Utah State University DigitalCommons@USU

Posters

Materials Physics

3-18-2013

Electric Multipole Interactions in an Extended BEG Model

Teresa Burns

JR Dennison Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_post

Part of the Physics Commons

Recommended Citation

Burns, Teresa and Dennison, JR, "Electric Multipole Interactions in an Extended BEG Model" (2013). American Physical Society March Meeting 2013. *Posters.* Paper 14. https://digitalcommons.usu.edu/mp_post/14

This Poster is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Posters by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

American Physical Society March Meeting 2013

Baltimore, MD March 18-22, 2013

Electric multipole interactions in an extended BEG model

Teresa Burns¹ and J.R. Dennison²

¹ Coastal Carolina University ² Physics Department, Utah State University

Abstract

General 2D dielectric phase diagrams and phase transitions for multipolar molecules adsorbed to a square ionic crystal are presented. The adsorbed molecules are modeled using a dilute spin-one Ising model in the Blume-Emery-Griffiths formalism, using a mean-field approximation. Physical constants such as the electric multipole moments and binding energies are used to uniquely determine the interaction parameters over the full range of physically-relevant values. We find that temperature- and coverage-dependent antiferroelectric to ferroelectric, coveragedependent ferroelectric up to ferroelectric down, reentrant ferroelectric to ferrielectric, and orderdisorder dipole phase transitions can occur. The results are presented as a quasi-continuous set of phase diagrams. Extensions into ferro-electric parameter space are discussed and connections to analytical solutions are explored.