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Foundations of Wave Phenomena, Version 8.2

There is one more identity that we shall need. It involves the double-curl of a vector

field:

r⇥ (r⇥

~V ) = r(r ·

~V )�r

2~V . (16.22)

To use this formula you should use Cartesian components (V x, V y, V z) with the Laplacian

of a vector field being computed component-wise, that is,

(r2~V )x = r

2(V x),

and so forth. If a vector field has vanishing divergence, then any given component (e.g.,

the x component) of its double-curl is just the Laplacian on that component of ~V (e.g.,

V x).

17. Maxwell Equations.

With our brief review of vector analysis out of the way, we can now discuss the Maxwell

equations. We will use the Gaussian system of electromagnetic units and we will let c

denote the speed of light in vacuum. The Maxwell equations are di↵erential equations for

the electric field ~E(~r, t), and the magnetic field ~B(~r, t), which are defined by the force they

exert on a test charge q at the point ~r at time t via the Lorentz force law:

~F (~r, t) = q

✓
~E(~r, t) +

1

c
~v(t)⇥ ~B(~r, t)

◆
, (17.1)

where ~v(t) is the particle’s velocity at time t. Equation (17.1) is used to determine the

motion of a charged particle in a given electromagnetic field assuming the e↵ect of the

particle on the field can be neglected. Equation (17.1) can also be used to measure the

electromagnetic field by observing the motion of charged “test” particles.

The Lorentz force law tells us how the electromagnetic field a↵ects electrically charged

matter. The Maxwell equations tell us how the electrically charged matter a↵ects the

electromagnetic field. In macroscopic applications it is usually convenient to model the

electric charges – the “sources” – of the electromagnetic field as a continuous electric

charge density ⇢(~r, t) and electric current density ~j(~r, t). (You may now note that we are

anticipating with our notation that ⇢ and ~j will satisfy a continuity equation corresponding

to conservation of electric charge.) The Maxwell equations are

r ·

~E = 4⇡⇢, (17.2)

r ·

~B = 0, (17.3)

r⇥

~B �

1

c

@ ~E

@t
=

4⇡

c
~j, (17.4)
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r⇥

~E +
1

c

@ ~B

@t
= 0. (17.5)

Our goal is to see how on earth it is possible to find wavelike phenomena coming from

these equations. But first it is worth pausing to get a feel for the basic features of these

equations.

17.1 The Basic Structure of the Maxwell Equations

First of all, the equations (17.2)–(17.5) are 8, coupled, first-order, partial di↵erential

equations (with constant coe�cients in Cartesian coordinates) for the 6 unknown functions

contained in the components of ~E and ~B. One usually views the Maxwell equations as

equations which are used to determine ~E and ~B for a given ⇢ and ~j. In this setting the

equations for ~E and ~B are “linear-inhomogeneous” thanks to the “source terms” defined

by ⇢ and ~j. Because the equations are inhomogeneous, it is not possible to superimpose

solutions ( ~E1, ~B1) and ( ~E2, ~B2) to get new solutions without altering the charge and current

densities (exercise). On the other hand, given any solution to the Maxwell equations (for

a given ⇢ and ~j) one can add any solution of the homogeneous Maxwell equations (where

⇢ = 0 = ~j) to get a new solution of the inhomogeneous equations (Exercise: Prove this.)

As a special case of this last property, if one is solving the Maxwell equations in a region of

space where ⇢ = 0 and~j = 0, then the equations are homogeneous and one can superimpose

solutions.

The equations (17.2) and (17.3) represent 2 “scalar” equations, while equations (17.4)

and (17.5) are “vector equations”. A vector equation equates the components of two

vectors. Thus the equations (17.4) and (17.5) each represent 3 (coupled) equations in

which the x component of the left-hand side is equated to the x component of the right

hand side, and so on.

Usually, the Maxwell equations, as presented above, are meant to be solved for ~E

and ~B once the charge density and its motion (the current density) are specified. For

example, one can let the charge density be that of a uniform ball of positive charge held

fixed in space so that the current density vanishes. As you might guess, the solution of

these equations has vanishing magnetic field and a Coulomb-type electrostatic field outside

the ball. (Do you remember what happens inside the ball?) Note that this way of using

the Maxwell equations assumes that the motion of the sources is completely known (or

else, how could we specify ⇢ and ~j?). For many purposes this is a reasonable physical

assumption. But, strictly speaking, this way of describing electrodynamics is at best an

approximate description. As you can imagine, many applications (e.g., the electrodynamics

of the ionosphere) will require us to also figure out how the sources are moving. This

is a complicated problem and quite non-linear: the sources generate the electromagnetic

field according to the Maxwell equations (17.2)–(17.5), the electromagnetic field a↵ects the
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sources according to the Lorentz force law (17.1), but the motion of the charges determines

the fields, etc. Needless to say, we will be content to study the case where the motion of

the sources is prescribed, that is, explicitly given.

Note that only 4 of the 8 Maxwell equations, (17.2) and (17.4), involve the sources.

These are often called the inhomogeneous equations because they are linear inhomogeneous

in the unknowns. The other 4 which do not involve the sources, (17.3) and (17.5), are

likewise known as the homogeneous equations. The inhomogeneous equation involving ⇢

shows that the charge density gives a divergence to the electric field. This is reasonable:

electric charges create electric fields; this Maxwell equation tells what part of the vector

field ~E is a↵ected by charges. The last Maxwell equation (17.3), on the other hand,

shows that the magnetic field never has a divergence. By analogy with the electric field,

this equation can be viewed as stating that there is no such thing as “magnetic charge”.

The magnetic field can have a curl however, (17.4), and this arises from either a time

varying electric field or from a current density (moving charges). Thus a moving charge

creates a magnetic field and, as Maxwell first postulated, so does a time varying electric

field. Finally, from (17.5), the electric field can also have a curl, but only if there is a

time varying magnetic field—a phenomenon characterized by Faraday and one which is

necessary for existence of civilization as we know it.

Note also that only 6 of the 8 equations, (17.4) and (17.5) involve a time derivative,

that is, only 6 equations concern themselves with how the fields change in time. For this

reason these equations are called the evolution equations. The remaining two divergence

equations are called constraint equations since they restrict the fields at any given time. It

can be shown that the constraint equations only need to be satisfied once, i.e., at a single

instant of time; the evolution equations will guarantee they will be satisfied at later times.

This is important because otherwise we would be in danger of having too many equations

(8) and not enough unknowns (6).

17.2 Continuity Equation and Conservation of Charge

We now consider an important consistency condition that must be satisfied by the

sources if the Maxwell equations are to admit any solution at all. Besides being an im-

portant feature of the equations, this condition follows from a nice manipulation of vector

di↵erentiation. This consistency condition says that a necessary condition for the exis-

tence of a solution ( ~E, ~B) to the Maxwell equations is that the sources (⇢,~j) must satisfy

a continuity equation.

Take the time derivative of (17.2) and interchange time and space derivatives to get

(exercise)

r ·

@ ~E

@t
= 4⇡

@⇢

@t
. (17.6)
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Compare this result with the divergence of (17.4) (exercise):

�

1

c
r ·

@ ~E

@t
=

4⇡

c
r ·

~j, (17.7)

to find (exercise)
@⇢

@t
+r ·

~j = 0. (17.8)

This is our old friend the continuity equation. What this computation means is that the

Maxwell equations have solutions for ~E and ~B only if the 4 functions ⇢(~r, t) and ~j(~r, t)

are chosen to satisfy the continuity equation (17.8) given above. Recall that this equation

is a di↵erential version of a conservation law; the conserved quantity in this case being

the electric charge. More precisely, the total charge Q contained in a volume V at time t,

defined by

Q =

Z
V
dV ⇢(~r, t), (17.9)

changes in time according to the net flux of the current density ~j through the boundary S

of V :
dQ

dt
= �

I
S

~dS ·

~j. (17.10)

If the net flux of charge through the boundary (which may be “at infinity”) vanishes, then

the charge contained in V is constant in time. When we use the Maxwell equations to solve

for the electromagnetic field due to a given charge distribution, that distribution must be

specified so that charge is conserved in the sense of (17.8) or else the equations cannot

have a solution.*

Given the continuity equation, we can now consider the status of the constraint equa-

tions (17.2) and (17.3). It is straightforward to show that if they are satisfied at one time,

say t = 0, by the initial values for ~E and ~B, then they are automatically solved at later

times provided (i) the electromagnetic field at later times satisfies the evolution equations,

and (ii) (17.8) is satisfied by the sources. See the Problems for details.

18. The Electromagnetic Wave Equation.

Let us now see how the Maxwell equations (17.2)–(17.5) predict the existence of elec-

tromagnetic waves. For simplicity we will consider a region of space and time in which

* It is no accident that the Maxwell equations, in e↵ect, force the conservation of electric
charge. Indeed, our current field theoretic description of all fundamental interactions
(electromagnetic, weak, strong, and gravitational) is geared to force such conservation
laws through the use of variational principles and the “principle of local gauge invariance”.
Unfortunately, a discussion of such ideas would be beyond the scope of this course.
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