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ABSTRACT

Mathematical Justi�cation of Introductory Hypothesis Tests and

Development of Reference Materials

by

Jennifer L. Loveland, Master of Science

Utah State University, 2011

Major Professor: Dr. Kady Schneiter
Department: Mathematics

This purpose of this project was to create a set of reference material for an introductory level

statistics course. The focus was on the Neyman-Pearson approach to hypothesis testing. A brief

historical development of the Neyman-Pearson approach is followed by mathematical proofs of

each of the hypothesis tests covered in the reference material. The reference material includes the

basic hypothesis tests taught in an introductory statistics course, the accompanying distributions,

and prerequisite information.

(132 pages)



iv

ACKNOWLEDGMENTS

I would like to thank my committee members for their help and suggestions, especially my

advisor, Kady for all her time and e�ort. I would also like to thank my o�ce mates without whom

graduate school would seem an insurmountable task.

This project is dedicated to my dad who always emphasized a college education, to my mom

who supported me unconditionally, to my sister who helped me see the need for this project, and

most of all to my husband who supported me and never complained when I didn't make dinner.

Jennifer L. Loveland



v

Contents

ABSTRACT iii

ACKNOWLEDGMENTS iv

Chapter 1. Introduction 1

Chapter 2. A Partial Development of the Neyman-Pearson Approach to Hypothesis Testing 4
Historical Development of Neyman-Pearson Approach 5
The Current Neyman-Pearson Approach to Hypothesis Testing 10

Chapter 3. Mathematical Proofs 12
Expected value and variance 13
Moment generating functions 20
Normal distribution 24
Distributions derived from the normal distribution 29
One sample z-test for the population mean 32
Paired sample z test for the population mean of paired di�erences 35
Two sample z-test for the di�erence of population means 36
One sample z-test for the population proportion 37
Two sample z-test for population proportions 38
One sample t-test for the population mean 40
Paired sample t-test for the population mean of paired samples 43
Two sample t-test for population means (equal variances) 44
Two sample t-test for population means (unequal variances) 46
Chi-square test for population variance 50
Two sample F test for population variances 51
Chi-square test for goodness of �t 52
Chi-square test for independence 53
Chi-square test for homogeneity 54

Bibliography 55

Appendix A. Reference Material 57
Basic Terms 58
Describing Data 60
Distributions 62
Discrete or Continuous 62
Shape of Distribution 63
Basic Inference 66
Sampling Distribution 66
Binomial Distribution 67
Discrete Uniform Distribution 70
Continuous Uniform Distribution 70
Normal Distribution 71
Chi-Square Distribution 73



vi

t Distribution 74
F Distribution 76
Central Limit Theorem 77
Sampling Distribution of Means and Proportions 78
Hypothesis Testing 80
Rejecting or Failing to Reject the Null Hypothesis 82
Hypothesis Testing Errors 83
Power of a Test 83
One Sample z-Test for the Population Mean 84
How does the one sample z-test work? 86
One Sample t-Test for the Population Mean 89
Paired Sample z-Test for Population Mean of Paired Di�erences 91
Paired Sample t-Test for Population Mean of Pairwise Di�erences 94
Two Sample z-Test for Di�erence of Population Means 97
Two Sample t-Test for Di�erence of the Population Means (Equal Variances) 99
Two Sample t-Test for Di�erence of the Population Means (Unequal Variances) 101
One Sample z-Test for the Population Proportion 103
Two Sample z-Test for Population Proportions 105
Chi-Square Test for the Population Variance 107
Two Sample F Test for Population Variances 109
Chi-Square Test for Goodness of Fit 111
Chi-Square Test for Independence 113
Chi-Square Test for Homogeneity 115
Table of Hypothesis Tests 117
Hypothesis Testing Flow Chart 121
Symbols 124
Greek Alphabet 126



1

CHAPTER 1

Introduction
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This project consisted of three sections. The bulk of this project is a set of reference materials

that I developed for introductory level hypothesis testing. There is also a section with the math-

ematical proofs for every test included in the reference materials. The last section is a historical

development of the Neyman-Pearson approach to hypothesis testing that is commonly taught in

introductory classes.

The historical development sheds light on the methods used in the Neyman-Pearson approach.

There are various conventions taught in introductory level classes and this section discusses their

origins.

The mathematical proofs section contains a proof of every hypothesis test. It also contains any

preliminary proofs that were needed. Properties of expected value and moment generating functions

are included because I used them in the proofs of the hypothesis tests. Some of the proofs are

accessible to introductory level students and I expect those students to look at the proofs, but many

of the proofs are at the math 5720 level. As a result, and because there are so many preliminary

proofs needed for the proof of each hypothesis test, rather than put some proofs with the reference

material and some in a di�erent section, I placed all the proofs in one section to achieve a linear

ordering of the proofs.

Teachers at the introductory level can pick and choose the proofs that they want to share with

their students. For example, walking a student through the proof that

X − µ
S/
√
n
∼ tn−1

will help a student remember to use a t test when the variance is unknown and that there are

n− 1 degrees of freedom. A student should also be able to understand the proofs for the z test for

independent samples. This should help the student remember the test statistic or at the very least

not view the test statistic as something pulled out of the teacher's magic hat. Some of the tests'

proofs have more complicated algebra than others, but at least part of the proof for each hypothesis

test could be shared with introductory level students. The arguments for the degrees of freedom

for the chi square tests for multinomial data could easily be shared and would make the concept of

degrees of freedom less mysterious to student.

The section of mathematical proofs would also be very valuable to a student in a upper level

statistics class as he could see the proofs for every test in one place as well as all the background

proofs that are needed.
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While I want to eventually create a set of reference materials for an entire statistics course,

I focused on hypothesis testing for this project. The basic tests are each covered as well as the

distributions needed for the tests. My goal was to create a set of reference material that was not a

textbook, but a supplement to a statistics class or book. Each concept is covered in 1-2 pages to

facilitate easy checking of facts and to help with basic procedural knowledge.

While tutoring, I realized that many students view each hypothesis test as a di�erent concept

and test statistics are random complicated formulas given by professors. It is di�cult for the students

to remember which test is applicable in a given situation and they don't realize that each test is

the same process. It is my hope that with the layout of the reference material that they can easily

�ip through the tests and compare assumptions to realize when each test is appropriate. The layout

should also help students realize that each test follows the same procedure.

The reference material can be used with any introductory statistics course, but I designed it

with Stat 2000 in mind because that course uses mathematical formulas and operations but doesn't

require calculus. I used several textbooks as reference, but the bulk of the material comes from

Moore and McCabe's Introduction to the Practice of Statistics.

Although the reference material is the main project, I designed the layout in a way that does

not agree with the required format of a project report and so it is included in the appendix.

I have placed this project on my website, http://mathnstats.com. I hope to soon have reference

material for an entire statistics course along with relevant proofs available online.



CHAPTER 2

A Partial Development of the Neyman-Pearson Approach to

Hypothesis Testing



5

Historical Development of Neyman-Pearson Approach

Karl Pearson and the Chi-Square Test for Goodness of Fit. In 1900, Karl Pearson

published a paper, �On the criterion that a given system of deviations from the probable in the

case of a correlated system of variables is such that it can be reasonably supposed to have arisen

from random sampling�. In this paper he proposed his P, χ2 test, now commonly referred to as the

chi-square test for goodness of �t. The χ2 test can be used to measure how well a proposed model

�ts a set of data.

In 1892, Pearson explains that mathematical models can describe, but not explain natural phe-

nomenon. Mathematical models could be used to predict and infer without actually understanding

the �biological mechanism�. Models are good if they are a good �t to the data, but the model has

no truth value. [17, 8]

It is clear from one of his papers that Karl based his methods on using large samples from a

population.

R.A. Fisher and Tests of Signi�cance. R.A. Fisher coined the phrase �tests of signi�cance�.

A test of signi�cance consisted of proposing one (and only one) probability model that would �t

a data set. There is no alternative hypothesis. The data is reduced to a test statistic. Then the

distribution of the test statistic is used to determine how likely the data is to occur under the model.

Fisher was the �rst to refer to the �p-value� as the probability that determines signi�cance. In one

example in his book, Statistical Methods for Research Workers, he found that the p-value was less

than 0.01 and interprets it as, �Only one value in a hundred will exceed [the calculated test statistic]

by chance, so that the di�erence between the results is clearly signi�cant.� [8, 122]

From examples in Fisher's book and papers, it appears that he had three possible conclusions

for tests of signi�cance.

(1) If the p-value is small, generally less than 0.01, an e�ect has been shown.

(2) If the p-value is large, generally more than 0.20, any e�ect is so small, if it exists at all,

that it cannot be detected without a larger sample size.

(3) If the p-value is between 0.01 and 0.20, Fisher discusses how to design the next experiment

to obtain an improved understanding of the e�ect. [20, 100]
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In 1929, Fisher stated:

An observation is judged signi�cant, if it would rarely have been produced, in
the absences of a real cause of the kind we are seeking. It is a common practice
to judge a result signi�cant, if it is of such a magnitude that it would have been
produced by chance not more frequently than once in twenty trials. This is an
arbitrary, but convenient, level of signi�cance for the practical investigator, but
it does not mean that he allows himself to be deceived once in every twenty
experiments. The test of signi�cance only tells him what to ignore, namely all
experiments in which signi�cant results are not obtained. He should only claim
that a phenomenon is experimentally demonstrable when he knows how to design
an experiment so that it will rarely fail to give a signi�cant result. Consequently,
isolated signi�cant results which he does not know how to reproduce are left in
suspense pending further investigation. [9, 191]

According to Fisher:

(1) To be signi�cant, an observation would have to be unlikely to occur if the e�ect of interest

is absent. (The hypothesis is true.)

(2) A common signi�cance level is 0.05.

(3) All experiments without signi�cant results should be ignored. This implies that there is

no �acceptance� of the hypothesis.

(4) To claim there is an e�ect, an experimenter should be able to design an experiment so that

it will give signi�cant results the majority of the time.

It is interesting to note that while hypothesis testing is often thought to be done on a sample from

a population, Fisher believed that in scienti�c applications, there is no true underlying population.

�...the only populations that can be referred to in a test of signi�cance have no objective reality,

being exclusively the product of the statistician's imagination through the hypotheses he has decided

to test�. [17, 8] Contrary to Pearson's approach with small samples, Fisher developed methods to

use hypothesis testing with smaller samples.
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Pearson Versus Fisher. In 1935, Hugo John Buchanan-Wollaston wrote a letter that was

printed in Nature in 1935 about a problem he saw in Karl Pearson's P, χ2 test. Buchanan-Wollaston

argued that there are many models that could give an acceptable value of the test statistic and would

therefore �t the data according to a χ2 test. He believed that one of the possible models should

not be chosen as correct just because a χ2 hypothesis test failed to reject the model. Therefore,

according to Buchanan-Wollaston, Pearson's χ2 test is only valid to test the lack of �t of a model.

It could not be used to assert that a model does �t the data. He thought that this logic applied

to all other statistical tests. The replies of Fisher and Pearson give insight into their methods and

reasoning.

Fisher published a letter in reply in 1935.

Mr. Buchanan-Wollaston's point that the χ2 test, like the other tests of signi�-
cance, is cogent for the rejection of hypotheses, but, in the opposite case, by no
means cogent for their acceptance, deserves to be widely appreciated. For the
logical fallacy of believing that a hypothesis has been proved to be true, merely
because it is not contradicted by the available facts, has no more right to insin-
uate itself in statistical than in other kinds of scienti�c reasoning. Yet it does
so only too frequently. Indeed, the �error of accepting an hypothesis when it is
false� has been specially named by some writers �errors of the second kind�. It
would, therefore, add greatly to the clarity with which the tests of signi�cance
are regarded if it were generally understood that tests of signi�cance, when used
accurately, are capable of rejecting or invalidating hypotheses, in so far as these
are contradicted by the data; but that they are never capable of establishing them
as certainly true. In fact that �errors of the second kind� are committed only by
those who misunderstand the nature and application of tests of signi�cance.
[17, 5]

Fisher agreed with Buchanan-Wollaston's view that the χ2 test could not be used to argue that a

model does �t the data or that the hypothesis should be accepted. He even argues that a type II

error, accepting the hypothesis when it is false, shouldn't be an issue, because the hypothesis is never

accepted. A test of signi�cance can only be used to reject a hypothesis when it is �contradicted by

the data�. Later in 1973, he stated �a test of signi�cance contains no criterion for accepting a

hypothesis�. [17, 8]

Karl Pearson replied with two letters published in Nature in 1935.

The di�erence between Prof. Fisher and myself lies in the use (and abuse) of
the acceptance and rejection of 'hypotheses'. There is only one case in which an
hypothesis can be de�nitely rejected, namely when its probability is zero...Now
Prof. Fisher refers to rejecting hypotheses as a function of the P, χ2 method, and
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of accepting them as a logical fallacy. I have in my letter of August 24 stated
that the tests are there to ascertain whether a reasonable graduation has been
reached; not to assert whether one or another hypothesis is true or false... It is
not for statisticians to say whether an hypothesis is false except when P = 0. All
that they can legitimately say is that it gives a poor graduation. In particular,
it is very unwise in my opinion to form tables which provide only the values of
P = 0.01 and P = 0.05, and consider 'hypotheses' which give a value of P < 0.01
as 'false', and those with a value between 0.01 and 0.05 as 'doubtful', and for the
rest of the scale of P have no descriptive category, for you must not say that such
values prove hypotheses to be true. Hence I repeat my assertion, in the face of
all the authority of Prof. Fisher and his followers, that all the P, χ2 test asertains
is goodness of graduation, and I hold that 'goodness' of graduation is relative to
the nature of the material investigated, our experience of similar material and the
purpose to which we intend to put our graduation. The value of P at which we
consider goodness or badness of graduation starts cannot be �xed without regard
to the special problem under consideration.

There seems somewhere a logical fallacy in the position of both Prof. Fisher
and Mr. Buchanan-Wollaston. They both apparently assert that the P, χ2 test
enables one to say that an hypothesis is false, yet never to say that an hypothesis
is true, but if an hypothesis be false, its reverse must be true....As a matter of
fact, the P, χ2 has only measured its 'goodness of �t' by a probability coe�cient,
and it is as idle to say as a result of it, that the hypothesis is 'false', as that the
reverse of it is 'true'.

The 'laws of Nature' are only constructs of our minds; none of them can be
asserted to be true or false, they are good in so far as they give good �ts to our
observations of Nature, and are liable at any time to be replaced by a better '�t',
that is, by a construct giving a better graduation. [17, 6]

Pearson makes several interesting points in this reply:

(1) He agrees with Fisher that a hypothesis is not accepted, but only because he believes that

hypotheses should neither be accepted nor rejected.

(2) Pearson intends the p-value to simply be a measure of how well a model �ts the data, and

not a criterion of signi�cance.

(3) There is no one �correct model� that determines natural phenomenon, so a hypothesis can

not be true or false. Instead, all a person can hope to do is �nd the model that best

describes the data.

(4) It is apparent that there is no alternative hypothesis.

Henry Inman summarizes with, �According to Pearson, scientists are not in the business of searching

for truth; rather they seek to construct verbal or mathematical summaries of relevant perceptual

data.� [17, 8]
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Neyman & Pearson. In 1933, Egon Pearson, son of Karl Pearson, and Jerzy Neyman pub-

lished a paper, �On the Problem of the most E�cient Tests of Statistical Hypotheses�. Their methods

are the basis of the Neyman-Pearson approach to hypothesis testing that is commonly taught to

introductory students.

Without hoping to know whether each separate hypothesis is true or false, we
may search for rules to govern our behaviors with regard to them, in following
which we insure that, in the long run of experience, we shall not be too often
wrong. Here, for example, would be such a �rule of behaviors�: to decide whether
a hypothesis, H, of a given type be rejected or not, calculate a speci�ed character,
x, of the observed facts; if x > x0 reject H, if x ≤ x0 accept H. Such a rule tells
us nothing as to whether in a particular case H is true when x ≤ x0 or false when
x > x0. But it may often be proved that if we behave according to such a rule,
then in the long run we shall reject H when it is true not more, say, than once
in a hundred times, and in addition we may have evidence that we shall reject
H su�ciently often when it is false....observed facts are described as �samples,�
and the hypotheses concern the �populations� from which the samples have been
drawn... [2, 291]

Neyman and Pearson contributed the ideas:

(1) The null hypothesis is the hypothesis being tested. It is either rejected or accepted.

(2) The idea of an alternative hypothesis.

(3) The alternative hypothesis does not have to be the negation of the null hypothesis.

(4) If there are too many alternative hypotheses, the test will not be powerful.

(5) The formalization of type I and type II errors.

(6) A p-value less than the signi�cance level, does not mean that H0 is false.

(7) The signi�cance level can be thought of as the number of times in the long run that H0

will be rejected when it is true (a type I error).

(8) Methods of �nding the most e�cient test that will maximize the power or the probability

of rejecting H0 when it is false.

(9) The observed data is the sample which comes from a population. The hypotheses concern

the population.
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The Current Neyman-Pearson Approach to Hypothesis Testing

The approach to hypothesis testing generally taught in introductory level statistic courses is

referred to as the Neyman-Pearson approach. However, it encompasses ideas from Karl Pearson,

R.A. Fisher, Jerzy Neyman, Egon Pearson, and other researchers.

Ideas from Karl Pearson.

(1) Students are encouraged to report the p-value as well as the conclusion of rejecting or

failing to reject H0 so that readers can see how strong the evidence was for or against H0.

This follows Karl Pearson's idea that the probability is a measure of how well the model

�ts the data.

(2) The hesitancy to accept a hypothesis has translated into the convention of saying, �we

fail to reject H0�, even though Pearson believed that H0 should be neither rejected nor

accepted.

(3) The data comes from a sample chosen from a larger population upon which inferences are

made.

Ideas from R.A. Fisher.

(1) A test statistic that summarizes the data is found.

(2) The p-value is the probability of seeing the test statistic or something more extreme if the

null hypothesis is true.

(3) Students are taught that the level of signi�cance is the amount of evidence needed to reject

a null hypothesis. If α = 0.05, the probability of the observation occurring, if the null

hypothesis is true, would have to be less than 5% to be judged signi�cant.

(4) The hesitancy to accept a hypothesis has translated into the convention of saying, �we

fail to reject H0�, even though Fisher believed that H0 should be never be accepted and

the results of any experiments with non signi�cant p-values should be ignored and the

experiment redesigned.
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Ideas from Neyman and Pearson.

(1) There is both a null and alternative hypothesis. The alternative hypothesis is assumed

to be the negation of the null hypothesis. (This goes against the advice of Neymand and

Pearson to not have too many alternative hypotheses.)

(2) The null hypothesis can be accepted, but it is preferable to say �we fail to reject H0� rather

than �we accept H0�. This slight di�erence in terminology is convention based on Karl

Pearson and Fisher's arguments against accepting a hypothesis.

(3) There are type I and type II errors. The power is the probability of rejecting H0 when it

is false.

(4) Tests can be chosen on the criterion of power. This is largely ignored in introductory classes

as students are given basic tests to choose from.

(5) The data comes from a sample chosen from a larger population upon which inferences are

made.
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CHAPTER 3

Mathematical Proofs
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Expected value and variance

Definition 1. If X is a random variable with pdf f(x) or pmf p(x), and a function g(X) is

measurable, then the expected value of g(X) is de�ned as

E (g(X)) =


∞́

−∞
g(x)f(x)dx, if X is continuous

∞∑
−∞

g(x)p(x)dx, if X is discrete

if E (|g(X)|) <∞, otherwise E (g(X)) does not exist.

Theorem 1. If a and b are �nite real numbers, and X is a random variable with expected value

E(X), then E(aX + b) = aE(X) + b.

Proof. Note that
´
X

f(x)dx = 1 and
∑
X

p(x) = 1 by de�nition of pdf and pmf.

Existence for Continuous Case

E(|aX + b|) =

ˆ

X

(|ax+ b|) f(x)dx

≤
ˆ

X

(|a||x|+ |b|) f(x)dx

by Triangle Inequality

=

ˆ

X

|a||x| f(x)dx+

ˆ

X

|b| f(x)dx

= |a|
ˆ

X

|x| f(x)dx+ |b|
ˆ

X

f(x)dx

= |a|E(|X|) + |b|(1)

= |a|E(|X|) + |b|

< ∞

because E(X) exists, so E(|X|) <∞, and a and b are �nite. Therefore, E(aX + b) exists.
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Calculation for Continuous Case

E(aX + b) =

ˆ

X

(ax+ b) f(x)dx

=

ˆ

X

ax f(x)dx+

ˆ

X

b f(x)dx

= a

ˆ

X

x f(x)dx+ b

ˆ

X

f(x)dx

= aE(X) + b(1)

= aE(X) + b

Existence for Discrete Case

E(|aX + b|) =
∑
X

(|ax+ b|) p(x)

≤
∑
X

(|a||x|+ |b|) p(x)

by Triangle Inequality

=
∑
X

|a||x| p(x) +
∑
X

|b| p(x)

= |a|
∑
X

|x| p(x) + |b|
∑
X

p(x)

= |a|E(|X|) + |b|(1)

= |a|E(|X|) + |b|

< ∞

because E(X) exists, so E(|X|) < ∞, and a and b are �nite. Therefore, E(aX + b) exists.

Therefore, E(aX + b) exists.
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Calculation for Discrete Case

E(aX + b) =
∑
X

(ax+ b) p(x)

=
∑
X

ax p(x) +
∑
X

b p(x)

= a
∑
X

x p(x) + b
∑
X

p(x)

= aE(X) + b(1)

= aE(X) + b

�

Theorem 2. If X and Y are jointly distributed random variables with expected values E(X)

and E(Y ), then E(X + Y ) = E(X) + E(Y ).

Proof. Let f(x, y) be the joint pdf, and fX(x) and fY (y) the marginal pdfs.

Continuous Case Existence

E(|X + Y |) =

ˆ ˆ
(|x+ y|) f(x, y)dxdy

≤
ˆ ˆ

(|x|+ |y|) f(x, y)dxdy

by Triangle Inequality

=

ˆ ˆ
|x| f(x, y)dydx+

ˆ ˆ
|y| f(x, y)dxdy

=

ˆ
|x|
[ˆ

f(x, y)dy

]
dx+

ˆ
|y|
[ˆ

f(x, y)dx

]
dy

=

ˆ
|x|fX(x)dx+

ˆ
|y|fY (y)dy

= E(|X|) + E(|Y |)

< ∞

because E(X) and E(Y ) both exist. Therefore, E(X + Y ) exists.
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Continuous Case Calculation

E(X + Y ) =

ˆ ˆ
(x+ y) f(x, y)dxdy

=

ˆ ˆ
(x+ y) f(x, y)dxdy

by Triangle Inequality

=

ˆ ˆ
x f(x, y)dydx+

ˆ ˆ
y f(x, y)dxdy

=

ˆ
x

[ˆ
f(x, y)dy

]
dx+

ˆ
y

[ˆ
f(x, y)dx

]
dy

=

ˆ
x fX(x)dx+

ˆ
y fY (y)dy

= E(X) + E(Y )

Therefore, E(X + Y ) = E(X) + E(Y ).

The proof for the discrete case is similar.

This argument is valid whether X and Y are independent or dependent.

�

Corollary 1. When X and Y are jointly distributed, E(X) and E(Y ) exist, and a, b, and c

are �nite real numbers, by Theorems 1 and 2,

E(a+ bX + cY ) = a+ bE(X) + cE(Y )

Definition 2. Random variables X and Y are independent if and only if

fX,Y (x, y) = fX(x)fY (y)
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Theorem 3. If X and Y are independent, and E [g(X)] and E [h(Y )] both exist, then

E [g(X) · h(Y )] = E [g(X)] · E [h(Y )]

Proof.

E [g(X) · h(Y )] =

ˆ ˆ
g(x) · h(y)f(x, y)dxdy

=

ˆ ˆ
g(x) · h(y)fX(x) · fY (y)dxdy

(by assumption of independence)

=

ˆ
g(x)fX(x)dx ·

ˆ
h(y)fY (y)dy

= E [g(X)] · E [h(Y )]

�

Definition 3. The variance of X is

V ar(X) = E
[
(X − E(X))

2
]

if the expected value exists.

Theorem 4. V ar(X) = E(X2)− (E(X))2

Proof.

V ar(X) = E
[
(X − E(X))

2
]

= E
[
X2 − 2X · E(X) + (E(X))2

]
= E(X2)− 2E(X) · E(X) + (E(X))2

= E(X2)− 2(E(X))2 + (E(X))2

= E(X2)− (E(X))2

Note that V ar(X) exists if both E(X2) and E(X) exist.

�
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Theorem 5. If a and b are �nite real numbers, and X is a random variable with �nite E(X)

and V ar(X), then V ar(aX + b) = a2V ar(X).

Proof. Continuous case only.

Existence

To check existence of V ar(aX+b) it is only necessary to check that E((aX+b)2) exists, because

E(aX + b) exists by Theorem 1.

E
(∣∣∣(aX + b)

2
∣∣∣) = E

(
(aX + b) 2

)
= E(a2X2 + 2abX + b2)

= E(a2X2) + E(2abX) + E(b2)

= a2E(X2) + 2abE(X) + b2

< ∞

because a and b are �nite constants and E(X2) and E(X) are both assumed to exist, therefore

V ar(aX + b) exists.

Calculation

Then by Theorem 1

V ar(aX + b) = E
(
(aX + b) 2

)
− [E(aX + b)]

2

=
[
a2E(X2) + 2abE(X) + b2

]
− [aE(X) + b]

2

= a2E(X2) + 2abE(X) + b2 − a2 (E(X))
2 − 2abE(X)− b2

= a2
[
E(X2)− (E(X))2

]
= a2V ar(X)

�
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Theorem 6. If X and Y are independent random variables with �nite E(X) and V ar(X) and

E(Y ) and V ar(Y ), then V ar(X + Y ) = V ar(X) + V ar(Y ).

Proof. Continuous case only.

Existence

To check existence of V ar(X+Y ) it is only necessary to check that E((X+Y )2) exists, because

E(X + Y ) exists by Theorem 2.

E
(∣∣∣(X + Y )

2
∣∣∣) = E

(
(X + Y ) 2

)
= E(X2 + 2XY + Y 2)

= E(X2) + E(2XY ) + E(Y 2)

= E(X2) + 2E(X)E(Y ) + E(Y 2)

(because X and Y are independent)

< ∞

because E(X2), E(X), E(Y ), and E(Y 2) all exist by assumption. Therefore, V ar(X + Y ) exists.

Calculation

By Theorems 1 and 2

V ar(aX + b) = E
(
(X + Y ) 2

)
− [E(X + Y )]

2

=
[
E(X2) + 2E(X)E(Y ) + E(Y 2)

]
− [E(X) + E(Y )]

2

= E(X2) + 2E(X)E(Y ) + E(Y 2)−
[
(E(X))2 + 2E(X)E(Y ) + (E(Y ))2

]
=

[
E(X2)− (E(X))2

]
+
[
E(Y 2)− (E(Y ))2

]
= V ar(X) + V ar(Y )

�

Corollary 2. When X and Y are independent random variables, V ar(X) and V ar(Y ) exist,

and a, b, and c are �nite real numbers, by Theorems 5 and 6,

V ar(a+ bX + cY ) = b2V ar(X) + c2V ar(Y )
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Moment generating functions

Definition 4. A random variable X has moment generating function (mgf)

M(t) = E
(
etX
)

if the expected value exists. Speci�cally,

M(t) =
∑
X

etxp(x)

if X is discrete, and

M(t) =

∞̂

−∞

etxf(x)dx

if X is continuous.

Theorem 7. If the random variable X has a moment generating function that exists in an open

interval around zero, then

M (r)(0) = E(Xr)

Proof. For the continuous case, M(t) =
∞́

−∞
etxf(x)dx.

For r = 1

M ′(t) =
d

dt

∞̂

−∞

etxf(x)dx

under certain conditions, integration and di�erentiation can be interchanged, so

M ′(t) =

∞̂

−∞

∂

∂t
etxf(x)dx

=

∞̂

−∞

xetxf(x)dx
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and evaluating at zero gives

M ′(0) =

∞̂

−∞

xe(0)xf(x)dx

=

∞̂

−∞

xf(x)dx

= E(X)

General Case

If we take the rth derivative of M(t), we get

M (r)(t) =
d r

dt r

∞̂

−∞

etxf(x)dx

=

∞̂

−∞

∂r

∂t r
etxf(x)dx

=

∞̂

−∞

xr etxf(x)dx

and evaluating at zero gives

M (r)(0) =

∞̂

−∞

xr e(0)xf(x)dx

=

∞̂

−∞

xr f(x)dx

= E(Xr)

�

Remark 1. The rth derivative of the moment generating function evaluated at zero is the

expected value of Xr. This gives

M ′(0) = E(X)

M ′′(0) = E(X2)
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Proposition 1. The moment generating function uniquely determines the probability distribu-

tion of a random variable, if the mgf exists in an open interval around zero.

Remark 2. If we can �nd the moment generating function of a random variable, we can �nd

the probability distribution associated with it.

Theorem 8. If MX(t) is the moment generating function of X and Y = a + bX, then the

moment generating function of Y is

MY (t) = eatMX(bt)

Proof.

MY (t) = E
(
etY
)

= E
(
et[a+bX]

)
= E

(
eat+btX

)
= E

(
eatebtX

)
= eatE

(
ebtX

)
= eatMX (bt)

�
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Theorem 9. If MX(t) and MY (t) are the moment generating functions of X and Y , where X

and Y are independent, then the mgf of Z = X + Y is

MZ(t) = MX(t)MY (t)

If MX(t) exists on the interval A, and MY (t) exists on the interval B, then MZ(t) exists on the

interval A ∩B.

Proof.

MZ(t) = E
(
etZ
)

= E
(
et[X+Y ]

)
= E

(
etX+tY

)
= E

(
etXetY

)
Because X and Y are independent, the expected value can be factored into the product of

expected values by Theorem 3, so

MZ(t) = E
(
etXetY

)
= E

(
etX
)
E
(
etY
)

= MX(t)MY (t)

�
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Normal distribution

Definition 5. A normal distribution with mean µ and variance σ2 is a continuous distribution

with probability density function

f(x) =
1

σ
√

2π
e
−

1

2σ2
(x−µ)2

Definition 6. The standard normal distribution is a normal distribution with mean µ = 0 and

variance σ2 = 1.

Theorem 10. If X ∼ N(µ, σ2), and a and b are �nite constants, then

Y = aX + b ∼ N(aµ+ b , a2σ2)

Proof. If a > 0, the cumulative density function of Y is

FY (y) = P (Y ≤ y)

= P (aX + b ≤ y)

= P

(
X ≤ y − b

a

)
= FX

(
y − b
a

)
If we di�erentiate the cumulative density function, we get the probability density function. Therefore

fY (y) =
d

dy
FX

(
y − b
a

)
=

1

a
fX

(
y − b
a

)
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Since X ∼ N(µ, σ2),

fY (y) =
1

a

 1

σ
√

2π
e
−

1

2σ2

y − b
a

−µ
2

=
1

(aσ)
√

2π
e
−

1

2 (aσ)
2 (y−[b+aµ])2

This is the pdf of a normally distributed random variable with mean aµ+ b and variance a2σ2.

If a < 0, the cumulative density function of Y is

FY (y) = P (Y ≤ y)

= P (aX + b ≤ y)

= P

(
X ≥ y − b

a

)
= 1− FX

(
y − b
a

)
If we di�erentiate the cumulative density function, we get the probability density function. Therefore

fY (y) =
d

dy

[
1− FX

(
y − b
a

)]
=

1

a
fX

(
y − b
a

)
Since X ∼ N(µ, σ2),

fY (y) =
1

a

 1

σ
√

2π
e
−

1

2σ2

y − b
a

−µ
2

=
1

(aσ)
√

2π
e
−

1

2 (aσ)
2 (y−[b+aµ])2

and this is the pdf of a normally distributed random variable with mean aµ+ b and variance a2σ2.

If a = 0, then Y = 0 ·X + b = b which is a Dirac distribution. It can also be thought of as being

normally distributed with mean b and variance 0. So Y ∼ N(0 · µ+ b, 02σ2) or Y ∼ N(b, 0).

�
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Corollary 3. If X ∼ N(µ, σ2), X can be expressed as X = σZ + µ where Z ∼ N(0, 1).

Proof. If Z ∼ N(0, 1), then X = σZ + µ would be distributed N(0 · σ + µ, σ2 · 1) or N(µ, σ2)

by Theorem 10.

�

Theorem 11. A standard normal distribution, see De�nition 6, has mgf

M(t) = et
2/2

Proof. By De�nitions 5 and 6, the density function of a standard normal distribution is

f(x) =
1√
2π
e−x

2/2

By De�nition 4, the mgf is

M(t) =

∞̂

−∞

etx · 1√
2π
e−x

2/2dx

=

∞̂

−∞

1√
2π
etx−x

2/2dx

=

∞̂

−∞

1√
2π
e
−

1

2
(x2−2tx+(−t)2)+

t2

2 dx

= e

t2

2

∞̂

−∞

1√
2π
e
−

1

2

(
x−
t

4

)2

dx

= et
2/2 · 1

because

1√
2π
e
−

1

2

(
x−
t

4

)2

is the density function for a random variable distributed N(t/4, 1) and density functions integrate

to 1.

�
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Corollary 4. If X ∼ N(µ, σ2), then the moment generating function is

M(t) = eµteσ
2t2/2

Proof. If X ∼ N(µ, σ2), then X = σZ+µ where Z ∼ N(0, 1) by Corollary 3. Then Theorem 8

can be used.

MX(t) = MσZ+µ(t)

= eµtMZ(σt)

= eµte(σt)
2/2

= eµteσ
2t2/2

�

Theorem 12. If X ∼ N(µ, σ2) and Y ∼ N
(
ν, τ2

)
and X and Y are independent, then

X + Y ∼ N
(
µ+ ν, σ2 + τ2

)

Proof. By Theorem 9,

MX+Y (t) = MX(t)MY (t)

=
[
eµteσ

2t2/2
] [
eνteτ

2t2/2
]

= eµt+νteσ
2t2/2+τ2t2/2

= e(µ+ν)te(σ
2+τ2)t2/2

We see thatMX+Y (t) is the moment generating function of a normal distribution with mean µ+ν

and variance σ2 + τ2. Therefore by the uniqueness of moment generating functions, Proposition 1,

X + Y ∼ N
(
µ+ ν, σ2 + τ2

)
�
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Theorem 13. If X is a normally distributed random variable with mean µ and standard devi-

ation σ, then Z =
X − µ
σ

has a standard normal distribution.

Proof. By Corollary 4,

MX(t) = eµteσ
2t2/2

Then

MY (t) = MX − µ
σ

(t)

= M(1/σ)X−(µ/σ)(t)

= e(−µ/σ)tMX

(
1

σ
t

)
by Theorem 8. Then

MY (t) = e(−µ/σ)t

eµ
(

1

σ
t

)
e
σ2

(
1

σ
t

)2

/2


= e(−µ/σ)t

e(µ/σ)teσ2·
1

σ2
·t2/2


= e(−µ/σ+µ/σ)te1·t

2/2

= e0tet
2/2

= et
2/2

which is the mgf of a standard normal distribution. Therefore by uniqueness of moment generating

functions, Proposition 1, Z ∼ N(0, 1).

�
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Distributions derived from the normal distribution

Definition 7. If Z ∼ N(0, 1), then Z2 has a chi-square distribution with 1 degree of freedom,

denoted χ2
1.

Definition 8. If V1, V2, . . . , Vn are independent random variables each with a chi-square dis-

tribution with 1 degree of freedom, then
∑n
i=1 Vi has a chi-square distribution with n degrees of

freedom, denoted χ2
n.

Definition 9. If Z and U are independent random variables with Z ∼ N(0, 1) and U ∼ χ2
n,

then
Z√
U

n

has a t distribution with n degrees of freedom, denoted tn.

Definition 10. If U and V are independent random variables, U ∼ χ2
n and V = χ2

m, then

U/n
V/m

has a F distribution with n and m degrees of freedom, denoted Fn,m.

Fact 1. The pdf of a chi-square random variable with k degrees of freedom is

1

2k/2Γ(k/2)
xk/2−1e−x/2 · I[0,∞)(x)
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Fact 2. A random variable with a gamma distribution with parameters α and λ has pdf

f(x) =
λαxα−1e−λx

Γ(α)

for x ≥ 0, α > 0 and λ > 0.

Lemma 1. The moment generating function of a chi-square random variable with k degrees of

freedom is (1− 2t)−k/2 for t < 1/2.

Proof. The pdf of a chi-square random variable with k degrees of freedom is

1

2k/2Γ(k/2)
xk/2−1e−x/2 · I[0,∞)(x)

So by De�nition 4, the moment generating function is

M(t) =

∞̂

0

etx · 1

2k/2Γ(k/2)
xk/2−1e−x/2dx

=

∞̂

0

1

2k/2Γ(k/2)
xk/2−1etx−x/2dx

=
2k/2(1− 2t)−k/2

2k/2

∞̂

0

(
1− 2t

2

)
k/2

Γ(k/2)
xk/2−1e

−x
(1− 2t)

2 dx

= (1− 2t)−k/2

because (
1− 2t

2

)
k/2

Γ(k/2)
xk/2−1e

−x
(1− 2t)

2

is the pdf of a gamma distribution with α = k/2 and λ =
(1− 2t)

2
and probability density functions

integrate to one. By the de�nition of the pdf of a gamma distribution, λ > 0 or
(1− 2t)

2
> 0.

Therefore the moment generating function for a chi-square random variable is only de�ned if t < 1/2.

�
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Lemma 2. If X ∼ χ2
k, then

E(X) = k

V ar(X) = 2k

Proof. By Theorem 7,

M (r)(0) = E(Xr)

so

E(X) =
d

dt
(1− 2t)−k/2|t=0

= −k
2

(1− 2t)−k/2−1 · −2|t=0

= −k
2

(1− 2 · 0)−k/2−1 · −2

= k

and

E(X2) =
d2

dt2
(1− 2t)−k/2|t=0

= k

(
−k

2
− 1

)
(1− 2t)−k/2−2 · −2|t=0

= k(k + 2)

Therefore

V ar(X) = E(X2)− (E(X))2

= k(k + 2)− k2

= k2 + 2k − k2

= 2k

�
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One sample z-test for the population mean

Definition 11. If X1, X2, . . . , Xn are random variables, let

X =

∑n
i=1Xi

n

and

S =

∑n
i=1(Xi −X)

n− 1

Remark 3. The mean of a sample from a population is not a constant. It varies depending on

which sample from the population is chosen. Therefore, the sample mean is a random variable with

its own distribution, called the sampling distribution.

Lemma 3. If X is the random variable of the sample means of all the simple random samples

of size n from a population with expected value E(X) and variance V ar(X), then the expected value

and variance of X are

E(X) = E(X)

V ar(X) =
V ar(X)

n

Proof. Consider all of the possible samples of size n from a population with expected value

E(X) and variance V ar(X). If a sample X1, X2, . . . , Xn is chosen, each Xi comes from the same

population so each Xi has the same expected value, E(X) and variance, V ar(X). By Corollary 1,

E(X) = E

(
1

n

n∑
i=1

Xi

)

=
1

n
E

(
n∑
i=1

Xi

)

=
1

n

(
n∑
i=1

E(Xi)

)

=
1

n
(n · E(X))

= E(X)

and by Corollary 2
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V ar(X) = V ar

(
1

n

n∑
i=1

Xi

)

=
1

n2
V ar

(
n∑
i=1

Xi

)

=
1

n2

(
n∑
i=1

V ar(Xi)

)

=
1

n2
(n · V ar(X))

=
V ar(X)

n

�

Remark 4. As the sample size n increases, the variance of X decreases.

Theorem 14. If X1, X2, . . . , Xn are normally distributed random variables with mean µ and

variance σ2, then

X − µ
σ/
√
n
∼ N(0, 1)

Proof. By Lemma 3 and Theorems 10 and 12,

X ∼ N
(
µ,
σ2

n

)
So by Theorem 13,

X − µ
σ/
√
n
∼ N(0, 1)

�
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Corollary 5. If X1, X2, . . . , Xn are normally distributed random variables, then the statistic

Z =
X − µ0

σ/
√
n

has a standard normal distribution where µ0 is the hypothesized population mean under

the null distribution.

Proof. This corollary is a direct result of Theorem 14.

�

Remark 5. Therefore, the standard normal distribution can be used to �nd p-values for a one

sample z-test for a population mean.
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Paired sample z test for the population mean of paired di�erences

Theorem 15. If X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are normally distributed random variables

and Xi and Yi are independent, then

Z =
D − δ
σD√
n

∼ N(0, 1)

where Di = Xi − Yi is a pairwise di�erence, D =

∑n
i=1Di

n
, δ is the mean of the pairwise

di�erences under the null hypothesis, and σD is the population standard deviation of the pairwise

di�erences.

Proof. Note that Xi and Yi are normal random variables, so Di = Xi − Yi is also a normal

random variable by Theorem 12. Then D1, D2, . . . , Dn can be thought of as the sequence of random

variables {Xi}ni=1 described in Corollary 5. Therefore, Z ∼ N(0, 1).

�

Remark 6. Therefore, the standard normal distribution can be used to �nd p-values for the

paired sample z-test for the population mean of pairwise di�erences.
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Two sample z-test for the di�erence of population means

Lemma 4. If X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are independent with Xi ∼ N(µX , σ
2
X) and

Yi ∼ N(µY , σ
2
Y ) then

X − Y ∼ N
(
µX − µY ,

σ2
X

n
+
σ2
Y

m

)

Proof. By Lemma 3, X ∼ N
(
µX ,

σ2
X

n

)
and Y ∼ N

(
µY ,

σ2
Y

m

)
. Then by Theorems 10 and 12,

X − Y = X + (−1)Y

∼ N

(
µX − µY ,

σ2
X

n
+ (−1)2

σ2
Y

m

)

�

Theorem 16. If X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are independent with Xi ∼ N(µX , σ
2
X) and

Yi ∼ N(µY , σ
2
Y ) then

Z =

(
X − Y

)
− (µX − µY )√

σ2
X

n
+
σ2
Y

m

∼ N(0, 1)

Proof. By Lemma 4, X − Y ∼ N

(
µX − µY ,

σ2
X

n
+
σ2
Y

m

)
, so the mean of X − Y is µX − µY

and the variance is

√
σ2
X

n
+
σ2
Y

m
. Then X − Y can be standardized using Theorem 13, giving

(
X − Y

)
− (µX − µY )√

σ2
X

n
+
σ2
Y

m

∼ N(0, 1)

�

Remark 7. Therefore, the p-value for the two sample z-test for the di�erence of population

means (independent samples) can be found by with the standard normal distribution.
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One sample z-test for the population proportion

Proposition 2. Lindeberg-Levy Central Limit Theorem

If {Xn}∞i=1 is a sequence of random variables that are independent and identically distributed, each

with mean E(Xi) = µ and positive �nite variance V ar(Xi) = σ2, with Xn =
1

n

∑n
i=1Xi, then

√
n(Xn − µ)

σ

d→ Z

where Z ∼ N(0, 1), see [9, 30].

Theorem 17. Therefore, if X ∼ Bin(n, p), and p̂ =
X

n
, then for large n,

p̂ is approximately distributedN

(
p,
p(1− p)

n

)

Proof. IfX ∼ Bin(n, p), thenX =
∑n
i=1Xi where eachXi is a Bernoulli random variable with

probability of success p. Therefore p̂ =
X

n
=

∑n
i=1Xi

n
= X. E(Xi) = p and V ar(Xi) = p(1−p) <∞

∀i. Then it holds for p̂n = Xn that
p̂n − p√
p(1− p)

n

d→ Z

where Z ∼ N(0, 1) by the Lindeberg-Levy Central Limit Theorem.

�

Corollary 6. The test statistic

Z =
p̂− p0√
p0(1− p0)

n

is approximately normally distributed under the null hypothesis of p = p0 for large n.

Proof. Since p̂ is approximately normally distributed with mean p0 and variance
p0(1− p0)

n
,

by Theorem 13, Z is approximately normally distributed.

�

Remark 8. Therefore, the standard normal distribution can be used to �nd p-values for the

one sample z-test for a population proportion.
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Two sample z-test for population proportions

Theorem 18. If X ∼ Bin(pX , n) and Y ∼ Bin(pY ,m), then p̂X =
X

n
is approximately dis-

tributed

N

(
pX ,

pX(1− pX)

n

)
and p̂Y =

Y

m
is approximately distributed

N

(
pY ,

pY (1− pY )

m

)
by Theorem 17. Then p̂X − p̂Y is approximately distributed

N

(
pX − pY ,

pX(1− pX)

n
+
pY (1− pY )

m

)
by Theorems 10 and 12. Therefore

(p̂X − p̂Y )− (pX − pY )√
pX(1− pX)

n
+
pY (1− pY )

m

has an approximate standard normal distribution.

Proof. See theorem 13 with E (p̂X − p̂Y ) = pX − pY and

V ar (p̂X − p̂Y ) =
pX(1− pX)

n
+
pY (1− pY )

n

�
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Corollary 7. Under the null hypothesis that pX = pY = p,

(p̂X − p̂Y )√
p(1− p)

(
1

n
+

1

m

)
has an approximate standard normal distribution.

Proof.

(p̂X − p̂Y )− (pX − pY )√
pX(1− pX)

n
+
pY (1− pY )

m

=
(p̂X − p̂Y )− (p− p)√
p(1− p)

n
+
p(1− p)

m

=
(p̂X − p̂Y )√

p(1− p)
(

1

n
+

1

m

)

�

Remark 9. When conducting a two sample z-test for population proportions to see if pX =

pY = p, it is assumed that p is unknown. So p̂ =
X + Y

n+m
, which is the overall proportion of success

for both populations, is used as an estimate for p.

Remark 10. As a result of Corollary 7, the test statistic

Z =
(p̂X − p̂Y )√

p̂(1− p̂)
(

1

n
+

1

m

)
has an approximate normal distribution.

Remark 11. Therefore, the standard normal distribution can be used to �nd p-values for the

two sample z-test for population proportions.
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One sample t-test for the population mean

Lemma 5.
∑n
i=1(Xi −X) = 0

Proof.

n∑
i=1

(Xi −X) =

n∑
i=1

Xi −
n∑
i=1

X

=

n∑
i=1

Xi − nX

=

n∑
i=1

Xi − n
∑n
i=1Xi

n

=

n∑
i=1

Xi −
n∑
i=1

Xi

= 0

�

Theorem 19.
(n− 1)S2

σ2
has a chi-square distribution with n− 1 degrees of freedom.

Proof.

S2 =

∑n
i=1

(
Xi −X

)2
n− 1

so

(n− 1)S2

σ2
=

(n− 1)

σ2

∑n
i=1

(
Xi −X

)2
n− 1

=
1

σ2

n∑
i=1

(
Xi −X

)2
Now

1

σ2

n∑
i=1

(Xi − µ)
2

=

n∑
i=1

(
Xi − µ
σ

)2

=

n∑
i=1

(Zi)
2

=

n∑
i=1

Vi
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where Zi ∼ N(0, 1) by Theorem 13 and Vi ∼ χ2
1 by De�nition 7. Then by De�nition 8,

1

σ2

n∑
i=1

(Xi − µ)
2 ∼ χ2

n

We also have

1

σ2

n∑
i=1

(Xi − µ)
2

=
1

σ2

n∑
i=1

([
Xi −X

]
+
[
X − µ

])2
=

1

σ2

n∑
i=1

[
(Xi −X)2 + 2(Xi −X)(X − µ) + (X − µ)2

]
=

1

σ2

n∑
i=1

(Xi −X)2 +
2

σ2
(X − µ)

n∑
i=1

(Xi −X) +
1

σ2

n∑
i=1

(X − µ)2

Note that
∑n
i=1(Xi −X) = 0 by Lemma 5 and (X − µ)2 is a constant. Therefore

1

σ2

n∑
i=1

(Xi − µ)
2

=
1

σ2

n∑
i=1

(Xi −X)2 + 0 +
n

σ2
(X − µ)2

=
(n− 1)S2

σ2
+

X − µσ√
n


2

Let W =
1

σ2

∑n
i=1 (Xi − µ)

2
, U =

(n− 1)S2

σ2
, and V =

X − µσ√
n


2

. Then W = U + V .

We know W ∼ χ2
n and

X − µ
σ√
n

∼ N(0, 1)

by Theorem 14, so V ∼ χ2
1. The moment generating function of a random variable with n degrees

of freedom is M(t) = (1− 2t)−n/2 by Lemma 10. By Theorem 9, MW (t) = MU (t)MV (t). Then

MU (t) =
MW (t)

MV (t)

=
(1− 2t)−n/2

(1− 2t)−1/2

= (1− 2t)−(n−1)/2

which is the mgf of random variable with a chi-square distribution with n − 1 degrees of freedom.

By uniqueness of moment generating functions, Proposition 1, U ∼ χ2
n−1.

�
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Theorem 20. If {Xi}ni=1 is a sequence of independent random variables with Xi ∼ N(µ, σ2),

then

X − µ
S/
√
n
∼ tn−1

Proof.

X − µ
S/
√
n

=
1

S
· X − µ

1/
√
n
·
√
σ2

σ2

=

√
σ2

S2
· X − µ√

σ2/n

=

√
(n− 1)σ2

(n− 1)S2
· X − µ√

σ2/n

=

X − µ√
σ2/n√√√√√

(
(n− 1)S2

σ2

)
(n− 1)

=
Z√
U

n− 1

where Z =
X − µ√
σ2/n

∼ N(0, 1) by Theorem 14 and U =
(n− 1)S2

σ2
∼ χ2

n−1 by Theorem 19. Then by

De�nition 9,
X − µ
S/
√
n
∼ tn−1.

�

Corollary 8. The test statistic t =
X − µ0

S/
√
n

has a t distribution with n− 1 degrees of freedom

under the null hypothesis.

Proof. This corollary is a direct result of Theorem 20.

�

Remark 12. Therefore, the t-distribution with n − 1 degrees of freedom can be used to �nd

p-values for the one sample t-test for the population mean.
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Paired sample t-test for the population mean of paired samples

Theorem 21. If X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are normally distributed random variables,

Xi and Yi are independent, then

Z =
D − δ
SD√
n

∼ N(0, 1)

where Di = Xi−Yi is a pairwise di�erence, D =

∑n
i=1Di

n
, δ is the mean of the pairwise di�erences

under the null hypothesis, and SD is the sample standard deviation of the pairwise di�erences.

Proof. Note that Xi and Yi are normal random variables, so Di = Xi − Yi is also a normal

random variable by Theorem 12. Then D1, D2, . . . , Dn can be thought of as the sequence of random

variables {Xi}ni=1 described in Theorem 20. Therefore t ∼ tn−1.

�

Remark 13. Therefore, the t distribution with n − 1 degrees of freedom can be used to �nd

p-values for the paired sample t-test for the population mean of pairwise di�erences.
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Two sample t-test for population means (equal variances)

Lemma 6. If X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are independent with Xi ∼ N(µX , σ
2) and

Yi ∼ N(µY , σ
2) then

X − Y ∼ N
(
µX − µY , σ2

(
1

n
+

1

m

))

Proof. By Lemma 3, X ∼ N
(
µX ,

σ2

n

)
and Y ∼ N

(
µY ,

σ2

m

)
. Then by Theorems 10 and 12,

X − Y = X + (−1)Y

∼ N

(
µX − µY ,

σ2

n
+ (−1)2

σ2

m

)

�

Lemma 7. If X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are independent with Xi ∼ N(µX , σ
2) and

Yi ∼ N(µY , σ
2), then (

X − Y
)
− (µX − µY )

σ

√
1

n
+

1

m

∼ N(0, 1)

Proof. By Lemma 6, X − Y ∼ N
(
µX − µY , σ2

(
1

n
+

1

m

))
, so the mean X − Y is µX − µY

and the variance is σ

√
1

n
+

1

m
.

X − Y can be standardized by Theorem 13, giving(
X − Y

)
− (µX − µY )

σ

√
1

n
+

1

m

∼ N(0, 1)

.

�

Theorem 22. If X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are independent with Xi ∼ N(µX , σ
2
X) and

Yi ∼ N(µY , σ
2
Y ), then the statistic

T =

(
X − Y

)
− (µX − µY )

Sp

√
1

n
+

1

m
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where

Sp =

√
(n− 1)S2

X + (m− 1)S2
Y

n+m− 2

has a t distribution with n+m− 2 degrees of freedom.

Proof.

T =

(
X − Y

)
− (µX − µY )√

(n− 1)S2
X + (m− 1)S2

Y

n+m− 2

√
1

n
+

1

m

· σ
σ

=

(
X − Y

)
− (µX − µY )

σ

√
1

n
+

1

m

÷

√[
(n− 1)S2

X

σ2
+

(m− 1)S2
Y

σ2

]
· 1

n+m− 2

Let Z =

(
X − Y

)
− (µX − µY )

σ

√
1

n
+

1

m

. By Lemma 7, Z ∼ N(0, 1).

Let U =

[
(n− 1)S2

X

σ2
+

(m− 1)S2
Y

σ2

]
. Then U ∼ χ2

n+m−2 by De�nition 8 because

(n− 1)S2
X

σ2
∼ χ2

n−1 and
(m− 1)S2

Y

σ2
∼ χ2

m−1 by Theorem 19. Therefore,

T =
Z√
U

n+m− 2

which has a t distribution with n+m− 2 degrees of freedom by De�nition 9.

�

Remark 14. Therefore, the t distribution with n + m − 2 degrees of freedom can be used to

�nd p-values for the two sample t-test for the di�erence of population means under the assumption

of equal population variances.



46

Two sample t-test for population means (unequal variances)

Lemma 8. If X1, X2, . . . , Xn is a sequence of random variables, V ar(S2) =
2σ4

n− 1
.

Proof. We know from Theorem 19, that

(n− 1)S2

σ2
∼ χ2

n−1

and we know that the variance of a chi-square random variable with k degrees of freedom is 2k,

by Lemma 2. So

V ar

[
(n− 1)S2

σ2

]
= 2(n− 1)

By Corollary 2,

V ar

[
(n− 1)S2

σ2

]
=

(n− 1)2V ar(S2)

σ4

Therefore
(n− 1)2V ar(S2)

σ4
= 2(n− 1)

or

V ar(S2) =
2σ4

(n− 1)

�

Theorem 23.

β̂

(
σ2
X

n
+
σ2
Y

m

)−1(
S2
X

n
+
S2
Y

m

)
approx∼ χ2

β̂

where

β̂ =

(
S2
X

n
+
S2
Y

m

)2

S4
X

n2(n− 1)
+

S4
Y

m2(m− 1)

Proof. Satterthwaite suggested the approximation

β

(
σ2
X

n
+
σ2
Y

m

)−1(
S2
X

n
+
S2
Y

m

)
∼ χ2

β

see [21] or [22, 111].

�
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If V = β

(
σ2
X

n
+
σ2
Y

m

)−1(
S2
X

n
+
S2
Y

m

)
and V ∼ χ2

β , then we would expect

V ar(V ) = V ar

[
β

(
σ2
X

n
+
σ2
Y

m

)−1(
S2
X

n
+
S2
Y

m

)]

and we know that the variance of a chi-square random variable with k degrees of freedom is 2k,

see Lemma 2. So V ar(V ) = 2β. By Corollary 2, where β, n, m, σ2
X , and σ

2
Y are constants,

V ar

[
β

(
σ2
X

n
+
σ2
Y

m

)−1(
S2
X

n
+
S2
Y

m

)]
=

β2

(
V ar(S2

X)

n2
+
V ar(S2

Y )

m2

)
(
σ2
X

n
+
σ2
Y

m

)2

but by Lemma 8, V ar(S2
X) =

2σ4
X

n− 1
and V ar(S2

Y ) =
2σ4

Y

m− 1
, so

V ar

[
β

(
σ2
X

n
+
σ2
Y

m

)−1(
S2
X

n
+
S2
Y

m

)]
=

β2

(
2σ4

X

(n− 1)n2
+

2σ4
Y

(m− 1)m2

)
(
σ2
X

n
+
σ2
Y

m

)2

but V ar(V ) = 2β, implying

β2

(
2σ4

X

(n− 1)n2
+

2σ4
Y

(m− 1)m2

)
(
σ2
X

n
+
σ2
Y

m

)2 = 2β

Solving this equation gives

β =

(
σ2
X

n
+
σ2
Y

m

)2

σ4
X

(n− 1)n2
+

σ4
Y

(m− 1)m2

or β = 0, which can be ignored because the degrees of freedom must be greater than zero.

Of course, σ2
X and σ2

Y are unknown for a t hypothesis test. So an estimate is

β̂ =

(
S2
X

n
+
S2
Y

m

)2

S4
X

n2(n− 1)
+

S4
Y

m2(m− 1)

and

β̂

(
σ2
X

n
+
σ2
Y

m

)−1(
S2
X

n
+
S2
Y

m

)
approx∼ χ2

β̂
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Theorem 24. If X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are independent with Xi ∼ N(µX , σ
2
X) and

Yi ∼ N(µY , σ
2
Y ), then the statistic

T =

(
X − Y

)
− (µX − µY )√

S2
X

n
+
S2
Y

m

has an approximate t distribution with v degrees of freedom where

v =

(
S2
X

n
+
S2
Y

m

)2

S4
X

n2(n− 1)
+

S4
Y

m2(m− 1)

Proof.

T =

(
X − Y

)
− (µX − µY )√

S2
X

n
+
S2
Y

m

·

√
σ2
X

n
+
σ2
Y

m√
σ2
X

n
+
σ2
Y

m

=

(
X − Y

)
− (µX − µY )√

σ2
X

n
+
σ2
Y

m

÷

√√√√√√√
S2
X

n
+
S2
Y

m
σ2
X

n
+
σ2
Y

m

Let Z =

(
X − Y

)
− (µX − µY )√

σ2
X

n
+
σ2
Y

m

, by Theorem 4, Z ∼ N(0, 1).

�

Now √√√√√√√
S2
X

n
+
S2
Y

m
σ2
X

n
+
σ2
Y

m

=

√√√√√√ β̂

(
σ2
X

n
+
σ2
Y

m

)−1(
S2
X

n
+
S2
Y

m

)
β̂

but by Theorem 23,

V = β̂

(
σ2
X

n
+
σ2
Y

m

)−1(
S2
X

n
+
S2
Y

m

)
approx∼ χ2

β̂

Therefore,

T =
Z√
V

β̂
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where Z ∼ N(0, 1), and V is approximately distributed χ2
β̂
. Then by De�nition 9, T is approximately

distributed with β̂ degrees of freedom, where

β̂ =

(
S2
X

n
+
S2
Y

m

)2

S4
X

n2(n− 1)
+

S4
Y

m2(m− 1)

Remark 15. Therefore, the t distribution with v degrees of freedom as stated above can be

used to �nd p-values for the two sample t-test for the di�erence of population means under the

assumption of unequal population variances.
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Chi-square test for population variance

Corollary 9. Under the null hypothesis that σ2 = σ2
0, the test statistic

X2 =
(n− 1)S2

σ2
0

has a chi-square distribution with n− 1 degrees of freedom.

Proof. This corollary is a direct consequence of Theorem 19.

�

Remark 16. Therefore, the chi-square distribution with n− 1 degrees of freedom can be used

to �nd p-values for the chi-square test for population variance.
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Two sample F test for population variances

Theorem 25. Under the null hypothesis that σ2
X = σ2

Y = σ2, the test statistic

F =
S2
X

S2
Y

has a F distribution with n− 1 and m− 1 degrees of freedom.

Proof.

F =
S2
X

S2
Y

=
S2
X

S2
Y

·

1

σ2

1

σ2

·

(n− 1)

(n− 1)

(m− 1)

(m− 1)

=

(
(n− 1)S2

X

σ2

)
÷ (n− 1)(

(m− 1)S2
Y

σ2

)
÷ (m− 1)

=
U/(n− 1)

V/(m− 1)

where U =
(n− 1)S2

X

σ2
∼ χ2

n−1 and V =
(m− 1)S2

Y

σ2
∼ χ2

m−1 by Theorem 19. Then by De�nition 10,

F ∼ Fn−1,m−1.

�

Remark 17. Therefore, the F distribution with n−1 and m−1 degrees of freedom can be used

to �nd the p-values for the two sample F test for population variances.
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Chi-square test for goodness of �t

Proposition 3. The test statistic

X2 =

k∑
i=1

(Oi − Ei)2

Ei
=

k∑
i=1

(Xi − npi)2

npi

where Xi is the observed frequency or count in each group, pi is the theoretical probability for each

group, and n is the sample size, has an approximate chi-square distribution with

• r−m degrees of freedom where r is the number of independent counts and m is the number

of parameters estimated, see [15, 260], or

• if the experiment is set up in a way that r = k− 1, there are k−m− 1 degrees of freedom

where k is the number of groups or cells and m is the number of parameters estimated,

see [4, 579].

Remark 18. Therefore, the p-values for the chi-square test for goodness of �t can be found by

using the chi-square distribution with k −m− 1.
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Chi-square test for independence

Corollary 10. For the chi-square test for independence,

the test statistic

X2 =

I∑
i=1

J∑
j=1

(Oij − Eij)2

Eij

has an approximate χ2
(I−1)(J−1) distribution where I is the number of rows and J is the number of

columns.

Proof. Under the null hypothesis that the two variables are independent, the probability of a

cell is the product of the probability of the column and the probability of the row. So pl =
cj
n
· ri
n

=
cjri
n2

where cj is the column total and rj is the row total and n is the grand total or sample size.

Then the expected value of a cell is npl =
cjri
n

=
(row total)(column total)

grand total
. Therefore

X2 =

I∑
i=1

J∑
j=1

(Oij − Eij)2

Eij
=

k∑
l=1

(Xi − npl)2

npl

Then by Proposition 3, X2 has an approximate χ2
k−m−1 distribution.

The number of cells, k can be found by the product of the number of columns and number

of rows, k = IJ . The expected probabilities are found by estimating the row probabilities and

the column probabilities. Since the row probabilities must sum to 1 and the column probabilities

must sum to one, there are (I − 1) and (J − 1) independent parameters that are being estimated so

m = (I − 1) + (J − 1). Therefore the degrees of freedom are

k −m− 1 = IJ − [(I − 1) + (J − 1)]− 1

= IJ − I + 1− J + 1− 1

= IJ − I − J + 1

= (I − 1)(J − 1)

�

Remark 19. Therefore, the chi-square distribution with (I − 1)(J − 1) degrees of freedom can

be used to �nd p-values for the chi-square test for independence.
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Chi-square test for homogeneity

Corollary 11. For the chi-square test for homogeneity,

the test statistic

X2 =

I∑
i=1

J∑
j=1

(Oij − Eij)2

Eij

has an approximate χ2
(I−1)(J−1) distribution where I is the number of rows and J is the number of

columns.

Proof. Under the null hypothesis that the J distributions are the same, the probability of the

ith category is the same for each jth distribution. Call that probability pi. If the probability of each

ith category is the same, then an estimate for pi =
ri
n

or the category total divided by the grand

total. Then the expected value in the ith category in the jth distribution could be found by the

product of the probability of the ith category and the sample size of the jth distribution, Eij =
ricj
n

.

Therefore

X2 =

I∑
i=1

J∑
j=1

(Oij − Eij)2

Eij
=

k∑
l=1

(Ol − El)2

El

has an approximate χ2
r−m distribution, by Proposition 3. Each distribution j has I − 1 independent

counts because the category total is �xed. So there are r = J(I − 1) independent counts. Since∑I
i=1 pi = 1, it is only necessary to estimate m = I − 1 parameters. Therefore, the degrees of

freedom are

r −m = J(I − 1)− (I − 1)

= IJ − J − I + 1

= (I − 1)(J − 1)

�

Remark 20. Therefore, the chi-square distribution with (I − 1)(J − 1) degrees of freedom can

be used to �nd p-values for the chi-square test for homogeneity.
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Basic Terms

Population: The set of all people, items, events, objects, etc. that are of interest.
Examples: everyone in the US, the results of 10000 coin tosses, every car built in 2010, etc.

Sample: A subset (smaller set) of the population. This is the part of the population for
which data is gathered.
Examples: every thousandth person in the US, the results of 100 coin tosses, etc.

Population vs Sample: The population refers to all the individuals or events of interest.
However, it is usually too di�cult, time consuming, or expensive to collect data on an
entire population such as everyone in the United States or every car built in 2010. So a
smaller subset of the population called the sample is chosen on which to gather data. It is
assumed that the sample is representative of the population. One way to do insure this is
by choosing a simple random sample.

Sampling with Replacement: After choosing an element from a population, the element
is placed back into the population and can be drawn again.

Sampling without Replacement: After choosing an element from a population, it is with-
held from the population and cannot be drawn again.

Simple Random Sample: A simple random sample means that each element in the popu-
lation has the same chance of being chosen.
Note that random does not mean chaotic or without order, but that each element has the
same chance of being drawn.
The elements in the sample need to be chosen independently. That means that drawing
an element has no e�ect on which element is chosen next.

Element: One of the individuals, objects, etc. in the population or sample.

Variable: A characteristic of interest of the population or sample. This is what is measured.
For example, the height of everyone in the US, the number of heads in 100 coin tosses, etc.

Discrete Variable: A quantitative variable that can assume a countable number of values.
There is a distance between any two values.
An example is how many states a person can live in during his life. He could have lived
in 1, 2, 3, 4, 5, 6, ..., 49, or 50 states. He couldn't have lived in 3.68797869 states. Notice
that there is a di�erence of at least 1 between any two values.
Figure skating judges give fractional scores of 9.9, 7.5, etc. Yet the scores are still discrete
because any two scores di�er by 0.1 increments. No one will get a score such as 9.8473.

Continuous Variable: A quantitative variable that can assume an uncountable number of
values. A continuous variable can assume any value in an interval.
An example is how much gas can be used to �ll a car. It could take 13, 13.423425, 13.746456
gallons, or any fractional amount of gas to �ll the tank.
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Discrete vs Continuous: A variable can be either discrete or continuous depending how
the variable is measured.
When a person is asked his age, it is typical to give an answer in terms of years. If a person
turned 25 two months ago, he would simply say he is 25 years old. With this reasoning,
age would be a discrete variable.
However, he isn't really 25 years old. He is 25 years and 2 months old. Of course, he could
also measure his age by weeks, days, minutes, seconds, or nano seconds. In this context,
age would be a continuous variable.

Data: The set of values collected for the variables.

Observation: The measurement for a speci�c element or one data value.

Parameter: A numerical value summarizing all the data of the population.
Examples: If the population is every person in the US, a parameter could be the mean of
the height of everyone in the US or the standard deviation of the height of everyone in the
US.
Symbols for parameters are usually Greek letters such as µ, σ, or τ .

Statistic: A numerical value summarizing all the data of the sample.
For example, if the sample is 1000 randomly chosen people in the US, a statistic could be
the mean of the height of the 1000 randomly chosen people.
Symbols for statistics are usually letters from the English alphabet such as x, s, or T.

Random Variable: A variable that assumes a numerical value to each of the outcomes in
an experiment. It is called a random variable because it represents the unknown outcome
of an experiment. The outcomes are uncertain until the experiment is actually carried out.
Examples:
A random variable could assign a 1 to every head result in a coin toss and a 0 to every tail.
A random variable could assign the number 1 to every blond, 2 to every brunette, etc.
A random variable could assign the number 23 to a 23 year old, 50 to a 50 year old, etc.
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Describing Data

Measures of Central Tendency. One of the easiest and most common ways to describe data
is by the average value. Average has been, and often is, used to refer to any of the measures of cen-
tral tendency. To avoid misconceptions, the most common measures of central tendency are de�ned
below.

Mean: The mean is commonly referred to as the �average�. To �nd the mean, add all the
values and divide by the number of values.

Population Mean:

µ=
x1 + x2 + · · ·+ xN

N
=

N∑
i=1

xi

N

where xi is an observation, and N is the number of observations in the population.

Sample Mean:

x =
x1 + x2 + · · ·+ xn

n
=

n∑
i=1

xi

n

where xi is an observation, and n is the number of observations in the sample.

The mean is �sensitive� to outliers. If there is a large outlier in the data, the mean will
be much larger than if the outlier was removed. Similarly, if there is a small outlier
in the data, the mean will be much smaller than if the outlier was removed. So the
mean is not a good representation of the �average� value of the data when outliers are
present. We say the mean is not a resistant measure of central tendency.

Trimmed Mean: To lessen the e�ect of outliers on how well the mean represents the data,
a small percentage (such as 5%) of both the smallest and largest values can be deleted.
This removes the e�ect of the outliers. Then the mean is computed for the rest of the data.

Median: The median is the �middle value�. Half of the observations in the data are less
than the median and half are larger than the median. There is no formula for the median.
Instead, write all the observations in order from least to greatest. If the number of values,

n, is odd, the middle value is the median. This would be the
(n+ 1)

2
observation. If n

is even, there will be two middle numbers. The median is the average or mean of these

two numbers. If n is even,
(n+ 1)

2
will be a fraction. This serves as a reminder that the

median is in between two observations.

The median is not sensitive to outliers. So the median is a resistant measure of central
tendency.

Mode: The value that occurs with greatest frequency. To �nd the mode, count how many
times each value shows up. The mode is the value that shows up the most.
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Measures of Spread or Variability. Variability describes how far apart the data values are.
Two sets of data might have the same mean, but the data might look very di�erent.

For example: X = {4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6} and Y = {1, 2, 3, 4, 5, 6, 7, 8, 9} both
have a mean of 5, but Y has much more variability, because the data is spread further apart.

Range: This is the largest value minus the smallest value. X(n) −X(1)

Variance: This measure of variability is based on the di�erence between each value and the
mean. There are di�erent formulas for variance for populations and samples.

Population Variance:

σ2 =

∑N
i=1 (xi − µ)

2

N

where xi is an observation, N is the number of observations in the population, and µ
is the population mean.

Sample Variance :

s2 =

∑n
i=1 (xi − x)

2

n− 1

where xi is an observation, n is the number of observations in the sample, and x is
the sample mean.

Standard Deviation: This is the square root of the variance. Variance is changed to stan-
dard deviation to get correct units. Variance will be the original units squared, but standard
deviation will have the same units as the original data.

For example, if the data is about money, variance would have units dollars squared, which
has no practical application or interpretation. However, the standard deviation would be
in units of dollars.

Population Standard Deviation:

σ =
√
σ2 =

√∑N
i=1 (xi − x)

2

N

where xi is an observation, N is the number of observations in the population, and µ
is the population mean.

Sample Standard Deviation:

s =
√
s2 =

√∑n
i=1 (xi − x)

2

n− 1

where xi is an observation, n is the number of observations in the sample, and x is
the sample mean.
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Distributions

A probability distribution describes the probability of each possible outcome, set of outcomes,
or the probability that an outcome is in a particular interval. Distributions can be expressed with
a table, equation, or graph.

Discrete or Continuous

Discrete Distribution: A discrete distribution describes the probability of discrete values,
see page 58. The probability of a single value or sets of values can be found, such as
P (X = 3) or P (X ≥ 3). An example of discrete values is the number rolled on a die.

Continuous Distribution: A continuous distribution describes the probability of contin-
uous values, see page 58. Note: The probability of a single value is zero. So only the
probability of intervals is of interest. For example, P (X = 3) = 0, but P (X ≥ 3) can be
found. An example of continuous values is a person's salary.

Probability of a point is zero: If a distribution is continuous, then the probability
of a single point is zero, or P (X = x) = 0. A basic explanation is that a continuous
distribution is de�ned on uncountably in�nite values. So if there are in�nitely many
points to choose from, how likely is it to choose a speci�c value x which is only one
out of in�nite points? Of course the probability is zero.
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Shape of Distribution

The shape of a distribution can be described several ways including symmetry and the number
of modes.

Symmetry. A distribution can be left skewed, right skewed or symmetric.

Left Skewed: In a left skewed distribution, the bulk of the distribution is in the higher
values on the right side, but there are extreme low values in the left. Since the bulk of
the distribution is in the higher values, a person might expect to see a high mean. But
the extreme low values in the left have to be taken into account as well and as a result
the mean is lower than expected. If a distribution is left skewed, the mean is less than the
median. (Picture it as a slide. If it is left skewed a person would slide down the left side.)

Right Skewed: In a right skewed distribution, the bulk of the distribution is in the lower
values on the left side, but there are extreme high values on the right that when accounted
for make the mean higher than would have been expected after seeing all the low values.
The mean is greater than the median. (If it was a slide a person would slide down the right
side.)
Skewness can be extreme (picture below on left) or very slight (picture below on right).

Example: Most people have an small or moderate income, but if a few rich people are
included in the distribution, the mean salary will suddenly be much higher. This is a
right skewed distribution.

Note: If a distribution is skewed, the mean is not a good representation of the �average�
value of the data. This is another reason that the mean is not a resistant measure of
central tendency (see page 60).
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Symmetric: A symmetric distribution looks symmetric, i.e., it looks the same for values less
than the mean and values greater than the mean. A symmetric distribution is not skewed
to the left or right.

Bell Shaped Curves. Some distributions have what is called a bell shape. They are symmetric
with a peak at the mean.

The most famous bell shape is the Gaussian curve or normal curve, see page 71.

Rectangular Curves. A rectangular curve is the uniform distribution, see page 70. Each value
has the same probability or frequency.
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Modes. A distribution can be described by the number of modes. The mode is the number
that occurs the most, or the value at which the distribution has a maximum value. When looking
at a graph, the mode will be the peak. There can be more than one mode.

Unimodal: A distribution that has only one mode or �peak�.

Bimodal: A distribution that has two modes or �peaks�.

Multimodal: These distributions have two or more modes or �peaks�.
This means that bimodal distributions are also multimodal. The rule of thumb is to be as
speci�c as possible and call a distribution bimodal if it has two peaks.
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Basic Inference

The population refers to all the individuals or events of interest. However, it is usually too
di�cult, time consuming, or expensive to collect data on an entire population. So a smaller subset
of the population called the sample is chosen on which to gather data. It is assumed that the sample
is representative of the population. If the sample is representative of the population, it can be used
to make inferences about the population.

A parameter is a number that describes a characteristic of the population. We wish to know
the value of the parameter, but that is impossible without having data on the entire population.

So a statistic which describes a characteristic of the sample is used to make inferences about the
parameter.

Example. Suppose a bread factory wished to know if the mean weight of all the loaves produced
is 2 pounds. The parameter of interest would be the mean weight of the bread.

It would be di�cult and time consuming to weigh every loaf of bread. So a sample of bread
could be chosen to weigh. Perhaps one in every hundred loaves could be weighed. The mean of this
sample would be the statistic.

The sample mean serves as an estimate of the population mean.

Sampling Distribution

All Possible Samples. From any population, there are many di�erent samples of size n that
can be chosen.

Example. Let a population be {0, 1, 2, 3, 4}. The following are samples of size 2 that could be
chosen without replacement:

{0, 1} {0, 2} {0, 3} {0, 4} {1, 2}
{1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

Notice that there are 10 di�erent samples that could have been chosen.

Sampling Distribution. Since there are di�erent samples that can be chosen, any sample
statistic, (i.e. sample mean, sample mode, sample standard deviation, sample range, sample max-
imum value), will be di�erent based on which sample is chosen. Each statistic will be a random
variable because its value changes from sample to sample. That means that each statistic also has
its own distribution, called the sampling distribution.

Example. Calculate the sample mean of each of the samples from the previous example.

Sample x Sample x
{0, 1} 0.5 {1, 3} 2
{0, 2} 1 {1, 4} 2.5
{0, 3} 1.5 {2, 3} 2.5
{0, 4} 2 {2, 4} 3
{1, 2} 1.5 {3, 4} 3.5

Notice that there are 10 di�erent values for the sample mean depending on which sample is
chosen. That means that the sample mean has its own distribution. Also shown is the histogram
for the sampling distribution of the sample mean.
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Binomial Distribution

Binomial Distribution. The binomial distribution is discrete. The binomial distribution de-
scribes the probability of getting x successes out of n trials and can be used when:

• The number of trials, n, is �xed.
• The trials are independent. (The outcome of one trial does not a�ect the outcome of the
next trial.)

• There are only two possible outcomes: success and failure.
• The probability of the success, or failure, is the same for each trial.

Remark. Trials are called identical when the possible outcomes are the same for each trial and
each possible outcome has the same probability. So the binomial distribution can be used when
there are n identical and independent trials.

Probability Mass Function. The Binomial distribution has the probability mass function

p(x) =

(
n
x

)
px (1− p)n−x

where

p (x) = the probability of x successes in n trials

n = the number of trials

x = the number of successes

p = the probability of a success on any one trial

1− p = the probability of a failure on any one trial(
n

x

)
=

n!

x! (n− x)!

The binomial distribution is only de�ned for integer values 0 or greater, i.e. 0, 1, 2, 3, . . ., because
the binomial distribution describes the number of successes.

The graphs of the probability mass functions for values of n = 30 and p = 0.3, 0.5, and 0.8 are
shown below.
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How the probability mass function is derived. If two events are independent, the proba-
bility of both events happening is the product of the probability of each event.

The binomial distribution describes how many successes happen in n trials. When �nding the
probability of getting x successes, it doesn't matter which of the n trials were successes, just that

there were x total successes. There are

(
n

x

)
or �n choose x� ways to choose x successes from n total

trials.
We need x successes. The probability of each success is p. So the probability of getting x

successes is px (p multiplied x times).
Of course, if there are only x successes, then the rest of the trials must be failures. There are

n − x trials left and the probability of each failure is 1 − p. So the probability of n − x failures is
(1− p)n−x.

Therefore the probability of getting x successes out of n trials is

(
n
x

)
px (1− p)n−x.

Expected Value and Variance.

E (X) = µ = np

V ar(X) = σ2 = np (1− p)

Normal Approximation. The normal distribution (page 71) can be used to approximate the
binomial distribution when the sample size is large and the probability of a success isn't too close
to 0 or 1. The rule of thumb is that the normal distribution can be used when np ≥ 10 and
n (1− p) ≥ 10.

The number of successes, X, is approximately normally distributed with µ = np and
σ2 = np (1− p).

X
approx∼ N (np, np (1− p))

The sample proportion, p̂, is approximately normally distributed with µ = p and σ2 =
p (1− p)

n
.

p̂ =
X

n

p̂
approx∼ N

(
p,
p (1− p)

n

)
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Continuity Correction. The binomial distribution is discrete and the normal distribution is
continuous, so a correction is needed to handle the di�erences between the two distributions. Using
the continuity correction makes the normal approximation a better approximation. Notice in the
picture below the di�erence between the discrete and continuous functions.

For example, P (X = x) can be found for a binomial distribution, but P (X = x) = 0 for
any continuous distribution. So to approximate P (X = x) with the normal distribution, �nd
P (x−0.5 ≤ X ≤ x+ 0.5). The continuity correction can be made by adding or subtracting 0.5 from
x to be on the �safe side�.

Binomial Normal Approximation with Continuity Correction
P (X = x) P (x− 0.5 ≤ X ≤ x+ 0.5).
P (X ≥ x) P (X ≥ x− 0.5)
P (X ≤ x) P (X ≤ x+ 0.5)

For a continuous function, there is no di�erence in P (X ≤ x) and P (X < x). However, there
is a big di�erence between P (X ≤ x) and P (X < x) if the distribution is discrete. When talking
about the binomial distribution, saying X ≤ 5 means X can be {0, 1, 2, 3, 4, 5}, but saying X < 5
means X is {0, 1, 2, 3, 4}. This means that X < 5 is equivalent to X ≤ 4 when working with integers.

Binomial What is Meant Normal Approximation with Continuity Correction
P (X > x) P (X ≥ x+ 1) P (X ≥ (x+ 1)− 0.5) or P (X ≥ x+ 0.5)
P (X < x) P (X ≤ x− 1) P (X ≤ (x− 1) + 0.5) or P (X ≤ x− 0.5)
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Discrete Uniform Distribution

The uniform distribution is used when every outcome has the same chance of occuring.

Probability Mass Function. The discrete uniform distribution has the probability mass func-
tion

p (x) =
1

n
where n is the number of possible outcomes.

Integers are the numbers {...,−3,−2,−1, 0, 1, 2, 3, ...}. If the possible outcomes are integers, call
the smallest possible outcome a and the greatest possible outcome b. Then,

n = b− a+ 1

E (X) =
a+ b

2

V ar (X) =
(b− a+ 1)

2 − 1

12
=
n2 − 1

12

Continuous Uniform Distribution

The continuous uniform distribution is de�ned on an interval, a ≤ X ≤ b, with constant proba-
bility on the interval.

Probability Density Function. A continuous uniform random variable has the probability
density function

f (x) =
1

b− a
where x can be any value between a and b. The distribution can be abbreviated as U (a, b).

E (X) =
a+ b

2

V ar (X) =
(b− a)

2

12
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Normal Distribution

The normal distribution is a continuous probability distribution. The density function is bell
shaped, centered at the mean, and is determined by the mean µ and the standard deviation σ.

The density function is

f (x) =
1√

2πσ2
e−(x−µ)

2�2σ2

The notation X ∼ N
(
µ, σ2

)
means that the random variable X is normally distributed with

mean µ and variance σ2. A few books use the notation X ∼ (µ, σ) meaning that the standard
deviation is σ.

The cumulative density function is represented with the notation Φ;

Φ(x) = P (X ≤ x)

Standard Normal Distribution. There are in�nitely many normal distributions with di�er-
ent means and variances, far too many to make a table of probabilities for each. Instead only one
table is used, the table for the standard normal distribution.

The standard normal distribution has mean µ = 0 and standard deviation σ = 1. If the data or
values �t any normal distribution, the data can be �standardized� by the formula,

z =
x− µ
σ

This is called the z-score. The distance between x and µ in terms of standard deviations is given
by z. For example, if z = 3, then x is 3 standard deviations from the mean.

After the data is standardized, it will have a standard normal distribution. The standard normal
distribution is represented by Z.

Z ∼ N (0, 1)

Given an x value, �nd probabilities. If x is a value from a normal distribution, to �nd any
associated probabilities, such as P (X ≥ x), P (X < x), etc., �rst convert the x value to the z-score
and then use a standard normal table or calculator. Drawing pictures is often helpful.

Example 1. If X ∼ N (3, 2.25), �nd the probability that a number drawn from the distribution
is greater than 2. This means �nd P (X > 2). Since the normal distribution is continuous, this is
the same as �nding P (X ≥ 2). See page A. The �rst step is to convert the x value to a z-score. It
is given that

x = 2, µ = 3, σ2 = 2.25 or σ = 1.5

So the z-score is

z =
2− 3

1.5
= −0.66

Once the x value is standardized, P (X ≥ 2) is the same as P (Z ≥ −0.66). So �nd P (Z ≥ −0.66)
by either looking at a table or using a calculator.
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Therefore,

P (X > 2) = P (X ≥ 2)

= P (Z ≥ −0.66)

= 0.745

Example 2. If X ∼ N (20, 4), �nd P (X ≤ 17 or X ≥ 22). First �nd the z-scores for each x
value.

z =
17− 20

4
= −0.75 and z =

22− 20

4
= 0.5

So �nd P (Z ≤ −0.75 or Z ≥ 0.5) = 0.226 + 0.308 = 0.534.

The 68-95-99.7 Rule of Thumb. For the normal distribution with mean µ and standard
deviation σ:

• Approximately 68% of the observations are within one standard deviation of the mean.
• Approximately 95% of the observations are within two standard deviations of the mean.
• Approximately 99.7% of the observations are within three standard deviations of the mean.

What is it used for? The normal distribution can be used to describe many natural phenom-
enon. For example, the heights of people in a city would follow the normal distribution. The normal
distribution is used as an approximation for other distributions including the binomial distribution
(page 68), and t-distribution (page 74).

The sampling distribution of
X − µ
σ/
√
n

is a standard normal distribution. The standard normal distribution is useful for inferences about
the population mean when σ2 is known.
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Chi-Square Distribution

This continuous distribution is right skewed. The shape of the distribution depends on the
degrees of freedom or df . The symbol for this distribution is χ2

df .

df = 1 df = 5 df = 10

Epected Value and Variance. For a chi square distribution with v degrees of freedom, the
mean and variance are

µ = E(X) = v

σ2 = V ar(X) = 2v

What is it used for? The sampling distribution of

(n− 1)S2

σ2

is a chi square distribution with n − 1 degrees of freedom. It is useful for inferences about the
population variance. It is also used to analyze multinomial or contigency tables for goodness of �t,
independence, and homogeneity.

Where does it come from? The chi-square distribtuion can be found by squaring standard
normal random variables. If Z is a random variable with a standard normal distribution, then
U = Z2 has a chi square distribution with 1 degree of freedom. If V is the sum of n independent chi
square random variables that each have 1 degree of freedom, then V has a chi square distribution
with n degrees of freedom or V ∼ χ2

n.
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t Distribution

This continuous distribution is symmetric about its mean which is zero. It is bell shaped and
looks similar to the normal distribution, but the shape of the distribution depends on the degrees
of freedom or df . The symbol is tdf .

The t distribution can be more spread out, or have greater variance, than the normal distribution.
As the sample size becomes large, the t-distribution approaches the normal distribution. The rule
of thumb is that if n ≥ 30, the normal curve can be used to approximate the t distribution because
the two distributions are so close.

The picture below shows the t-distributions with degrees of freedom of 1, 5, and 30. The dashed
line is the standard normal distribution. Notice that as the degrees of freedom increases, the graph
of the t-distribution approaches the graph of the standard normal distribution.

Expected Value and Variance. If the t distribution has v degrees of freedom, then

µ = E(X) = 0

σ2 = V ar(X) =
v

v − 2

The variance only exists if the degrees of freedom is greater than 2. Otherwise the variance is
unde�ned.

What is it used for? The t-distribution is the sampling distribution of

X − µ
S/
√
n

It is useful for inferences about the population mean when the population variance is unknown.

Where does it come from? The t-distribution is the ratio of a standard normal random
variable and a variable with a chi-square distribution with v degrees of freedom. If Z ∼ N(0, 1) and
V ∼ χ2

v then
Z√
V

v

has a t-distribution with v degrees of freedom.
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Degrees of Freedom. What does degrees of freedom mean? For one sample, if x is known,
there are only n−1 independent sample values. This is because if n−1 values and the sample mean
are known, then it is possible to �nd the nth value. So the nth value can only be one value that it
can be.

Example: If a sample has size n = 4, and it is known that the sample mean is x = 4, and three
of the sample values are known to be 2, 3, and 5, �nd the 4th sample value.

x =

∑n
i=1 xi
n

=
x1 + x2 + x3 + x4

4

=
2 + 3 + 5 + x4

4

Since x = 4,

4 =
2 + 3 + 5 + x4

4

This equation can be solved giving x4 = 6. So the 4th sample value had to be 6.

In a general sense, the degrees of freedom is how many values are independent, or free to be any
value, when a statistic is calculated. The degrees of freedom of a sample statistic can also be thought
of as the number of independent or free data values (usually the sample size) minus the number of
parameters that were estimated in the process of �nding the statistic. For example, when trying to
estimate the population mean by �nding the sample mean, there is no need to estimate any other
parameters, so the degrees of freedom is the sample size. But when trying to estimate the variance,
it is necessary to know the sample mean which is an estimate of the population mean. Since one
parameter is estimated in the process of �nding the variance, the degrees of freedom would be n−1.



76

F Distribution

This is a continuous distribution, that is not symmetrical. It is skewed to the right. The shape
of the curve depends on two di�erent degrees of freedom, the numerator degrees of freedom, dfn and
the denominator degrees of freedom dfd.

What is it used for? The F distribution is the sampling distribution of

S2
X

S2
Y

It is useful to make inferences when comparing two populations' variances.

Where does it come from? The F distribution is the ratio of two chi-square random variables
and their degrees of freedom. If U and V are independent chi-square random variables with degrees
of freedom u and v, then

U

u
V

v

∼ Fu,v
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Central Limit Theorem

The central limit theorem says that for a population with any distribution with mean µ and
variance σ2, if the simple random sample size n is large enough, then the mean will be approxi-
mately normally distributed. That means that the sampling distribution of the mean will have an
approximate normal distribution.

If the original population had mean µ and variance σ2, then

X
approx∼ N

(
µ,
σ2

n

)
Caution! This result can only be used if n is large and the population variance is �nite (any

number but ±∞).

Alternate Central Limit Theorem. Sometimes the central limit theorem talks about the
sum of all the values in the sample instead of the mean. Call the sum of the values in the sample
S. Then if a simple random sample is drawn from a population with any distribution with mean µ
and variance σ2, then the sampling distribution of S will be approximately normal.

S
approx∼ N

(
nµ, nσ2

)
This result holds when n is large and the population variance is �nite (any number but ±∞).
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Sampling Distribution of Means and Proportions

Sampling Distribution of the Sample Mean. When a sample is drawn from a population,
there are many di�erent samples that could have been chosen. That means that the mean of the
sample, x will vary depending on which sample is picked. Thus X is a random variable because
the sample mean varies from sample to sample. Every sample has a mean and variance. Since X
depends on the sample picked, theoretically all the possible sample means could be found and then
the true mean and variance of the sample means could be calculated.

If x is the mean of a sample of size n from any population with known mean µ and variance σ2,
then the mean and standard deviation of all the x′s (the random variable X) can be found.

µX = µ

σ2
X

=
σ2

n

Note. The symbol x is used to refer to the mean of a single sample. X is the random variable
that describes the di�erent sample means from all possible samples.

Note. The larger the sample size, the less variability there is and x becomes a better estimate
of µ. See the example below.

Note. As n becomes large, the distribution of X approaches the normal distribution and

X
approx∼ N

(
µ,
σ2

n

)
See the Central Limit Theorem on the preceding page.

Example 1. 500 samples were drawn from a normal population with mean µ = 100 and
standard deviation σ = 10. The mean of each sample was calculated. The histograms of the

sample means are shown below along with the normal curve with µX = µ and σ2
X

=
σ2

n
for sample

sizes of 5, 50, and 500. Notice that as the sample size increases, the distribution of X becomes closer
to the normal distribution. Also as the sample size increases, there is less variability as the values
of X become closer to the mean µ = 100.

Of course, it is easy to believe that the sample means from a normal distribution will be normally
distributed. However, the sample means from any distribution will be normally distributed.

Example 2. Below is shown a chi-square distribution with 3 degrees of freedom.
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Notice that the distribution does not look normal. It is in fact very right skewed. 500 samples
were drawn from this distribution and the sample mean calculated for each sample. This was done
for sample sizes of 5, 50, and 500. Then the histograms of the sample means were overlaid with the

normal curve with µX = 3 and σ2
X

=
6

n
(See page 73 to �nd µ and σ2 for a chi-square distribution).

Notice that even with a sample size of 5, the histogram of X looks more symmetric and more
like a normal distribution than the original distribution of X.

It takes a much larger sample size for X to be close to the normal distribution when the original
distribution of X is chi square than when it is normal.

Sampling Distribution of a Sample Proportion. There are many samples that can be
drawn from a population. That means that the proportion of successes of the sample, p̂ will vary
depending on which sample is picked. This means that P̂ is a random variable because it varies from
sample to sample. Since P̂ varies depending on the sample, the sample proportions of success could
be found for every possible sample and then the true mean and variance of the sample proportions
could be calculated.

If p̂ is the proportion of success of a sample of size n from any population with proportion p,
then the mean and standard deviation of all p̂′s can be found.

µP̂ = p

σ2
P̂

=
p (1− p)

n

Note: As the sample size increases, the variability decrease and p̂ becomes a better estimate of p.
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Hypothesis Testing

What is Hypothesis Testing? Hypothesis testing is used to obtain information about a
population parameter. A hypothesis is created about the population parameter, and then a sample
from the population is collected and analyzed. The data found will either support or not support
the hypothesis.

Steps for Hypothesis Testing.

(1) Choose the null and alternative hypotheses.
(2) Choose a signi�cance level.
(3) Calculate the test statistic.
(4) Calculate the p-value.
(5) State the conclusion.

Null and Alternative Hypotheses. The null hypothesis, denoted H0, is the statement that
is being tested. Usually the null hypothesis is the �status quo� or �no change� hypothesis. The
hypothesis test looks for evidence against the null hypothesis.

The alternative hypothesis, denoted HA or H1, is the statement that we are hoping is true
or what we wish to prove. It is the �opposite� of the null hypothesis. Since we wish to prove the
alternative hypothesis, we usually write the alternative hypothesis �rst and then the null hypothesis.

A food company has just implemented a new bread recipe. The company wishes to know if
the mean weight per loaf has changed. Since the company wishes to know if the mean weight has
changed, that is the alternative hypothesis, while the null hypothesis, or status quo, is that the mean
weight of the bread hasn't changed. The hypotheses could be:

H0: The mean weight per loaf of bread hasn't changed.
HA: The mean weight per loaf of bread has changed.

This can be written symbolically. Let µ0 be the old mean weight of the bread. It is the hypoth-
esized value. That is the weight that the bread would be if it doesn't change. The true mean weight
of the bread in the population is called µ.

H0 : µ = µ0

HA : µ 6= µ0

One-sided and Two-sided Alternative Hypotheses. The alternative hypothesis can be
two-sided or one sided.

In the bread example above, the company wanted to know if the mean weight had changed. The
alternative hypothesis only says that the mean weight changed. The alternative hypothesis doesn't
give any information about whether the mean weight has increased or decreased. If the management
suspects that the mean weight had increased the hypotheses could be:

H0 : µ = µ0 (The mean weight per loaf of bread hasn't changed.)
HA : µ > µ0 (The mean weight per loaf of bread has increased.)

This is an example of a one-sided alternative hypothesis. Another one-sided hypothesis test
would be if the management thinks that the mean weight had decreased. Then the hypotheses could
be:

H0 : µ = µ0 (The mean weight per loaf of bread hasn't changed.)
HA : µ < µ0 (The mean weight per loaf of bread has decreased.)

Caution. It might be tempting to look at the data and then write the alternative hypothesis
or pick the signi�cance level. DON'T! Pick the hypotheses and signi�cance level before computing
anything for the hypothesis test.
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Level of Signi�cance.

Most hypothesis tests fall in the category of signi�cance tests. Before the test is started (before
the sample is chosen and anything is computed), a signi�cance level, α is chosen. The most commonly
used signi�cance levels are α = 0.10, 0.05, or 0.01. If a signi�cance level isn't speci�ed, α = 0.05
is the common choice. The signi�cance level is how much evidence is needed to reject the null
hypothesis. For example, if α = 0.05 is chosen, the evidence is considered strong enough to reject
the null hypothesis if the data in the sample would only happen 5% of the time, or less, when the
null hypothesis is true. That means that the null hypothesis will only be rejected when the data
in the sample isn't very likely if the null hypothesis is true.

Test Statistic. A statistic is any value that is computed from the data in the sample. A test
statistic is a statistic that can be used to �nd evidence in a hypothesis test.

If a hypothesis test is conducted to �nd information about the population mean, the sample
mean would be a logical choice of a statistic that would be useful. Similarly, if a someone wishes to
know about the population variance, the sample variance is a possible test statistic.

P-values. The p-value is the probability of observing an outcome as extreme or more extreme
as the observed sample outcome if the null hypothesis is true.

Example. Consider the set of hypotheses that the mean weight of a loaf of bread hasn't changed
versus the mean weight of a loaf of bread has increased. If a sample of bread loaves is chosen, and
the mean weight is found to be x = 2.14 pounds, then the p-value is P (X ≥ 2.14).
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Rejecting or Failing to Reject the Null Hypothesis

If the p-value is less than the signi�cance level, reject the null hypothesis. For example, if
α = 0.05 and the p-value is 0.03, reject the null hypothesis because we expect to see the observed
outcome only 3% of the time if the null hypothesis is true. So the observed outcome isn't very
likely. More speci�cally the probability of the observed outcome happening was less than 5% if the
null hypothesis is true. So we reject the null hypothesis in favor of the alternative hypothesis and
say, �there is su�cient evidence to reject the null hypothesis�. To summarize with non technical
language, if something is not very likely, reject it.

If the p-value is greater than the signi�cance level, we fail to reject the null hypothesis. For
example, if α = 0.05 and the p-value is 0.15, we fail to reject the null hypothesis. The observed
outcome is expected 15% of the time if the null hypothesis is true. This may not seem very likely,
but it is more likely than 5% so the conclusion is to fail to reject the null hypothesis, and we say,
�there is not su�cient evidence to reject the null hypothesis.�

Why shouldn't the conclusion be, �there is su�cient evidence to accept the null hypothesis�? It
is a convention based on the fact that in mathematics, statements are not proved with examples. A
claim can be disproven with one example, but even one million examples in favor of the claim can't
prove it. To borrow a common phrase, �Absence of evidence is not evidence of absence�. However,
hypothesis tests don't actually prove anything anyways. They are just a method of judging the
evidence for or against a hypothesis. Yet, the tradition is strong enough, that a conclusion should
never be, �there is su�cient evidence to accept the null hypothesis�.

Analogy. Until the 17th century Europeans thought every swan was white because for cen-
turies, every swan they saw was white. Then, a black swan was discovered in Australia, instantly
disproving the hypothesis that all swans are white.

Analogy. Suppose a person thinks that there might have been a skunk in his yard the previous
night. A null hypothesis is that there was no skunk in the yard (status quo). The alternative
hypothesis would then be that there was a skunk in the yard.

H0: There was no skunk in the yard.
HA: There was a skunk in the yard.
He could go outside the next day and look for evidence that there was a skunk. If he �nds

skunk fur or smells a skunk, then he would have evidence to reject the null hypothesis in favor of
the alternative hypothesis (that there was a skunk).

On the other hand, if he doesn't �nd evidence that a skunk was there, that does not mean that
the null hypothesis is true. A skunk could have been there without leaving evidence. That is why
he shouldn't say he accepts the null hypothesis. He doesn't know for sure that there wasn't a skunk.
He just doesn't have evidence to support the claim that there was a skunk. So he says there is not
su�cient evidence to reject the null hypothesis or that he fails to reject the null hypothesis.

If he rejects the null hypothesis, he could technically say that he accepts the alternative hypoth-
esis. However, tradition dictates that conclusions are always stated as rejecting or failing to reject
hypothesis rather than accepting hypothesis.

If he �nds skunk fur in the yard, he would reject the null hypothesis. Yet he still hasn't proved
that there was a skunk. The dog could have brought the fur into the yard. Because he hasn't proved
the alternative hypothesis, (he might have strong evidence that there was a skunk, but he hasn't
proven it) he shouldn't say that he accepts the alternative hypothesis.
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Hypothesis Testing Errors

Type I Error: A type I error happens when a true null hypothesis is rejected. The proba-
bility of a type I error is denoted α.

Type II Error: A type II error occurs when a false null hypothesis is not rejected. The
probability of a type II error is denoted β.

Decision H0 is true H0 is false

Reject H0 Type I Error Correct Decision
Fail to Reject H0 Correct Decision Type II Error

The goal is to make both α and β as small as possible. Unfortunately for a �xed sample size,
decreasing α will increase β and vice versa. It is necessary to choose which error is more important
to decrease based on the scenario. In most cases, β is di�cult to calculate so α is set between 0.01
and 0.10.

The probability of a type I error, α, is also the level of signi�cance. If α = 0.05 is chosen, then a
null hypothesis is rejected if the sample would only happen 5% of the time if the null hypothesis is
true. That means that there is a probability of 0.05 that the null hypothesis will be rejected when
it is true.

Analogy. Trials are like hypothesis tests. Since a person is innocent until proven guilty, innocence
is the status quo.

H0= the plainti� is innocent
HA= the plainti� is guilty
If a jury convicts an innocent man, the jury has made a type I error. If the jury comes to the

conclusion that a man is innocent, but he was actually guilty, they have made a type II error.
In this case, a decision has to be made about whether it is better to minimize the probability

of a type I error or a type II error. Is it better to send an innocent man to jail or to release a guilty
man? In criminal trials the precedent is that a man is only convicted if the evidence is beyond a
reasonable doubt. They We don't want to convict an innocent man, so the courts try to minimize
the probability of a type I error. Of course this means that more guilty people are not convicted or
the probability of a type II error is higher.

Power of a Test

The power of a test is the probability of rejecting the false null hypothesis. This is also the same
as the probability of not making a type II error. Therefore,

Power = 1− β
Analogy. In the jury example, the power of the test would be the probability of concluding a

guilty man is guilty.

In the bread example, the power of the test is the probability of concluding that the mean weight
of the bread has changed when the weight of the bread really did change.
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One Sample z-Test for the Population Mean

When can this test be used?

• The population is normally distributed or the sample size is large enough that the mean is
normally distributed.
(A rule of thumb is that the sample size is large enough if n ≥ 30.)

• The population standard deviation, σ, is known.

How is this test used?

(1) State the hypotheses:
H0 : µ = µ0

HA : µ 6= µ0 or HA : µ > µ0 or HA : µ < µ0

(2) Pick a signi�cance level, α.

(3) Compute the test statistic:

z =
x− µ0
σ√
n

=
the sample mean − the hypothesized true population mean

the population standard deviation�
√
the sample size

(4) Find the p-value:
The p-value depends on which alternative hypothesis is being used. The p-value is the
probability or the area in the tail(s) of the standard normal curve.

If HA : µ > µ0 , p-value = P (Z ≥ z)

If HA : µ < µ0 , p-value = P (Z ≤ z)
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If HA : µ 6= µ0 , p-value = P (Z ≤ −|z| or Z ≥ |z|) or 2P (Z ≥ |z|)

(5) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0
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How does the one sample z-test work?

The z-test is used to make inferences about the mean of a population.

(1) State the hypotheses which could be:
H0 : µ = µ0

HA : µ 6= µ0 or HA : µ > µ0 or HA : µ < µ0

(2) Pick a signi�cance level, α.
This is the cuto� for how likely the data should be to fail to reject or reject the null
hypothesis.

(3) Why is the test statistic Z =
X − µ0

σ/
√
n
?

The population needs to be normally distributed so that the sample mean will have a

normal sampling distribution. Speci�cally,

X ∼ N
(
µ,
σ2

n

)

If the population isn't normally distributed, but the sample size is large, (30 is su�cient),
then the sample mean has an approximately normal sampling distribution by the central
limit theorem.
Because X has a normal distribution, it is necessary to standardize any value of X before
�nding probabilities (see page 71). The mean of X is µ and the standard deviation of X is
σ/
√
n, but under the null hypothesis, we assume that µ = µ0 . So the standardized value

of X which is used for the test statistic is

Z =
X − µ0

σ/
√
n

(4) How are the p-values found?

Case 1: HA : µ > µ0

If µ was larger than µ0, then it would be logical to expect to see larger sample means
than if µ = µ0. The larger the population mean, the larger the sample means should be.
Remember that there are many di�erent samples that can be chosen and each of those
samples will have di�erent sample means. For this one sided alternative hypothesis, it
is necessary to �nd the probability that any sample would have a mean greater than or
equal to the mean of the chosen sample, P (X ≥ x). Since the sample mean has a normal
sampling distribution, it is necessary to standardize (see page 71) the value before �nding

the probability, which is why the test statistic is Z =
X − µ0

σ/
√
n

and not X. So the p-value

is P (Z ≥ z).
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Case 2: HA : µ < µ0

If µ was smaller than µ0, smaller sample means would be expected than if µ = µ0. The
p-value is the probability of a sample mean being less than or equal to the mean of the
chosen sample, P (X ≤ x). So the p-value is P (Z ≤ z).

Case 3: HA : µ 6= µ0

If µ is not equal to µ0, it is either larger than µ0 or smaller than µ0. So look for the
probability that any sample mean could be further away from µ0 than x. (This is what
is meant by �nd the probability of getting a sample mean more extreme than x.) This is
P (|X − µ0| ≤ |x − µ0|). Now x could be less than or greater than µ0 which means that
z could be positive or negative. To simplify calculations, assume that z is positive or �nd
P (Z ≥ |z|) + P (Z ≤ −|z|). Because the normal curve is symmetrical, this is the same as
�nding 2P (Z ≥ |z|).
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(5) How is the conclusion determined?

If the population was normally distributed, then the p-values are exact. If the popula-
tion wasn't normally distributed, but the sample size was large enough, then the p-values
are approximations.

The p-values describe the probability getting the test statistic (or a value more extreme
than the test statistic) if the null hypothesis is true (i.e. P (Z ≥ z)).

If the p-value is large, the data in the sample is likely to occur if the null hypothesis
is true. There is not enough evidence to reject the null hypothesis.

If the p-value is small, then the data values aren't very likely to occur if the null hy-
pothesis is true. This provides evidence that the null hypothesis isn't true. (It doesn't
prove that the null hypothesis is false, it just presents evidence against the null hypothe-
sis.) The null hypothesis is rejected.

Remember that α is the cuto� for how likely the data should be to fail to reject or re-
ject the null hypothesis. For example, if α = 0.05 is chosen, the null hypothesis will only
be rejected if the probability to see the data in the sample is less than 5%. In summary,

p− value < α reject H0

p− value > α fail to reject H0

Notes. Hypothesis testing deals with probabilities. Even if an event has a really small proba-
bility it can still occur. Therefore, the p-values should be reported as well as the conclusion so that
the readers can see how likely it was that the null hypothesis was true.
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One Sample t-Test for the Population Mean

When can this test be used?

• The population is normally distributed or the sample size is large enough that the mean is
normally distributed.
(A rule of thumb is that the sample size is large enough if n ≥ 15.)

• Do not use this test if there are outliers or the population is very skewed.
(Skewness can be ignored if n ≥ 40)

• The population standard deviation, σ, is unknown. The sample standard deviation s will
be used in calculations instead.

How is this test used?

(1) State the hypotheses:
H0 : µ = µ0

HA : µ 6= µ0 or HA : µ > µ0 or HA : µ < µ0

(2) Compute the test statistic:

t =
x− µ0

s�
√
n

=
the sample mean − the hypothesized true population mean

the sample standard deviation�
√
the sample size

(3) Find the degrees of freedom:

df = n− 1

The degrees of freedom is the sample size minus 1.

(4) Find the p-value:
The p-value depends on which alternative hypothesis is being used. The p-value is the
probability or the area in the tail(s) of the t distribution with n− 1 degrees of freedom.

If HA : µ > µ0 , p-value = P (T ≥ t)
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If HA : µ < µ0 , p-value = P (T ≤ t)

If HA : µ 6= µ0 , p-value = P (T ≤ −|t| or T ≥ |t|) or 2P (T ≥ |t|)

(5) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0

Notes.

• If the sample size is at least 30, the t distribution can approximate be approximated with
the normal distribution. So the z test could be used instead. (The standard normal table
is easier to use than the t-tables.)

• In practice, σ is rarely known. To calculate σ which is the population variance, the data
for the whole population would have to be known. Then the true population mean, µ,
could be calculated too and there would be no need for a hypothesis test. Therefore, the
t-test is almost always used.
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Paired Sample z-Test for Population Mean of Paired Di�erences

When can this test be used?

• There are two samples that are the same size.
• The two samples are dependent. (This can be when the two similar subjects are matched
or paired, or when subjects come from the same source, or when 2 observations are made
on the same subject such as pre and post tests.)

• Both populations are normally distributed or both sample sizes are large enough that the
means are normally distributed.
(A rule of thumb is that the sample size is large enough if n ≥ 30.)

• The standard deviation of the population of pairwise di�erences is known.

Notation.

xi Data from sample 1

yi Data from sample 2

di The pairwise di�erence di = xi − yi

d
The mean of the sample of pairwise

di�erences
d =

∑n
i=1 di
n

σd
The standard deviation of the population

of pairwise di�erences
n The sample size

µd
The true mean of the population of

pairwise di�erences

D
The hypothesized mean of the pairwise

di�erences

How is this test used?

(1) State the hypotheses:
H0 : µd = D
HA : µd 6= D or HA : µd > D or HA : µd < D

The hypothesized di�erence in the means is D.

For instance, if Tire Company A thinks that the mean distance of its tires is at least
20,000 miles more than the mean distance of Tire Company B's tires, then D = 20, 000. If
both companies put one tire on each car, then the samples would be matched or dependent.
The hypotheses could be:
H0 : µd = 20, 000
HA : µd > 20, 000

Usually, the hypothesized di�erence is D = 0. In this case the hypotheses simplify to:
H0 : µd = 0
HA : µd 6= 0 or HA : µd > 0 or HA : µd < 0

(2) Pick a signi�cance level, α.

(3) Compute the test statistic:

z =
d−D
σd√
n

=
sample mean of pairwise di�erences − hypothesized mean of pairwise di�erences

standard deviation of population of pairwise di�erences/
√
sample size



92

(4) Find the p-value:
The p-value depends on which alternative hypothesis is being used. The p-value is the
probability or the area in the tail(s) of the standard normal curve.

If HA : µd > D , p-value = P (Z ≥ z)

If HA : µd < D , p-value = P (Z ≤ z)

If HA : µd 6= D , p-value = P (Z ≤ −|z| or Z ≥ |z|) or 2P (Z ≥ |z|)
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(5) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0

Note. Once all the pairwise di�erences, di, have been found, they compose a sample. Then the
one sample z-test for the population mean can be used on the sample of the pairwise di�erences. It
is equivalent to the test above, but without the new notation.
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Paired Sample t-Test for Population Mean of Pairwise Di�erences

When can this test be used?

• There are two samples that are the same size.
• The two samples are dependent. (This can be when the two similar subjects are matched
or paired, or when subjects come from the same source, or when 2 observations are made
on the same subject such as pre and post tests.)

• Both populations are normally distributed or both sample sizes are large enough that the
means are normally distributed.
(A rule of thumb is that the sample size is large enough if n ≥ 15.)

• The standard deviation of the population's di�erence is unknown.

Notation.

xi Data from sample 1
yi Data from sample 2
di The pairwise di�erence di = xi − yi

d

The mean of the sample of
pairwise di�erences

d =

∑n
i=1 di
n

sd The standard deviation of
the sample pairwise

di�erences sd =

√∑n
i=1

(
di − d

)2
n− 1

n The sample size
µd The true mean of the

population of pairwise
di�erences

D The hypothesized mean
of the pairwise di�erences

How is this test used?

(1) State the hypotheses:
H0 : µd = D
HA : µd 6= D or HA : µd > D or HA : µd < D

The hypothesized di�erence in the means is D.

For instance, if Tire Company A thinks that the mean distance of its tires is at least
20,000 miles more than the mean distance of Tire Company B's tires, then D = 20, 000. If
both companies put one tire on each car, then the samples would be matched or dependent.
The hypotheses could be:
H0 : µd = 20, 000
HA : µd > 20, 000

Usually, the hypothesized di�erence is D = 0. In this case the hypotheses simplify to:
H0 : µd = 0
HA : µd 6= 0 or HA : µd > 0 or HA : µd < 0

(2) Pick a signi�cance level, α.
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(3) Compute the test statistic:

t =
d−D
sd√
n

=
sample mean of pairwise di�erences − hypothesized mean of pairwise di�erences

sample standard deviation of pairwise di�erences/
√
sample size

(4) Find the degrees of freedom:

df = n− 1

The degrees of freedom is the sample size minus 1.

(5) Find the p-value:
The p-value depends on which alternative hypothesis is being used. The p-value is the
probability or the area in the tail(s) of the t distribution with n− 1 degrees of freedom.

If HA : µd > D , p-value = P (T ≥ t)

If HA : µd < D , p-value = P (T ≤ t)

If HA : µd 6= D , p-value = P (T ≤ −|t| or T ≥ |t|) or 2P (T ≥ |t|)



96

(6) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0

Note. Once all the pairwise di�erences, di, have been found, they compose a sample. Then the
one sample t-test for the population mean can be used on the sample of the pairwise di�erences. It
is equivalent to the test above, but without the new notation.



97

Two Sample z-Test for Di�erence of Population Means

When can this test be used?

• There are two samples from two populations. (The samples can be di�erent sizes.)
• The two samples are independent.
• Both populations are normally distributed or both sample sizes are large enough that the
means are normally distributed.
(A rule of thumb is each sample size is n ≥ 30.)

• Both population standard deviations, σx and σy, are known.

Notation.

Population Data Mean Standard Deviation Sample Size Sample Mean

1 xi µx σx n x
2 yi µy σy m y

How is this test used?

(1) State the hypotheses:
H0 : µx − µy = D
HA : µx − µy 6= D or HA : µx − µy > D or HA : µx − µy < D
The hypothesized di�erence in the means is D.

For instance, if Tire Company A thinks that the mean distance of its tires is at least
20,000 miles more than the mean distance of Tire Company B's tires, then D = 20, 000. If
Company A and Company B put their tires on di�erent randomly chosen cars, the samples
would be independent. The hypotheses could be:
H0 : µx − µy = 20, 000
HA : µx − µy > 20, 000

Usually, the hypothesized di�erence is D = 0. In this case the hypotheses simplify to:
H0 : µx = µy
HA : µx 6= µy or HA : µx > µy or HA : µx < µy

(2) Pick a signi�cance level, α.

(3) Compute the test statistic:

z =
(x− y)−D√
σ2
x

n
+
σ2
y

m

=
di�erence in sample means − hypothesized di�erence in population means√

population 1 variance

sample 1 size
+

population 2 variance

sample 2 size
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(4) Find the p-value:
The p-value depends on which alternative hypothesis is being used. The p-value is the
probability or the area in the tail(s) of the standard normal curve.

If HA : µx − µy > D , p-value = P (Z ≥ z)

If HA : µx − µy < D , p-value = P (Z ≤ z)

If HA : µx − µy 6= D , p-value = P (Z ≤ −|z| or Z ≥ |z|) or 2P (Z ≥ |z|)

(5) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0
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Two Sample t-Test for Di�erence of the Population Means (Equal Variances)

When can this test be used?

• There are two samples from two populations. (The samples can be di�erent sizes.)
• The two samples are independent.
• Both populations are normally distributed or both sample sizes are large enough that the
means are normally distributed.
(A rule of thumb is that the sample size is large enough if n ≥ 15.)

• Both population standard deviations, σx and σy, are unknown, but are assumed to be
equal.

Notation.

Population Data Mean Standard
Deviation

Sample Size Sample Mean Sample Standard
Deviation

1 xi µx σx n x sx
2 yi µy σy m y sy

How is this test used?

(1) State the hypotheses:
H0 : µx − µy = D
HA : µx − µy 6= D or HA : µx − µy > D or HA : µx − µy < D
The hypothesized di�erence in the means is D.

Usually, the hypothesized di�erence is D = 0. In this case the hypotheses simplify to:
H0 : µx = µy
HA : µx 6= µy or HA : µx > µy or HA : µx < µy

(2) Pick a signi�cance level, α.

(3) Compute the test statistic:

t =
(x− y)−D√
s2p

(
1

n
+

1

m

) =
di�erence in sample means − hypothesized di�erence in population means√

(pooled variance estimate)

(
1

sample 1 size
+

1

sample 2 size

)

where

s2p =
(n− 1)s2x + (m− 1)s2y

n+m− 2
.

(4) Find the degrees of freedom:

df = n+m− 2

The degrees of freedom is the sum of the sample sizes minus 2.
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(5) Find the p-value:
The p-value depends on which alternative hypothesis is being used. The p-value is the
probability or the area in the tail(s) of the t distribution with n+m−2 degrees of freedom.

If HA : µx − µy > D , p-value = P (T ≥ t)

If HA : µx − µy < D , p-value = P (T ≤ t)

If HA : µx − µy 6= D , p-value = P (T ≤ −|t| or T ≥ |t|) or 2P (T ≥ |t|)

(6) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0
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Two Sample t-Test for Di�erence of the Population Means (Unequal Variances)

When can this test be used?

• There are two samples from two populations. (The samples can be di�erent sizes.)
• The two samples are independent.
• Both populations are normally distributed or both sample sizes are large enough that the
means are normally distributed.
(A rule of thumb is that the sample size is large enough if n ≥ 15.)

• Both population standard deviations, σx and σy, are unknown, but are assumed to be
not equal.

Notation.

Population Data Mean Standard
Deviation

Sample Size Sample Mean Sample Standard
Deviation

1 xi µx σx n x sx
2 yi µy σy m y sy

How is this test used?

(1) State the hypotheses:
H0 : µx − µy = D
HA : µx − µy 6= D or HA : µx − µy > D or HA : µx − µy < D
The hypothesized di�erence in the means is D.

Usually, the hypothesized di�erence is D = 0. In this case the hypotheses simplify to:
H0 : µx = µy
HA : µx 6= µy or HA : µx > µy or HA : µx < µy

(2) Pick a signi�cance level, α.

(3) Compute the test statistic:

t =
(x− y)−D√

s2x
n

+
s2y
m

=
di�erence in sample means − hypothesized di�erence in population means√(

sample 1 variance

sample 1 size
+

sample 2 variance

sample 2 size

)

(4) Find the degrees of freedom:

df =

(
s2x
n

+
s2y
m

)2

s4x
n2(n− 1)

+
s4y

m2(m− 1)

This is very unlikely to be a whole number, so it can be rounded down to the nearest
integer.

If the test is done without statistical software, the degrees of freedom can be very tedious
to calculate. So the smaller of the values n − 1 and m − 1 can be used instead. This will
not be as accurate, but it is a conservative choice.
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(5) Find the p-value:
The p-value depends on which alternative hypothesis is being used. The p-value is the
probability or the area in the tail(s) of the t distribution with the degrees of freedom de-
scribed above.

If HA : µx − µy > D , p-value = P (T ≥ t)

If HA : µx − µy < D , p-value = P (T ≤ t)

If HA : µx − µy 6= D , p-value = P (T ≤ −|t| or T ≥ |t|) or 2P (T ≥ |t|)

(6) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0

Note: The unequal variances test can be used even if the variances are equal. If the variances
are equal, it is not as powerful as the pooled variance test, but it is the safe option.
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One Sample z-Test for the Population Proportion

When can this test be used?

• Data comes from a binomial experiment.

• The sample size is large.
(A rule of thumb is that the sample size is large enough if the number of expected successes
np0 ≥ 10 and the number of expected failures n(1− p0) ≥ 10.)

• The population is at least 20 times the size of the sample.

Notation.

X The number of successes in the sample
n The sample size
p The population proportion

p̂ The sample proportion p̂ =
X

n
p0 The hypothesized population proportion

How is this test used?

(1) State the hypotheses:
H0 : p = p0
HA : p 6= p0 or HA : p > p0 or HA : p < p0

(2) Pick a signi�cance level, α.

(3) Compute the test statistic:

z =
p̂− p0√
p0(1− p0)

n

=
the sample proportion − the hypothesized true population proportion√

hypothesized proportion (1-hypothesized proportion)

the sample size
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(4) Find the p-value:
The p-value depends on which alternative hypothesis is being used. The p-value is the
probability or the area in the tail(s) of the standard normal curve.

If HA : p > p0 , p-value = P (Z ≥ z)

If HA : p < p0 , p-value = P (Z ≤ z)

If HA : p 6= p0 , p-value = P (Z ≤ −|z| or Z ≥ |z|) or 2P (Z ≥ |z|)

(5) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0
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Two Sample z-Test for Population Proportions

When can this test be used?

• The data comes from a binomial experiment.

• Both sample sizes are large.
(A rule of thumb is that the sample sizes are large enough the number of success and the
number of failures is at least 5 for both samples)

Notation.

Population Count of Successes Sample Size Population Proportion Sample Proportion

1 X n px p̂x =
X

n

2 Y m py p̂y =
Y

m

How is this test used?

(1) State the hypotheses:
H0 : p = p0
HA : p 6= p0 or HA : p > p0 or HA : p < p0

(2) Pick a signi�cance level, α.

(3) Compute the test statistic:

z =
p̂x − p̂y√

p̂(1− p̂)
(

1

n
+

1

m

)

where p̂ =
X + Y

n+m
is the overall proportion of successes.
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(4) Find the p-value:
The p-value depends on which alternative hypothesis is being used. The p-value is the
probability or the area in the tail(s) of the standard normal curve.

If HA : px > py , p-value = P (Z ≥ z)

If HA : px < py , p-value = P (Z ≤ z)

If HA : px 6= py , p-value = P (Z ≤ −|z| or Z ≥ |z|) or 2P (Z ≥ |z|)

(5) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0
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Chi-Square Test for the Population Variance

When can this test be used?

• The population is normally distributed.
• The population variance, σ2 is unknown.

How is this test used?

(1) Pick a signi�cance level, α.

(2) State the hypotheses:
H0 : σ2 = σ2

0

HA : σ2 6= σ2
0 or HA : σ2 > σ2

0 or HA : σ2 < σ2
0

(3) Compute the test statistic:

X2 =
(n− 1) s2

σ2
0

=
(sample size -1)(the sample variance)

the hypothesized population variance

(4) Find your degrees of freedom.

df = n− 1

The degrees of freedom is the sample size minus 1.

(5) Find the p-value:
The p-value depends on which alternative hypothesis is being used. The p-value is found
by the probability or the area in the tail(s) of the χ2 distribution with n − 1 degrees of
freedom.

Warning! The χ2 distribution is not symmetric. The probability of each tail must be
calculated separately.

If HA : σ2 > σ2
0 , p-value = P

(
χ2 ≥ X2

)
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If HA : σ2 < σ2
0 , p-value = P

(
χ2 ≤ X2

)

If HA : σ2 6= σ2
0 , p-value = 2

(
χ2 ≤ X2

)
if the test statistic X2 is less than the median or

2P
(
χ2 ≥ X2

)
if X2 is greater than the median.

or

Hint: The median is the number, a, such that P (χ2 ≥ a) = .5. If the p-value is greater
than one, it is a sign that X2 is on the other side of the median.

(6) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0
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Two Sample F Test for Population Variances

When can this test be used?

• There are two samples from two populations. (The samples can be di�erent sizes.)
• The two samples are independent.
• Both populations are normally distributed.
Note: The populations must be normally distributed even if the sample sizes are large!

• Both population variances, σ2
x and σ2

y, are unknown.

Notation.

Population Data Population Variance Sample Size Sample Variance
1 xi σ2

x n s2x
2 yi σ2

y m s2y

How do I use it?

(1) State the hypotheses:
H0 : σx = σy
HA : σx 6= σy or HA : σx > σy or HA : σy > σx

This tests the hypothesis that the two populations have the same standard deviation.

(2) Pick a signi�cance level, α.

(3) Compute the test statistic:

F =
s2x
s2y

=
the sample variance of population 1

the sample variance of population 2

To simplify calculations, let the sample that has the larger variance be sample 1. Then
F ≥ 1 which will always be in the right tail of the distribution. Then

F =
larger s2

smaller s2

(4) Find the 2 degrees of freedom.

df = n− 1 and m− 1.

That is right. The F distribution has 2 degrees of freedom called the numerator and
denominator degrees of freedom.

dfn is the numerator degrees of freedom. It is associated with the sample whose sample
variance is in the numerator of the F statistic. (If the sample variance of population 1 is
the numerator of the F statistic, then n− 1 is the numerator degrees of freedom.)

dfd is the denominator degrees of freedom. It is associated with the sample whose sample
variance is in the denominator.

The F distribution is written as Fdfn,dfd . Notice that the numerator degrees of freedom
comes �rst. Don't switch the order of the degrees of freedom!
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(5) Find the p-value:
The p-value depends on which alternative hypothesis is being used. The p-value is found
by the probability or the area in the right hand tail of the F distribution with dfn, dfd
degrees of freedom.

If HA : σx > σy or HA : σy > σx, p-value= P (F ≥ F ) (This works if the sample with the
bigger variance is the numerator.)

If HA : σx 6= σy, p-value= 2P (F ≥ F )

(6) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0

Note. This test is very sensitive to non normal populations. If the populations aren't normal
the results won't be valid. Therefore this test isn't used very often.
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Chi-Square Test for Goodness of Fit

When can this test be used?

• The data is from a multinomial experiment.
• All expected values are at least 5. (Another rule of thumb is that there are more than 4
groups, the average of the expected values is at least 5, and the smallest expected value is
at least 1.)

This test is used to see if the data '�ts' a distribution. The data will be divided into k groups.
(Asking if the data �ts the distribution, is the same as asking if we can predict how many items will
be in each group.)

How is this test used?

(1) State the hypotheses:
H0 : the data �ts the proposed distribution
HA : the data does not �t the proposed distribution

or

H0 : the probability of each group is the expected probability.
HA : the probability of at least one group does not match the expected probability.

(2) Pick a signi�cance level, α.

(3) Compute the test statistic: (This is actually Pearson's Approximation)

X2 =
n∑
i=1

(Oi − Ei)2

Ei
=

∑
all cells

(Observed− Expected)
2

Expected

n is the sample size.

Oi is the observed frequency in each group.

pi is the theoretical or expected probability for each group.

Ei is the expected frequency in each group. Find the expected frequency by multiplying
the sample size by the theoretical or expected probability for each group.

Ei = npi

(4) Find the degrees of freedom.

df = k − 1−m.

m is the number of parameters being estimated and k is the number of groups or cells in
the contingency table. If the parameters are all known, or constant probabilities have been
guessed for each cell, there is no need to estimate any parameters.

For example, if the proposed distribution is the normal distribution, it is necessary to use
x and s as estimates for µ and σ so m = 2. However, if it is proposed that for 4 groups, the
probability of the groups are 0.25, 0.5, 0.25, and 0.25 respectively, then all the probabilities
have been stated and there is no need to estimate any parameters.
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(5) Find the p-value:
The p-value is the probability or the area in the right tail of the χ2

k−1−m distribution.

Warning! The χ2 distribution is not symmetric.

p-value = P
(
χ2 ≥ X2

)

(6) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0

Note. If the observed and expected values are not close, then X2 will be large resulting in a
small p-value. This is an indication that the model does not �t the data.
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Chi-Square Test for Independence

When is this test used?

• The data is multinomial data in a contingency table or two way cross-classi�cation table.
• All expected values are at least 5. (Another rule of thumb is that there are more than 4
cells, the average of the expected values is at least 5, and the smallest expected value is at
least 1.)

• The cells have counts or frequencies. It doesn't work if the data is percentages or relative
frequencies!

• The data comes from one population.

This test is used to see if two variables are independent.

Each cell will have a frequency or count. It is necessary to �nd row, column, and grand totals.
One variable will be the rows and one will be the columns.

How is this test used?

(1) State the hypotheses:
H0 : the two variables are independent
HA : the two variables are dependent

or

H0 : the probability of a cell is (row probability)(column probability)
HA : the probability of at least one cell is not (row probability)(column probability).

(2) Pick a signi�cance level, α.

(3) Compute the test statistic: (This is actually Pearson's Approximation)

X2 =
∑

all cells

(Oij − Eij)2

Eij
=

∑
all cells

(Observed− Expected)
2

Expected

n is the sample size or grand total.

Oij is the observed frequency or count in the cell that is in row i and column j.

ri is the row total for row i.

cj is the column total for row j.

Eij is the expected frequency in each cell. Find the expected frequency by multiplying the
row total by the column total and dividing by the grand total (the sample size).

Eij =
ricj
n

=
(row total)(column total)

grand total

(So the expected count in each cell can be found by the total of that row multiplied by the
total of that column divided by the sample size.)

(4) Find the degrees of freedom.

df = (r − 1) (c− 1) or df = (number of rows− 1) (number of columns− 1).
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(5) Find the p-value:
The p-value is the probability or the area in the right tail of the χ2

(r−1)(c−1) distribution.

Warning! The χ2 distribution is not symmetric.

p-value = P
(
χ2 ≥ X2

)

(6) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0

Note. If the observed and expected values are not close, then X2 will be large resulting in a
small p-value. This is an indication that the two variables or categories are not independent.
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Chi-Square Test for Homogeneity

When is this test used?

• The data is multinomial data in a contingency table or two way cross-classi�cation table.
• All expected values are at least 5. (Another rule of thumb is that there are more than 4
cells, the average of the expected values is at least 5, and the smallest expected value is at
least 1.)

• The cells have counts or frequencies. It doesn't work if the data is percentages or relative
frequencies!

• Either the row totals or column totals are �xed.
• The data comes from multiple samples which are independent.

This test is used to see if the di�erent samples come from populations with the same distribution.

Each cell will have a frequency or count. It is necessary to �nd row, column, and grand totals.
There will be i categories and j samples or distributions. The notation below assumes the categories
are the rows and the samples are the columns. If they are switched, all the calculations and results
will be the same.

How is this test used?

(1) State the hypotheses:
H0 : the J distributions are the same
HA : the J distributions are not the same

or

H0 : the probability of the ith category is the same for each jth distribution. (This means
that if a category is chosen to look at, all the samples should have the same relative
frequencies.)
HA : at least one distribution or sample does not have the same probability as the other
distributions for one category.

(2) Pick a signi�cance level, α.

(3) Compute the test statistic: (This is actually Pearson's Approximation)

X2 =
∑

all cells

(Oij − Eij)2

Eij
=

∑
all cells

(Observed− Expected)
2

Expected

n is the sample size or grand total.

Oij is the observed frequency or count in the cell that is in row i and column j.

ri is the row total for row i.

cj is the column total for row j.

Eij is the expected frequency in each cell. Find the expected frequency by multiplying the
row total by the column total and dividing by the grand total (the sample size).

Eij =
ricj
n

=
(row total)(column total)

grand total

(So the expected count in each cell can be found by the total of that row multiplied by the
total of that column divided by the sample size.)

(4) Find the degrees of freedom.

df = (r − 1) (c− 1) or df = (number of rows− 1) (number of columns− 1).
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(5) Find the p-value:
The p-value is the probability or the area in the right tail of the χ2

(r−1)(c−1) distribution.

Warning! The χ2 distribution is not symmetric.

p-value = P
(
χ2 ≥ X2

)

(6) State the conclusion:
Once the p-value is known, compare it to α, the signi�cance level.

If the p-value is smaller than α, the observed outcome wasn't very likely given that the
null hypothesis is true. So reject the null hypothesis in favor of the alternative hypothesis.

If the p-value is greater than α then the observed outcome was likely enough that it is
reasonable to assume that the null hypothesis is true so fail to reject the null hypothesis.

p− value < α reject H0

p− value > α fail to reject H0

Note. If the observed and expected values are not close, then X2 will be large resulting in a
small p-value. This is an indication that the J distributions are not the same.
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Table of Hypothesis Tests

Test When to use this test Calculated Test Statistic Distribution of test statistic

given H0

P-value

One sample z test

for the population

mean

• Test is for µ
• Population is normally
distributed or n ≥ 30

• σ is known

z =
x− µ0
σ/
√
n

Z ∼ N(0, 1)
HA : µ > µ0, the p-value is P (Z ≥ z)
HA : µ < µ0, the p-value is P (Z ≤ z)
HA : µ 6= µ0, the p-value is 2P (Z ≥ |z|)

One sample t test

for the population

mean

• Test is for µ
• Population is normally
distributed or n ≥ 15

• σ is not known

t =
x− µ0
s�
√
n

T ∼ tn−1

HA : µ > µ0, the p-value is P (T ≥ t)
HA : µ < µ0, the p-value is P (T ≤ t)
HA : µ 6= µ0, the p-value is 2P (T ≥ |t|)

Paired sample z

test for population

mean of pairwise

di�erences

• The two samples are
dependent

• The two sample sizes are equal

• Both populations are normally
distributed or n ≥ 30

• σd is known

z =
d−D
σd/
√
n

Z ∼ N(0, 1)
HA : µd > D, p-value is P (Z ≥ z)
HA : µd < D, p-value is P (Z ≤ z)
HA : µd 6= D, p-value is 2P (Z ≥ |z|)

Paired sample t

test for population

mean of pairwise

di�erences

• The two samples are
dependent

• The two sample sizes are equal

• Both populations are normally
distributed or n ≥ 15

• σd is not known

t =
d−D
sd/
√
n

T ∼ tn−1

HA : µd > D, p-value is P (T ≥ t)
HA : µd < D, p-value is P (T ≤ t)
HA : µd 6= D, p-value is 2P (T ≥ |t|)
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Test When to use this test Calculated Test Statistic Distribution of test statistic

given H0

P-value

Two sample z test

for di�erence of

population means

• The two samples are
independent

• Both populations are normally
distributed or n ≥ 30 and
m ≥ 30.

• σx and σy are known

z =
(x− y)−D√
σ2
x

n
+
σ2
y

m

Z ∼ N(0, 1)
HA : µx − µy > D , p-value is P (Z ≥ z)
HA : µx − µy < D , p-value is P (Z ≤ z)
HA : µx − µy 6= D , p-value is 2P (Z ≥ |z|)

Two sample t test
for di�erence of
population means

(equal variances)

• The two samples are
independent

• Both populations are normally
distributed or n ≥ 15 and
m ≥ 15.

• σx and σy are not known but

are assumed to be equal

t =
(x− y)−D√
s2p

(
1

n
+

1

m

)

s2p =
(n− 1)s2x + (m− 1)s2y

n+m− 2

T ∼ tn+m−2

HA : µx − µy > D , p-value is P (T ≥ t)
HA : µx − µy < D , p-value is P (T ≤ t)
HA : µx − µy 6= D , p-value is 2P (T ≥ |t|)

Two sample t test
for di�erence of
population means

(unequal variances)

• The two samples are
independent

• Both populations are normally
distributed or n ≥ 15 and
m ≥ 15.

• σx and σy are not known but

are assumed to be not equal

t =
(x− y)−D√

s2x
n

+
s2y

m

T ∼ tdf

df =

(
s2x
n

+
s2y

m

)2

s4x
n2(n− 1)

+
s4y

m2(m− 1)

(or the smaller of

n− 1 and m− 1)

HA : µx − µy > D , p-value is P (T ≥ t)
HA : µx − µy < D , p-value is P (T ≤ t)
HA : µx − µy 6= D , p-value is 2P (T ≥ |t|)
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Test When to use this test Calculated Test Statistic Distribution of test statistic

given H0

P-value

One sample z test

for a population

proportion

• np0 ≥ 10 and n(1− p0) ≥ 10

• The population is at least 20

times the size of the sample

z =
p̂− p0√
p0(1− p0)

n

p̂ =
X

n

Z ∼ N(0, 1)
HA : p > p0, p-value is P (Z ≥ z)
HA : p < p0, p-value is P (Z ≤ z)
HA : p 6= p0, p-value is 2P (Z ≥ |z|)

Two sample z test

for population

proportions

• There are at least 5 success

and 5 failures for both samples. z =
p̂x − p̂y√

p̂(1− p̂)
(
1

n
+

1

m

)

p̂ =
X + Y

n+m

Z ∼ N(0, 1)
HA : px > py , p-value is P (Z ≥ z)
HA : px < py , p-value is P (Z ≤ z)
HA : px 6= py , p-value is 2P (Z ≥ |z|)

Chi square test for

population

variance

• The population is normally
distributed

• σ2 is unknown
X2 =

(n− 1) s2

σ2
0

χ2 ∼ χ2
n−1

HA : σ2 > σ2
0 , p-value is P (χ2 ≥ X2)

HA : σ2 < σ2
0 , p-value is P (χ2 ≤ X2)

HA : σ2 6= σ2
0 , p-value is

2P (χ2 ≤ X2) if X2 is less than the
median or

2P (χ2 ≥ X2) if X2 is greater than the

median

Two sample F test

for population

variances

• There are two independent
samples

• Both populations are normally
distributed

• σ2
x and σ2

y are unknown

F =
larger s2

smaller s2
F ∼ Fn−1,m−1

where n is the sample size of the

sample with larger variance and

m is the other sample size

HA : σx > σy , p-value is P (F ≥ F )

HA : σx 6= σy , p-value is 2P (F ≥ F )

(σx is the standard deviation from the

population that had a larger sample

variance.)
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Test When to use this test Calculated Test Statistic Distribution of test statistic

given H0

P-value

Chi square test for

goodness of �t

• The data is from a
multinomial experiment

• All expected values are at

least 5

X2 =
n∑

i=1

(Oi − Ei)
2

Ei

Ei = npi

χ2 ∼ χ2
k−1−m

where k is the number of groups

and m is the number of

parameters estimated

p-value is P
(
χ2 ≥ X2

)

Chi square test for

independence

• The data is from a
multinomial experiment

• All expected values are at least
5

• The data comes from one

population

X2 =
∑

all cells

(Oij − Eij)
2

Eij

Eij =
ricj

n

ri = row total

cj = column total

χ2 ∼ χ2
(r−1)(c−1)

where r is the number of rows

and c is the number of columns

p-value is P
(
χ2 ≥ X2

)

Chi square test for

homogeneity

• The data is from a
multinomial experiment

• All expected values are at least
5

• The data comes from multiple

independent samples

X2 =
∑

all cells

(Oij − Eij)
2

Eij

Eij =
ricj

n

ri = row total

cj = column total

χ2 ∼ χ2
(r−1)(c−1)

where r is the number of rows

and c is the number of columns

p-value is P
(
χ2 ≥ X2

)
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Symbols

Symbol Meaning Formula

π The number π π = 3.141592...

e The number e e = 2.718281...

x! Factorial x! = x (x− 1) (x− 2) · · · (3) (2) (1)

N The population size

n The sample size

xi The value of a single piece of data in
the sample or population

µ The population mean µ =

N∑
i=1

xi

N

x The sample mean x =

n∑
i=1

xi

n

σ The population standard deviation σ =

√√√√√ N∑
i=1

(xi − µ)
2

N

s The sample standard deviation s =

√√√√ n∑
i=1

(xi − x)
2

n− 1

σ2 The population variance σ2 =

N∑
i=1

(xi − µ)
2

N

s2 The sample variance s2 =

n∑
i=1

(xi − x)
2

n− 1
X(n) The largest data value

X(1) The smallest data value

p The population proportion P =
X

N

p̂ The sample proportion p̂ =
X

n

p̂ =
count of successes in the sample

sample size
di A paired di�erence For two samples, x1, x2, . . . , xn and

y1, y2, . . . , yn, di = xi − yi

µd The mean of the population of paired
di�erences

µd =

N∑
i=1

di

N
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Symbol Meaning Formula

d The mean of a sample of paired
di�erences

d =

n∑
i=1

di

n

sd The standard deviation of a sample of
paired di�erences

sd =

√√√√ n∑
i=1

(
di − d

)2
n− 1

E (X) The expected value of X E (x) = µ =
∑
xf (x)

V ar (X) The variance of X V ar (x) = σ2 =
∑

(x− µ)
2
f (x)

V ar (x) = E
(
x2
)
− (E (x))

2(
n

k

)
The binomial coe�cient

(
n

k

)
=

n!

k! (n− k)!
∼ is distributed

approx∼ is distributed approximately

P (X ≤ x) The probability that the random
variable X is less than or equal to the

value x
Φ(x) The cumulative standard normal

distribution
P (X ≤ x) for X ∼ N(0, 1)

α The probability of a type I error

β The probability of a type II error

1− β Power of a statistical test
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Greek Alphabet

Greek Letter Upper Case Lower Case
alpha A α
beta B β

gamma Γ γ
delta ∆ δ
epsilon E ε
zeta Z ζ
eta H η
theta Θ θ
iota I ι
kappa K κ
lambda Λ λ
mu M µ
nu N ν
xi Ξ ξ

omicron O o

pi Π π
rho P ρ
sigma Σ σ
tau T τ

upsilon Υ υ
phi Φ φ
chi X χ
psi Ψ ψ

omega Ω ω
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