation: a
Markov process based on the Metropolis algorithm with a Boltzmann factor leads to a
thermodynamic distribution. This means, that the ground state configuration will be
dominant provided that the temperature is low enough. In principle, this guarantees
success of the global minimum structure search. Simulated annealing®'* generally starts
with a single random chemical structure. At each step a small perturbation is made to the
structure, after which the energy value is recalculated. If the energy value is better, the
perturbation is accepted. If it is worse, the perturbation is accepted with a certain
probability, which is based on the temperature. At the start of a run, the temperature and
the probability of accepting a bad perturbation are very high. The temperature decreases
slowly over the course of the run. At the end, the temperature and the probability of
accepting bad perturbations are very low. Essentially, the algorithm is a slow transition
between a random search and a downhill search.

Another technique receiving recent attention is basin hopping.'>'®'” Developed
by Wales and Doye, this technique is like simulated annealing in that it starts with a
single random structure, performs random perturbations, and accepts or rejects these
probabilistically. It is different from simulated annealing, first of all, because it does not
decrease the temperature, but fixes it at some value. Second, instead of using the energy

values of the original and the perturbed structures, basin hopping uses the energy values
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from copies of these structures that have been optimized to their nearest local minima
using gradients. This helps ensure that the algorithm is not inhibited by high-energy
barriers and that it always moves toward lower minima.

One problem with thermodynamic methods such as simulating annealing is that
they are not guaranteed to achieve the equilibrium distribution within any given time.
Moreover, it is more likely to obtain the thermodynamic equilibrium distribution if the
process goes infinitely slow.

. : 17,19a,20-2
Genetic algorithms'"'**20-2

use a population of randomly generated candidate
solutions, which evolve to form better solutions according to the Darwinian model of
evolution. In this model, each candidate solution has a set of genes encoding the solution.
Traditionally, the encoding is binary, though in many applications the solution is
represented using a set of variables. Members of the population are mated producing
children with characteristics of both parents. The best or fittest individuals are saved for
the next generation. Genetic algorithms are implemented in a variety of ways, and the
approach taken can have significant effects on how well the algorithm performs. The key
ingredients of a genetic algorithm include the method for encoding the solution, the
approach to performing mating, the algorithm that selects which candidate solutions to
mate, and the technique for choosing which candidate solutions to keep and which to
throw away. Genetic algorithms generally perform mutation of candidate solutions using
a variety of approaches to help introduce diversity into the population. Also, many
genetic algorithms such as the Gradient Embedded Genetic Algorithm (GEGA) by

6

252 . . . .. .
Alexandrova®™?° optimize chemical structures to their nearest local minimum using

gradients.
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15-4. Particle Swarm Optimization
15-4.1. Generalized Particle Swarm
Optimization

PSO?*¢ is based on observed behaviors of swarms of insects or flocks of birds,
where each candidate solution or particle is guided by memory of the best solution it has
seen and the best solution seen by the population. It is similar to a genetic algorithm in
that it has a randomly initialized population, though it is different in that variables in
candidate solutions have a velocity by which they are flown through the search space.
Each variable’s velocity is updated according to the formula:

X=Xx+vVv (15-6)
where x is the given variable and v is its associated velocity. Each velocity v is
influenced by the value of x in the best solution seen by the particle and in the best
solution seen by the population of particles. More specifically, each velocity v is updated
according to the formula:

v=wv+cr(b, —x)+c,n(b - x) (15-7)
where the variables are defined below.

w is the inertia value which is usually slightly less than 1.

by, is the value of the given variable from the best solution seen by the swarm.

b; is the value of the given variable from the best solution seen by the particle.

c; and c; are constants indicating how much the particle is directed toward the
best solution seen by the swarm and by the particle respectively.

11 and r; are random numbers in the range [0, 1].
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PSO also has the benefit that all variables change at the same time, which means the
search space is examined quickly. Velocities of solution variables are typically not
allowed to exceed a predefined limit called V.. Having Vi, set high facilitates global
rather than local exploration. Having Vy.x set low restricts global exploration and
encourages local exploration. The acceleration constants c¢; and ¢, determine the extent to
which particles are directed toward the best solution seen by the swarm and by the
particle respectively. Having a higher ¢, value causes all particles to be most attracted
toward the best solution seen by the swarm. Having a higher c, value allows particles
more time to roam away from the best solution seen by the swarm. The inertia weight w
is designed to balance global and local exploration and, in some cases, eliminates the
need for V.. The weight w is usually decreased linearly from 0.9 to 0.4 allowing a
global search toward the beginning and a more local search toward the end.
15-4.2. Particle Swarm Optimization for
Finding Stable Chemical Structures

The PSO algorithm as adapted for global optimization of chemical systems
required some modifications. For example, the application uses two types of velocities,
one for each unit’s center of mass and the other for each unit’s angles. Both of these have
their own V.. In the case of a unit’s center of mass, when the magnitude of the velocity
vector exceeds the coordinate V., the X, Y, and Z components of that vector are scaled
to keep the magnitude within the coordinate V.. In the case of a unit’s angles, each
angle velocity is not allowed to exceed the angle V.x, while the magnitude of the angle
velocity vector may exceed the angle Vi« In the case of the angles roll and yaw, these

are attracted along the closest route to the destination angle. For example, if the current
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roll angle is 340° and the target of attraction is 20°, the angle is attracted in the positive
direction and takes the shorter route around the circle to the target angle.

Another novel feature that was added to this implementation of PSO is that the
best solution seen by a particle is sometimes not updated with a newly discovered best
solution seen in the current iteration. This update is not performed, if it places the
particle’s best solution within a user-defined distance of the best solution seen by
particles in the population. Ensuring that the personal best and group best solutions seen
by a particle are different helps prevent the particle from slowing down or stopping
during the course of the algorithm. Other novel modifications of the general PSO
algorithm and the incorporation of pre-existing advanced PSO techniques are described
in subsequent sections.

15-4.3. Random Initialization of Chemical
Structures

This PSO application has several methods for creating structures in the initial
population. When creating the random initial population, the probability of generating
linear or planar structures is very low. Linear and planar structures are chemically very
important, however, so it is beneficial to create such structures in the initial population.
Unit and atom coordinates in /inear structures are initialized within a box having a length
equal to the length of the search cube and a height and width equal to a small user-
defined value. The centers of mass of planar structures are initialized in a box having a
length and width equal to the length of the search cube and a height of zero.

It is also beneficial to eliminate species from the initial population that consist of

several non-interacting fragments. For example, when the structure of an N-atomic
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cluster is studied, there is no need to consider systems split into several smaller clusters
with the same total number of atoms. This PSO software can also initialize random
structures of these three types:

1. Fragmented structures

2. Partially non-fragmented structures

3. Completely non-fragmented structures
Fragmented structures contain units, groups of one or more atoms, in random locations
within the search cube. Partially non-fragmented structures are created such that every
atom is within the maximum distance of, at least, one other atom. In cases excluding
noble gases, globally minimum structures rarely contain single atoms not close to, at
least, one other atom. Completely non-fragmented structures can be best understood in
terms of a graph wherein nodes are atoms and edges exist between each pair of atoms that
are within the maximum distance of one another. A completely non-fragmented structure
is one whose graph is connected or in which there is a path of consecutive edges between
each pair of nodes. Figure 15-1 illustrates the differences between these three structure
types. The methods initializing the two non-fragmented structure types are novel
approaches.

Minimum distance constraints are always enforced between atoms. This allows
escaping energy computations for chemically unrealistic systems, which are likely to
have convergence problems. The user may specify different minimum distances between
different types of atoms. The user also specifies the maximum distance constraint for

partially and completely non-fragmented structures.
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Figure 15-1. Example illustrations of (a) fragmented structures, (b) partially non-
fragmented structures, and (c) completely non-fragmented (connected) structures.

A common function is used to initialize partially and completely non-fragmented
structures and to enforce minimum distance constraints. This function positions one unit
(unit 1) relative to another unit (unit 2) along a specified direction as seen in Figure 15-2.
Let L be a line between the centers of mass of the two units, and let R be a line passing
through atom 2 that is parallel to L. Let atoms 1 and 2 be the closest pair of atoms in the
two units. These are found by moving unit 1 far away from unit 2 along L. All pairs of
atoms, one from each unit, are examined to find the pair with the closest distance. Next,
the value y is randomly assigned between the minimum and maximum limits, and the
appropriate d value is calculated indicating the distance that should exist between the
units’ centers of mass which lie along L.

In some cases, the pair of atoms in the two units that are closest to one another
differs when the units are far apart compared to when they are close together. In these
cases, after d is calculated, the two units are moved apart a long L a little at a time, until

the minimum distance constraints are satisfied.
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Figure 15-2. Diagram, illustrating how unit 1 is positioned relative to unit 2 along the line
L. Atom 1 and atom 2 are the closest atoms in the two units.

15-4.4. Enforcing Minimum Distance
Constraints in PSO

PSO facilitates a faster exploration of the search space since all atoms in each
structure are moving at the same time. One implementation challenge this poses is how to
enforce the minimum distance constraints between atoms. This is necessary not only to
reduce the size of the search space but also to help ensure that energy calculations
converge as efficiently as possible. The following steps represent a simple method for
solving this problem.

1. Detect pairs of units violating minimum atomic distance constraints

2. If no units violate the atomic distance constraints, quit

3. Randomly choose one pair of units violating the constraints

4. Move one randomly chosen unit in the pair away from the other unit in the pair

5. Goto Step 1
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Step 4, which moves units apart, is performed using the technique described in the
previous section. The above procedure represents a simple solution to the problem and is
very fast with less than one hundred atoms. More complex and efficient approaches may
be considered in cases with larger numbers of atoms.

Some might suggest that enforcing the minimum distance constraints modifies the
progress of the algorithm. For example, two large units wanting to pass through one
another could be prevented from doing so when minimum atom distances are enforced.
To compensate for this, an option in the program will allow the minimum distance
constraints to be enforced on a copy of each structure rather than on the original. This
helps convergence of energy calculations without modifying the progress of the
algorithm.

15-4.5. Using a Local-Neighborhood with
PSO

In the original version of PSO, each particle is attracted toward the best solution it

has seen to date, as well as to the best solution seen by the population. In a local-

neighborhood version of PSO,’’

instead of being attracted toward the best solution seen
by the population, each particle is attracted toward the best solution seen by particles
within a given local neighborhood. Implementing this technique requires a distance
metric to determine the degree of similarity of two chemical structures. This metric,
described in the next section, ignores the translation, rotation, and mirror reflection of

chemical structures when comparing them. Use of this metric reduces the size of the

search space by placing truly similar chemical structures in the same local neighborhood.
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A visibility distance determines the size of the local neighborhood within which
each particle can see other particles. The user specifies a starting visibility distance and
an amount by which the visibility distance will increase after each iteration. This allows
the visibility to start low and grow during the course of the algorithm, thereby reducing
the likelihood that PSO will become stuck in a local minimum.

15-4.6. Distance Metric Comparing Pairs
of Structures

The distance metric in this application uses a matrix of interatomic distances. A
distance matrix is advantageous because it is not dependent on position or rotation. The
metric required ordering the atoms. This ordering is based first on the atomic number of
each atom and second on the atom’s distance from the center of mass. The metric
calculates the root-mean-square (RMS) distance of the differences between pair wise

atom distances according to Equation 15-8:

1
2
n —n\iyi-ia

2

RMS(A,B) = ﬁzl S (d(aa)-d(b,b,)) (15-8)

where n is the number of atoms, d(a;, a;) is Euclidian distance, a; and a; are the the 1’th

and j’th atoms in structure A, respectively, and b; and b; are the the 1’th and j’th atoms in

2
no -

structure B, respectively. The Value( ) is the number of unique pairs of atoms,

which is the same in both structures.
There is a similar method for comparing two proteins'®’ that also uses a distance

matrix wherein each element of the matrix is the distance between two amino acids, one
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from each protein. This method performs translation and rotation of one protein to

minimize the RMS distance to the other protein according to Equation 15-9:

RMS,,,,.,.(4.B) = ,/12 d(a,.b,)’ (15-9)
n 4

where n is the number of amino acids, a; is the primary carbon atom of the 1’th amino
acid in protein A, and b; is the primary carbon atom of the 1’th amino acid in protein B.
The procedure performs translation and rotation of one protein to minimize explicitly the
RMS distance between the two proteins. It then reports this minimum RMS distance as
the measure of similarity between the proteins. The ability to do this relies on the fact that
amino acids are ordered and that they are uniquely identified by number. In this
application, however, atoms are not ordered and multiple atoms with the same atomic
number are allowed. The distance metric presented here handles this.
15-4.7. Attraction and Repulsion Phases to
Preserve Diversity

An additional enhancement to the traditional PSO algorithm is a method for
managing diversity in the particle swarm population. Diversity management is important
for population-based methods such as PSO. Low diversity is a two-edged sword that is
beneficial in that it produces significant progress in a short time and hazardous because it
may cause the algorithm to become stuck in a local minimum. To compensate for the

adverse affects of low diversity, one suggestion™

is to have attraction and repulsion
phases. This is accomplished by adding a dir term to Equation 15-7 as follows:

v=w-v+dir-c r(b, -x)+dir-c, r,(b, - x) (15-10)

where dir can be either 1 or -1 for attraction or repulsion respectively.
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Conditions for when to switch between attraction and repulsion phases depend on
a metric measuring the diversity in the population. The method for measuring diversity

suggested in the generic PSO algorithm™ is as follows:

S|
diverszt 15-11
y(S 5 |L|E E(p,, P, (15-11)
where S is the swarm, |S| is the swarm size, |L| is the length of the longest diagonal in the

search space, N is the dimensionality of the problem, p; is the j’th value of the i’th

particle, and p ; 1s the j’th value of the average point p . This metric is independent of the

swarm size and the dimensionality of the problem. The above diversity measure was
adapted for chemical systems by using the distance metric in Equation 8 and taking the

average distance between each pair of particles as follows:

s-1 |
———— Y > RMS(A,A)) (15-12)
|C| i=1 j=i+l

1

IsF -Is|
2

NN
where |C| is the length of the search cube diagonal, and [w] is the number of pairs

diversity(S) =

of particles. Equations 15-11 and 15-12 both measure population diversity in a way, that
is independent of the swarm size and the dimensionality of the problem. Equation 15-12
is better adapted to chemical systems because it ignores the translation, rotation, and
mirror reflection of two structures when comparing them. It also appropriately handles
multiple atoms with the same atomic number by sorting them according to their distance
to the center of mass. The transition from the attraction to the repulsion phase occurs

when the diversity falls below some user-defined value and when no progress has been
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made for a user-defined number of iterations. The transition from the repulsion to the
attraction phase occurs when diversity has exceeded some user-defined limit.

When switching from repulsion to attraction, it is important to reset the best
solution seen by each individual to ensure that the swarm doesn’t simply move back to a
previously visited local minimum. The need to do this is mentioned in Ref. 33, though no
mention is made of how to accomplish this. This PSO application keeps a list of the n
best solutions seen to date by the population, where n is user-defined, and each solution
in the list is different from every other solution by some user-defined distance. This list is
updated after each iteration. When switching from repulsion to attraction, this application
resets the best individual solutions known to each particle with solutions from the list of
best n solutions seen by the population during the entire run. Next, the visibility distance
is reset to its initial low value and then increased at the same rate as before. Also, energy
calculations are not performed during the repulsion phase to help speed the progress of

the algorithm.

15-5. Computational Results

As mentioned, the L], Si;Hs, and OH (H,0); chemical systems were used to test
PSO’s performance. The performance of PSO was compared to un-enhanced PSO,
simulated annealing, and the gradient embedded genetic algorithm (GEGA).”>*® Un-
enhanced PSO allowed an initial fragmented population, did not enforce minimum
distance constraints between atoms, and did not have attraction and repulsion phases.
PSO, un-enhanced PSO, and simulated annealing used in the current research were

implemented within the same software package.
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The comparison of performance was based on the number of iterations/energy
calculations, necessary to achieve the final result rather than on the overall time of the
search. This made it possible to compare population and non-population based searches
and methods using gradient optimization with methods not using gradient optimization.

Parallel execution of code in the case of both versions of PSO and population-
based simulated annealing did not involve parallelization of energy computations
performed by external software.

With the exception of GEGA, the algorithms presented in this section did not use
local optimization until the end of each run. PSO’s performance could of course be
improved upon using local optimization during the run, but this was not done in order to
compare the efficiency of the algorithms themselves. GEGA for instance produced the
global minimum structure for SipHs after the first round of local optimization of the
initial random population, but this provided no information concerning the efficiency of
the genetic algorithm compared to other algorithms.

The calculations for Lennard-Jones clusters used the Lennard-Jones potential

given by the formula:
12 6
E=4Y 9] _|< (15-13)
=7 [\ 7 Ty

1
where ¢ and 2"°

o are the pair equilibrium well depth and separation, respectively, and
where r;; is the Euclidean distance between atoms 1 and j. For simplicity, ¢ and o are set
to 1 as in Ref. 15. In case of Si,Hs and OH (H,O); the sampling of the potential energy

surfaces was performed utilizing Gaussian 03'*® single-point computations. Density

functional theory (DFT) method known as B3LYP" with 3-21G (Si,Hs) and 6-
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311++G** (OH (H,0) 3) basis sets was chosen as relatively inexpensive and providing
reliable results. Visualization of the results was performed using Molden 3.4 software.'*

As indicated in Table 15-1, simulated annealing and un-enhanced PSO failed to
find the global minimum structure for LJ,s, though simulated annealing came close. PSO
found the T4 global minimum structure for Ll (Figure 15-3a) and did so with the fewest
total number of energy calculations (Table 15-1). The energy of the T4 LJ» is in excellent
agreement with previously reported results.”” It should be noted that LI is not the most
challenging system among LJ, clusters due to peculiarities of the topology of PES of
Lennard-Jones systems. For example, Wales and Doye' suggested that the efficiency of
different methods should be estimated on their performance for LJsg and LJ7s clusters,
which have extremely complex PES. Definitely, these two computationally more
demanding tasks are beyond the scope of the current article and can be addressed in
future studies of the PSO technique.

PSO also found the Cs 'A’ global minimum structure for Si;Hs™ (Figure 15-3b),
which is consistent with results reported by Schaefer and co-workers.'” Gaussian 03
optimization of the structure reported by PSO lowered the energy only by 2.7 kcal/mol
(Table 15-1). Simulated annealing failed to find the global minimum structure. Simulated
annealing found it later when using a population of 40 where each individual in the
population represented a simultaneous, independent run. This illustrates the complex
nature of the Si;Hs™ potential energy surface and the critical need for simulated annealing
to have the right starting structure. As previously stated, GEGA also found the global

minimum structure of this system.
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Population Number of Found
Algorithm opsl{ ato Iterations Energy Energy* Global
1ze Calculations Min.
LJ,6 Results
Simulated -105.800559
Annealing ! 1,000,000 1,000,000 (-106.794429)" No
Un-
enhanced 1,000 10,000 10,000,000 -27.169052 b No
(-39.531096)
PSO
-108.315616
PSO 1,000 700 700,000 (-108.315616)° Yes
Si,Hs™ Results
Simulated -578.893002
Annealing ! 13,000 13,000 (-578.89348)" No
-578.932032
PSO 200 500 10,000 (-578.936337)° Yes
OH (H,0); Results
Simulated -305.152599
Annealing ! 11,000 11,000 (-305.222275)° No
-305.152414
PSO 100 600 6,000 (-305.223383)° Yes

* — energy units for LIy are reduced units (r.u.); energy units for Si;Hs” and OH

(H20O); are atomic units (a.u.).

—values in parenthesis correspond to the local optimization results: LJ26 used
conjugant gradient local optimization; Si;Hs" and OH'(H,O); used Gaussian 03 local

optimization.
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Figure 15-3. Global minimum structures of the test systems: (a) Llz, (b) SioHs , and (c)
OH (H,0);.
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The OH'(H,0); system contains four groups of atoms or units including three
water molecules and one hydroxide ion. PSO found the structure I (Figure 15-3c), and
local optimization transformed the structure to the C; 'A global minimum structure II
(Figure 15-3c), which has a tetrahedral arrangement consistent with the results reported
by Johnson and co-workers."*® Though the structures are quite different geometrically,
structure I is located in the basin of structure II, so the PSO search was considered to be
successful. Simulated annealing did not find the global minimum structure I or a structure
within its basin. After local optimization the structure found by simulated annealing
converged to structure III (Figure 15-3¢), which is 0.7 kcal/mol higher than the global
minimum structure II. No run of the GEGA algorithm was attempted for this system
because GEGA currently does not group atoms into sets or units.

The PSO algorithm found the global minimum structure for all three systems and
did so with low numbers of energy calculations. These results are especially significant
when considering that population-based methods such as PSO can run in parallel, while
non-population-based methods such as simulated annealing must make one energy
computation at a time. It is important to realize though, that no theoretical guarantee
exists, that PSO search will be successful. So several runs of the PSO search are

necessary to verify obtained result.

15-6. Conclusion
Particle Swarm Optimization (PSO) is a relatively new evolutionary algorithm,
which until now has not been used to find global-minimum structures of chemical

systems. Results from calculations on Ll Si;Hs’, and OH(H,0) ;3 demonstrate PSO’s
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ability to efficiently find global minimum structures for different types of chemical
systems. PSO requires smaller population sizes than genetic algorithms. Also, PSO is
advantageous because it is a population-based method, which can be run in parallel. This
PSO application has several additional novel features including:

* flexible random initialization procedure controlling the quality of the initial
population in terms of the fragmentation of the generated structures.

* enforcement of user-defined minimum/maximum distance constraints between
atoms with different minimum/maximum distances between different types of
atoms.

* measurement of the similarity of structures using a distance metric which ignores
irrelevant translation, rotation, and reflection information.

* allowing groups of atoms that are moved and rotated as rigid units.

* capability of parallel execution.

This PSO application was written in C++ for the Linux platform and includes
implementations of simulated annealing, basin hopping, and a basic genetic algorithm. It
can perform multiple energy calculations at the same time and Gaussian 03 single point
energy computations can be performed on multiple processors on a single workstation.
The initial results presented here suggest that PSO has the potential to make valuable

contributions in the search for global minimum and low energy structures.
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CHAPTER 16

SUMMARY

Fast development of the computational quantum chemical methods and user
friendly scientific software in recent decades significantly changed the way theoretical
chemistry works. It makes it relatively simple to determine structures of chemical objects
and their energetic characteristics, e.g. ground-state or excitation energies, energetic
profiles of the reactions, etc., thus obtaining pieces of data, which are not directly
connected to each other. Rationalizing the obtained information, or building chemical
theory of the experimentally observed facts and computationally obtained data is what
makes chemistry a separate science distinct from physics.

The emphasis and the main result of this dissertation is development of a method
of chemical bonding analysis applicable to main-group element and transition-metal
clusters, that on one hand is closely related to the concept of a pair of electrons as the
main object of chemical bonding' and on the other hand seamlessly incorporates the
concept of the delocalized (aromatic/antiaromatic) bonding®. The new method is called
Adaptive Natural Density Partitioning (AANDP).> Within its framework chemical
bonding is described in terms of n-center 2-electron (nc-2¢e) bonds where n ranges from
one (core electrons, lone-pairs) to the total number of atoms in the system (completely
delocalized bonding) through all the intermediate values (2c-2e Lewis bonds, 3c-2e, 4c-
2e, and so on). The algorithm of the AANDP, which is a generalization of the Natural

Bonding Orbital (NBO) analysis,® is implemented in the software that is now the main
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tool used in the group of Professor Alex Boldyrev (Department of Chemistry and
Biochemistry, Utah State University) for deciphering chemical bonding in clusters.

The full-cycle studies of the main-group element and transition-metal clusters
constitute the main body of the dissertation. These studies include photoelectron
spectroscopy (PES) of anionic clusters in molecular beams performed by the group of
Professor Lai-Sheng Wang (Pacific Northwest National Laboratory, Washington State
University), establishing the global minimum structures and low-lying isomers of the
corresponding anions using global optimization techniques (Gradient Embedded Genetic
Algorithm (GEGA), Particle Swarm Optimization (PSO), Simulated Annealing),
modeling PES of these structures by means of high-level ab-initio (Coupled-Cluster with
Single, Double and non-iterative Triple excitations (CCSD(T)), Equation-of-Motion
based on Coupled-Cluster (EOM-CCSD(T)), Outer Valence Green Function theory
(OVGF)) and density functional theoretical (Time-Dependent Density Functional Theory
(TD DFT)) methods, description of the chemical bonding in the species contributing to
the experimentally observed spectra using Canonical Molecular Orbitals (CMO), Natural
Bonding Orbital (NBO) analysis, and Electron Localization Function (ELF) analysis. The
main results of this part of the dissertation can be summarized as follows.

A new mode of aromatic bonding never encountered previously - d-aromaticity,
was identified in the experimentally observed Ta;O; cluster.’ This type of bonding
occurs only in multinuclear transition-metal systems. Ta3;O3  cluster was proved to have
triangular Ta-atom core due to the simultaneous presence of p- and d- aromaticity

originating from the d-atomic orbitals of Ta.
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Heteroatomic main-group clusters AlSi,’, AlGe;’, and AICGe'were found to have
non-linear structures.® In case of AlSi,” and AlGe, the non-linearity was attributed to the
conflicting aromaticity (simultaneous presence of s-antiaromaticity and p-aromaticity) of
the species. AICGe’ cluster turned out to be a system with neither aromatic nor classical
bonding.

A phenomenon of gold “aping” hydrogen in bonding with planar boron clusters
was established in the study of B;Au,.” The bonding in this species and B;H, was
explained on the basis of the strong covalent B-Au (H) bonding and the concepts of
aromaticity/antiaromaticity. Together with Au/H analogy in bonding with silicon clusters
this finding suggests that the analogy may actually be a general phenomenon typical for a
wide range of chemical species. It was used to make a theoretical prediction of the
viability of a new class of species, deltahedral closo-auroboranes ByAu,” (x=5-12),
analogous to the famous spherical closo-boranes ByH,” (x=5-12).* The limit of Aw/H
analogy was tested in the joint experimental and theoretical study of AuBO™ (x=1-3)
species and their comparison with the borane oxides H,BO™ (x=1-3).” Interaction of a
single Au atom with a bare BO unit was proved to mimic that of hydrogen. The neutral
AuBO fragment remained unchanged in Au;BO™ and Au;BO™ upon addition of the second
and third Au atoms, respectively. The studied AuyBO™ (x=1-3) species can also be
viewed as Au, [BO] complexes, with a significant charge transfer from BO™ to the Auy
fragment, analogous to the charge transfer in Au,CO complexes.

The family of the known spherically symmetric clusters was expanded by the
discovery that Sn;,” is an icosahedral cage that distorts just slightly upon addition of the

Na" cation within NaSn;,” species.'’ The size of Snj,> stannaspherene is comparable with
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the size of Cgo fullerene, so the stannaspherene potentially can host an atom inside its
cage. The chemical bonding in the stannaspherene is closely related to that in the valence
isoelectronic icosahedral closo-borane Bj;H,™.

Atoms of the fourth group in the periodic table (C, Si, Ge, Sn, Pb) and the BH
structural unit of the deltahedral closo-boranes are valence isoelectronic. The studies of
anionic silicon clusters were undertaken to explore if doubly charged silicon anions adopt
high symmetric cage-like structures typical for the deltahedral closo-boranes. It was
established,” that Sis” and Si52' (within NaSis  cluster) adopt trigonal bipyramidal
structures. Though Si52' and isoelectronic B5H52' clusters turned out to be isostructural,
the analysis of chemical bonding in Sis> showed significant involvement of lone-pairs
into the skeletal bonding, not encountered in BsHs>. This apparent difference in the
bonding patterns of boranes and silicon dianionic clusters manifested itself in structural
peculiarities of the Sis> cluster.'” While the global minimum structure of the bare dianion
Si¢> is octahedral just like B6H62', the HOMO-LUMO switch and dramatic structural
rearrangement occurs in the presence of Na’ in NaSis anion observed in molecular
beams. Thus, the distorted Si62' unit within the NaSic global minimum structure was
shown to be spherically antiaromatic, despite the isolobal analogy with spherically
aromatic B6H62'.

Comprehensive analysis of the chemical bonding in a family of planar boron
clusters was performed to generalize the existing knowledge and formulate a chemical
bonding model for these species.”’ It was shown that structure and properties of the
planar or quasi-planar boron clusters are shaped by not only p-aromatic/antiaromatic

(delocalized) bonding, but also by s-aromatic/antiaromatic (delocalized) bonding and
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presence of the localized 2c-2e peripheral B-B bonds. Appropriate geometric fit was
demonstrated to be important for choosing between empty cyclic structures or cycles with
filled central cavity. Also, the possible types of the aromaticity, multifold nature of
aromaticity, antiaromaticity, and conflicting aromaticity, as well as counting rules for o-,
n-, and O-aromaticity/antiaromaticity in transition metal clusters were analyzed and
systematically reviewed.'*

The last but not least aspect of the dissertation is methodological. Diversity of
theoretical techniques for quantum chemical calculations sometimes leads to qualitative
diversity of the obtained results. Availability of computationally inexpensive and fast
density functional codes results in a huge number of theoretical predictions, contradicting
each other or high level ab initio results. It was crucial for the present dissertation to
single out the reliable DFT methods."” The hybrid DFT methods such as B3LYP were
shown to provide reliable results in good agreement with high level CCSD(T) and
CASSCF-MRCI computations unlike non-hybrid DFT methods, so B3LYP calculations
were actively used throughout the projects that constitute the dissertation. Another
methodological result of the dissertation is development of the software for the global
optimization based on the Particle Swarm Optimization algorithm.'® The author of the
particular flavor of the algorithm that can be used for the global optimizations of
chemical structures and the code is Seth T. Call (Computer Science major, Utah State
University). The author of the present dissertation contributed to the project by refining
the concept of the software, assisting in the development of the structure of the algorithm,
picking up chemical systems for testing purposes, and testing the software. Application of

the global optimization techniques for the search of the global minimum structures is de-
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facto standard of the modern computational chemistry. As all the existing techniques are
highly stochastic in nature and none can guarantee successful determination of the global
minimum structure, it is very important to have access to a variety of tools, so that their
results can be crosschecked and verified and erroneous conclusions avoided.

The results of the Dissertation have broader impact. The Dissertation significantly
contributed to building up empirical knowledge of chemistry and material science by
establishing structures of the main-group element and transition metal clusters observed
in molecular beams. This task is very complicated and knowing structures of the clusters
under specific experimental conditions is highly relevant to other spheres of the scientific
activities, both fundamental and applied, and to engineering applications. The obtained
empirical knowledge was used to formulate certain unified descriptive approach that can
be utilized to rationalize the gathered data. This novel method called Adaptive Natural
Density Partitioning has been successfully applied to a variety of chemical systems. Now
the road is open to establish connections between the obtained descriptions and structural,
physical, and chemical properties of clusters, molecules, polymers, bulk phases etc.
Ultimately, it will lead to the predictions of the properties of the yet unknown chemical
objects and rational design of materials and processes with preset properties. AANDP will
stimulate and increase the efficiency of the theoretical and experimental chemical
research aimed at understanding the properties of the widest range of existing chemical
systems, designing novel once, and revealing mechanisms of complex processes. Some of
the results of the Dissertation, such as predicted family of deltahedral closo-auroboranes,
experimentally observed deltahedral stannaspherene, and d-aromatic Ta;O; might have

immediate impact on the design of novel nano-catalysts, nano-machines, and
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semiconducting nano-materials. Developed Particle Swarm Optimization software for the

global optimization has a great potential to be used in molecular modeling for the bio-

molecular and pharmaceutical research.
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Dear Madam/Sir,

my name is Dmitry Yu. Zubarev. I'm a senior graduate student in Utah
State University currently finalizing my PhD dissertation. I'm hereby
asking for the permission to reprint an article co-authored by me and
published in Angewandte Chemie International Edition, as a part of
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Dissertation. It would be more convenient for me to receive the
permission by fax.

My mailing address:
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Logan, UT, USA 84322-0300

Phone number: +1 (435) 797-7507
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1) “d-Aromaticity in Ta303-: A New Mode of Chemical Bonding”, Zhai,
Page 2 of 3



H.-J.; Averkiev, B.

B.; Zubarev, D. Yu.; Wang, L. S.; Boldyrev, A. I. Angew. Chem. Int.

Ed.
2007, 46, 4277.
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Thank you in advance.
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the RSC sent to the corresponding author(s) of your paper(s) upon publication of the paper(s) in the following
ways: in your thesis via any website that your university may have for the deposition of theses, via your university’s
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version of the paper(s) on its own in your institutional repository. The Royal Society of Chemistry is a signatory to
the STM Guidelines on Permissions (available on request).

Please note that if the material specified below or any part of it appears with credit or acknowledgement to a third
party then you must also secure permission from that third party before reproducing that material.

Please ensure that the published article states the following:
Reproduced by permission of the PCCP Owner Societies
Regards

Gill Cockhead

Contracts & Copyright Executive

Gill Cockhead (Mrs), Contracts & Copyright Executive
Royal Society of Chemistry, Thomas Graham House
Science Park, Milton Road, Cambridge CB4 OWF, UK
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Subject: Permission Request Form: Dmitry Yu. Zubarev

Name : Dmitry Yu. Zubarev

Address

Department of Chemistry and Biochemistry,
Utzh State University,
0300 0ld Main Hill,

Logan, UT, USA 84322-0300

Tel : +1 (4335) 7977307
Fax : +1 (433) 7¢8733¢0
Email : dmitrv.zubarev@aggiemail.usu.edu

I am preparing the following work for publication:

Article/Chapter Title : PhD Dissertation
Journal/Book Title
Editor/Author(s)

Publisher

I would very much appreciate your permission toc use the following material:

Journal/Book Title : PCCP

Editor/RAuthor(s) : Zubarev, D. ¥Yu.; Averkiev, B. B.; Zhai, H. -J.; Wang, L.
S.; Boldyrev, 2. I.
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Volume Number : 10

Year of Publication : 2008

Description of Material : Aromaticity and antiaromaticity in transition-metal
systems

Page(s) : 257

Journal/Book Title : PCCP (on-line)

Editor/Author(s) : Zubarev, D. Yu.; Boldyrev, A. I.

Volume Number : 10

Year of Publication : 2008

Description of Material : Developing paradigms of chemical bonding: adaptive natural

density partitioning

Page (s) : DOI: 10.103%/b3804083d

Any Additional Comments

Dear Madam/Sir,

I've recently defended PhD degree in Utah State University and now I'm finalizing the
text of my PhD dissertation. I'm hereby asking for the permission to reprint two
articles co-authored by me and published in Physical Chemistry Chemical Physics, as a
part of this Dissertation. It would be more convenient for me to receive the
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the permission was sent on February 20, 2008 and I still have not received any reply.

DISCLAIMER:

This communication (including any attachments) is intended for the use of the addressee only and may contain
confidential, privileged or copyright material. It may not be relied upon or disclosed to any other person without the
consent of the RSC. If you have received it in error, please contact us immediately. Any advice given by the RSC
has been carefully formulated but is necessarily based on the information available, and the RSC cannot be held
responsible for accuracy or completeness. In this respect, the RSC owes no duty of care and shall not be liable for
any resulting damage or loss. The RSC acknowledges that a disclaimer cannot restrict liability at law for personal
injury or death arising through a finding of negligence. The RSC does not warrant that its emails or attachments are
Virus-free: Please rely on your own screening.
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Fax: 509-371-6139
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31 January, 2008

Dear Mr. Dmitry Yu. Zubarev,
This letter 1s to confirm that you have my permission to use our nine common papers:

1. “Aromaticity and antiaromaticity in transition-metal systems™ (Phys. Chem. Chem. Phys.2008,
10, 257-267)

2. “d-Aromaticity in Taz03: A New Mode of Chemical Bonding™ (Angew. Chem. Int. Ed. 2007,
46. 4277-4280)

3. “On the Chemical Bonding of Gold in Auro-Boron Oxide Clusters Au,BO™ (n=1-3)" (Phys.
Chem. A, 2007, 111, 1648-1658)

4. “Snlzz': Stannaspherene™ (J. Am. Chem. Soc. 2006, 128, 8390-8391)

5. “Theoretical Probing of Deltahedral Closo-Auro-Boranes B Au (x=5-12)" (Inorg. Chem.
2006, 45. 5269-5271)

6. “Observation of Triatomic Species (AlS1;” and AlGe;") With Conflicting Aromaticity”™ (J. Phys.
Chem. B, 2006, 110, 9743-9746)

7. “On the Structure and Chemical Bonding of Sisz' and Si52' in NaSis  upon Na~ Coordination™ (J.

Chem. Phys. 2006, 124, 124305-1 — 124305-13)

8. “Gold apes hydrogen. The structure and bonding in the planar B7Au;” and B7Au; clusters™ (J.
Phys. Chem. A, 2006, 110. 1689-1693)

9. “Chemical bonding in Si52' and NaSis™ via Photoelectron Spectroscopy and Ab Initio
Calculations™ (J. Phys. Chem. A 2005, 109, 11385-11394)

in part or in full for preparation or presentation of your dissertation.

Sincerely,

Lai-Sheng Wang
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Washington State University Pacific Northwest National Laboratory
Department of Physics Chemical & Materials Sciences Division
2710 University Drive, Richland, WA 99354 MS K8-88, P.O. Box 999, Richland, WA 99352

Dr. Hua-Jin Zhai

Phone: 509-371-6148

Fax: 509-371-6139

E-mail: Hua-Jin.Zhai@pnl.gov

January 25th, 2008, Richland
Dear Dmitry Zubarev,

This letter is to confirm that you have my permission to use our common papers in part or in full
for preparation or presentation of your PhD dissertation.

1. “Aromaticity and antiaromaticity in transition-metal systems” (Phys. Chem. Chem. Phys.
2008, 10, 257-267);

2. “delta-Aromaticity in Ta303-: A New Mode of Chemical Bonding” (Angew. Chem. Int.
Ed. 2007, 46, 4277-4280);

3. “On the Chemical Bonding of Gold in Auro-Boron Oxide Clusters AunBO- (n=1-3)" (J.
Phys. Chem. A 2007, 111, 1648-1658);

4. “Gold apes hydrogen. The structure and bonding in the planar B7Au2- and B7Au2
clusters” (J. Phys. Chem. A 2006, 110, 1689-1693).

Sincerely,

Hua-Jin Zhai
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Dmitry Zubarev

0300 Old Main Hill

Department of Chemistry and Biochemistry, Utah State University
Logan, Utah 84322-0300

Phone number: (435) 797-7507

Fax number: (435) 797-3390

I, Lei-Ming Wang, the 3rd author on the paper "Sn12 2-: Stannaspherene” (J. Am. Chem.
Soc. 2006, 128, 8390-8391), hereby approve on my own behavior that my co-author,
Dmitry Yu. Zubarev, can use this paper in part or in full for his PhD dissertation.

Lei-Ming Wang

. M 0//23 /obs/

Department of Physics, Washington State University
2710 University Drive, Richland, WA 99354
and Chemical & Materials Sciences Division, Pacific Northwest National Laboratory,

MS K8-88, P. O. Box 999, Richland, WA 99352
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Dear Mr. Dmitry Yu. Zubarev,

This letter is to confirm that you have my permission to use our three common papers:

1. "On the Chemical Bonding of Gold in Auro-Boron Oxide Clusters Au,BO™ (n=1-3)" (J. Phys.
Chem. A, 2007, 111, 1648-1658),

2. "Sn122': Stannaspherene" J. Am. Chem. Soc. 2006, 128, (8390-8391)

3. "Theoretical Probing of Deltahedral Closo-Auro-Boranes B;Au,” (x =5-12)"(l. Inorg. Chem.
2006, 45, 5269-5271)

in part or in full for preparation or presentation of your dissertation.

Sincerely,

Dr. Jun Li
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THE ROWLAND INSTITUTE AT HARVARD
100 EDWIN H. LAND BOULEVARD
CAMBRIDGE, MASSACHUSETTS 02142

TEL: (617) 497-4600
FAX: (617) 497-4627

www.rowland.harvard.edu

XiLi

Rowland Institute at Harvard
Harvard University

100 Edwin H. Land Blvd.
Cambridge, MA 02142

Tel: 617-497-4726

Fax: 617-497-4627

Email: li@rowland.harvard.edu

January 26, 2008

Dmitry Yu. Zubarev

0300 Old Main Hill

Department of Chemistry and Biochemistry
Utah State University

Logan, Utah 84322-0300

Phone number: (435) 797-7507

Fax number: (435) 797-3390

Dear Dmitry Yu. Zubarev:

You have my permission to use our three common articles (papers) “Observation of
Triatomic Species (AlSi2- and AlGe2-) With Conflicting Aromaticity” (J. Phys. Chem. B, 2006,
110, 9743-9746), “On the Structure and Chemical Bonding of Si6 2- and Si6 2- in NaSi6- upon
Na+ Coordination” (J. Chem. Phys. 2006, 124, 124305-1 - 124305-13), and “Chemical bonding
in Si5 2- and NaSi5- via Photoelectron Spectroscopy and Ab Initio Calculations” (J. Phys. Chem.
A 2005, 109, 11385-1394) in part or in full in preparation or presentation of your PhD
dissertation.

Please let me know if any questions arise.
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20 February, 2008

Dear Mr, Dmitry Yu. Zubarev,
This letter is to confirm that you have my permission to use our three common papers:
1. “Sny*: Stannaspherene” (J. Am. Chem. Soc. 2006, 128, 8390-8391)
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Chem. Int. Ed. 2007, 46, 4277-4280).

Yours sincerely,

, 1
.

Boris Averkiev -~




402

01/25/2008 15:48 FAX 801 422 0153 BYU - Chem & Biochem [doo2/002
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As a co-author of the article, “Global Minimum Structure Searches via Particle Swarm
Optimization” (J. Comput. Chem. 2007, 28, 1177-1186), I hereby give you my

permission to use material from the article in your PhD dissertation.
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Be A ltatl
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Subject: e-mails of co-authors

From: "Dmitry Yu. Zubarev"

Date: Wed, 23 Jan 2008 16:04:46 -0700
To: LS WANG@PNL GOV

Dear Lai-Sheng,

do you happen to have current emails of Li-Feng Cui, Xin Huang, Xi Li, and Jun Li? I need to get
permissions from them as well. Thank you in advance.

With respect,

Dmitry Zubarev

Subject: recommendation letter

From: "Dmitry Yu. Zubarev"
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To: wang
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Thank you in advance.

With respect,

Dmitry Zubarev
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