

A New Method for Suomi-NPP VIIRS Day Night Band (DNB) On-Orbit Radiometric Calibration

Shihyan Lee, Jeff McIntire, Tom Schwarting and Hassan Oudrari, and Jack Xiong

NASA VIIRS Characterization and Support Team (VCST)

CALCON Logan, UT August 20, 2013

Sigma Space Corporation

- The Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band (DNB)
- On-orbit Calibration Methods: Current vs. New approach
- DNB Calibration Results and Comparisons
- Conclusion/Discussion

VIIRS Day Night Band (DNB)

Suomi-NPP VIIRS is a new generation of Earth Observing Satellites (EOS), launched on 10-28-2011 The DNB is a panchromatic solar reflective band capable of radiometric measurements at night

- Design heritage from DMSP OLS (imagery), with enhancements on:
- On-board calibration processing
- Much higher spatial/radiometric resolution
- Better Signal to Noise (SNR) and dynamic range

DNB is providing science quality data of high interest to various applications:

- Diurnal observations capability (winter/poles)
- Clouds: Optical depth over urban areas
- Anthropogenic lights: human activities (fishing, energy...)
- Natural lights: wild fires, aurora, bioluminescence...

- Temperature controlled CCD Dynamic Range: 10⁻⁶ to 10² W m⁻² sr⁻¹ Scan Three gain stages LGS, MGS, HGS ٠ Direction (HGA/HGB redundant arrays) Track Direction • 500 – 900 nm bandpass 672 sub-pixel detectors in track ٠ 250, 3 and 1 sub-pixel detectors in ٠ LGS MGS HGB HGA scan direction for HGS, MGS and LGS
 - HGS/MGS: TDI
 - LGS: ND filter
 - HGA and HGB are two identical HGS

- Earth View (EV) observations (±56)
- Near constant spatial resolution ~750 m
- 16 detectors, 32 aggregation modes, varying detector sub-pixel dimension to achieve the constant spatial resolution
- Each detector/agg mode calibrated individually

DNB Calibration

Cal View: All DNB gain stages in one agg mode

72 scan cycle: agg mode 1 to 36, 2 HAM sides

Current approach:

LGS gain: SD Perform VROP, use EV data to derive offset and gain ratios for all gain stage and agg mode once a month

- Discontinuous
- Lost of science data

New approach:

LGS gain: SD Compute offset and gain ratios from calibration view data collected from different part of the orbit 5

DNB Calibration View Data

Observed signals in Solar Diffuser (SD) within an orbit

Agg mode gain/offset • variations/cycle

Offset: VIIRS in dark side of the Earth Gain ratio: use signal within dynamic range of

cross-stage calibration

Raw DN, detector 8/ HAM side A

6

Calibration View Dark Signals

Calibration View Dark Signals Trend

Daily OBC dark signal:

Feb, 2012 – Jan, 2013

- Very stable dark signal
- Moonshine in HGA and HGB

 Reduce moon straylight: Fit dark signal trend using data collected near new moon (< ¹/₄ moon)

- HGS: <1DN/mon
- MGS/LGS: little to none
- Lower agg modes have

higher temporal drift

Cal Dark Signal to EV Dark Offset

Cal vs. EV Dark Offset

Calibration View Gain Ratio

Calibration View Gain Ratio

Monthly average DNB gain ratios derived from SD data for March, 2012 HGA/MGS gain ratios • some detector variation (across mode)

 higher variations in higher agg modes

Calibration view signal levels adequate to determine gain ratios for all DNB crossstages and agg modes

Cal vs. EV Gain Ratio

The new DNB on-orbit calibration method is based on the on-board calibration data:

- Continuous calibration and without special Ops (VROP) No data loss
- Method was verified, and will be in operation in the next major SDR update

Dark Offset determination:

- Determined by nighttime calibration view data, around new moon
- Provide darker and more stable HGS offset than VROP No nighttime airglow
- Use the best known EV dark offset for optimal Cal-EV offset mapping
 - HGS (Pitch maneuver), MGS/LGS (VROP)

Gain Ratio determination:

- Determined by calibration view data from daytime and terminators
- Smoothed daily values to provide gain change over time
- More accurate: much lower straylight in calibrators

Thank You