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[1] Analyses of rocks from the Active Fault Survey Tunnel
(AFST) provides insight into the structure and hydrogeology
of the northeast-trending Mozumi-Sukenobu fault, an active
strike-slip fault with 125 to 500 m of right-lateral slip in
central Japan. Interlayered regions of sub-vertical
permeability zones formed by cataclasis and slip on clay-
rich foliated zones. Core samples range from 10�19 m2 to
almost 10�13 m2. CFC analyses of waters from the fault zone
show that water entering the tunnel is 27–36 years old,
yielding a bulk fault permeability of 10�14 to 10�15 m2. The
data support a fault zone model of a fluid-saturated, low-
velocity zone with a sharp velocity contrasting with the
protolith. Pore-fluid pressures could build and dissipate in
isolated high permeability pods 10’s – 100’s m in
dimension. INDEX TERMS: 8010 Structural Geology:

Fractures and faults; 8045 Structural Geology: Role of fluids;

8025 Structural Geology: Mesoscopic fabrics; 8030 Structural

Geology: Microstructures; 8020 Structural Geology: Mechanics.

Citation: Forster, C. B., J. P. Evans, H. Tanaka, R. Jeffreys, and

T. Nohara, Hydrologic properties and structure of the Mozumi

Fault, central Japan, Geophys. Res. Lett., 30(5), 8010, doi:10.1029/

2002GL014904, 2003.

1. Introduction

[2] Numerous geophysical, geologic, and hydrologic
investigations indicate that fault zones impact the flow of
fluids in the subsurface. The hydraulic structure of faults is
important in examining precursor phenomena in earth-
quakes [Tsunogai and Wakita, 1995; King et al., 1995];
and the relationship between fluids and faulting [Blanpied et
al., 1992; Chester et al., 1993]. Deep boreholes or tunnels
provide insights into fault zone structures [Ohtani et al.,
2000] which allows us to determine the composition,
internal structure, and deformation processes of fault zones.
[3] The Active Fault Survey Tunnel (AFST) central

Japan [JNC, 1998] provides an opportunity to examine an
active fault in an underground gallery. We present the
results of laboratory permeability and porosity measure-
ments, and chloroflourocarbon analyses to document the
permeability of the fault-related rocks in an active fault
zone.
[4] The AFST is a horizontal drift 480-m-long, N 24�W

trending cut through the Mozumi-Sukenobu fault, Gifu

prefecture, Japan. The Mozumi-Sukenobu fault system
trends �N 40�E, with 125 to 500 m of right lateral slip
[Ando, 1998]. A low level of seismicity [Mikumo et al., 1988;
Mikumo, 1990; Wada et al., 1990]. The tunnel cuts rocks of
the Jurassic Tetori Group [Kano and Shimizu, 1992; Figure 1]
which consists of immature pebble conglomerates, siltstones,
thin organic-rich intervals, and sandstones.
[5] Detailed mapping of the drift walls before they were

lined was conducted by Mitsui Mining and Smelting Co.
geologists. The tunnel encountered 1–12-m-thick shale
beds and 10–20-m-thick sandstone beds cut by two zones
of intense deformation (crush zones, Figure 1). Sub-vertical
zones consist of clay gouge and breccia, low rock quality
(Figure 2a), and reduced seismic velocities. Crush Zone A is
�20 m wide within the tunnel and is interpreted to be the
trace of the active Mozumi-Sukenobu fault. Crush Zone B is
�65 m wide. Numerous small faults and clay-rich shear
zones separate Crush Zones A and B (Figure 1).
[6] Rock sampling of the fault zone comes from three

boreholes (Figure 1). Our samples come from Borehole 1,
Borehole A, and Borehole 2. Core recovery was remarkably
good.

2. Characterization of Faulted Rocks

[7] Protolith is comprised of thin-bedded, fine-grained
siltstones, angular breccias, random fabric cataclasites, well-
foliated clay-rich shear zones, and black, organic-rich shear
zones (Figure 2a). Deformation in the fault zone occurred
by shearing in clay/calcite-rich regions, plastic deformation
of calcite, brittle fracture and faulting, flow of calcite-clay
mixtures, and reaction-enhanced dissolution of calcite.
Samples tested for permeability represent dark siltstone
protolith (sample BH1-50.1), random fabric breccia/clay-
rich cataclasites (samples BHA-128.3, 133 and 143.2), and
highly altered clay-rich gouge (samples BHA-122.4 and
127.8).

3. Drillcore Tested as a Function of Confining
Pressure

[8] Six drillcore samples (Boreholes 1 and A) (Figure 1)
were tested by Terra Tek, Inc. to obtain values of perme-
ability (k) and porosity (n) over a ranges of confining
pressures of 2.8 to 62 MPa. Tests were performed using
nitrogen gas and API Recommended Practice # 40 for
steady state (higher permeability samples) and transient
(lower permeability samples) tests. The samples were dried
at 120�C prior to testing. Pore pressures were atmospheric
during the tests. Porosity is computed from measurements
of both pore volume and grain volume. The nominal
confining pressure (Pc) at the tunnel depth of 300 m is
7.6 MPa (the reference lines in Figure 3).
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[9] With the exception of the shale breccia sample (BHA-
133). Log permeability vs confining pressure Pc (Figure 3a)
are well-fitted with a relationship of k = mPc

a (Table 1).
Although sample BHA-133 is best fit with an exponential

relationship, we show a reasonable power law fit for
comparison. All fault rock samples experience about a 1.5
order of magnitude decline in permeability as confining
pressure is increased. The protolith shale sample (sample
BH1-50.1) exhibits about 4.5 orders of magnitude decline in
permeability (Figure 3a). This amplified response to
changes in confining pressure results from its clay content
and grain size similar to Evans et al. [1997] and Seront et al.
[1998].
[10] Two breccia categories provide k values of 10�17 m2

and 2 � 10�16 m2 at elevated confining pressure. This
suggests that fault zone anisotropy is caused by distinct
contrasts in the permeability of fault breccia. Porosity (n) for
all breccia samples, except sample BHA-122.4, approaches
a limiting value of 5 to 6% (Figure 3b). Sample BHA-122.4
approaches a limiting porosity of about 8%.
[11] Porosity vs confining pressure relationships are well

fitted by n = mPc
a (Figure 3; Table 1). The groupings are

similar to those found in Figure 3a. Responses of k and n to
changes in confining pressure are reflected Figure 3c. The
results are well fitted with k = mka (Table 1). The protolith
shale sample (sample BH1–50.1) has the lowest k and n of
all samples tested, and suffers the greatest decline in
permeability as a function of increasing confining pressure.
Most samples of shale and siltstone breccia yield tunnel-
level permeability values that vary between 10�14 and
10�15 m2 (Figure 3a). The shale breccia with fine matrix
yields values of porosity about 1.5 times greater, and
permeability about one order of magnitude lower than the
those of other breccia samples for each value of applied Pc.
This shows that high porosities do not equate to high

Figure 1. Simplified map of the Active Fault Survey
Tunnel across the Mozumi Fault. Mapping conducted by
JNC geologists indicates that the fault zone consists of
subparallel slices of clay-rich gouge, breccia, and fractured
rocks.

Figure 2. View of the fault zone within the Active Fault
Survey Tunnel through the Mozumi fault. Field book is
approximately 20 cm high. Narrow slip surface at left side
of window consists of narrow clay-gouge surface; bedding
is subhorizontal above the field book.

Figure 3. Results of permeability and porosity tests on
drillcore samples obtained from the active fault survey
tunnel cutting Mozumi-Sukenobu fault zone: (a) log
permeability kvs confining pressure Pc, (b) porosity n vs
confining pressure Pc, and (c) porosity nvs log permeability
k. The nominal confining pressure at the tunnel level (�350
m below ground surface) is 7.6 MPa.
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permeabilities, due to the connectivity of the pore space in
fine-grained rocks [Evans et al., 1997]. Clay-rich fault pods
may be able to store fluid, but not allow flow.

4. Chlorofluorocarbon (CFC) Estimates of
Groundwater Age

[12] Two sample sets of groundwater for CFC-age deter-
minations were collected in clean 3/8-inch O.D. copper
tubing sealed by cold welding the ends [Wilkowske, 1998].
Sample set MZ-164 was collected from the flowing Hole 5,
and sample set MZ-480 was collected at the tunnel terminus
(Figure 1). Sample analyses were performed with an ana-
lytical system similar to Wisegarver and Cline [1985].
Apparent recharge years were determined by computing
the atmospheric concentration of CFCs that would be in
equilibrium with the measured values at 5�C and a nominal
groundwater recharge elevation of 1000 msl above sea
level. These atmospheric concentrations were compared
with observed atmospheric values to assign a recharge year.
[13] Sample set MZ-164 shows a groundwater age of

about 36 years. Sample set MZ-480 shows an age of about
27 years. These ages are consistent with the intermediate
values of tritium concentration determined at the same
locations by Satake et al. [this issue].
[14] Approximate bulk k values parallel to the fault zone

can be estimated at the 100 m scale using apparent CFC
ages. Using transit time of 31 years, and an intermediate
porosity of 9%, bulk k at the 100-m scale is 3 � 10�15 m2.
This is remarkably similar to the in situ permeability test
results (2 � 20 � 10�15 m2) of Nohara et al. [this issue]
where we collected Sample set MZ-164.

5. Discussion and Conclusions

[15] Our permeability values obtained from groundwater
tracers and permeability testing of fault rocks range from
10�13 m2 to 10�19 m2 (Table 2). The largest values of
permeability are estimated at length scales of 1 to 100 m
associated with fractured rock in the fault zone and limited

clay gouge content [Nohara et al., this issue]. Intermediate
values of k (10�14 to 10�16 m2) are estimated at length
scales of 0.01 to 1 m for fault breccia with intermediate,
clay gouge content. The smallest k values (10�18 to 10�19

m2) are estimated at the cm-scale from samples collected
from clay-rich zones [see also Watanabe et al., this issue].
These results suggest faulting creates an interlayered
sequence of sub-vertical, high, intermediate, and low k
zones.
[16] Both maximum and minimum values of k are found

within the fault zone. This structure fits the conceptual
model of a conduit-barrier system [Caine et al., 1996]. The
k controlling flow in the plane of the fault is enhanced
relative to the host rock while k controlling flow across the
fault is reduced relative to the host rock.
[17] Thin slivers of high permeability fault rocks (less

than 10 m wide) likely transport the bulk of the subsurface
flow. Distinct changes in geochemical regimes on each side
of the fault are inferred from Ca/Na values [Satake et al.,
this issue] and support the inference that water flowing
parallel to, but on opposite sides of, the fault likely remains
unmixed while moving towards the Takana River because
the fault acts as a barrier to flow across the fault.
[18] The near-surface structure of several narrow slip

surfaces embedded within breccia and cataclasite zones,
some of which exhibit variable degrees of fluid-rock
interactions, mimics that documented in studies of faults
exhumed from 2–5 km deep [Chester et al., 1993; Gray
et al., 1999; Jannsen et al., 1998; Schulz and Evans,
2000].
[19] The Mozumi-Sukenobu fault, where cut by the

research tunnel, is a conduit-barrier system with bulk
anisotropy for the fault zone (width of �200 m) on the
order of 106. The fault zone comprises a complex structure
with thin, sub-vertical slivers (cms to ms wide) of high- to
low-permeability fault rocks. The fact that ongoing defor-
mation is observed within the fault zone suggests that pore
fluid pressures could be building and dissipating in high
permeability pressure pods distributed within the fault
zone.
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Table 1. Curve Fitting Results and Computed Values of Tunnel-Level k and n

Sample

k = mPc
a n = mPc

a n = mka Tunnel-Level Values

m a R m a R m a R k (m2) n (%)

BHA-122.4 148.6 �2.25 0.98 9.97 �0.159 1.00 7.00 0.070 0.99 1.6 � 10�15 7.2
BHA-127.8 4.46 �1.49 0.96 14.41 �0.125 0.95 12.67 0.083 0.97 2.2 � 10�16 11.1
BHA-128.3 88.22 �1.39 0.99 14.14 �0.221 0.99 6.903 0.159 1.00 5.3 � 10�15 9.0
BHA-133 13.59 �0.98 0.85 11.73 �0.165 0.99 7.52 0.154 0.96 1.9 � 10�15 8.4
BHA-143.2 57.27 �1.35 0.99 11.49 �0.181 0.99 6.68 0.133 1.00 3.7 � 10�15 8.0
BH1-50.1 47.09 �3.48 0.99 4.81 �0.549 1.00 2.42 0.145 0.94 4 � 10�17 1.6

R = ‘‘Goodness of Fit’’; m, a = fitting parameters in Power Law relationships (e.g., k = m Pc
a).

Table 2. Summary of Fault Permeability Estimates

Sample analysis Age Permeability Source

CFC
analysis

27 yrs
36 yrs

10�13–10�14 m2 This study

Core– faulted sandstone 10�14–10�16 m2 This study
Core–shale gouge 10�16–10�19 m2 This study;

Watanabe et
al., this issue

In situ falling head tests 10�13–10�15 m2 Watanabe et al.,
this issue
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