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of infinite radius. If we consider an isolated system, so that the electric and magnetic

fields vanish su�ciently rapidly at large distances (i.e., “at infinity”), then the flux of

the Poynting vector will vanish as the radius of A is taken to infinity. Thus the total

electromagnetic energy of an isolated (and source-free) electromagnetic field is constant in

time.

20. Polarization.

Our final topic in this brief study of electromagnetic waves concerns the phenomenon

of polarization, which occurs thanks to the vector nature of the waves. More precisely,

the polarization of an electromagnetic plane wave concerns the direction of the electric

(and magnetic) vector fields. Let us first give a rough, qualitative motivation for the

phenomenon. An electromagnetic plane wave is a traveling sinusoidal disturbance in the

electric and magnetic fields. Let us focus on the behavior of the electric field since (i) typ-

ically the electric force on a charge is the most important influence of an electromagnetic

wave, and (ii) we can in any case always reconstruct the behavior of the magnetic field from

the electric field. Because the electric force on a charged particle is along the direction of

the electric field, the response of charges to electromagnetic waves is sensitive to the direc-

tion of the electric field in a plane wave. Such e↵ects are what we refer to when we discuss

polarization phenomena involving light. Now comes the important part. It may appear to

you that plane electromagnetic waves will always have a linear polarization, that is, a con-

stant electric (and hence magnetic) field direction. However, consider superimposing two

plane waves with the same propagation direction and wavelength but with di↵erent phases

and directions for the electric and magnetic fields. Thanks to the linear-homogeneous na-

ture of the source-free Maxwell equations, we know that this superposition will also be a

solution of those equations. And, as we shall see, this superposition will be another plane

wave of the type we have studied. Even though the direction of the electric field in each

of the constituent waves is constant, the superposition of the two can have a time varying

electric (and magnetic) field direction because the two constituent electric fields need not

be in phase with each other. The net e↵ect is a time varying electric (and magnetic) field

direction and the resulting phenomena of circular and elliptical polarization. We now want

to see how to describe this mathematically.

Let us choose our z-axis along the direction of propagation of the wave so that the

Cartesian components of ~k are (0, 0, k). Let us construct an electromagnetic plane wave by

superimposing 2 plane waves with the same wave vector: ( ~E1, ~B1), with ~E1 directed along

the x-axis, and ( ~E2, ~B2), with ~E2 directed along the y-axis. Further, let us work with the

representation of the waves as complex-valued exponentials. This keeps the trigonometry

from getting in our way; in particular, the phase information is contained in the complex

amplitudes. Keep in mind that we should take the real part of the electric field at the end
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of the day.

With all the preceding as justification, we write

~E = ~E1 + ~E2 = (E1x̂+ E2ŷ)e
i(kz�!t). (20.1)

Here E1 and E2 are just two complex numbers, that is, for real numbers R1,R2, ↵, and �

we have

E1 = R1e
i↵ (20.2)

E2 = R2e
i� . (20.3)

We see that all we have given is the complex representation of the superposition of two

real waves (exercise):
~E1 = R1 cos(kz � !t+ ↵) x̂ (20.4)

~E2 = R2 cos(kz � !t+ �) ŷ. (20.5)

Di↵erent polarizations occur for di↵erent choices of the phase di↵erence ↵ � � and the

amplitudes R1 and R2.

Note that even though we began by assuming the two electric fields were orthogonal,

even if they weren’t orthogonal we would have ended up with a similar result upon super-

position. Specifically, in (20.1) E1 would have been the x component of the superposition

and E2 would have been the y component of the superposition. So the formulas we have

constructed represent the superposition of any two plane waves which have the same wave

vector ~k.

Let us now consider the behavior of the electric field for various choices of the relative

phases and amplitudes.

20.1 Linear Polarization

The linear polarization case, which we studied in previous sections, occurs when � =

↵ ± n⇡, where n = 0, 1, 2, 3, . . .. We place no restrictions upon R1 and R2. In this case

you can check (exercise) that the complex form of the total electric field is

~E = (R1x̂±R2ŷ)e
i(kz�!t+↵). (20.6)

Taking the real part gives (exercise)

~E = (R1x̂±R2ŷ) cos(kz � !t+ ↵). (20.7)

This is a wave in which the magnitude of the electric field oscillates in time and space, but

with its direction held fixed.
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20.2 Circular Polarization

Here we set R1 = R2 ⌘ R and � = ↵±

⇡
2 . We find for the complex field (exercise)

~E = R(x̂± iŷ)ei(kz�!t+↵). (20.8)

Take the real part to find (exercise)

~E = x̂R cos(kz � !t+ ↵)⌥ ŷR sin(kz � !t+ ↵). (20.9)

Let us consider the direction of ~E as measured at a fixed point (x0, y0, z0) in space.

Physically, we move to this point and hold out our electric field probe. As time passes,

what do we find? Well, of course we find that ~E always lies in the x-y plane, as you can

see from (20.9). More interestingly, we find that the magnitude of ~E is constant while its

direction moves in a circle with constant angular velocity !. It is easy to verify that the

magnitude of ~E is constant in time:

E2 = R2(cos(kz � !t+ ↵))2 +R2(sin(kz � !t+ ↵))2 = R2. (20.10)

To see that the electric field direction moves with uniform circular motion at angular

velocity !, simply recall that such motion can always be mathematically characterized in

the general form

u(t) = r cos(!t+ ⇠) (20.11)

v(t) = r sin(!t+ ⇠), (20.12)

where (u, v) are Cartesian coordinates in a two dimensional space (exercise). At a fixed

location, the x and y components ~E, given above in (20.9), are precisely of this form.

20.3 Elliptical Polarization

Finally, we consider the most general case in which R1 6= R2 and ↵ 6= �. From our

previous special case, you can see that it might be profitable to make the definition

� = � �

⇡

2
, (20.13)

in which case you can show as a nice exercise that the real electric field is given by:

~E = x̂R1 cos(kz � !t+ ↵) + ŷR2 sin(kz � !t+ �). (20.14)

From this result it follows that the electric field direction—as measured at a fixed z—

traces out an ellipse. There are a number of ways to see this. First of all, for fixed z,

the x and y components of ~E are mathematically identical to a pair of general solutions
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to a one-dimensional harmonic oscillator (exercise). Put di↵erently, the motion of the x-y

components of ~E is mathematically identical to the x and y motions of a two-dimensional

(isotropic) harmonic oscillator. It is a familiar result from classical mechanics that the

superposition of these x-y motions is an ellipse in the x-y plane. In case this result is

unfamiliar to you, let us recall the definition of an ellipse. One definition is the locus of

points in the x-y plane such that
x2

a2
+

y2

b2
= 1, (20.15)

where a and b are some constants. You will be asked to show in the Problems that such a

relationship is satisfied by the x and y components of ~E.
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