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ABSTRACT

Persistent winter inversions result in poor air quality in the Intermountain West of the United States.

Although the onset of an inversion is relatively easy to predict, the duration and the subsequent breakup of

a persistent inversion event remains a forecasting challenge. For this reason and for this region, historic

soundings were analyzed for Salt Lake City, Utah, with reanalysis and station data to investigate how

persistent inversion events are modulated by synoptic and intraseasonal variabilities. The results point to

a close linkage between persistent inversions and the dominant intraseasonal (30 day) mode that charac-

terizes the winter circulation regime over the Pacific Northwest. Meteorological variables and pollution

(e.g., particulate matter of #2.5-mm diameter, PM2.5) revealed coherent variations with this intraseasonal

mode. The intraseasonal mode also modulates the characteristics of the synoptic (6 day) variability and

further influences the duration of persistent inversions in the Intermountain West. The interaction between

modes suggests that a complete forecast of persistent inversions is more involved and technically beyond

numerical weather prediction models intended for the medium range (;10 day). Therefore, to predict

persistent inversions, the results point to the adoption of standard medium-range forecasts with a longer-

term climate diagnostic approach.

1. Introduction

It is well known that winter inversions often result in

poor air quality in certain regions of the Intermountain

West. Here, distinct topographic conditions tend to main-

tain the pooling of stable, relatively cold air in valleys

and mountain basins, resulting in persistent inversions

(Lockhart 1943; Wolyn and McKee 1989; Whiteman

et al. 1999, 2001; Billings et al. 2006). These inversions

subsequently trap air pollutants and degrade the air

quality over time (Holzworth 1962, 1967). Although the

occurrence of inversions is relatively easy to forecast, an

accurate prediction of their duration and dissipation, as

well as their relation with air quality, remains less re-

solved (e.g., Reeves and Stensrud 2009). Salt Lake City,

Utah, is one of many cities in the Intermountain West

that experiences prolonged, poor air quality during the

winter months [December–February; Wolyn and McKee

(1989)]. In 2007, in order to forecast winter inversion

conditions along with expected air quality, the National

Weather Service (NWS) at Salt Lake City began peri-

odic special weather briefings for various state agencies

before the onset of and during inversion situations (in-

formation online at http://www.wrh.noaa.gov/slc/projects/

AQ_Briefing/AQ_Briefing.htm). In these briefings, it was

regularly mentioned that estimating inversion duration

and pollution intensity was frequently difficult to specify

in definitive terms.

Diurnal thermal and radiative forcing coupled with the

progression of synoptic waves can enhance the chance

for stagnant stable layers that might lead to persistent

inversions (e.g., Whiteman 2000). Valley cold pools, for

instance, often develop following a lower-level cold surge

and midlevel warming associated with the approach of an

upper-level ridge. The inversions then ‘‘wash out’’ with

the passage of a synoptic trough after the cold surge

(Wolyn and McKee 1989; Whiteman et al. 1999, 2001;

Zhong et al. 2001; Reeves and Stensrud 2009). The se-

quence of such inversion developments coupled with the
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synoptic evolution also regulates air quality (Holzworth

1962).

The progression of synoptic waves is characterized by

periodic features. There is the typical synoptic variability

in the 2–8-day spectrum (Blackmon 1976) and lower-

frequency variability of planetary circulations at time

scales ranging from 10 to 45 days (Horel and Mechoso

1988; Renwick and Wallace 1996; Lau and Nath 1999).

The synoptic variability is due to the release of avail-

able potential energy driven by baroclinic conversion

(e.g., Wallace et al. 1988). On the other hand, the lower-

frequency variability commonly referred to as intra-

seasonal variability (ISV) is attributed partly to free

external Rossby waves that slowly propagate westward in

response to the dominant b effect (Branstator 1987; Lau

and Nath 1999). Moreover, it has been found that the

midlatitude ISV is connected to the tropical ISV [i.e., the

Madden–Julian oscillation (MJO); Madden and Julian

2005]. The midlatitude response to the tropical ISV

usually results in stationary or eastward-moving plane-

tary waves (Mo and Paegle 2005).

In the Intermountain West, deep stable-layer de-

velopment and the resulting poor air quality are usually

associated with the presence of large-scale ridge systems

over the West Coast (Wolyn and McKee 1989). As il-

lustrated in Fig. 1a by the climatological 300-hPa geo-

potential height, the mean wintertime ridge dominating

over the Pacific Northwest is the primary circulation

feature linked to the so-called high season of persistent

inversions. To inspect if this ridge undergoes the pre-

viously mentioned synoptic variability and the ISV, a

power spectra analysis on the daily geopotential height

(Z) and meridional wind (y) at 300 hPa was performed.

Sampled at the maximum center of the eddy geopoten-

tial height (white box in Fig. 1a) and the root-mean

square of y (dashed contour in Fig. 1a), the power spectra

of Z (Fig. 1b) and y (Fig. 1c) reveal two dominant modes:

a 2–8-day mode and a 20–40-day mode that are consistent

with the documented time scales of the synoptic vari-

ability and the ISV, respectively.

Components of Fig. 1 therefore suggest a working

hypothesis: that the occurrence of inversions and the

subsequent air quality conditions in the Intermountain

West are modulated by both the synoptic variability and

the ISV. In light of the difficulties encountered in fore-

casting the duration of persistent inversions, we decided

to investigate the linkage, as discussed previously, be-

tween the occurrence of inversions and the predominant

atmospheric circulation variabilities, based upon ob-

servations in Salt Lake City. This paper presents the

findings from a climate diagnostic approach applied to

gain insights into the characteristics of persistent inver-

sions in the Intermountain West. The data and our

methodology are introduced in section 2. Results and

discussion are presented in section 3. Circulation features

associated with the ISV and the synoptic variability are

given in section 4. A summary with some conclusions is

given in section 5.

2. Data and inversion definition

a. Datasets

Upper-air soundings at the Salt Lake City Interna-

tional Airport (KSLC; elevation 1289 m) were utilized

FIG. 1. (a) Mean 300-hPa geopotential height (Z; contour in-

terval 75 m) during December–February superimposed with the

eddy geopotential height (ZE; shadings) and the root-mean square

of the daily y wind [RMS(y), dashed contour of 17.5 m s21]. Salt

Lake City is marked by a star. Power spectra of daily (b) Z

(300 hPa) and (c) y (300 hPa) over the maximum centers of ZE and

RMS(y). Light curves represent the spectrum of individual years

from 1980 to 2008, while thick solid curves depict their long-term

average. Spectra above the 99% confidence level (dotted curves)

are shaded.
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to characterize and analyze inversions over the period

from December 1979 to February 2008. These soundings

were obtained from the University of Wyoming (in-

formation online at http://weather.uwyo.edu/upperair/

sounding.html). As shown in Fig. 2a, KSLC is located in

the Salt Lake Valley, embedded within the Great Basin.

Surface observations from the NWS Cooperative Ob-

server Program (COOP) stations were also utilized in

the ensuing analysis, including temperature, precipitation,

and snow depth. A total of 18 COOP stations within

a 200 km 3 200 km domain surrounding KSLC below

the elevation of 2000 m (Fig. 2a) were analyzed as being

representative of the general surface conditions in the

vicinity of KSLC; these are active COOP stations with

over 95% data availability. Historical records and quality

reports of the COOP station data are archived at the

Utah Climate Center (online at http://climate.usurf.usu.

edu/products/data.php).

Particulate matter (PM), also known as particle pol-

lution, is a standard measurement of air pollution. PM is

a complex mixture of extremely small dust, soot, and

other particles measured in units of mass per cubic

meter. PM of 2.5 mm in diameter or smaller (PM2.5) is

the most harmful to human lung tissue. Measurements

of PM2.5 are continually conducted by the Environ-

mental Protection Agency (EPA) at various locations in

the Salt Lake Valley. For this study, we chose an air

quality station in Salt Lake City (Utah Division of Air

Quality site ID 49-035-3006) located approximately 6 mi

southeast of KSLC at the elevation of 1306 m. The ra-

tionale behind this choice was that this particular station

had the most complete set of daily measurements of

PM2.5 for the longest period of time (1999–present). In

addition, to evaluate how valley size may affect PM2.5,

we included a comparative air quality station at Logan

(site ID 49-005-0004; elevation 1380 m), which is located

in the relatively narrow Cache Valley; this is also depicted

in Fig. 2a. PM2.5 data were obtained from the EPA

Web site (http://www.epa.gov/ttn/airs/airsaqs/detaildata/

downloadaqsdata.htm). As a side note, the Logan site

recorded PM2.5 once every 3 days beginning March 2000

and subsequently changed its recording frequency to once

a day in May 2002.

For three-dimensional meteorological variables, we

utilized two reanalysis datasets: the National Centers for

 
FIG. 2. (a) Topography and the locations of KSLC (star), nearby

COOP stations (dots), the Cache Valley (dashed oval), and Logan

(cross), and two examples of the 0000 UTC KSLC sounding of (b)

a capping inversion on 16 Jan 2007 and (c) a surface inversion on

8 Dec 2006. Inversion layer tops are indicated.
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Environmental Prediction–National Center for Atmo-

spheric Research (NCEP–NCAR) global reanalysis

(Kalnay et al. 1996) and the North American Regional

Reanalysis (NARR; Mesinger et al. 2006). The NCEP–

NCAR reanalysis was used primarily to depict the cir-

culations, while the NARR dataset provided variables

that are not included in operational soundings (e.g.,

vertical velocity) at grid points close to KSLC. The

NARR was also used for filling in any missing obser-

vations in the soundings. Both reanalysis datasets were

obtained from the National Oceanic and Atmospheric

Administration/Office of Oceanic and Atmospheric Re-

search/Earth System Research Laboratory’s (NOAA/

OAR/ESRL) Physical Science Division (information on-

line at http://www.cdc.noaa.gov).

b. Inversion definition

During each winter season, Salt Lake City is subjected

to two main types of inversion layers: 1) a so-called

capping inversion with an inversion lid capping a mixed

or unstable layer at some altitude above the surface and

2) a surface inversion with a neutral or increasing tem-

perature profile extending from the surface up to a cer-

tain height. Example soundings of capping and surface

inversions are illustrated, respectively, in Figs. 2b and 2c.

In their study, Wolyn and McKee (1989) termed these

two types of inversion as capping stable and deep stable

layers, respectively. Under fair weather conditions, the

stable boundary layer during the nighttime can be strong

enough to persist throughout the daytime and form

a capping inversion (Stull 2006). However, the depths of

both the stable and mixed layers also vary in close asso-

ciation with the weather patterns. Since our focus here is

on the synoptic variability and its modulation of inver-

sion conditions, rather than the diurnal boundary layer

evolution, potential complications resulting from any di-

urnal forcing (e.g., nocturnal inversion formation) were

avoided by confining our analysis to just late-afternoon

soundings (0000 UTC; 1700 local time).

Two factors were used to define the capping and sur-

face inversions: lapse rate and wind speed. Analyzing

the soundings of KSLC along with the soundings of

three other locations in the Intermountain West, Wolyn

and McKee (1989) concluded that a threshold lapse rate

of less than or equal to 2.58C km21 was characteristic of

deep stable layers. Using this lapse rate, the 0000 UTC

soundings at mandatory and significant levels were sys-

tematically analyzed as follows:

1) capping inversion—the temperature sounding was

characterized by a lapse rate .2.58C km21 extending

from the ground to the bottom of a neutral or in-

creasing temperature profile, and

2) surface inversion—the temperature sounding had

a lapse rate #2.58C km21 from the ground to the

top of the level where the lapse rate transitions to

.2.58C km21.

Occasionally, a very shallow stable layer forms close to

the ground beneath a layer with a lapse rate exceeding

2.58C km21 capped by another inversion layer. Such a

phenomenon is usually due to widespread snow accumu-

lation and/or very cold surface air temperatures and is

formed by radiative cooling. When this shallow radiative

cooling occurred and the resulting near-surface stable

layer was shallower than 150 m, we defined this specific

type of case as a capping inversion instead of a surface

inversion. We only examined soundings below 500 hPa to

exclude stratospheric or upper-level frontal inversions.

The top of an inversion was defined by the layer in

which the lapse rate changes from being less than or

equal to 2.58C km21 to greater than that amount, and is

accompanied by a wind direction change exceeding 608

or a wind speed change of more than 10 m s21. Con-

sidering changes in the wind field also serves to deter-

mine inversion layer tops when multiple inversions are

present. For reference purposes, the inversion layer tops

in examples 1 and 2 are indicated in Figs. 2b and 2c,

respectively. In example 2, the first possible inversion

layer top (;800 hPa) was dismissed, as it did not satisfy

the wind direction criterion. Additionally, the average

wind speed within the inversion layer must be less than

5 m s21. This wind speed criterion follows that used in

Reeves and Stensrud (2009). Taking into account wind

speed in the inversion-layer analysis also helped exclude

frontal inversions. The dates and classification of the

identified inversion cases are shown in Fig. 3a.

After identifying and classifying inversion conditions,

we defined a ‘‘total inversion event’’ in terms of the

number of consecutive inversion days. A total inversion

event could consist of either a mixture of capping and

surface inversions or only a single type of inversion. For

example, a 7-day total inversion event may comprise

capping inversions for the first 3 days and surface in-

versions for the latter 4 days, such as the case occurring

on 3–9 December 2006 (circled in Fig. 3a). A 1-day oc-

currence of either a capping or surface inversion was de-

fined simply as a single event.

In the composite analysis that follows, the 0000 UTC

temperature soundings were bilinearly interpolated onto

uniform levels with a 10-hPa interval below 500 hPa and

a 25-hPa interval above 500 hPa, using mandatory and

significant levels. By specifying such intervals, weak

and shallow nocturnal inversions were filtered out, leav-

ing the predominance of strong and episodic inversions.

Snapshots of time–height cross sections of the interpolated
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vertical temperature gradients at KSLC from 1999 to 2008

are shown in Fig. 3b. It was found that inversion devel-

opment (outlined by positive contours) tends to occur

initially at higher altitudes and subsequently descend to-

ward the surface. This feature has been noted in Wolyn

and McKee (1989, their Fig. 7) and Reeves and Stensrud

(2009) and will be discussed further in section 3b.

3. Results

As an initial analysis, Fig. 3b depicts the strong asso-

ciation between the development of persistent in-

versions and the PM2.5 concentrations in both Salt Lake

City and Logan. Most of the moderate to dangerous air

alert readings (i.e., PM2.5 $ 35 mg m23) were found when

inversions lasted for 4 days or longer. During such persis-

tent inversions, the PM2.5 concentration usually builds

slowly at the beginning of a total inversion event but

dissipates relatively quickly at the end of the event. In

addition, there is a marked coherence in the PM2.5 con-

centrations between the Salt Lake Valley and the Cache

Valley, indicative of PM2.5 homogeneity under such per-

sistent inversion conditions. There is also a tendency for

the alert-level PM2.5 in Logan to last about a day longer

than in Salt Lake City, suggesting that the existence of

orographic modulation in smaller valleys may serve to trap

air pollutants for a longer period of time.

a. Inversion climatology

The probability density functions of inversion layer

tops (Fig. 4a) reveal a peak altitude at 790 hPa for the

tops of surface inversions and a widespread altitude

ranging between 600 and 800 hPa for the tops of cap-

ping inversions. Shown alongside the scatter diagram of

inversion-layer tops versus the 300-hPa geopotential

height at KSLC is their linear fit line, indicating a ten-

dency of increasing geopotential height with decreasing

altitude of the top of the capping inversions. Despite

a wide scatter for capping inversions, the correlation

coefficient of the fit line is significant at the 95% level.

On the other hand, the top of the surface inversions

is generally independent of the 300-hPa geopotential

height. As shown in Fig. 4b, the PM2.5 concentrations

measured in Salt Lake City and the inversion layer tops

follow a second-order polynomial relationship. There is

also a tendency for large PM2.5 concentrations to occur

under conditions of surface inversions rather than cap-

ping inversions, especially for those above the danger-

ous alert levels of PM2.5 (i.e., .70 mg m23). A similar

second-order polynomial relationship exists for Logan

PM2.5 concentrations (dashed line), though individual

measurements in Logan are not plotted.

The frequency of the total inversion events with re-

spect to event duration is plotted in Fig. 5a. A bimodal

distribution of the inversion frequency is clearly visible,

including a primary peak at 2–3 days with a secondary

peak occurring at 14 days. Given the close association

of inversions with the synoptic weather patterns, the

FIG. 3. (a) Calendar of surface inversions (dots) and capping

inversions (circles) during the winters from December 1979 to

February 2008. The gray circle indicates the example event of

3–9 Dec 2006. (b) Time–height cross sections of vertical temper-

ature gradients at KSLC from 1999 to 2008 (shaded contours; in-

terval 28C hPa21) superimposed with the PM2.5 concentrations

in Salt Lake City (solid line) and Logan (dashed line). Note that

PM2.5 $ 35 mg m23 is the EPA alert level for air quality. The two

sounding examples as shown in Fig. 2 are indicated (2006).
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observed two frequency peaks of inversion duration

imply two modes of weather cycles that (a) last for about

a week (;6 days) and (b) a month (;30 days), consistent

with the two dominant modes of the atmospheric cir-

culation as depicted in the spectral analysis (cf. Figs. 1b

and 1c). From here onward throughout the text, we use

the terms 6-day mode and 30-day mode for weather

cycles a and b.

Next, we analyzed the occurrence frequency of cap-

ping and surface inversion events with respect to their

duration. For example, a consecutive 3 days of capping

inversions would be categorized as a 3-day event, with

those 3 days counted as the event frequency of capping

FIG. 4. (a) Scatter diagram of inversion layer tops (y axis) vs the

300-hPa geopotential height at KSLC (x axis) for all cases. Surface

(capping) inversions are indicated by dots (circles), with a fit line

for capping inversions. The probability density function of inversion-

layer tops of the surface (capping) inversion is shown as dark- (light-)

shaded curves to the left. (b) As in (a), but for inversion layer tops

vs the PM2.5 concentrations (x axis). A second-order polynomial

fit curve is added for Salt Lake City (solid line) and Logan (dashed

line).

FIG. 5. Accumulated frequencies of (a) total inversion events, (b)

capping inversions, and (c) surface inversions with respect to their

duration in days.
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inversions. As shown in Figs. 5b and 5c, the duration of

capping inversions is overall shorter (,4 days) than that

of surface inversions, while persistent inversion events

($4 days) mostly involve surface inversions. In other

words, it is the surface inversion that is most likely as-

sociated with the 30-day mode.

b. Composite analysis

To depict the relationship between inversion de-

velopments and the aforementioned 6- and 30-day

modes, we filtered the geopotential height of the KSLC

soundings with 2–8 days for the 6-day mode (denoted as

Z6d) and 20–40 days for the 30-day mode (denoted as

Z30d), using the second-order Butterworth bandpass filter.

The filter was applied over the time period November–

March. The procedure creates an index for the 6-day

mode (Z6d) and another index for the 30-day mode (Z30d)

based on the filtered geopotential height at 300 hPa.

Next, we applied an ‘‘index cycle’’ composite analysis

introduced by Knutson and Weickmann (1987) and

modified in Chen et al. (2009) with the Z6d and Z30d

indices. If the amplitude of Z30d on any day was greater

than its standard deviation, the life cycle (with one

trough and one ridge) encompassing this day was se-

lected. If only one-half of the cycle occurred within the

analysis period (i.e., the other half occurred in either

November or March), this half cycle was used. In addi-

tion, if only one-half of the cycle reached the one stan-

dard deviation criterion but the other half of the cycle

did not (there were four such cases during 1980–2008),

then this half cycle was also used. For any given cycle of

the Z30d index, the cycle was evenly divided into eight

phases, with phase 3 designated on the day of maximum

amplitude and phase 7 as the day of minimum ampli-

tude, as illustrated in Fig. 6a. Each phase covers a 3-day

period centered on the second day. The same procedure

was applied to the Z6d index cycle (Fig. 6b) and divided

into six phases (each representing 1 day), with phase 2

designated as the maximum amplitude and phase 5 as

the minimum amplitude. These composite procedures

were then applied to the 0000 UTC soundings and the

NARR data, as well as daily observations of PM2.5

concentrations and surface variables. All of the com-

posite fields were unfiltered.

The eight composite phases of the 30-day mode in

terms of the vertical temperature gradient (2›T/›p) for

the KSLC sounding are shown in Fig. 7a. When com-

paring 2›T/›p with the composite anomalies of geo-

potential height and vertical velocity1 in Fig. 7b (with

the climate mean removed), it is observed that the in-

version layer forms at phases 7 and 8 near the 650-hPa

layer and is associated with the developing ridge and

downward motion of the 30-day mode. The inversion

layer then descends to 800 hPa between phases 2 and 4,

when the 30-day mode ridge prevails over KSLC, and

drastically dissipates at phase 5 as the trough progresses

and ascending motion sets in. The altitude distribution

of the inversion layer depicted in Fig. 7a is consistent

with that shown in Fig. 4a; this also serves as validation

of the inversion classification procedure outlined in

section 2b.

Corresponding to the evolution of 2›T/›p, the highest

occurrence of capping inversions occurs around phases 8

and 1 (Fig. 7c), when the ridge and descending motion

are developing, and the peak frequency of the surface

inversions appears later at phases 2 and 3, which is as-

sociated with deep, strong descent embedded in the core

FIG. 6. Schematic illustrations of (a) the eight phases of the 30-day

mode and (b) the six phases of the 6-day mode.

1 The NARR vertical velocity was the domain average over

KSLC, as outlined in Fig. 2a.
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of the ridge. Sequential development of the surface in-

version following the capping inversion also agrees with

the case study by Wolyn and McKee (1989, their Fig. 7),

except in our analysis both inversion types undergo a

pronounced, cyclic evolution associated with the 30-day

mode.

It is commonly known that inversions and bad air

quality are usually cleared away during a frontal pas-

sage. In view of this, we examined the 0000 UTC NWS

DiFAX surface maps2 and recorded the days when

a cold front was within 150-km radius of KSLC. From

2001 to 2008, the recorded days with a cold front passage

near KSLC were accumulated with respect to the eight

phases of the 30-day mode composite (not shown). The

highest frontal frequency occurs at phase 6 (as illus-

trated by a cold front symbol in Fig. 7b) and is associated

with the strongest ascending motion and the lowest

static stability above the surface (cf. Fig. 7a). The peak

frontal frequency at phase 6 also coincides with the

lowest frequency of the capping and surface inversions

combined.

At the surface, the PM2.5 concentration in Salt Lake

City (Fig. 7c, thick solid line) reaches a maximum at

phase 2 and remains high through phases 3 and 4, cor-

responding more with the surface inversion frequency

rather than the capping inversion frequency. Such an

association between PM2.5 and the surface inversions is

in good agreement with that depicted in Fig. 4b. A

drastic drop in PM2.5 occurs between phases 4 and 5 in

response to the developing trough and upward motion

and possibly to the increasing frontal frequency as well.

The PM2.5 concentrations in Logan (dashed line) are

generally consistent with those in Salt Lake City but are

slightly higher. Moreover, the Logan PM2.5 variation

appears to last a few days longer than the Salt Lake City

PM2.5 variation during high-concentration days (cf.

phase 3), suggesting that smaller valleys tend to more

effectively trap cold air and build PM2.5 for a longer

period of time. This feature reflects the known topo-

graphic modification of inversion properties and its im-

pacts on air quality (Whiteman 2000).

The composite phases of surface daily maximum tem-

perature, precipitation, and snow depth over the selected

COOP stations are illustrated in Fig. 7d. The cyclic

evolutions of these variables following the 30-day mode

are readily visible. Compared to the PM2.5 concentra-

tions, the daily maximum temperature remains rela-

tively stable during phases 2–5 and then drops at phase 6.

The temperature drop is accompanied by increased

precipitation likely coupled with the increased frontal

activity, as the ridge of the 30-day mode gives way to the

approach of the trough. Snow depth subsequently in-

creases at phase 6, following the peak precipitation. The

coherence between the synoptic system and the surface

observations is not surprising; however, the close asso-

ciation between these surface observations and the

30-day mode clearly demonstrates the impacts of the

ISV on winter weather in the Intermountain West.

Following the composite procedure, the six phases of

the 6-day mode for the equivalent variables were con-

structed and are shown in Fig. 8. To take into account

any possible impacts of the 30-day mode on the 6-day

mode, the composite was further categorized into posi-

tive and negative phases of the Z30d index. The com-

posite evolutions of geopotential height and vertical

velocity for the 6-day mode under positive Z30d phases

are very different (Fig. 8b) from those under negative

Z30d phases (Fig. 8f). For example, the trough system

and associated ascending motion of the 6-day mode are

substantially weaker under positive Z30d phases, but are

noticeably stronger under negative Z30d phases. In the

6-day mode, vertical motion is coupled with the edges of

the trough–ridge system (i.e., spatially in quadrature),

which is typical in the quasigeostrophic dynamics of

synoptic waves. In comparison, vertical velocity in the

30-day mode (Fig. 7b) is in phase with the trough–ridge

system.

Embedded in the ridge and downward motion of the

30-day mode, inversion layers at phases 2 and 3 of the

6-day mode (Fig. 8a) are considerably stronger than those

embedded in the trough and upward motion of the 30-day

mode (Fig. 8e). This feature is particularly pronounced

near the surface and is reflected by the fact that the sur-

face inversion frequency is 3 times higher in the Z30d ridge

(Fig. 8c) than that in the Z30d trough (Fig. 8g). In contrast,

the frequency of the capping inversions is relatively un-

changed in either case. Also noteworthy is that the fre-

quency of the surface inversions undergoes a drastic drop

at phase 4; this echoes the observation by Reeves and

Stensrud (2009) that persistent valley cold pools are

usually cleared by an approaching synoptic trough. The

analysis of the frontal frequency in the 6-day mode

composite (not shown) reveals the largest frontal activity

at phase 4; thus, cold fronts associated with the approach

of synoptic troughs may play a role in lifting the inver-

sions (Fig. 8b). These results further exemplify the com-

bined impacts of the 30- and the 6-day modes on the

occurrence and type of inversion.

The PM2.5 concentrations also follow the 6-day mode

evolution, with higher values during the ridge and lower

values during the trough. The difference in the overall

2 NWS DiFAX surface maps were provided by Colorado State

University (information online at http://archive.atmos.colostate.

edu/).
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concentration between Figs. 8c and 8g is obviously a re-

sult of the 30-day mode modulation. Compared to the

30-day mode composite, the PM2.5 concentrations in

Logan are coherent with those in Salt Lake City, in-

dicating a comparable influence of synoptic waves on air

quality in different valleys. The variation amplitudes of

the surface conditions associated with the 6-day mode

are generally weaker under the Z30d ridge (Fig. 8d) than

those under the Z30d trough (Fig. 8h), suggesting that

the relatively quick passage of a synoptic trough is in-

adequate to clear off the alert-level PM2.5 concentra-

tions. In addition, the precipitation variation associated

with the 6-day mode is considerably enhanced under the

Z30d trough. This signifies a multiple-scale process from

which the ISV influences precipitation by modulating the

synoptic weather systems.

4. Circulation patterns

a. ISV versus synoptic variability

Applying the same filtering technique as for Z6d and

Z30d, the 300-hPa geopotential height of the NCEP–

NCAR reanalyses during the analysis period was filtered

and then correlated with the KSLC Z6d and Z30d indices

at various time lags. These correlation results were then

averaged throughout the 1980–2008 period, yielding

a mean correlation map for each time lag and so de-

picting the structure and evolution of both modes.

As shown in Fig. 9a, the 6-day mode is characterized

by a robust synoptic wave train propagating eastward

(from day 23 to day 12 with a 1-day interval). The wave

train exhibits a steady pattern of eastward movement

toward North America along 458N. Its structure and

propagation resemble those depicted in Wallace et al.

(1988, their Fig. 4). The 30-day mode (Fig. 9b) also de-

picts a wave train at a larger scale; however, its propa-

gation is not as apparent as the 6-day mode despite a

discernable pattern of eastward movement across North

America. The weak propagation of the 30-day mode

 
FIG. 7. Composite of the eight phases of the 30-day mode for the

(a) vertical gradient of temperature (2›T/›p), (b) departures of

the KSLC geopotential height (contours) and the NARR vertical

velocity (shadings) from the climate mean, (c) frequencies of sur-

face inversion (dark bars) and capping inversion (light bars) and

the PM2.5 concentrations in Salt Lake City (thick curve) and Lo-

gan (dashed curve), and (d) daily maximum temperature (solid

curve), precipitation (dashed curve), and snow depth (dotted

curve) averaged from the COOP stations. The cold front symbol in

(b) indicates the maximum frequency of frontal passages through

Salt Lake City at phase 6. Contour intervals (CIs) are given atop (a)

and (b). The eight phases are repeated for better illustration.
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FIG. 8. As in Fig. 7, but for the six phases of the 6-day mode composite under (a)–(d) the 30-day-mode ridges

and (e)–(h) the 30-day-mode troughs.
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reflects the fact that, during typical winter conditions,

the westward-propagating Rossby wave often coexists

with the eastward-moving tropical ISV, and the inter-

ference between the two likely complicates their prop-

agation signals. Nevertheless, these results suggest that

the 6- and the 30-day modes may interact and that their

interaction may modulate the characteristics of winter

inversions experienced over the Salt Lake Valley, as were

substantiated in Figs. 7 and 8.

An examination of the circulation patterns associ-

ated with these two modes may provide further insights

for forecasting inversion episodes. Figure 10 shows the

composite geopotential height at 300 and 850 hPa of the

NCEP–NCAR reanalysis (unfiltered) consisting of four

combinations of the extreme phases of the 30- and 6-day

modes. Under the ridge of the 30-day mode, the super-

position of a 6-day mode ridge forms pronounced anti-

cyclonic flows with high pressure anomalies at 850 hPa

FIG. 9. Correlation maps of bandpassed 300-hPa geopotential height of the NCEP–NCAR reanalyses correlated with that of the KSLC

soundings from (a) day 23 to day 12 for the 6-day mode and (b) from day 212 to day 18 with a 4-day interval for the 30-day mode. The CI

is 0.1, while the zero contours are omitted. Areas above the 95% confidence level are shaded. KSLC is marked by a star.
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over the Intermountain West (Fig. 10a). Based on Figs. 7

and 8, such a synoptic setting warrants persistent surface

inversion conditions and valley cold pooling, which will,

for the most part, result in particularly high concentra-

tions of PM2.5 near KSLC. When a 6-day mode trough

occurs within the 30-day mode ridge, a synoptic trough

appears over the Rocky Mountains, but in this case the

lower troposphere is characterized by weak high pres-

sure (Fig. 10b). According to Fig. 8c, a capping inversion

is likely present at this stage while the surface inversion

environment may soon develop.

Under the 30-day-mode trough, a concurring 6-day-

mode ridge creates weak ridging over KSLC with a weak

850-hPa low pressure zone to the northwest (Fig. 10c).

Both types of inversion situations would be expected to

dissipate at this stage (cf. Fig. 8g). When the troughs of

the 6- and 30-day modes simultaneously occur over KSLC

(Fig. 10d), a deep and extensive synoptic trough dominates

the Intermountain West. Under such circumstances, in-

versions are least likely and the PM2.5 concentrations will

be at their lowest. These circulation patterns are generally

consistent with previous studies (e.g., Reeves and Stensrud

2009). While consistent, the analysis here takes our un-

derstanding one step further to show that such circulation

patterns and the associated inversion scenarios result from

a collective interaction of two atmospheric modes: the ISV

(30 day) and the synoptic (6 day) modes.

b. Possible null cases

There are times, however, when inversions did not

occur despite the fact that the Z30d and Z6d indices in-

dicated that they should. One such example in 2001 is

presented in Fig. 11. The time–height evolution of the

KSLC geopotential height constructed from the com-

bination of Z30d and Z6d is shown in Fig. 11a (shadings),

superimposed with the PM2.5 concentration (solid line)

and inversion days (dots and circles) in Salt Lake City.

While both case A (5 January 2001) and case B (5 Feb-

ruary 2001) appear to be under the combined influences

of the 30- and 6-day ridges, only case A features a per-

sistent inversion with elevated PM2.5. The synoptic evo-

lutions of these two cases are shown in Figs. 11b and 11c

for 3 days in terms of the geopotential height at 300 hPa

and the temperature gradients between 775 hPa and

10 m, using the NARR data. An apparent difference in

the synoptic pattern is that the ridge system in case A is

stronger with its high pressure center closer to KSLC

in comparison to case B, which has the ridge near the

West Coast, while KSLC is situated at the northeastern

edge of the ridge. As shown by the geopotential height

anomalies of the combined 30- and 6-day modes (gray

boldface contours), the same position difference between

the ridges of the two cases is also apparent, with the

high pressure center in case B about 108 latitude farther

FIG. 10. Composite 300-hPa geopotential height (contours) and the 850-hPa geopotential height anomalies

(shadings) for (a) the Z30d ridge (phase 3) with the Z6d ridge (phase 2), (b) the Z30d ridge with the Z6d trough (phase 5),

(c) the Z30d trough (phase 7) with the Z6d ridge, and (d) the Z30d trough with the Z6d trough. The CI is 75 m. KSLC is

marked by a star.
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FIG. 11. (a) Time–height evolution of the KSLC geopotential height anomalies constructed by the combination of

Z30d and Z6d during the 2000/01 winter, superimposed with time series of the PM2.5 concentration in SLC and

inversion cases (dots and circles). The 3-day synoptic evolutions of the 300-hP geopotential height (contours), the

combination of Z30d and Z6d (thick gray contours of 90 m), and the vertical temperature gradients between 775 hPa

and 10 m (shadings) are shown for (b) case A and (c) case B based on the NARR data. The CI for (b) and (c) is 60 m.

KSLC is marked by a star.
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southwest of the high pressure center in case A. Inver-

sions were produced with a similar position shift, as indi-

cated by the temperature gradients. In case A inversions

occurred over the Great Basin and the Snake River Val-

ley, and in case B inversions took place farther south over

the Colorado River valley. As a result, Salt Lake City did

not experience inversions during case B even though

KSLC was within the influence of the ridge system.

These results suggest that the development of persistent

inversions depends on the strength and positioning of the

synoptic ridge, which echoes Reeves and Stensrud (2009).

They noted that weak valley cold pools are usually coupled

with weak upper-level forcing and that the seasonal (i.e.,

meridional) position of the synoptic waves also affects the

strength of valley cold pools. We estimated the ‘‘null cases’’

such as that of case B in Fig. 11a to account for about 15%

of the total inversion events in Salt Lake City recorded

through the 1979–2008 winters. However, situations like

case B may not be regarded completely as a null case be-

cause, even though the position of the ridge was shifted,

persistent inversions still occurred in the Intermountain

West over regions other than the Salt Lake Valley.

5. Summary and conclusions

Although the association between inversion devel-

opments and large-scale circulations is well known,

forecasting the life span and subsequent breakdown of

persistent inversions remains a challenge. The analysis

undertaken in this study illustrates that the development

of inversions in the Salt Lake Valley (and likely through-

out the Intermountain West) closely follows two key vari-

ation modes in the midlatitude circulation: the 6- (synoptic)

and the 30-day (ISV) modes. These two modes are driven

by distinct dynamics as is reflected in their different di-

mension and propagation properties. However, their

interaction can and does modify the characteristics of

the atmospheric waves moving across the Intermountain

West and subsequently modulates the inversion develop-

ment. Moreover, it was established that the 30-day mode

has a particularly strong impact on the persistence of

surface inversions that, more often than not, lead to high

concentrations of PM2.5. On the other hand, the 6-day

mode affects both the surface and capping inversions, but

exerts less of an influence on the surface inversion in

contrast to the 30-day mode.

The results of this study have implications for the limited

forecast ability of the duration and offset of winter in-

versions and poor air quality in the Salt Lake Valley and

the surrounding region. Although medium-range forecasts

(;10 days) have progressed significantly over recent de-

cades, predicting a half cycle of the ISV (15–20 days) is still

beyond the capability of numerical weather prediction

models. This may explain why predicting the duration

and eventual dissipation of persistent surface inversions

remains somewhat elusive. Therefore, the approach of

climate diagnostics to identify the presence of the 30-day

mode at the onset of an inversion event may be an al-

ternative method to forecasting the event duration. The

potential of such a method will be reported in a following

study.

Finally, it has been observed that precipitation in states

along the West Coast such as California and Washington

is modulated by the MJO (Mo and Paegle 2005). The

results of this study point out a similar modulation in

the Intermountain West. The forecast of the tropical ISV

and its connection with the midlatitude weather has, to

date, been treated as a climate variability issue rather than

a weather issue. A considerable amount of effort has

been expended in improving the prediction of the MJO

through both empirical and dynamical models (Waliser

2005). It was recently shown that the Climate Forecast

System (CFS) model developed by NCEP exhibits sat-

isfactory skill in predicting the MJO (Weaver et al. 2009)

and extreme weather events in North America (Jones

et al. 2009) at up to 3 weeks. Testing of the CFS’s potential

in terms of inversion prediction for the Intermountain

West is underway.
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Billings, B. J., V. Grubišić, and R. D. Borys, 2006: Maintenance of

a mountain valley cold pool: A numerical study. Mon. Wea.

Rev., 134, 2266–2278.

Blackmon, M. L., 1976: A climatological spectral study of the

500 mb geopotential height of the Northern Hemisphere.

J. Atmos. Sci., 33, 1607–1623.

Branstator, G., 1987: A striking example of the atmosphere’s

leading traveling pattern. J. Atmos. Sci., 44, 2310–2323.

Chen, T.-C., S.-Y. Wang, M.-C. Yen, and A. J. Clark, 2009: Impact

of the intraseasonal variability of the western North Pacific

large-scale circulation on tropical cyclone tracks. Wea. Fore-

casting, 24, 646–666.

Holzworth, G. C., 1962: A study of air pollution potential for the

western United States. J. Appl. Meteor., 1, 366–382.

——, 1967: Mixing depths, wind speeds and air pollution potential

for selected locations in the United States. J. Appl. Meteor., 6,

1039–1044.

Horel, J. D., and C. R. Mechoso, 1988: Observed and simulated

intraseasonal variability of the wintertime planetary circula-

tion. J. Climate, 1, 582–599.

Jones, C., J. Gottschalk, L. Carvalho, and W. Higgins, 2009:

Probabilistic forecast skill of extreme weather in weeks 1–4

in the United States during winter. 34th Annual Climate

AUGUST 2010 G I L L I E S E T A L . 1209



Diagnostics and Prediction Workshop, Monterey, CA, CPC,

4.02. [Available online at http://met.nps.edu/climate_CDPW09/

documents/Session_4/4.02_Jones_34th_CDPW_Oct09.pdf.]

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Re-

analysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmo-

spheric oscillations: Composite life cycles of convection and

circulation anomalies. Mon. Wea. Rev., 115, 1407–1436.

Lau, N. C., and M. J. Nath, 1999: Observed and GCM-simulated

westward-propagating, planetary-scale fluctuations with approx-

imately three-week periods. Mon. Wea. Rev., 127, 2324–2345.

Lockhart, W. M., 1943: A winter fog in the interior. Characteristic

Weather Phenomena of California, MIT Meteorological Pa-

pers, Vol. 1, No. 2, 11–20.

Madden, R. A., and P. R. Julian, 2005: Historical perspective. In-

traseasonal Variability in the Atmosphere–Ocean Climate Sys-

tem, K.-M. Lau and D. E. Waliser, Eds., Springer, 1–16.

Mesinger, F., and Coauthors, 2006: North American Regional

Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360.

Mo, K. C., and J. N. Paegle, 2005: Pan-America. Intraseasonal

Variability in the Atmosphere–Ocean Climate System, K.-M.

Lau and D. E. Waliser, Eds., Springer, 95–121.

Reeves, H. D., and D. J. Stensrud, 2009: Synoptic-scale flow and

valley cold pool evolution in the western United States. Wea.

Forecasting, 24, 1625–1643.

Renwick, J. A., and J. M. Wallace, 1996: Relationships between

North Pacific wintertime blocking, El Niño, and the PNA

pattern. Mon. Wea. Rev., 124, 2071–2076.

Stull, R., 2006: The atmospheric boundary layer. Atmospheric

Science: An Introductory Survey, 2nd ed., J. M. Wallace and

P. V. Hobbs, Eds., Academic Press/Elsevier, 375–417.

Waliser, D., 2005: Predictability and forecasting. Intraseasonal

Variability in the Atmosphere–Ocean Climate System, K.-M.

Lau and D. E. Waliser, Eds., Springer, 389–423.

Wallace, J. M., G. H. Lim, and M. L. Blackmon, 1988: Relationship

between cyclone tracks, anticyclone tracks and baroclinic

waveguides. J. Atmos. Sci., 45, 439–462.

Weaver, S., W. Wang, and A. Kumar, 2009: Representation of MJO

variability in the NCEP Climate Forecast System. 34th Annual

Climate Diagnostics and Prediction Workshop, Monterey, CA,

CPC, 4.04.

Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and

Applications. Oxford University Press, 355 pp.

——, X. Bian, and S. Zhong, 1999: Wintertime evolution of the

temperature inversion in the Colorado Plateau basin. J. Appl.

Meteor., 38, 1103–1117.

——, S. Zhong, W. J. Shaw, J. M. Hubbe, X. Bian, and

J. Mittelstadt, 2001: Cold pools in the Columbia Basin. Wea.

Forecasting, 16, 432–447.

Wolyn, P. G., and T. B. McKee, 1989: Deep stable layers in the

intermountain western United States. Mon. Wea. Rev., 117,
461–472.

Zhong, S., C. D. Whiteman, X. Bian, W. J. Shaw, and J. M. Hubbe,

2001: Meteorological processes affective the evolution of a

wintertime cold air pool in the Columbia Basin. Mon. Wea.

Rev., 129, 2600–2613.

1210 W E A T H E R A N D F O R E C A S T I N G VOLUME 25


