9-28-1993

Proceedings from the 30th Annual Marschall Italian Cheese Seminar

Various Authors

Follow this and additional works at: http://digitalcommons.usu.edu/wdc_conference

Part of the Food Science Commons

Recommended Citation

Presented By

Marschall Products

A Business Unit of Rhône-Poulenc

Madison, Wisconsin

In Conjunction With

Seminar Exhibitors

And Non-Exhibiting Hosts

September 28 & 29, 1993

Holiday Inn – Madison West

Madison, Wisconsin
PROCEEDINGS
from the

30th Annual Marschall Italian Cheese Seminar

September 28 & 29, 1993

Sponsored by:
Rhône-Poulenc
Marschall Products
P.O. Box 592
Madison, WI 53701
<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993-1</td>
<td>Automatic, No-Brine Mozzarella Processing</td>
<td>Keith R. Ray, Mgr. of Engineering, Stainless Steel Fabricating, Columbus, WI</td>
<td>5</td>
</tr>
<tr>
<td>1993-2</td>
<td>How Starter Culture Metabolism Affects Properties of Mozzarella Cheese</td>
<td>Robert Hutkins, Ph.D., Associate Professor, University of Nebraska, Lincoln, NE</td>
<td>13</td>
</tr>
<tr>
<td>1993-3</td>
<td>Specialty Cheese - A World of Opportunity and Potential</td>
<td>James Path, Cheese Outreach Specialist, Center for Dairy Research, University of Wisconsin - Madison, Madison, WI</td>
<td>21</td>
</tr>
<tr>
<td>1993-4</td>
<td>A Method for Manufacturing Reduced-Fat Mozzarella Cheese</td>
<td>Donald J. McMahon, Ph.D., Associate Professor, Utah State University, Logan UT</td>
<td>27</td>
</tr>
<tr>
<td>1993-5</td>
<td>Features and Benefits of Using Custom Starter Programs</td>
<td>Bill Knoespel, Sr. Technical Services Representative, Marschall Products, Madison, WI</td>
<td>39</td>
</tr>
<tr>
<td>1993-6</td>
<td>Impact of Whey pH At Draw On Composition, Protoplasis, and Functional Properties of Mozzarella Cheese</td>
<td>J. Joseph Yun, Ph.D., Research Associate, Cornell University, Ithaca, NY</td>
<td>41</td>
</tr>
<tr>
<td>1993-7</td>
<td>Impact of Coagulant Level On Composition, Protoplasis, and Functional Properties of Mozzarella Cheese</td>
<td>Paul Kinstedt, Ph.D., Associate Professor, The University of Vermont, Burlington, VT</td>
<td>51</td>
</tr>
<tr>
<td>1993-8</td>
<td>Contributions of Coagulant, Starter Culture, and Milk Enzymes to Protoplasis and Browning In Mozzarella Cheese</td>
<td>David M. Barbano, Ph.D., Professor, Cornell University, Ithaca, NY</td>
<td>65</td>
</tr>
</tbody>
</table>
Automatic Mozzarella Processing System

By

Keith Ray
Manager of Engineering
Stainless Steel Fabricating, Inc.
Columbus, WI

Abstract

Our interviews with cheese makers, owners, managers, and top management of mozzarella processing companies across the United States resulted in our quest for accurate data from which an automatic Mozzarella processing system could be designed.

Definition

An “automatic Mozzarella processing system” is one capable of handling curd to product ready for packaging.

The Challenges

1. Cheese Composition Variables
 • pre-salting
 • solids
 • butterfat
2. Final Product Variables
 • size and shape
 • weight control
 • appearance
 • dimensional stability
3. Cooling
4. Production Speeds
5. Product Quality
6. USDA Requirements
7. Cost
8. Space

The Solutions

1. Data Gathering
2. Modular Concept Design
3. Field Testing
4. Data Gathering
Data Gathering

Our discussion today is limited to data gathering which continues to be an ongoing effort. As is often the case, machine design and testing appears to be far less of a challenge than gathering sufficiently accurate data from which design criteria can be established.

Cooling

And of all the challenges facing us in system design, by far the most demanding is that of cooling the Mozzarella to the kind of target core temperatures necessary. As a result, we are limiting our presentation to cooling and to all those variables associated with that process.

During this discussion, we have to make the assumption that all other variables remain constant so we can first begin to solve this most challenging riddle.

The Cooling Challenges

Cooling, in turn, is dependent upon an impressive list of variables experienced every day in the Mozzarella cheese making process:
- solids
- butterfat
- salting techniques
- production speed

And if we may keep these previous variables constant for the purpose of this discussion, we can center our attention on the cooling methodology itself and its primary criteria:
- cooling media
- cooling technique
- system costs

Disregarding hybrid solutions because of the issue of reasonable cost while accepting sweet water as the media of choice left us with uncovering cooling techniques.

To examine the relative success of the various “automatic” techniques now used to produce Mozzarella, we went into the field and gathered cooling data on the various machines.

Field Data Gathering

For our purposes, we have defined the various manufacturing systems according to how they cool the product:
- spray
- immersion
- transfer
The following curves represent the data gathered from our investigation.

Cooling Technique: SPRAY - TYPE I
Graph demonstrates skin temperature cooling as heat is transferred to the colder, stainless steel mold. Within 5 minutes, the product is cool enough to be discharged without losing its shape. Reducing the core temperature to the 46° F. using the same technique, however, would require more than 26 hours!

Cooling Technique: SPRAY - TYPE 2
With this technique, the core of the loaf cools about 2° F. in 26 minutes. Notice that 15 minutes pass before cooling even begins.
Cooling Technique: SPRAY - TYPE 2

This is a gradient in the loaf approximately 3/4" from the surface, indicating cooling is inversely proportional to the distance from the skin surface.

Cooling Technique: IMMERSION - TYPE 1

The "flat" portion of the graph demonstrates this product did not cool any measurable amount until it was discharged from the machine into the molder.
Cooling Technique: IMMERSION - TYPE I

Once again the phenomenon of a "flat" on the graph demonstrates a lack of cooling of this product until discharge into the brine. It seems apparent that immersion techniques allow the onset of a thermal barrier around the mold.

Cooling Technique: 5# LOAF IN BRINE

Classical cooling curve for a homogeneous substance.
Cooling Technique: **SPRAY - TYPE 2**

4°F cooling took place within the product's core after about 11 minutes of exposure to the spray system.

Cooling Technique: **5# Loaf in Brine**

Asymptotically approaching 46°F brine temperature with time.
Conclusion

The data demands a new look at the phenomenon of cooling Mozzarella with respect to the techniques used and the media employed.

It appears obvious that while immersion does little to reduce core temperature, the several types of spray cooling systems on the market need additional attention if "packageable" product is the goal.

Our design team has been working steadily on successfully on a unique, commercial solution to this challenge. We welcome your input.
How Starter Culture Metabolism Affects Properties of Mozzarella Cheese

By

Robert W. Hutkins
University of Nebraska-Lincoln

Abstract

The function of lactic starter cultures in cheesemaking is quite simple - the culture should ferment the sugars in milk and produce lactic acid, such that a desirable pH is reached within a suitable time. In the manufacture of Mozzarella cheese, however, there are additional requirements that Mozzarella cultures must satisfy.

These additional requirements may not easily be met because many of the functional properties of Mozzarella cheese are influenced by the metabolic behavior of the cultures used to make the cheese. The propensity of Mozzarella cheese to brown during high temperature pizza manufacture is particularly affected by culture metabolism, because *Streptococcus thermophilus* (one of the organisms used as a Mozzarella culture) does not ferment the galactose portion of galactose. The former is instead released into the cheese where it can react to form brown pigments during pizza baking. Although this "galactose-releasing" phenotype is typical for most strains of *S. thermophilus*, we have recently isolated several strains which ferment lactose completely. These strains were used to make Mozzarella cheese which contained significantly less galactose than conventional cultures (0.15% vs. 0.63%). Cheese made using these cultures browned significantly less than control cheese, even when cooked at nearly 600°F, based on objective color analysis using a Hunter colorimeter. Pizza made with low-browning cheese also browned significantly less, according to sensory analysis. Our results demonstrate that low-browning Mozzarella cheese can be made using *S. thermophilus* cultures that more efficiently ferment the galactose portion of lactose.

Introduction

The primary role of lactic acid bacteria in cheesemaking is to ferment lactose to lactic acid. The lactic acid then lowers the curd pH to a level appropriate for the given cheese. Although the metabolic pathways chosen by starter bacteria may vary, depending, for example, on the specific bacterial species, how the lactose is actually fermented or how the target pH is ultimately reached is generally of little concern to the cheesemaker. Of course, cultures should also be resistant to bacteriophages and should not produce bitter or other off-flavors; however, as long as the fermentation occurs in a timely, consistent, and predictable fashion, most cheesemakers will be satisfied, and the culture will not be expected to do much else. For most dairy fermentations, such as those which occur in Cheddar cheese manufacture, how sugars are actually metabolized by the starter bacteria has relatively little influence on the outcome of the finished product.

In the case of Mozzarella cheese, however, starter culture metabolism has a profound effect on the final functional and physical properties of the cheese. Although the starter culture must lower the curd pH to 5.2 so that the cheese will stretch, how the pH actually gets to 5.2 and the specific metabolic
properties of the starter culture dramatically affect the quality of Mozzarella cheese. This is because there are additional requirements that Mozzarella cultures must satisfy. For example, Mozzarella cultures must produce cheese having specific stretching, melting, and browning properties (3). Moreover, these requirements are not easily met because of the inherent physiological properties and metabolic behavior of the strains used as Mozzarella starters. Also, the thermophilic rods and cocci used in the manufacture of Mozzarella are physiologically and genetically distinct from their mesophilic counterparts, thus, manipulation or improvement of thermophiles requires a greater understanding of the specific steps and reactions involved in metabolism. In this presentation, I will review current knowledge of sugar metabolism in thermophilic lactic acid bacteria. I will also describe how various metabolic activities affect the properties of Mozzarella cheese and how improved starter cultures can be used to improve the quality of Mozzarella cheese.

Nutritional Requirements

The dietary needs of thermophilic lactic acid bacteria are not unlike that of the mesophiles - for the most part, they simply need a fermentable carbohydrate and a ready supply of pre-formed amino acids. In the milk environment, the fermentable carbohydrate is readily supplied as lactose. At 5%, lactose actually exists in excess of that which is needed. This in an important point, because, as will be discussed in more detail below, *Streptococcus thermophilus*, has the luxury of wasting half of the available energy (i.e., lactose) as it grows in milk. Although the amino acid requirement can seemingly be satisfied by 2.5% casein, the latter is not easily hydrolyzed by all thermophilic cultures; *S. thermophilus* is particularly deficient in this respect and requires the more proteolytic *Lactobacillus helveticus* to generate an adequate supply of amino acids. The action of dairy thermophilic bacteria on milk casein, therefore, is another activity that affects the outcome of the fermentation and the properties of the finished Mozzarella cheese.

General Features of Sugar Metabolism

Carbohydrate metabolism by lactic acid bacteria involves two separate events. First, the sugar, i.e., lactose, must be captured and transported into the cell. The accumulation of lactose (and most other nutrients for that matter) is a process that requires energy. In fact, as much or more than a fourth of the energy a starter culture cell gains from metabolizing lactose must be spent in order to obtain more lactose. Thus, transport is an important first step in metabolism, and more will be said later about the details of lactose transport in thermophilic lactic acid bacteria. The second metabolic event involves a series of enzymatic reactions commencing with the hydrolysis of lactose and ending with the production of lactic acid. Although all lactic acid bacteria possess the means of producing lactic acid from lactose, many of the thermophilic bacteria do so in a manner quite unlike other lactic acid bacteria, as will be discussed below. It is worth mentioning here, however, that one consequence of this unusual metabolic behavior is that the galactose moiety of lactose is, for the most part, unfermented, and as Mozzarella manufacturers are aware, the unfermented galactose accumulates in the cheese where it can later cause browning problems.

Lactose Transport and Metabolism by *S. thermophilus*

S. thermophilus transports lactose via a membrane-bound transport system, conveniently called LacS (6). This simple process results in lactose being carried across the cell membrane and into the cytoplasm of the cell without any change in form (Figure 1). This process requires energy or a driving
force. Ordinarily, the driving force is simply a hydrogen ion (or proton) gradient, the formation of which requires energy in the form of ATP. This allows the cell to couple uptake of one solute, lactose, with another solute, a proton. The intracellular lactose is then split by the enzyme β-galactosidase to form glucose and galactose. The glucose is then readily metabolized or fermented; the cell makes for itself ATP, and lactic acid is made as an end-product. However, most strains of \textit{S. thermophilus} as well as many strains of \textit{Lactobacillus} lack the ability to ferment the galactose portion of lactose and are phenotypically galactose-negative (Gal-). Why \textit{S. thermophilus} behaves in this way and what happens to the galactose are questions to which we have devoted much research attention.

As stated above, the first step in lactose metabolism, namely transport, requires energy (i.e., ATP). If \textit{S. thermophilus} has to spend energy to transport lactose, it would seem wasteful for it to ferment only half of the available sugar (the glucose) and dispose of the other half (the galactose). Indeed, \textit{S. thermophilus} has learned how to dispose of the galactose in an efficient and novel manner. Instead of simply excreting galactose into the medium (i.e., milk or curd), \textit{S. thermophilus} couples the “downhill” efflux of galactose out of the cell with the “uphill” uptake of lactose into the cell (1). In other words, \textit{S. thermophilus} exchanges intracellular galactose for extracellular lactose (Figure 2). The cell is then spared the energy it would normally spend to take up lactose. This “revolving door” type of process provides an energetic advantage for the organism, with galactose efflux driving lactose uptake (1).

There is another reason why most strains of \textit{S. thermophilus} do not ferment galactose. The metabolic pathway used by most bacteria that ferment galactose is the Leloir pathway, and the first and rate-limiting enzyme of this pathway is galactokinase. Although most \textit{S. thermophilus} strains can produce this enzyme at very low levels (even Gal- strains), under ordinary growth conditions, the enzyme (or more specifically, the gene coding for this enzyme) is usually turned off, especially when lactose is present. In milk, then, synthesis of galactokinase is repressed and galactose cannot be metabolized. It is important to mention that even strains which can ferment free galactose fail to ferment galactose when lactose is available. If, however, repression is lifted or the cell can be induced to make more enzyme even in the presence of lactose, galactose-fermentation can occur. Toward this end, we recently isolated, cloned, and sequenced the gene coding for galactokinase in \textit{S. thermophilus}. This genetic information provides us with the opportunity to amplify expression of this enzyme in proven cheesemaking strains which may allow us ultimately to convert these strains into galactose-fermenters. It should also be noted that some of the thermophilic lactobacilli used as starter cultures are physiologically similar to \textit{S. thermophilus}, with respect to lactose and galactose metabolism, and that they may similarly modified.

Practical Implications

From a microbiological point of view, the peculiar manner in which \textit{S. thermophilus} and other thermophilic lactic acid bacteria ferment lactose and galactose is scientifically quite interesting, since few other bacteria behave in this fashion. However, from an applied viewpoint, the behavior of thermophilic cultures in milk has profound effects. The galactose which accumulates in Mozzarella cheese is a particular problem when the cheese is exposed to high temperatures as would occur during pizza baking. Under these conditions, the galactose reacts with free amino acids in the cheese to form brown pigments via the well-known Maillard browning reaction (2). Although residual lactose may also participate in browning reactions, galactose is generally more reactive than lactose. Browning of Mozzarella cheese is also enhanced as the temperature increases; as marketing considerations force pizza makers to produce a cooked pizza in a matter of minutes, oven temperatures rise and even cheese containing as little as 0.1% galactose may brown excessively. Mozzarella manufacturers are, therefore, under considerable pressure to reduce the galactose content in cheese in order to produce cheese having low browning potential.
As mentioned above, the other factor which contributes to browning is the amount of free amino acids present in the cheese. Amino acids are produced from protein hydrolysis, with the milk, the rennet and starter and non-starter bacteria serving as potential sources of proteolytic enzymes. Although the mixing-stretching step exposes the curd to water temperatures of 80° C (180° F), and the curd itself reaches as high as 60° C (140° F), not all enzyme is destroyed. Residual proteinases may then continue to degrade casein, resulting in accumulation of amino acids. Also, the starter bacteria may survive the stretching step and continue to grow during storage and hydrolyze protein. It is believed that the greatest source of residual proteinases are from the coagulant and the starter culture. Therefore, by selecting non-proteolytic starter strains, casein hydrolysis is reduced and the browning potential is minimized. However, as reviewed by Kindstedt (3) and Oberg (5) the use of such strains also affects other important functional properties including stretching and melting. Similarly, adjustment of the rod-to-coccus ratio is another common way to control browning and other functional properties of Mozzarella cheese since the rods are generally more proteolytic than the cocci.

Perhaps, the best way to control browning of cooked Mozzarella cheese without affecting other functional properties would be to use culture strains that did not release galactose into the cheese curd. Unfortunately, there are few such strains which exist. As mentioned previously, it may soon be possible to metabolically engineer existing strains of *S. thermophilus* so that they utilize, instead of release, galactose. Another approach, however, is to isolate suitable strains, having the galactose-fermenting, non-releasing phenotype from natural sources. We have recently isolated several strains of lactic acid bacteria having this phenotype, and used these cocci, along with galactose-fermenting *Lactobacillus helveticus*, as starter cultures for the manufacture of Mozzarella cheese.

The cheese was made in our dairy processing plant (40 pounds cheese per vat) according to procedures described by Kosikowski (4), and was stretched in a Supreme 640 mixer. All cheeses had identical composition, except that the cheeses made with the galactose non-releasing cocci contained significantly less galactose than control cheese made with a culture which released galactose (Figure 3). More importantly, the former cheese browned significantly less when heated to over 300° C (585° F), based on Hunterlab Colorimetric analyses (Table 1). Other cheese properties, including melting and oiling off, were not affected by the culture used. Because all culture strains, including the control, were non-proteolytic, we concluded that the galactose-fermenting phenotype, and not the proteolytic activity, was responsible for the non-browning performance of the cooked cheese. When this cheese was used in the manufacture of pizza and was exposed to high cooking temperature (as above), similar differences in browning were observed.

Conclusions

Increased production demands and rigid customer specifications for Mozzarella cheese have forced cheesemakers to produce cheese having very specific functional properties. Research has shown that several of these properties, in particular browning, are affected by starter culture metabolism. By understanding the actual biochemical processes and physiological activities of the culture bacteria, it may be possible to manipulate existing strains or to isolate new strains from nature having desirable cheesemaking properties.

Acknowledgments

I thank the National Dairy Promotion and Research Board for their support of this work.
References

Table 1. Values of the L* (light-to-dark) index of Mozzarella cheese for each treatment on days 5 and 28.

<table>
<thead>
<tr>
<th>Temp (time)</th>
<th>Treatments (Day 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KK-1</td>
</tr>
<tr>
<td>C (min)</td>
<td></td>
</tr>
<tr>
<td>232 (2.00)</td>
<td>63.8</td>
</tr>
<tr>
<td>260 (1.25)</td>
<td>68.1</td>
</tr>
<tr>
<td>288 (1.00)</td>
<td>69.1</td>
</tr>
<tr>
<td>307 (1.00)</td>
<td>66.8a</td>
</tr>
<tr>
<td>307 (1.25)</td>
<td>64.0</td>
</tr>
</tbody>
</table>

Values in same row with same letter differ significantly (P<0.05).
Table 1

<table>
<thead>
<tr>
<th>Temp (time)</th>
<th>C (min)</th>
<th>KK-1</th>
<th>KK-2</th>
<th>KK-3</th>
<th>KK-4</th>
<th>KK-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>232 (2.00)</td>
<td>232</td>
<td>63.7a</td>
<td>63.1</td>
<td>63.7b</td>
<td>60.9abc</td>
<td>64.1c</td>
</tr>
<tr>
<td>260 (1.25)</td>
<td>260</td>
<td>65.7</td>
<td>65.0</td>
<td>65.3</td>
<td>63.9</td>
<td>66.2</td>
</tr>
<tr>
<td>288 (1.00)</td>
<td>288</td>
<td>64.8</td>
<td>64.3</td>
<td>65.1</td>
<td>63.8a</td>
<td>66.6a</td>
</tr>
<tr>
<td>307 (1.00)</td>
<td>307</td>
<td>64.4a</td>
<td>63.5</td>
<td>64.5b</td>
<td>61.6abc</td>
<td>65.4c</td>
</tr>
<tr>
<td>307 (1.25)</td>
<td>307</td>
<td>62.3ad</td>
<td>59.2abc</td>
<td>63.1be</td>
<td>57.5def</td>
<td>63.3cf</td>
</tr>
<tr>
<td>307 (1.50)</td>
<td>307</td>
<td>61.9ae</td>
<td>57.2abcd</td>
<td>61.4bf</td>
<td>52.3cefg</td>
<td>61.1dg</td>
</tr>
</tbody>
</table>

Values in same row with same letter differ significantly \((P<.05)\).

Figure 1

[Diagram of metabolic pathways involving glucose-6-P, lactate, and other metabolites, showing connections between glucose-6-P and lactate production.]

LEBOUR PATHWAY

EMBOEN-MEYERHOF-PARNAS PATHWAY
Figure 2

[Diagram showing chemical reactions involving Lactose, Galactose, Glucose, EMP, Lactic acid, and the use of H^+ ions.]

Figure 3

[Graph showing the percentage of galactose across different cheesemaking steps: Make, Cut, Drain, Stretch, 5 days, and 28 days. The graph compares five different types of cheesemaking processes labeled as KK-1, KK-2, KK-3, KK-4, and KK-5.]
Specialty Cheese - A World of Opportunity and Potential

By

James Path
Cheese Outreach Specialist
Center for Dairy Research
University of Wisconsin - Madison
Madison, WI

Topics

How do you define a specialty cheese?
A look at varieties of specialty cheeses from around the world.
Impact on the Wisconsin Dairy Industry.
The development of the Specialty Cheese program at the Center for Dairy Research.

Introduction

I would like to say at the beginning of this presentation that since my specialty cheese program is Wisconsin based and funded by the Wisconsin Milk Marketing Board, most of my remarks will refer to Wisconsin references.

What is a Specialty Cheese?

One of the hardest things to do is to define the term “specialty” cheese. I have spent hours in meetings where people have tried unsuccessfully to reach a definition of specialty cheese.
So what makes an “ordinary” cheese “special?” Some elements which are commonly found in cheeses classified by marketers as specialty cheese are:
1. Perception of added value
2. Normally low volume (less than 50 million pounds per year)
3. Labor intensive
4. Location of production
5. Ethnic background
6. A special manufacturing process
7. Special bacterial cultures
8. Special packaging
9. Unique flavor
10. Unique shape

Let’s take a look at a few!

Location - What about a cheese made in France, in a Convent, by Nuns?
Special Processing, Special Packaging - Or is this processed cheese, manufactured for the Orient, cut into strips, with thin layers of fish placed on it, then packaged in a gas flush tray. Is it special? I would think so.

Unique Flavor, Special Packaging - Or a cream cheese flavored with orange and manufactured in Germany?

Special Packaging - Or a Cheese which looks like a smoked fish?

Location, Shape - Or a cheese like Gouda Balls, originally a farmstead cheese, which is now mass produced in Holland, but sold as a specialty cheese in America and many other countries?

These is a wide diversity of cheeses from mass produced Gouda to the Convent cheese which is produced by the Sisters after Mass, from processed to natural. But I think that you would agree that they are all special.

In fact, I have reached the conclusion that all cheeses can be special in their own unique way. From a practical standpoint, however, when you have a specialty cheese program, you must set limits on your definition or you will outstretch your available resources.

For our purposes, at the Center For Dairy Research, we have decided our primary concentration is to encourage specialty cheeses which may include the elements mentioned previously, but should include four important characteristics:

1. Must have a value added concept (previously mentioned)
2. Are not currently produced in the State of Wisconsin
3. Natural cheeses (vs. processed)
4. Promotes the expansion of cheese varieties

How may cheeses fall under this definition? Well, if I have a “religion to preach,” it is the huge variety of cheeses that are produced worldwide, which fall under our CDR definition. They offer tremendous opportunities for our Wisconsin manufacturers.

This sales booklet illustrates over 300 varieties of cheese which are currently being sold in the U.S.A. I would like to emphasize “currently being sold in the U.S.A.” Over 250 of these varieties are imports and all of the cheeses sell for from 50 cents to 4 dollars over the Green Bay market price for cheddar cheese.

Let’s take a look at some of them: Madrigal (a sweet Swiss type), Mimolette and Raclette, Semisoft Drakkar, White mold St. Andre and Tome Du Rouergue. On the left - Cantal, Morbier (note the vein of ash in the center of the cheese), Blue D’Auvergne and Saint Nectaire. On the right - Doux De Montagne, Chaumes, Gourmandise and Croustin, Semisoft cheeses wrapped in chestnut leaves or rolled in pepper or other spices and English cheeses soaked in Elderberry Wine (Winsor Red) or with Hazelnuts and raisins (Nutwood).

Surprisingly, importers I have contacted have been very encouraging when I explain our CDR program. They have indicated to me that because of the drop in the value of the dollar, many imported cheeses are being price out of the reach of the American consumer. The concern is that this upscale market may be entirely lost. American versions of these cheeses could replace imported products, at prices still in the upscale level, but below the escalating imported prices.

More cheeses are: fresh Mozzarella, originally made from water buffalo milk, a recent import from Italy, Taleggio, also from Italy. In fact Italy offers a tremendous bouquet of cheeses. This book, “DOC Cheeses of Italy” published by the Ministry of Agriculture and Forestry, describes about fifty
Italian cheese varieties of cows, ewes, goats and water buffalo milk origin. Considering that many of the people in this audience manufacture for this ethnic market, these cheeses may offer some additional possibilities.

From Spain the bullet shaped S. Simon, the mushroom-shaped Cebreiro and the pointed Tetilla - all cows milk cheeses. The book "Quesos Españoles" by Simone Ortega lists over 120 Spanish cheese varieties of cows, ewes, and goats milk origin.

But one of the most decorative Spanish cheeses is a sheep's milk cheese called Manchego. The beautiful basket weave design on the outside of the cheese was originally imprinted by woven baskets or cord wrap in which it was pressed. This tradition is carried on in the design of the modern plastic hoops.

At this point you might ask, "Jim, why in heavens name are you talking about a sheep's milk cheese; and I think you have also slipped in some goats cheeses and even water buffalo cheese?" I would only remind you that cheeses such as Blue, Feta, and even Mozzarella have their origins in non-cows milk. It only took a brave cheesemaker and maybe an enterprising marketer to convert these cheeses to cows milk. The conversion might not have been a perfect translation, but the end results were high caliber cheeses in their own right. It has had a huge impact on usage of cows milk dairy production. I would guess that in the State of Wisconsin alone there is more Mozzarella cheese of cows milk origin produced than there is water buffalo Mozzarella cheese produced world wide.

Tired of one cheese? People are fascinated with contrasting textures and flavors. The English combine layered cheeses to get different tastes and striking eye appeal. The Duchess combines layers of mellow Wensleydale with tangy Shropshire, which is blended with cream cheese. It is similar to one of my favorites, Huntsman, a Double Gloucester-Blue Stilton combination. Or, if you don't like layered, what about a swirl with a soft full-fat cheese rolled in a Leicester cheese.

Some groups of cheeses that started as ethnic specialties have grown into major commodity cheeses. In the U.S.A., Italian type cheeses have grown from specialty ethnic cheeses to a point where the production of Italian types of cheese exceeds that of Cheddar cheese. (1)

There still are many ethnic and racial groups who may provide growing markets. The two fastest growing ethnic cuisines are Italian and Mexican, both of which rely on cheese for many recipes.

Total Hispanic population is projected to grow in the United States from the current level of 19 million to 30 million by the year 2010. (2) 1992 figures place Hispanic cheese consumption at a 33 million pound market with a growth rate of 14% per year. (3)

With the North American Free Trade Agreement about to be ratified, this may open even more new cheese markets in the Hispanic area.

Potential ethnic markets are also ethnic groups with lactose intolerance for milk. Since most of the lactose is utilized in the cheese-making process, cheese becomes the perfect milk substitute for ethnic groups of people with lactose intolerance. The Asian rim is a potential market. Did you know that the country of China produces more cheese than either the countries of Switzerland or New Zealand? (4)

Earlier I showed you a package of Orange Flavored Cream Cheese. If you turn the package over, you will find that the package is destined to an Asian country. Another cheese exported to Japan is the nutty flavored Norvégia from Norway.

I might add that New Zealand has been particularly successful in shipping cheese to Asia. The quantity of cheese it exports to Japan now exceeds either exports to U.S.A. or home consumption.

Market size of the Japanese natural cheese segment surpassed the processed cheese segment in 1989 and continued at an average annual growth rate of 9% per year.

While dessert cheesess are prevalent in Europe, dessert cheeses are relatively undeveloped in the United States. How about the popular white mold triple cream from France, Saint Andre or its cousin L'Explorateur?
Will we see a designer cheese? The artistry of this Fol Epi from France is an attempt to develop upscale markets.

This Paneer cheese, of Asian origin, has been positioned as 100% vegetarian, another new trend in eating habits.

By the year 2030, nearly a quarter of the U.S. population will be at least 65 years old. That’s almost double the 1990 rate. (5) This could open the door for stronger-flavored cheeses. Perhaps shelf-ripened cheeses like Chaumes or a Tomme De Savoie will make a come back. Or maybe a Stilton with its irregular blue veins but placed in a collector crock.

This is a fraction, I repeat, a fraction of the cheeses that are currently being produced every day, world wide, to a willing consumer group.

Can specialty cheese production really have an impact on the Wisconsin Dairy industry? Let’s look at three current issues: (1.) milk usage, (2.) declining number of cheese factories and (3.) improved pricing of cheese products.

1. Impact on Milk Usage

Under most definitions, specialty cheese varieties have total annual production volumes of less than 50 million pounds of cheese per year. A median level (halfway between 0 and 50 million pounds production) of 24 Million pounds of cheese per year would represent 240 million pounds of milk per year. Since Wisconsin produces about 24 billion pounds of milk per year (1991 figures), one specialty cheese variety would represent about 1 percent of the total state milk volume. (6)

Cheese newly introduced in the last 10 years such as String (70 million pounds U.S. production) and Feta (28 million pounds U.S. production) have already had an impact. (7)

Now I may be a dreamer, but I’m also a realist. I want to caution that it will take from three to eight years for new varieties to develop. Some may never develop! But even two or three new successful varieties would have an impact on the Wisconsin Dairy Industry.

2. Impact on Cheese Factories

We currently have only about 170 cheese factories left in the State of Wisconsin. Approximately half of the cheese factories in Wisconsin fall into a small volume category. They produce less than five million pounds of cheese per year per plant, with an average production per plant of 1.8 million pounds of cheese per year. (8) A successful new specialty cheese at the median level of 24 million pounds of cheese per year would equal 6 cheese factories utilizing 100,000 pounds of milk per day or an average production of 4 million pounds of cheese per year. Even very small levels of interest in these varieties could help these operations.

3. Pricing

Specialized products are normally labor intensive, require more care and sell at higher prices. Not only are prices higher for these products, but in many cases the moisture is also higher, resulting in better yields. This should result in higher returns.

A cheese factory which processes 500,000 pounds of milk a day manufactures about 50,000 pounds of cheese a day. If they have a one-cent-per-pound margin, they net five hundred dollars per day. A cheese factory which processes 50,000 pounds of milk a day manufactures only 5,000 pounds of cheese a day. But if they have a 10 cent per pound margin, it also nets five hundred dollars per day.

Diversification of varieties also could help to stabilize prices. If you are producing five types of cheese and the market in one cheese becomes saturated, the price drop has a 1/5th impact on the mix.
price you can pay for milk. If you produce only one type of cheese, you feel the full impact of the market change. (Note - specialty cheeses should be priced independently of the Green Bay Cheddar cheese market.)

The objectives of our program at the Center for Dairy Research are three fold:
1. Implementation of a program that will result in the development of specialty cheese technology that will be available to Wisconsin cheese manufacturers.
2. Provide the necessary training and technical support to cheesemakers adopting these specialty cheese technologies.
3. Provide support to Wisconsin cheesemakers in addressing technical questions regarding cheesemaking.

Specialty Cheese Program - Things Happening!

Applications Research
- Originally visited over 100 cheese plants
- Currently working with individual plants
- Quality Assurance Program

Specialty Cheese Seminar Series
- Packaging Seminar
- Danish Cheese Seminar
- Wisconsin Cheese Artisan Certification

Other
- Video series with Swiss Technical School
- Cheesemaker Exchange Program

I also would like to add that although my remarks dealt only with the CDR research area of the specialty program, there is also a marketing facet to the program and that will be addressed by WMMB in their portion of this seminar.

Acknowledgments

A special thanks to our funding source, the Wisconsin Milk Marketing Board. Their outstanding support to build this program in terms of funding, support people, and resources is truly appreciated.

References

1. 1992 Wisconsin Dairy Facts
3. Dan Carter, Inc. 1992
4. 1991 FAO Yearbook Vol. 45
5. Dairy Foods, Horizon Trends, April 1993
6. 1992 Wisconsin Dairy Facts
7. Dan Carter, Inc. 1992
8. 1992 Wisconsin Dairy Facts
A Method for Manufacturing Reduced Fat Mozzarella Cheese

By

D.J. McMahon1, C.J. Oberg2, R.K. Merrill, and W. McManus3

Western Center for Dairy Protein Research & Technology

Department of Nutrition & Food Sciences

Utah State University

Logan, Utah.

1Corresponding Author

2Department of Microbiology, Weber State University

INTRODUCTION

Reduced fat and nonfat dairy products are filling an important sales area in the dairy industry, making dairy products available to people who would not normally buy them. However, reducing or eliminating milkfat in cheese can result in physical and flavor changes which are often detrimental. Manufacture of reduced fat Mozzarella cheese has been carried out by some companies, but only with partial success. Recently the USDA has been developing a reduced fat Mozzarella cheese (with 9% fat) for use in the school lunch program. On September 8th, the U.S. Secretary of Agriculture demonstrated the USDA’s renewed emphasis on nutrition by launching a long-term initiative (“Fresh Start”) to improve school meal programs across the United States (The Cheese Reporter, 10 Sept. 1993). As part of “Fresh Start”, reduced-fat Cheddar cheese will be available on a test basis in some schools.

CHEESE AND NUTRITIONAL GUIDELINES

School Lunch Program

According to Ellen Haas, the Assistant Secretary of Agriculture for Food and Consumer Services, “school-age children get too many of their calories from fat and do not eat enough fruits and vegetables.” A cry has also been raised by the consumer organization Public Voice for Food and Health Policy that “school lunch programs had become a virtual dumping ground for high-fat cheese and butter” and that “school lunches do not meet Dietary Guideline recommendations that no more than 30 percent of calories come from fat” (The Cheese Reporter, 10 Sept. 1993).

The National School Lunch Program serves about 25 million lunches a day and operates in nearly 95 percent of the nation’s schools. USDA has purchased almost 60 million pounds of cheese (including 17 million pounds of Mozzarella) for use in the school lunch program during the past 12 months. That is only about 1% of annual production but if you are selling cheese to USDA it is significant, and almost all of that cheese was purchased at market prices. With fast-food restaurants opening up outlets in school cafeterias, Pizza Hut has over 4,500 high school outlets, this percentage seems set to increase. The only problem is that because of this trend, some so called nutritional “experts” are accusing schools of jeopardizing kids’ health.
Cheese Research at Utah State University

Research on reduced fat Mozzarella cheese has been underway at Utah State University for the past two years. During that time we have been refining the methods used to study the microstructure of cheese. Out of that study we have made a five to ten-fold increase in resolution obtainable using scanning electron microscopy, so that we can distinguish components that are as little as three nanometers apart (McManus et al., 1993).

This year at the Western Center for Dairy Protein Research and Technology (which comprises researchers from Utah State University, Oregon State University, Brigham Young University, and the University of Idaho) we have initiated a research strategy into low fat cheeses. Our aim is to create a multi-faceted research team focused on solving the current problems faced by manufacturers of low fat cheeses, i.e. poor flavor and texture. Included in this is a joint three year project with researchers at the University of Wisconsin–Madison and the University of Minnesota, and we are actively looking for other people both in industry and academia who would like to be a part of such a low fat cheese research team.

At the Western Center we have realized that researchers need to band together in solving such problems rather than competing with each other. Especially, we need to have coordinated industry and academic research institutions working together for the overall good of our cheese future.

Reduced Fat versus Low Fat

There are companies marketing Mozzarella cheese with a lower fat content than part skim Mozzarella, but less than 30% of the milkfat is typically removed and this is far from meeting the dietary guidelines on fat consumption. And right or wrong, those guidelines are going to be used by a lot of people in making food choices.

With the new FDA regulations on food labeling, we need to look carefully at what we call products in which we have lowered the fat content. If we reduce fat content by 25% we can call it reduced fat. If we lower the fat content by 50% we can call it low fat provided the product is within the nutritional guidelines of no more than 30% calories from fat. As you well know, there are four categories of “Mozzarella cheese” in the U.S.A: Mozzarella, Low Moisture Mozzarella, Part Skim Mozzarella, and Low Moisture Part Skim Mozzarella. They differ in fat content and moisture content (USDA, 1980). Mozzarella cheese must have at least 45% fat on dry basis (FDB) and a moisture content in the range of 52 to 60%. Mostly we produce cheese in the pizza cheese category, i.e. Low Moisture Part Skim Mozzarella with a fat content of 30 to 45% FDB and a moisture content of 45 to 52%.

So, assuming most manufacturers are aiming to make their cheese with at least 50% moisture, low moisture part skim Mozzarella can have from 22% fat down to as little as 15% fat. The amount of fat you put into your cheese will probably continue to depend on the value of butterfat. If you can sell it at cheese prices, rather than butter prices, then it would be foolish from an economic viewpoint to make low moisture part skim Mozzarella at anything less than the maximum allowable fat content. However, to maintain the spirit of the labeling laws, a reduced fat Mozzarella would probably need to have no more than 11% fat (a 25% reduction from 15%) even though the comparison cheeses would typically contain 20% fat or more. At a 50% reduction of fat, a Mozzarella cheese with 7% fat could be classified as a “Low Fat” food (Table 1). This is a distinct advantage over Cheddar cheese which at a 50% lower fat content is still well above the nutritional guidelines as shown below. To have only 30% of calories come from fat, Mozzarella cheese needs to be made with no more than approximately 7% fat.
Table 1. A comparison between Cheddar and Mozzarella cheeses on the effect of reducing fat content on the proportion of calories from fat.

<table>
<thead>
<tr>
<th>Cheese</th>
<th>Fat</th>
<th>CaloriesFAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheddar</td>
<td>32%</td>
<td>73%</td>
</tr>
<tr>
<td>Red. Fat Cheddar</td>
<td>15%</td>
<td>47%</td>
</tr>
<tr>
<td>Part Skim Mozz</td>
<td>20%</td>
<td>65%</td>
</tr>
<tr>
<td>Red. Fat Mozz</td>
<td>9%</td>
<td>35%</td>
</tr>
<tr>
<td>Low Fat Mozz</td>
<td>7%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Removing Fat From Cheese

As the fat is removed from Mozzarella cheese, however, the desirable physical properties of the cheese, which play an important role in its consumer acceptability, are lost. And commercially available non-fat Mozzarella cheese is the extreme example of this and has none of the melt and stretch properties expected of Mozzarella cheese. It is very tough and has poor melt and stretch properties and its structure (Figure 1) bears little resemblance to regular Mozzarella cheese (Figure 2).

The most important characteristics of Mozzarella cheese are moderate toughness, adequate stringiness, proper melt, desired cook color and gloss, and how well it shreds and slices. These physical properties vary greatly based on cheese age, pH, moisture level, salt content, and the starter cultures used. Also, increasing moisture content, as a means of making lowfat Mozzarella cheese will significantly affect the physical properties.

If fat is removed the protein content increases and it is thought that this makes the cheese too tough to melt and stretch properly. It has been suggested that stretching properties may be related to higher concentrations of intact casein and large peptides (Creamer, 1976) and that differences in the proteolytic properties of thermophilic starter cultures can significantly modify physical properties.

In addition to using modified cultures, physical parameters of the cheese such as calcium levels and cheese pH can be used to control melt properties of cheese (Keller et al, 1974; Kiely et al, 1992). Previous work at Utah State University with direct acid Mozzarella cheese made with chymosin, bovine pepsin, porcine pepsin, or Mucor miehei protease has also shown that melt and stretch are affected by the type of enzyme used (Oberg et al, 1992).

UTAH STATE UNIVERSITY REDUCED FAT MOZZARELLA CHEESE

Modifying the Make Procedure

During the past 18 months, we have been studying the relationship between fat and protein in Mozzarella cheese in an effort to understand how stretch and melt properties can modified. To do this we have been studying the structural changes that occur in cheese curd as it is made into Mozzarella as a means to understand how best to make a low fat Mozzarella (Oberg et al, 1993a).

We have produced cheese using milk with casein-to-fat ratios of 1.2 (for part skim Mozzarella), 1.6, 2.0 and 2.4 for reduced fat Mozzarella (Merrill et al, 1993). There were many different process variations that we used in an attempt to produce a cheese that retained the desired level of moisture as we reduced the amount of fat in the cheese, but not all of them were successful. Variations that were
unsuccessful included draining the whey at a high pH, reducing cook temperature to 96°F, and adding wash water to the curd.

Eventually a procedure was developed for which we were able to make a cheese with 10% fat and 47% moisture (although we would prefer to have it around 50-53% moisture so that the concentration of protein in the water phase remains constant). No doubt there are a number of ways in which the same cheese could be made but this manufacturing procedure worked well for us. The area of greatest concern was to retain as much moisture in the cheese curd as possible because this appeared to be the limiting factor in avoiding production of a cheese with a very tough and rubbery body.

An elevated pasteurization temperature (174°F for 29 s) was used to retain a small amount of denatured whey proteins which have a better water holding capacity than renneted caseins. The milk was pre-acidified to pH 6.0 with lactic acid before adding rennet so that we could reduce the make time by not requiring as much acid production by the starter cultures (it also reduced the clotting time to 10 minutes with the rennet concentration we were using). When you are trying to maintain moisture content as high as possible, if acid production is too slow then the curd will have to be held longer in the vat, or on the drain table, and more moisture than desired will be lost.

Cheesemakers want consistent performance from their starter cultures because any time they have erratic starter performance they will be making cheese that is highly variable in composition and functionality. We overcome some of this variability by accomplishing a lot of the acidification by direct addition of acid. We diluted lactic acid 1:2 with water and added it to our small 7 liter vats. For commercial production the acid could be gradually added to milk as the milk is pumped into the vat.

The curd was cut with 3/4" knives so as to give the curd particles a smaller surface to volume ratio and trap more moisture in the curd by slowing whey expulsion. Cook temperature was lowered to 100°F, again so that we would reduce whey expulsion but this could be varied depending on the cultures being used.

While the curd was still in the whey, we reduced the amount of stirring of the vat so we could minimize curd shattering, and because we were working with only small quantities of curd we hand cheddared the cheese but turned the curd less frequently than traditionally used. If you can keep the cheese cooler you will have slower acid production and thus slower whey expulsion. For a commercial situation this translates into doing all that you can to reduce the extent of mechanical agitation that promotes expulsion of whey from the curd. And although many of you may simply make a stirred curd cheese rather than cheddaring, the same general principles apply.

Modifying Starter Cultures

This work is continuing at the Western Dairy Center and we are currently working on manufacturing cheese that falls below the nutritional guidelines of 30% calories from fat. Included in this is further work on starter cultures, especially those that are highly proteolytic and would help accelerate protein breakdown to get better melting properties. For our original work on reduced fat Mozzarella we used single strains of *Lactobacillus helveticus* and *Streptococcus thermophilus*. More recently we have been using *Lactobacillus casei* ssp. *casei* as either an adjunct or as the rod portion of the starter culture mix. We have found that our reduced fat cheese made with partial or total replacement of *L. helveticus* with *L. casei* ssp. *casei* had more melt and less cook color than comparable cheese made with *L. helveticus* and *S. thermophilus* (Oberg et al. 1993b). Overall the physical properties of our reduced fat Mozzarella compared favorably with low moisture, part skim Mozzarella except that there was a color change of the cheese as the fat was removed.
Physical Properties

The same changes in properties of the reduced fat cheese occurred during storage as occur in regular Mozzarella although at a slower rate. Fresh Mozzarella melts poorly, has a tough granular consistency and is too elastic which makes it unsuitable for use as a pizza ingredient. Then during 2 weeks of refrigerated storage considerable proteolysis occurs; Farkye et al. (1991) reported a decrease of intact α_{s_1}-casein by 25% and intact β-casein by 40%, and the cheese texture mellows to a more moderately elastic state. We observed this as a decrease in stretch as measured using helical viscometry (Figure 3). At Day 1, the reduced fat cheese was twice as tough as the control but by Day 7 they were comparable. In contrast, the reduced fat cheese actually melted slightly more at Day 1 but it took 28 days to reach the meltability that the control cheese reached by Day 7 (Figure 4).

This difference in the rate at which meltability changes during storage explains why our statistical analysis showed a significant interaction between fat content of the cheese and storage time even though overall it did not show a significant effect of fat content on meltability. Cook color also increased over time as would be expected as more free amino groups are released from proteolysis (Figure 5). The slight differences (however not statistically significant) at Day 1 may simply have been caused by slight differences in the make procedure between the control and reduced fat cheeses.

MICROSTRUCTURE OF LOWFAT MOZZARELLA

Forming the Protein Network

When milk coagulates, the casein micelles aggregate into chains that eventually all link together into a mesh-like structure that encompasses the fat globules. At the time the curd is cut, there is an open network of chains and clusters of individual micelles of varying sizes (Figure 6). There are many crosslinks between the chains forming numerous "cages". Large spaces also exist in the network where the fat globules are present and act to interrupt the network. The rigidity imparted by the protein network depends primarily upon the size of the cells and the thickness of the chains forming them. The sizes of the cells will be controlled by the size of fat globules while the thickness of the chains will be controlled by the distance between the fat globules. The less fat there is, the greater the distance between fat globules and therefore the greater the space in which the proteins can move, and the thicker the protein strands can become.

Because we acidified the milk to pH 6.0 before renneting the casein structure in the reduced fat curd is more open than is usually observed in cheese curd at the time of cutting. When the pH is lowered the casein micelles undergo a much more rapid coagulation although at this stage the individual para-casein micelles can still be observed at high magnification using scanning electron microscopy. We used a 10 minute set time when making the reduced fat cheese; when the same amount of rennet was added to non-acidified milk we had to wait 50 minutes before the curd was firm enough to cut. In spite of this longer set time, there was more micelle fusion that had taken place in the acidified milk at the time of cutting than normally occurs in cheesemaking.

Shrinkage of the Curd Matrix

As whey is expelled after the curd is cut, then the mesh-like structure shrinks around the fat globules (Figure 7). The protein network becomes more compact and micelles fuse together with many of the chains forming into thicker strands. The cheesemaker observes this as the curd becoming more firm.
Although this firmness or rigidity is principally controlled by the rigidity of the casein network (i.e. the rigidity of the “cages”) the fat still plays a significant role. The presence of fat within the cages modifies and limits the extent of deformation, adding rigidity to the structure. At the same time the water acts as a low viscosity lubricant between fat and casein. Provided there is a sufficient quantity of it, the water occupies all the space between the fat and the casein. It is the combination of all these effects which gives rise to the rheological properties of the final cheese.

Forming Protein Fibers

Initially, the protein network is seen as chains extending throughout a continuous serum phase in the curd (see Figure 6 and 7). However, as more serum is lost as whey, the hydrated protein becomes the continuous phase that encloses pockets and pools of serum and fat droplets (Oberg, *et al.* 1993a). When a reduced fat cheese is made, there is simply insufficient fat to keep the protein strands well separated.

As shown at last year’s seminar, when Mozzarella curd is mechanically stretched the orientation of the protein produces a very dramatic looking structure (Figure 2). However, as I mentioned, for experimental work such as I have described today, we use hand stretching which does not give us the same extent of fiber orientation (Figure 8). Formation of protein fibres was observed for both our control and reduced fat cheese with columns of serum and fat separating them.

Conclusion

By using an elevated pasteurization temperature, pre-acidification of milk, 30°F cutting knives, 100°F cook temperature, and less mechanical agitation we produced a reduced fat Mozzarella cheese with 10% fat and 47% moisture. The cheese produced using this Utah State University method had melting characteristics comparable to those of a part-skim low moisture Mozzarella cheese with 20% fat.

At Day 1 after manufacture, the reduced fat Mozzarella cheese was twice as tough as regular part-skim Mozzarella, but after 7 days of storage it had the same stretch characteristics. By 7 days, it melted slightly less than the regular Mozzarella but was still in an adequate range. By 28 days, it exhibited the same extent of melting.

Acknowledgments

The authors thank the National Dairy Promotion and Research Board and the Utah Agricultural Experiment Station for funding this research.

References

8. Oberg, C.J., Merrill, R.K., McManus, W., Kalab, M. and McMahon, D.J. (1993b), Microstructure of a reduced fat Mozzarella cheese made using *Lactobacillus casei* adjunct culture. *Food Structure. (Submitted for Publication)*

List of Figures

Figure 1. Internal structure of a retail purchased non-fat Mozzarella cheese.

Figure 2. Internal structure of a low moisture part skim Mozzarella cheese immediately after mechanical stretching.

Figure 3. Changes in stretchability, during storage time, of Mozzarella cheese made from milk of various casein to fat ratios.

Figure 4. Changes in meltability, during storage time, of Mozzarella cheese made from milk of various casein to fat ratios.

Figure 5. Changes in cook color, during storage time, of Mozzarella cheese made from milk of various casein to fat ratios.

Figure 6. Internal structure of cheese curd at the time of cutting.

Figure 7. Internal structure of (A) reduced fat Mozzarella cheese curd and (B) part skim Mozzarella cheese curd prior to draining the whey.

Figure 8. Internal structure of (A) reduced fat Mozzarella cheese curd and (B) part skim Mozzarella cheese curd after hand stretching.
Figure 1. Internal structure of a retail purchased non-fat Mozzarella cheese.

Figure 2. Internal structure of a low moisture part skim Mozzarella cheese immediately after mechanical stretching.
Figure 3. Changes in stretchability, during storage time, of Mozzarella cheese made from milk of various casein to fat ratios.

Figure 4. Changes in meltability, during storage time, of Mozzarella cheese made from milk of various casein to fat ratios.
Figure 5. Changes in cook color, during storage time, of Mozzarella cheese made from milk of various casein to fat ratios.

Figure 6. Internal structure of cheese curd at the time of cutting.
Figure 7. Internal structure of (A) reduced fat Mozzarella cheese curd and (B) part skim Mozzarella cheese curd prior to draining the whey.
Figure 8. Internal structure of (A) reduced fat Mozzarella cheese curd and (B) part skim Mozzarella cheese curd after hand stretching.
Features and Benefits of Using Custom Starter Programs

By

Bill Knoespell
Sr. Technical Services Representative
Marschall Products
Madison, Wisconsin

To better understand where the Italian cheese industry is with starter programs today, it is valuable to know where we have been. Most of the emphasis back in the Sixties and Seventies was placed on developing Italian cheese standards and standardizing cheesemaking procedures. In 1966, Dr. George W. Reinbold reported at the Marschall Italian Cheese Seminar that selected single-strain starter cultures, both rod and coccus, should be introduced for Italian cheesemaking. The effect of these single-strain coccus and rod cultures on cheese body, flavor, and texture should be assessed. He also did not recommend the use of whey starters.

The Marschall Italian starter program at that time was LB and ST cultures grown in NFDM at 11% solids producing a starter with a one-to-one coccus-to-rod ratio. The LB culture, a single strain of *L. helveticus* and the ST cultures, single strains of *S. thermophilus* were both available in liquid frozen bulk sets. There were about four or five ST strains to choose from. The existence of phage for cocci and rods was known but not readily accepted in the field.

In 1975, Verle W. Christensen reported at the Marschall Italian Cheese Seminar about the preparation and use of CR 150 gallon bulk sets grown in Thermostar at 10% solids, producing a coccus-to-rod ratio of one-to-one. This gave the cheesemaker a dependable acid producing system, because Thermostar provided phage protection in the starter tank and a selection of CR cultures was available to provide a phage stable rotation. This starter system was “state of the art” for that time, allowing the cheesemaker to make cheese meeting the standards.

It was in the 1980’s that much automation equipment was incorporated into Italian cheese production creating specialized needs for starter programs. At the same time, markets developed for cheeses that function in very specific and different ways. Some examples of these cheese functions would be degrees of browning on a pizza, degrees of stretch on a pizza, tenderness to the bite on a cooled pizza, white Parmesan, tight knit hard styles, and correct melts for deep fat frying Mozzarella sticks, to name a few.

In 1985, Marschall introduced a line of defined single strain coccus and rod cultures, with known flavor development, cheese body breakdown, salt tolerances, temperature tolerance and preference and moisture retention. These cultures can be grown in bulk starter systems using Thermolac media at 7.4% solids or Thermogold and Thermostar II at 7% solids. The cultures can be grown in various combinations and ratios to meet a wide variety of production needs. Specific growth patterns can be repeated to grow these cultures in consistent strain balances and coccus-to-rod ratios with the use of our automatic starter system controller, the CT2000SS.

Of the medias mentioned above, Thermogold would provide the most phage protection in the starter tank, while Thermostar II is an internally buffered media used primarily for rod growth. A typical bulk culture scheme includes one pair of rods and three to four pair of cocci. When just rods are grown in Thermostar II, the usual is to grow a pair or triplet of rod strains and introduce the coccus liquid frozen
or freeze-dried direct to the vat, varying the amounts and ripening times of the cocci and rods to set the ratios for the different cheese styles.

In 1990, Marschall introduced a line of direct-to-the-vat Flavo Bac cultures to be used as starter adjuncts to influence flavors, melting characteristics, tender cheese to bite on a cooled pizza, light/white colored cheese, low browning and cheeses with tight body.

We at Marschall believe we can provide the cheesemaker with the culture systems required to be successful in today’s Italian cheese market, allowing him to maximize moisture and fat usage by standardizing with the addition of condensed or reconstituted dry skim milk solids, utilizing highly automated equipment and still maintaining cheese characteristics consistent to their company’s marketing tradition.

References

1. Reinbold, G.W., 1966 3rd Annual Marschall Invitational Italian Cheese Seminar
2. Christensen, V.W., 1975 13th Annual Marschall Invitational Italian Cheese Seminar
Impact of Whey pH at Draw on Composition, Proteolysis, and Functional Properties of Mozzarella Cheese

By

J.J. Yun, D.M. Barbano, and P.S. Kindstedt, K.L. Larose
Northeast Dairy Foods Research Center
Cornell University and University of Vermont
Ithaca, NY and Burlington, VT

Abstract

Cultured low moisture, part skim Mozzarella cheeses were produced (400 lbs/vat) using the same milk, starter, and coagulant, but with two different whey pH at draw (6.40 and 6.15). Cheese was made by the milled-curd "no-brine" method with a 106°F (41°C) cook temperature, 5.25 milling pH, and 135°F (57°C) stretching temperature. Cheese making was repeated 3 times on 3 different days. With decreasing draw pH from 6.40 to 6.15, calcium content in the cheese decreased (from .83 to .75%), and cheese moisture increased (from 45.7 to 46.3%). However, there were no significant differences in protein, fat, and salt content. During storage, soluble protein contents, meltability, and free oil increased, and β-casein and apparent viscosity decreased for all cheeses. There were significant influences on the interaction of draw pH with storage time on soluble nitrogen content. Thus, proteolysis during refrigerated storage was influenced by differences in draw pH. On average, TPA hardness, TPA springiness, and apparent viscosity were lower with lower draw pH during the storage (the lower the draw pH, the softer the cheese).

Introduction

Changes in manufacturing variables can affect chemical composition and functional properties of Mozzarella cheese. Previous studies have shown that variations in draw pH can affect cheese texture by changing the retention of mineral and coagulant enzyme (Lawrence et al., 1983; 1987; Holmes et al., 1977). Texture is important in Cheddar because cheese with poor texture would also develop uncharacteristic flavor (Lawrence et al, 1983). For Mozzarella, texture of unmelted cheese is important because of its influence on shredding property of the cheese.

Mozzarella cheese undergoes proteolytic changes during refrigerated storage. These proteolytic changes affect the functional properties such as melting and stretching characteristics. If the retention of coagulant enzyme in the curd changes by varying the draw pH, then the proteolytic changes during storage could be affected, and the cheese functionality upon baking may also be affected.

Draw pH is, therefore, one of the manufacturing variables that can affect the quality of Mozzarella cheese. The objective of this experiment was to determine the effect of whey pH at draw on cheese composition, proteolysis, and functional properties of Mozzarella.
Cheesemaking

To produce low moisture part skim Mozzarella cheese with two different draw pH, a milled-curd no-brine method (Yun et al., 1993) was used. Cheesemaking was replicated on 3 different days as a randomized complete block design. The flow diagram of the cheese making method is shown in Figure 1.

Raw skim milk and raw cream were standardized to 2.3% fat and pasteurized. To the milk (400 lbs/vat), direct-to-vat frozen starter cultures, *Streptococcus salivarius* subsp. *thermophilus* (Marschall product Thermococcus C120) and *Lactobacillus delbrueckii* subsp. *bulgaricus* (Marschall product Thermorod R160) were added.

Milk was ripened for 60 minutes at 96°F (36°C), and fermentation produced chymosin was added. Following a 30 minutes set, the milk curdulum was cut with a 1.2 cm wire knife and allowed to heat for 5 min. Next, the curds were stirred gently without heat for 10 minutes, followed by heating from 96°F (36°C) to 106°F (41°C) over 15 minutes with continuous agitation.

The agitation was continued and temperature maintained until the whey pH reached the desired draw pH (i.e., 6.15 or 6.40). Then whey was drained and curd was piled in the center of the vat. Curd slabs were turned (cheddared) every 15 minutes until the curd reached a milling pH of 5.25. Then the cheese curd was milled, salted, and stretched. Stretching of the curd was done in salt solution at 135°F (57°C) using a pilot scale Mozzarella mixer (model 640; Stainless Steel Fabricating Co., Columbus, WI). The cheese was then cooled, vacuum packaged, and stored at 4°C until the analysis.

Analyses and Tests

Changes in titratable acidity of milk and whey (Richardson, 1985) and pH of milk, whey, and curd were monitored during cheese making. A Xerolot electrode (Ingold Electrode) and Accumet pH meter (Fisher Scientific) were used for pH measurements. The pH of whey and curd were measured at 100°F (38°C) after calibrating the pH meter with reference solutions for pH 4 and pH 7 at 100°F (38°C) (Yun et al., 1993a).

Fat content of milk, whey, and cheese were determined using Babcock tests (Yun et al., 1993a). All nitrogen determinations were performed by Kjeldahl. Percentages of nitrogen from the analyses of total nitrogen were multiplied by 6.38 to give milk protein equivalents (Yun et al., 1993a). Cheese moisture was determined gravimetrically by drying 2 g of ground cheese at 100°C in a forced air oven for 24 h (Richardson, 1985). Calcium concentration in cheese was determined by complexometric titration (Kindstedt and Kosikowski, 1985).

All tests during storage were performed after 3, 8, 15, 21, 29, and 50 d of refrigerated storage at 4°C. To monitor proteolysis, the amounts of nitrogen soluble in pH 4.6 acetate buffer and in 12% TCA were determined. The soluble nitrogen values were expressed as a percentage of total nitrogen content of cheese. The amount of intact G0-casein was determined by SDS-PAGE. More detailed references for these analyses are found in the previous report (Yun et al., 1993a).

Texture Profile Analysis (Bourne, 1978) of Mozzarella cheese was done using the Instron Universal Testing Machine. Cheese meltability was measured by a modified Schreiber test (Kosikowski, 1982). Apparent viscosity of melted Mozzarella cheese was measured by helical viscometry (Kindstedt and Kiely, 1992). Free oil of Mozzarella cheese was measured using the centrifugation method (Kindstedt and Rippe, 1990). Detailed explanations of the testing methods for functional properties have been reported previously (Kindstedt and Kiely, 1992; Kindstedt and Rippe, 1990; Yun et al., 1993b).
1993-6

Results and Discussion

The cheese making time was not affected by the changes in draw pH. The duration from coagulant addition to draw was longer with lower draw pH (i.e., 65 and 95 minutes for draw pH 6.40 and 6.15, respectively). However, the time from draw to mill was shorter with lower draw pH (i.e., 67 and 31 minutes for draw pH 6.40 and 6.15, respectively). Thus, the total make times from coagulant addition to mill for both draw pH were similar (i.e., 132 and 126 minutes for draw pH 6.40 and 6.15, respectively).

As shown in Table 1, with decreasing draw pH from 6.40 to 6.15, calcium content in the cheese decreased (from .83 to .75%). This is consistent with previous studies relating the mineral retention in the curd with draw pH. The calcium contents in both cheeses are within the usual range for the low moisture part skim category (USDA, 1976).

The cheese moisture was slightly higher (from 45.7 to 46.3%) in the cheese with lower draw pH. The slightly shorter cheese making time for the cheese made with lower draw pH may be the reason for the slightly higher moisture. Draw pH did not have a significant impact on protein, fat, fat on a dry basis, and salt content of the cheese (Table 1). Moisture and fat on a dry basis for both cheeses are within the legal range for the cheese (CFR, 1991).

The results of pH 4.6 soluble nitrogen showed that, overall, lower draw pH seem to cause more proteolysis during storage (Figure 2). There were interactions of draw pH with storage time on both types of soluble nitrogen contents: the rate of increase in proteolysis during storage occurred faster with lower draw pH (Figure 2 and 3).

We did not determine the amount of coagulant retained in the curd or cheese. Thus, we cannot attribute this higher proteolysis solely to the higher coagulant retention in the curd at lower draw pH. However, more proteolysis, especially by pH 4.6 soluble nitrogen, seems to indicate that lower draw pH may have caused higher coagulant retention, which then produced more proteolysis. This postulation may be even more valid considering that pH 4.6 soluble nitrogen is affected more by coagulant than by starter culture enzymes which is another cause of proteolytic changes in cheese (Chu et al., 1993).

With increased storage time, both types of soluble protein increased (Figures 2 and 3), and
α,-casein decreased for all cheeses (Figure 4). These proteolytic changes are expected (Yun et al., 1993a) and will affect texture and functional characteristics of the cheese during storage (Yun et al., 1993b).

On average, TPA hardness (the overall resistance of cheese to compression) appeared to be lower with lower draw pH (Figure 5) probably because of less calcium in the cheese. Although less obvious, the TPA springiness (the height of cheese bounced back between compressions) also appeared to be lower with lower draw pH (Figure 6), again probably because of less calcium in the cheese. The reduced amount of calcium in the cheese and the more active proteolysis may have contributed to a weaker network structure in the cheese with lower draw pH.

Changes in functional properties were normal for the low moisture part skim Mozzarella (Yun et al., 1993b). During storage for both cheeses, the meltability increased (Figure 7), free oil increased (Figure 8), and apparent viscosity (Figure 9) decreased. On average, apparent viscosity (resistance of melted cheese against the shear at high temperature) tended to be lower with lower draw pH. The reason for this would be similar as the reason for the weaker structure in the cheese with lower draw pH: more active proteolysis and less calcium are probably the reason for the reduced apparent viscosity.

Overall, the effect of draw pH (between 6.40 and 6.15) on texture and functional properties was smaller than the effect of storage (during 50 days at 4°C). However, there were some differences caused by the changes in draw pH. These differences combined with the influence of other parameters in the cheese-making procedure may be useful in providing cheeses that meet the varied functionality criteria of individual customers. The cheese with lower draw pH would give slightly softer cheese with slightly less stretch and more melt characteristics.
Conclusions

Lowering draw pH (6.40 to 6.15) reduced calcium content in the cheese (from .83 to .75%) and increased cheese moisture (from 45.7 to 46.3%). However, draw pH did not affect protein, fat, and salt content of the cheese.

Soluble protein contents, meltability, and free oil increased, and \(\kappa \)-casein and apparent viscosity decreased for all cheeses during storage. On average, TPA hardness, TPA springiness, and apparent viscosity were lower with lower draw pH throughout the storage.

Thus, variation in the draw pH will cause variations in texture and functional characteristics. Selecting appropriate whey draw pH and then consistently controlling to that point will produce cheese with more consistent functional characteristics.

Acknowledgments

We thank Robert Rasmussen, Scott Hawkes, Maureen Chapman, Wen-I Tsai, and George Houghton for their technical assistance. Financial support was provided by Northeast Dairy Foods Research Center.

References

CHEMICAL COMPOSITION OF FRESH CHEESE

<table>
<thead>
<tr>
<th></th>
<th>DRAW pH 6.40</th>
<th>DRAW pH 6.15</th>
<th>P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEESE pH</td>
<td>5.16</td>
<td>5.12</td>
<td>.24</td>
</tr>
<tr>
<td>% H₂O</td>
<td>45.73</td>
<td>46.28</td>
<td>.05*</td>
</tr>
<tr>
<td>% FAT</td>
<td>20.79</td>
<td>20.71</td>
<td>.52</td>
</tr>
<tr>
<td>% FDB¹</td>
<td>38.32</td>
<td>38.55</td>
<td>.50</td>
</tr>
<tr>
<td>% PROTEIN</td>
<td>28.03</td>
<td>27.59</td>
<td>.38</td>
</tr>
<tr>
<td>% SALT</td>
<td>1.50</td>
<td>1.59</td>
<td>.50</td>
</tr>
<tr>
<td>% SALT/H₂O</td>
<td>2.96</td>
<td>3.16</td>
<td>.59</td>
</tr>
<tr>
<td>% CALCIUM</td>
<td>.83</td>
<td>.75</td>
<td>.04*</td>
</tr>
</tbody>
</table>

FDB¹: fat on a dry basis

Table 1.

"MILLED-CURD NO-BRINE" MOZZARELLA CHEESE MAKING WITH 2 DIFFERENT DRAW pH

SKIM MILK & CREAM
STANDARDIZE & PASTEURIZE
ADD CULTURE & RIPEN
ADD RENNET & COAGULATE
CUT & COOK

↓ ↓

DRAW pH 6.40 DRAW pH 6.15

↓ ↓

PACK, ADD SALT, STRETCH,
COOL, PACKAGE, & STORE AT 4°C

Figure 1.
Figure 2.

CHANGES IN pH 4.6 SOL. N.
(IMPACT OF DRAW pH)

CHANGES IN 12% TCA SOL. N.
(IMPACT OF DRAW pH)

Figure 3.
Figure 4.

CHANGES IN α_s - CASEIN
(IMPACT OF DRAW pH)

Figure 5.

CHANGES IN TPA HARDNESS
(IMPACT OF DRAW pH)
1993-6

CHANGES IN TPA SPRINGINESS
(IMPACT OF DRAW pH)

![Graph showing changes in TPA springiness over storage time for pH 6.40 and 6.15.]

Figure 6.

CHANGES IN MELTABILITY
(IMPACT OF DRAW pH)

![Graph showing changes in meltability over storage time for pH 6.40 and 6.15.]

Figure 7.
Figure 8.

CHANGES IN FREE OIL
(IMPACT OF DRAW pH)

Figure 9.

CHANGES IN APPARENT VISCOSITY
(IMPACT OF DRAW pH)
1993-7

Impact of Coagulant Level on Composition, Proteolysis, and Functional Characteristics of Mozzarella Cheese

By

P.S. Kindstedt, K.L. Larose, and D.M. Barbano, J.J. Yun
Northeast Dairy Foods Research Center
University of Vermont, Burlington and Cornell University, Ithaca

Introduction

It is well known that the coagulant used in cheese making has a dual role in most cheeses. The primary function is to coagulate the cheese milk, thereby producing a curd which is subsequently transformed into the final cheese. In addition, a small proportion of the coagulant is carried over into the cheese. This residual coagulant remains proteolytically active in most aged cheeses and plays an important role in the development of texture and flavor during aging.

In Mozzarella cheese, the impact of coagulant on proteolytic and functional changes during aging will depend on three factors: 1.) the ability of the coagulant to withstand inactivation at the high curd temperatures attained during cooking (i.e., before draining) and during stretching; 2.) the type of coagulant and 3.) the amount of coagulant that is carried over from the milk to the final cheese.

Is Residual Coagulant Inactivated During Cheesemaking?

In the past there was controversy as to whether residual coagulant in Mozzarella cheese remains active or whether it is inactivated by the high temperatures attained during cooking and stretching (1). Recent investigations have shown that the former is likely in most cases. For example, at the 1991 Marschall Italian Cheese Seminar we presented data comparing Mozzarella cheeses made with 3 different commercial coagulants (fermentation-produced chymosin, Mucor miehei protease, and Endothia parasitica protease). The experimental cheeses were made using a 41°C (106°F) cooking temperature. The curds were stretched in 57°C (135°F) water, which resulted a curd temperature of 55°C (131°F) at the exit of the cooker-stretcher, which is typical of commercial practice. The study provided strong evidence that all 3 coagulants remained proteolytically active during aging and thus withstood the 41°C (106°F) cooking temperature and the 57°C (135°F) stretching temperature. Moreover, it was shown that coagulant type had a large impact on proteolytic and functional changes during aging.

More recently, the same 3 coagulants were evaluated for activity loss following various heat treatments in sodium phosphate buffer (0.1 M) at pH 5.2, and in a Mozzarella cheese analogue (2). Coagulant activity was determined using the ortho-phthalaldehyde proteolysis test. Exposure times and temperatures were chosen to approximate the thermal conditions in commercial cooker-stretchers. Figures 1-3 show activity losses for each of the 3 coagulants (fermentation-produced chymosin, Mucor miehei protease (heat labile), and Endothia parasitica protease) when exposed in pH 5.2 buffer to temperatures ranging from 50°C to 75°C (122°F to 167°F) for up to 10 minutes. Exposure to 50°C (122°F) for up to 10 minutes had virtually no effect on any of the three coagulants. At 55°C (131°F), Endothia parasitica protease showed partial inactivation, whereas Mucor miehei protease and chymosin were
unaffected. At 60°C (140°F) *Mucor miehei* protease and chymosin showed partial inactivation, whereas activity of *Endothia parasitica* protease decreased to below the level of detection after 10 minutes. At 75°C (167°F), activities of all 3 coagulants were reduced to undetectable levels. It is evident that thermal stabilities of the 3 coagulants differed in the following order: fermentation-produced chymosin > *Mucor miehei* protease > *Endothia parasitica* protease. Similar patterns of inactivation were obtained when the coagulants were heat-treated in a Mozzarella cheese analogue (data not shown). The experiments confirmed that all 3 coagulants can withstand stretching temperatures in the range of 50° to 55°C (122° to 131°F), with *Mucor miehei* protease and chymosin able to withstand somewhat higher temperatures. However, stretching at very high curd temperatures (>75°C (167°F)) will inactivate all 3 coagulants.

What Determines the Amount of Residual Coagulant in Mozzarella Cheese?

Holmes et. al. (3) showed that the retention of calf rennet in Cheddar cheese curd was highly dependent on the pH of the whey at draining. Lower pH values at draining resulted in greater retention of calf rennet within the cheese curd. However, draining pH did not affect the retention of coagulants derived from microbial sources (*Mucor pusillus* var. Lindt, *Mucor miehei*).

It is reasonable to expect that the amount of coagulant added to the cheesemilk will also influence the level of residual coagulant in the final cheese. This has important practical implications because it is well known in the industry that the amount of coagulant used to set the vat can be reduced considerably below normal recommended levels without adversely affecting the cheese making process. Micketts and Olson (4) successfully manufactured directly acidified Mozzarella using up to 75% less calf rennet than the accepted norm. Consequently, some manufacturers of Mozzarella cheese may use less coagulant in order to economize. However, it is unclear whether using less coagulant influences residual coagulant level in the final cheese, proteolysis by the coagulant during aging, and development of functional characteristics such as melt and shred. Therefore, the objective of our study was to determine the impact of reducing the level of chymosin by up to 40% of normal usage on composition, proteolysis and functional characteristics of cultured Mozzarella cheese.

MATERIALS AND METHODS

Cheesemaking

Three 185 kg vats of cultured low moisture, part-skim Mozzarella cheese were made at Cornell University on the same day using the same milk and starter, but with three different levels of double strength fermentation-produced chymosin: .1, .08, and .06ml/kg milk, representing 100, 80, and 60% of normal usage. Cheeses were made using the milled curd “no-brine” cheesemaking method with a 6.40 draining pH, 41°C cooking temperature, 5.25 milling pH, and 57°C stretching temperature, as described previously (5), with the following modification. The milled curds were briefly washed in water before dry salting to elevate the moisture content of the final cheese. Cheesemaking was replicated on three different days as a 3 X 3 Latin square design. Cheese samples were vacuum packaged and stored at 4°C (40°F) until analysis. Samples of each cheese were also sent on ice by overnight express mail to the University of Vermont for analysis.

Cheese Composition

The initial chemical composition of the cheese was determined. Cheese samples were ground in a blender to obtain a particle size of about 2 to 3 mm. Ground samples were packed in 50 ml plastic
snap-lid vials, without headspace, to minimize moisture loss from cheese during storage at 4°C (up to 2-d prior to analysis). Cheese moisture was determined gravimetrically, in quadruplicate by drying 2 g of cheese at 100°C in a forced air oven (Model OV-490-2, Blue M, Blue Island, IL) for 24 h. Salt content of cheese was determined by the Volhard method (6) and fat content by Babcock (6). Total nitrogen was measured by the Kjeldahl method and converted to protein using a factor of 6.38 (7). Calcium was determined by complexometric titration with EDTA (8). Cheese pH was measured using a pH electrode (Xerolyt, model HA405, Ingold Electrodes, Inc., Wilmington, MA) and an Accumet pH meter (Model 915, Fisher Scientific, Springfield, NJ).

Proteolysis

Both pH 4.6 acetate buffer soluble nitrogen and 12% TCA soluble nitrogen content of cheese were measured at 3, 8, 15, 21, 29, and 50 days of storage at 4°C (40°F). All soluble nitrogen values are expressed as a percentage of the total nitrogen content of the cheese. SDS-PAGE (9) was used to monitor αs and β-casein breakdown during refrigerated storage. The results are expressed as the amount of remaining intact αs-casein and β-casein at various times of refrigerated storage.

Unmelted Cheese Texture

Cheese samples were analyzed for unmelted texture by Inston Texture Profile Analysis (TPA) (10) at 3, 8, 15, 21, 29, and 50 days of storage at 4°C (40°F).

Cheese Melting Characteristics

Changes in meltability (modified Schreiber test), apparent viscosity (by helical viscometry (11)), and free oil formation (modified Babcock test (12)) were measured at 3, 8, 15, 21, 29, and 50 days of storage at 4°C (40°F). Values for apparent viscosity on day 3 were not included in the statistical analyses because the measurements were generally off-scale and could only be estimated.

Statistical Analysis

Data were analyzed for statistical significance by analysis of variance using the SAS Statistical Software Package. Treatment effects less than the .05 level of probability were deemed significant.

Results And Discussion

Cheesemaking

Varying the chymosin level did not result in any obvious differences in the cheese making process. All vats were cut at 30 minutes after addition of the coagulant regardless of chymosin level. Curd firmness at cutting was not measured in this study. Average fat and protein contents in the milk and whey for each treatment are shown in Table 1. Concentrations of fat and protein in the whey were virtually identical for all 3 chymosin levels. The resulting cheese curds stretched normally with no obvious differences among the 3 treatments.
Cheese Composition

The chemical compositions of cheeses made with different levels of chymosin are compared in Table 2. There were no detectable differences (P>.05) in the moisture, fat, total protein, salt, pH, and calcium contents due to differences in coagulant level. Coagulant level did influence fat on a dry basis (FDB) (P<.05), with highest values occurring when chymosin usage was reduced to 80%. The reason for this difference in FDB is unclear. Micketts and Olson (4) reported that fat recovery in directly acidified Mozzarella cheese increased when calf rennet was reduced by up to 75%. Chymosin level had no effect on whey fat levels in this study (Table 1). Further work is needed to evaluate the impact of coagulant level on solids recovery and cheese yield.

Proteolysis

Changes in pH 4.6 acetate soluble nitrogen and 12% TCA soluble nitrogen are shown in figures 4 and 5. As shown by numerous researchers, both types of soluble nitrogen increased significantly with time of refrigerated storage. However, the rate of increase differed significantly (P<.05) with coagulant level. Both forms of soluble nitrogen showed the slowest rate of increase in cheeses made with 60% chymosin level. Average pH 4.6 soluble nitrogen values were similar for 100% and 80% chymosin cheeses throughout the 50 d storage period, whereas average 12% TCA soluble nitrogen increased more rapidly in 80% chymosin cheeses than in 100% chymosin cheeses.

The amount of residual \(\alpha_s \) and \(\beta \)-casein during storage are shown in Figures 6 and 7, respectively. Residual \(\alpha_s \)-casein decreased with time for all treatments. Coagulant level did not affect changes in residual \(\alpha_s \)-casein (P>.05). The amount of residual \(\beta \)-casein was constant with time, indicating that little if any proteolysis of \(\beta \)-casein occurred during 50 days of storage.

Overall, the impact of reducing chymosin level by up to 40% on proteolysis was initially small but increased with storage time. Thus, the practical impact of using reduced levels of chymosin will probably be greatest for Mozzarella cheese that is held in refrigerated storage for extended periods, such as retail cheese which may require a refrigerated shelf life of several months.

It should also be noted that the pH of the whey at draining in this study (i.e., 6.4) was somewhat higher than the levels normally used in commercial practice. As noted earlier, whey pH at draining influences retention of chymosin by the cheese curd, with greater retention occurring at lower draining pH. Therefore, the results of this study are specific for the draining conditions used in these experiments. It is not known whether the same results would be obtained if cheese making were conducted using a lower pH at draining.

Unmelted Cheese Texture

Changes in TPA hardness (i.e., the force in Newtons required to compress the cheese sample by 50%) are shown in Figure 8. Hardness of all cheeses decreased significantly (P<.05) during refrigerated storage, indicating a progressive softening of the cheese body. There were no detectable differences (P>.05) in TPA hardness due to the differences in coagulant level.

Changes in TPA springiness (i.e., the rebound height of the cheese sample after being compressed by 50%) are shown in Figure 9. Cheeses became less springy with storage time (P<.05); there were no detectable differences (P>.05) in TPA springiness due to the differences in coagulant level.
Cheese Melting Characteristics

Changes in meltability, as assessed by a modified Schreiber test, are compared in Figure 10. This test measures the increase in diameter of the cheese sample as it melts and spreads during heating. Meltability of all cheeses increased (P<.05) with storage time, but there were no significant differences (P>.05) in meltability due to coagulant level.

Changes in apparent viscosity (by helical viscometry) are shown in Figure 11. A high apparent viscosity value typically indicates a tough, elastic melt, whereas a low apparent viscosity value indicates a softer and more fluid melt. Apparent viscosity decreased significantly (P<.05) with time of storage for all cheeses, but there were no detectable differences (P>.05) in apparent viscosity due to coagulant level.

Figure 12 shows changes in free oil formation, a measure of oiling off, during refrigerated storage. Free oil increased significantly (P<.05) with time. In addition, coagulant level had a significant effect (P<.05) on free oil, with 60% chymosin cheese showing the lowest levels of free oil throughout storage. However, the differences in free oil due to coagulant level, though statistically significant, were small and probably of limited practical importance.

Conclusions

1. Reducing the level of chymosin by up to 40% had no obvious effect on the cheese making process, no effect on fat and protein losses to the whey, and virtually no effect on general cheese composition.

2. Reducing the level of chymosin resulted in a slower rate of proteolysis as measured by the formation of pH 4.6 acetate soluble nitrogen and 12% TCA soluble nitrogen.

3. Within the ability of our analytical methods to distinguish textural differences, reducing the level of chymosin did not influence unmelted cheese texture during refrigerated storage for 50 days.

4. Reducing the level of chymosin did not influence meltability or apparent viscosity during refrigerated storage for 50 days, but did result in lower free oil. However, reductions in free oil due to chymosin level were small and probably of limited practical significance.

5. Overall, reducing the level of chymosin by up to 40% had a limited impact on cheese characteristics over 50 days of refrigerated storage. However, it is expected that the impact would be greater if the storage period were extended substantially beyond 50 days.

6. This study was conducted using a relatively high draining pH (whey pH = 6.4). It is not known whether the same results would be obtained using a lower draining pH.

Acknowledgments

The work of Sandra McConnell on thermal inactivation of coagulants is appreciated. Also are appreciated are the contributions of Bob Rasmussen, George Houghton, Wen-I Tsai, and Maureen Chapman.

References

TABLE 1. Levels of Fat and Total Protein in the Cheese Milk and the Whey From Mozzarella Cheeses Made with Three Different Levels of Fermentation Produced Chymosin (average of 3 trials).

<table>
<thead>
<tr>
<th>Coagulant Level</th>
<th>100%</th>
<th>80%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese Milk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Fat</td>
<td>2.23</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>% Total Protein</td>
<td>3.14</td>
<td>3.14</td>
<td>3.14</td>
</tr>
<tr>
<td>Whey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Fat</td>
<td>.21</td>
<td>.21</td>
<td>.21</td>
</tr>
<tr>
<td>% Total Protein</td>
<td>.92</td>
<td>.91</td>
<td>.91</td>
</tr>
</tbody>
</table>
TABLE 2. Chemical Composition of Mozzarella Cheeses Made with Three Different Levels of Fermentation Produced Chymosin (average of 3 trials).

<table>
<thead>
<tr>
<th>Coagulant Level</th>
<th>% Moisture</th>
<th>% Fat</th>
<th>% FDB</th>
<th>% Salt</th>
<th>pH</th>
<th>% Calcium</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>45.67</td>
<td>21.58</td>
<td>39.73</td>
<td>1.54</td>
<td>5.22</td>
<td>.769</td>
</tr>
<tr>
<td>80%</td>
<td>45.93</td>
<td>21.96</td>
<td>40.61</td>
<td>1.52</td>
<td>5.22</td>
<td>.767</td>
</tr>
<tr>
<td>60%</td>
<td>45.58</td>
<td>21.46</td>
<td>39.43</td>
<td>1.57</td>
<td>5.24</td>
<td>.793</td>
</tr>
</tbody>
</table>
TABLE 1. Levels of Fat and Total Protein in the Cheese Milk and the Whey From Mozzarella Cheeses Made with Three Different Levels of Fermentation Produced Chymosin (average of 3 trials).

<table>
<thead>
<tr>
<th>Coagulant Level</th>
<th>100%</th>
<th>80%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese Milk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Fat</td>
<td>2.23</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>% Total Protein</td>
<td>3.14</td>
<td>3.14</td>
<td>3.14</td>
</tr>
<tr>
<td>Whey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Fat</td>
<td>.21</td>
<td>.21</td>
<td>.21</td>
</tr>
<tr>
<td>% Total Protein</td>
<td>.92</td>
<td>.91</td>
<td>.91</td>
</tr>
</tbody>
</table>

TABLE 2. Chemical Composition of Mozzarella Cheeses Made with Three Different Levels of Fermentation Produced Chymosin (average of 3 trials).

<table>
<thead>
<tr>
<th>Coagulant Level</th>
<th>100%</th>
<th>80%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Moisture</td>
<td>45.67</td>
<td>45.93</td>
<td>45.58</td>
</tr>
<tr>
<td>% Fat</td>
<td>21.58</td>
<td>21.96</td>
<td>21.46</td>
</tr>
<tr>
<td>% FDB</td>
<td>39.73</td>
<td>40.61</td>
<td>39.43</td>
</tr>
<tr>
<td>% Salt</td>
<td>1.54</td>
<td>1.52</td>
<td>1.57</td>
</tr>
<tr>
<td>pH</td>
<td>5.22</td>
<td>5.22</td>
<td>5.24</td>
</tr>
<tr>
<td>% Calcium</td>
<td>.769</td>
<td>.767</td>
<td>.793</td>
</tr>
</tbody>
</table>
Thermal Inactivation of Fermentation Produced Chymosin

![Graph showing the thermal inactivation of fermentation produced chymosin at different temperatures.](image)

Thermal Inactivation of *Mucor miehei* Protease

![Graph showing the thermal inactivation of *Mucor miehei* protease at different temperatures.](image)
Thermal Inactivation of *Endothia parasitica* Protease

![Graph showing enzyme activity remaining over time at different temperatures.](image)

CHANGES IN PH 4.6 SOLUBLE PROTEIN
(IMPACT OF COAGULANT LEVEL)

![Graph showing changes in pH 4.6 soluble protein over storage time.](image)
CHANGES IN PH 4.6 SOLUBLE PROTEIN
(IMPACT OF COAGULANT LEVEL)

CHANGES IN 12% TCA SOLUBLE NITROGEN
(IMPACT OF COAGULANT LEVEL)
CHANGES IN ALPHA-CASEIN
(IMPACT OF COAGULANT LEVEL)

CHANGES IN BETA-CASEIN
(IMPACT OF COAGULANT LEVEL)
CHANGES IN HARDNESS 1
(IMPACT OF COAGULANT LEVEL)

CHANGES IN SPRINGINESS
(IMPACT OF COAGULANT LEVEL)
CHANGES IN MELTABILITY
(IMPACT OF COAGULANT LEVEL)

CHANGES IN APPARENT VISCOSITY
(IMPACT OF COAGULANT LEVEL)
Contributions of Coagulant, Starter, and Milk Enzymes to Proteolysis and Browning in Mozzarella Cheese

By

David M. Barbano, Kathy Y. Chu, J. Joseph Yun, and Paul S. Kindstedt
Northeast Dairy Foods Research Center
Cornell University, Ithaca, NY, and
University of Vermont, Burlington, VT

Abstract

Four types of Mozzarella cheese (i.e., control, rennet-free, starter-free, and rennet-free, starter-free) were made from the same batch of milk. The cheesemaking was replicated four times each using different batches of milk (total of 16 different cheeses). Changes in proteolysis during 51 d of storage at 4°C were measured by pH 4.6 soluble nitrogen, 12% TCA soluble nitrogen, and SDS-PAGE. Active rennet retained in the cheese produced medium to large molecular weight peptides from casein during refrigerated storage. Starter proteases and peptidases significantly affected production of low molecular weight peptides. It was necessary to have both coagulant and starter cultures present to obtain the extent and depth of proteolysis that was observed in control cheese. Endogenous milk proteases contributed little, if any, to the proteolysis of Mozzarella cheese during refrigerated storage. Coagulant had some effect on “b” value (yellow/blue) of baked Mozzarella cheese. However, low molecular weight proteolytic products produced by starter enzymes had the most significant impact on overall browning of baked Mozzarella cheese.

Introduction

Functional properties of Mozzarella cheese are important in pizza and other prepared foods. Functional properties of Mozzarella cheese include shredability, meltability, stretchability, oiling-off, and browning characteristics (1, 13). To reach the optimum functional properties of Mozzarella cheese, Mozzarella is usually aged for a short period of time (15 to 35 d) before use. During this short period of aging, proteolysis of casein continues, cheese texture changes, and optimum functional properties are developed (13).

Sources of Proteases in Cheese

Proteolytic enzymes in cheese can come from the milk, nonstarter bacteria, starter and the coagulant. Each of these sources of proteases may or may not contribute to proteolysis during cheese aging. In addition, the type of proteases or peptidases contributed by each source may have different specificities and produce different types of end products from milk proteins. Proteolysis will influence functional properties of the cheeses. Too much proteolysis may produce a cheese that will not shred very well and may have too much liquid characteristic when melted on the surface of a pizza. Ryan (22) indicated that improper ratio of rod-to-coccus, especially excess rods, might cause too much casein breakdown and soft body defects. In contrast, a cheese with too little proteolysis may not melt well and produce a pizza that is too chewy and tough.
Proteolysis and Browning

Browning is an important characteristic of Mozzarella cheese during pizza making. Some pizza makers like the cheese to remain white, while others like light brown blisters of uniform size and distribution on pizza. Nonenzymatic browning (the Maillard reaction), that occurs during heating of Mozzarella cheese, involves a complex set of reactions. Nonenzymatic browning occurs in foods which contain reducing sugars and free amino groups usually derived from proteolysis products of proteins (6).

Browning may be influenced by the lactose or galactose content of Mozzarella cheese (12) which can be affected by several factors including the starter cultures. Most strains of Lactobacillus delbrueckii ssp. bulgaricus are unable to ferment galactose, while strains of Lactobacillus helveticus are able to use galactose. Oberg et al. (17, 18) detected no difference in cook color of Mozzarella cheese when using different milk-clotting enzymes. However, the cook color did change with storage time for all cheeses. They also found that Mozzarella cheese made using starter cultures increased in brown cook color with time of refrigerated storage, but Mozzarella made by direct acid addition showed little brown cook color and no significant increase of color with time. Olson et al. (20) stated that the rate of cooling in Italian cheese had an impact on the development of brown color during cooking. Cheese cooled rapidly (i.e., 24 h) developed lighter color than the cheese cooled slowly (i.e., 50 h).

No one has conducted a study to determine the individual effect of coagulant, starter, and endogenous milk enzymes on the changes in proteolysis and browning characteristics of Mozzarella cheese during refrigerated storage. This type of study has been conducted for proteolytic changes in Cheddar (19) and Gouda (25, 26) cheese. Thus, our objective was to determine the individual effect of coagulant, starter, and milk enzymes on browning and the extent, depth, and characteristics of proteolysis in Mozzarella cheese during storage at 4°C.

Materials and Methods

Experimental Design

From the same batch of skim milk and cream, four types of low-moisture, part-skim Mozzarella cheese were made, i.e., control, rennet-free (RF), starter-free (SF), and rennet-free starter-free (RFSF) cheeses. Milk was processed and pasteurized on the first day of the cheesemaking week. Control and RF cheeses that contain starter cultures were made on one day, and SF and RFSF cheeses that contain no starter cultures were made on the other day in order to avoid contamination of SF cheeses with starter bacteria. Cheesemaking was replicated in four different weeks with separate batches of skim milk and cream each week. Therefore, a total of sixteen Mozzarella cheeses were made in the experiment.

Cheesemaking

Control, RF, SF, and RFSF Mozzarella cheeses were made as described by Chu et al. (8). The RF cheese was produced by removal of about 30 to 40% of the calcium from the milk by ion exchange prior to addition of rennet. This allowed the rennet to cleave -casein without clotting the milk. Next the renneted milk was pasteurized to inactivate the rennet and then calcium was added back to the milk to achieve a coagulation. The SF cheese was made by using a combination of lactic acid and glucono- -lactone as a replacement for the lactic acid that would have been produced by the culture. The RFSF cheese was produced using a combination of these two techniques. The control cheese was produced using both starter culture and rennet. Additional precautions were taken to protect all cheeses from contamination with nonstarter bacteria during cheesemaking.
Chemical Analyses

Moisture content of cheese was determined gravimetrically by drying 2 g of ground cheese at 100°C in a forced-air oven (model OV-490A-2; Blue M, Blue Island, IL) for 24 h (21). Fat content of milk (2) and cheese (21) were determined by Babcock test. Salt content of cheese was determined by the Volhard method (21). Cheese pH was determined by immersing a Xerolyt electrode (model HA405; Ingold Electrode, Willmington, MA) directly into ground cheese (25°C).

Titratable acidity of cheese was determined (2) by adding 10 g of cheese to 95 ml of 60°C distilled water. The mixture was blended for 30 s, and filtered (Whatman #1). Twenty five ml of the filtrate were titrated with .1 N NaOH, and the acid content of the cheese was calculated as the percentage of lactic acid.

Total nitrogen (TN) content of skim milk and cheese was determined by Kjeldahl (2). Noncasein nitrogen (NCN) in skim milk was determined by the International Dairy Federation method (11). All nitrogen components were multiplied by 6.38 to give the appropriate “protein” equivalents; CP = 6.38 x TN, casein = 6.38 x (TN - NCN).

Calcium concentration in milk and whey samples was determined using an atomic absorption spectrometer. Calcium concentration in cheese was determined by complexometric titration (14).

Proteolysis During Refrigerated Storage

The extent and depth of proteolysis were monitored by measuring nitrogen soluble in pH 4.6 acetate buffer and 12% TCA, respectively, for all the cheeses (2, 5). All pH 4.6 and 12% TCA soluble nitrogen values were expressed as a percentage of TN content of the cheese. An SDS-PAGE method (23) with a 10 to 20% acrylamide gradient was used to monitor and characterize the proteolysis of αs-casein and β-casein during cheese storage.

Microbiological Analysis

Samples of raw milk, milk after ion exchange (low calcium milk) and pasteurized standardized milk for SF cheesemaking and RFSF cheesemaking were taken for standard plate counts (SPC) and yeast and mold counts (21). Samples of SF cheese and RFSF cheese were taken after 2, 30, and 51 days of refrigerated storage.

The nonstarter colonies present in the SPC for SF and RFSF cheeses were picked and streaked a minimum of 2 times on SPC agar. Isolates were tentatively identified into genera by examining colony and microscopic morphology, and by using tests such as catalase and oxidation-fermentation tests (4). Enumeration of starter bacteria in control and RF cheeses was done by pour plate count using modified Lee’s agar medium (16).

Browning Test

A Teflon® coated aluminum pan with 12 round sample wells (7 cm diameter x 3 cm high) was used for the browning test. Ground cheese samples were weighed (20 g) into each sample well in the pan. This was done in triplicate for each cheese. Ground cheese samples were allowed to warm to room temperature before heating. The pan containing the samples was put into a preheated forced air oven at 100°C for 1 h. Cheese samples were cooled to room temperature before color determination. The melted cheese fused into a solid disk that was removed from the sample well.

Color was measured using a MacBeth Color-Eye spectrophotometer (model 2020PC; Optiview, Macbeth, Newburgh, NY) that was calibrated by using a white calibration tile. Large area view (25.4
mm diameter) was used. Cheese samples were placed in a specially designed sample holder and put in the view port. Three color indices, “L” (light/dark), “a” (red/green), and “b” (yellow/blue) were taken for each sample.

RESULTS AND DISCUSSION

Cheese Making Procedures

The mean CP and casein content of the skim milk for all cheese making was 3.22% and 2.44%, respectively. In an effort to obtain more consistent fat content of final cheeses, milks were standardized at different fat levels (2.1%, 2.4%, and 2.2% for control, RF and RFSF, and SF cheeses, respectively). The four cheese types were made as described previously (8). Control cheese contains the proteases from coagulant, starter cultures, milk, and nonstarter bacteria. RF cheese contains proteases from starter cultures, milk, and nonstarter bacteria. The SF cheese contains proteases from coagulant, milk, and nonstarter bacteria. RFSF cheese contains proteases from milk and nonstarter bacteria. Therefore, the individual effects of coagulant, starter proteases and milk enzymes plus nonstarter bacteria on the proteolysis of Mozzarella cheese during refrigerated storage can be determined by comparing the proteolytic changes among the four cheese types.

Cheese Composition

Cheese moisture, fat, protein, pH, titratable acidity, and salt are shown in Table 1. It would be ideal if all four types of cheese had identical chemical composition. However, it was very difficult to control all the steps in the four different cheese-making procedures and this could not be achieved.

In our study, the moisture content for RF cheese was higher than for other cheeses. This is due to the poor syneresis in the RF cheesemaking, as reported previously (8). Visser (24) also experienced slower curd syneresis in RF Gouda cheese making than in normal cheese making, resulting in a higher moisture content in RF Gouda cheese.

Fat loss during cheesemaking was significantly higher for RF and RFSF cheeses than control and SF cheeses and caused the fat content of these cheeses to be low (Table 1). The soft gel and poor syneresis are the reasons for the larger fat loss. Most of the fat was lost into the whey, as reported previously (8). Differences in protein content are due to the differences in fat and moisture content of the cheese.

Although there were also some variations in the pH, titratable acidity, and salt content among the four cheeses, Yun et al. (27) found that for Mozzarella cheese pH ranging from 5.09 to 5.27, the rate of proteolysis was not affected by the final pH of the cheese. The moisture in the nonfat substance (MNFS) of the four types of Mozzarella cheese ranged from 55.54% in RFSF cheese to 62.54% in control cheese (Table 1). The MNFS of 34 commercial low moisture part skim Mozzarella cheese samples ranged from 55.47% to 66.38% (3). The MNFS values of all four types of Mozzarella cheese in the present study are within the range of MNFS values observed in commercial low moisture part skim Mozzarella cheese. Therefore, we felt that the changes in proteolysis during refrigerated storage of our cheese would not be affected greatly by the differences in the chemical composition among the cheeses.

Calcium concentration in cheese milk, whey, and cheese are shown in Table 2. The calcium content of milk for RF and RFSF cheesemaking was higher than for control and SF cheesemaking because calcium was added to the milks, after rennet inactivation, to induce coagulation. As expected from previous work (8), the whey and cheese from RF and RFSF cheesemakings had higher calcium content than those from control and SF cheesemakings.
Proteolysis of Cheese During Refrigerated Storage

The nitrogen components soluble in the pH 4.6 acetate buffer include high and medium molecular weight peptides derived from \(\alpha_s \)-caseins and \(\beta \)-casein, as well as low molecular weight peptides and amino acids (7). Therefore, pH 4.6 soluble nitrogen is a good indication of the extent of proteolysis of cheese. On the other hand, only low molecular weight peptides and amino acids from the cheese are soluble in the 12% TCA solution (7). Thus, 12% TCA soluble protein is a good indication of the depth of proteolysis in cheese.

In addition to indicating the extent of proteolysis that has occurred in cheese, SDS-PAGE also indicates the characteristics of the proteolysis. Disappearance of the bands for individual caseins and appearance of proteolytic products with different molecular weights are distinguished easily by SDS-PAGE.

Milk Enzymes and Nonstarter Bacteria. In our experiment, the effect of milk enzymes and nonstarter bacteria could not be separated since the cheeses made were not totally free of nonstarter bacteria. However, raw milk quality was good and the conditions of cheesemaking were controlled to minimize post pasteurization bacterial contamination. The SPC of milk did not increase during the ion-exchange process, and the SPC were low after pasteurization (less than 500 cfu/ml).

Mean SPC of fresh SF and RFSF cheeses were less than 5,000 cfu/g (Table 3). After 51 d of refrigerated storage, the mean SPC decreased to <1,000 cfu/g. Thus, nonstarter bacteria in the cheeses did not increase in numbers during 51 d of storage at 4°C. At the same time, 4.5 to 6.7 \(\times \) 10^8 cfu/g of starter bacteria were still viable in RF and control cheese after 51 d of storage (Table 3). Most of the nonstarter bacteria found in SF and RFSF cheeses were either a) gram positive, catalase positive, spore forming rods or b) one of two types of gram positive, catalase positive cocci. One type of cocci could ferment glucose aerobically only, while the other fermented glucose both aerobically and anaerobically. They were tentatively identified as Bacillus, Staphylococcus, and Micrococcus sp. Yeast and mold counts were <10/g in both SF and RFSF cheeses.

Proteolysis due to milk enzymes or nonstarter bacteria would be observed in the RFSF cheese. No degradation of \(\alpha_s \)-caseins or \(\beta \)-casein was observed by SDS-PAGE for RFSF cheese. The rate of change of pH 4.6 soluble nitrogen, 12% TCA soluble nitrogen, and \(\alpha_s \)-caseins in RFSF cheese are shown in Figures 1, 2, and 3, respectively. Comparing to the other three cheese types, there was almost no change in pH 4.6 and 12% TCA soluble nitrogen or \(\alpha_s \)-caseins content of RFSF cheese during refrigerated storage. From the data presented in Figures 1, 2, and 3, it is apparent that milk enzymes and nonstarter bacteria contributed little, if any, to either the extent or depth of proteolysis during 51 d of storage of Mozzarella cheese at 4°C.

Coagulant. The nitrogen soluble in pH 4.6 acetate buffer and 12% TCA increased, while intact \(\alpha_s \)-caseins decreased with time of refrigerated storage in control and SF cheeses (Figures 1, 2, and 3). The coagulant significantly influenced the rate of increase of pH 4.6 and 12% TCA soluble nitrogen and degradation of \(\alpha_s \)-caseins during refrigerated storage of Mozzarella cheese. Thus, the coagulant contributed both to the extent and depth of proteolysis of Mozzarella cheese during storage at 4°C.

Creamer (9) indicated that there was rennet activity in the Mozzarella curd when the curd was held for 5 min in stretching water at temperatures below 65°C. However, no rennet activity was present in the curd that had been held for 5 min in water > 70°C. We used 60°C stretching water in our cheesemaking. Therefore, the presence of rennet activity in Mozzarella cheese is in agreement with the findings of Creamer (9).

The major caseins degraded by the coagulant used in this study (i.e., chymosin) were \(\alpha_s \)-caseins. The \(\beta \)-casein was not broken down during 51 d of 4°C storage for cheese in this study. When chymosin was used as a coagulant in a previous study (28), similar results were obtained and are in agreement with
other reports (15, 19, 26). However, in industry it is common to use microbial rennets as coagulants for Mozzarella cheese manufacture instead of chymosin. The breakdown of β-casein in Mozzarella cheese made with these coagulants can be significant, particularly when Endothia parasitica protease is used (10, 28).

The SF cheese contained proteases from the coagulant, milk, and nonstarter bacteria. Since the milk proteases and nonstarter bacteria did not contribute to proteolysis as seen from the RFSF cheese, then the proteolysis observed in the SF cheese (Figures 1, 2, and 3) was due to the coagulant.

Starter Bacteria. Proteolysis that occurred in RF cheese would reflect the contribution of the starter culture enzymes. Starter culture significantly influenced the rate of changes of pH 4.6 and 12% TCA soluble nitrogen, but had no significant effect on the level of intact αs-caseins remaining in Mozzarella cheese during refrigerated storage. Previous reports on other cheeses (19, 25) have indicated that peptidases from starter bacteria break down the proteolytic products, produced by the action of rennet, to low molecular weight peptides and amino acids. Thus, starter proteases and peptidases contribute to the depth of proteolysis. Our results support these conclusions.

Most nitrogen containing compounds that dissolve in a 12% TCA solution should also dissolve in pH 4.6 acetate buffer. Therefore, the difference between pH 4.6 and 12% TCA soluble nitrogen would indicate the net amount of medium and high molecular weight peptides present in the cheese. No significant influence of the starter proteases on the difference between pH 4.6 and 12% TCA soluble nitrogen was detected (Figure 4). The change in amount of medium and high molecular weight proteolytic products during 51 d of storage of RF cheese was about the same as RFSF cheese. Therefore, starter proteases contributed mainly the depth of the proteolysis in Mozzarella cheese during storage at 4°C.

Coagulant/starter Interaction. There was a significant interaction between coagulant and starter culture for the production of 12% TCA soluble nitrogen. This implies that it is necessary to have the proteolytic action of the coagulant on casein first, then starter proteases and peptidases break down the proteolytic products produced by the coagulant. Neither αs-caseins nor β-casein were degraded by starter cultures present in RF cheese. In our RF cheese, the starter proteases alone could not produce changes in 12% TCA soluble nitrogen comparable to control cheese (Figure 2). This result is in agreement with Visser (25), who reported that in normal Gouda cheese the action of rennet clearly stimulated starter peptidases to produce amino acids and low molecular weight peptides. Thus, it is necessary to have both enzymes from coagulant and starter active in the cheese to achieve the depth of proteolysis observed for the control cheese.

Browning Test

Changes in “a”, “b”, and “L” values during 51 d of storage at 4°C are shown in Figures 5, 6, and 7, respectively. Starter proteases and peptidases in the Mozzarella cheese influenced the changes of all three color indices (“a”, “b”, and “L” values) of the melted cheeses. Coagulant also had some effect on the changes of “b” value in the cheese (Figure 6). The color of the melted RF cheese (at d 30) was significantly darker (lower “L” value) than other three cheeses (Figure 7). The low fat content of RF cheese (Table 1), which caused less free oil formation during the heating, might be the reason for the darker color.

There were significant differences in the changes of “a” and “b” values between cultured cheeses (control and RF) and direct acid cheeses (SF and RFSF) during the storage at 4°C (Figure 5 and 6, and Table 5). Although SF cheese had a greater extent of proteolysis than RF cheese (Figure 4), most of the proteolytic products produced by the action of coagulant in SF cheese were medium to large molecular weight peptides. Even with residual lactose present in this cheese, the Maillard reaction and browning
were minimal and resulted in low "a" value for SF cheese. On the other hand, the extent of proteolysis of RF cheese was low (Figure 4). However, most of the proteolytic products in RF cheese were low molecular weight peptides and amino acids produced by the action of starter peptidases (Figure 2). The combination of low molecular weight compounds with free amino groups and residual galactose or lactose caused extensive Maillard browning and high "a" value for RF cheese. The difference in browning (i.e. "a" value) between these two cheeses (i.e. SF and RF) indicated that the depth of proteolysis had more impact on browning of Mozzarella cheese upon baking.

Oberg et al. (18) reported that Mozzarella cheese made using proteinase positive strains of starter cultures showed more browning after cooking than cheese made using proteinase negative strains. Oberg et al. (17, 18) also compared the difference between the cook color of direct acid and cultured Mozzarella cheeses and found that the direct acid cheese appeared white, while cultured cheese developed much darker cook color. Again, this indicated that not only the residual sugar is important for development of color during cooking, specific types of proteolytic products also influence browning during cooking. Our results are in agreement with those of Oberg et al. (17, 18).

Conclusions

Endogenous milk enzymes contribute little, if any, to either the extent or the depth of proteolysis of Mozzarella cheese during 51 d of storage at 4°C. Coagulant contributes greatly to the extent of proteolysis and is the most important source of proteolytic enzyme for production of medium to large molecular weight peptides from casein in Mozzarella cheese during storage at 4°C. Starter culture proteases and peptidases contribute greatly to the depth of proteolysis and are most important for production of low molecular weight, TCA soluble, proteolytic products. However, it was necessary to have both coagulant and starter proteases present to obtain the depth of proteolysis that was observed in control cheese. The depth of proteolysis has a greater influence on the browning characteristics of Mozzarella cheese than the extent of proteolysis.

Acknowledgments

The authors thank Robert Rasmussen, Maureen Chapman, Patricia Nelson, Wei-I Tsai, Tom Burke, Shirly Kozlowski, and George Houghton for their technical assistance. The authors thank Steve Mulvaney for use of the MacBeth Color-Eye Spectrophotometer. Financial support was provided by Northeast Dairy Foods Research Center.

References

TABLE 1. Average (n=4) chemical composition of the four types of Mozzarella cheese at 2 d of storage at 4°C.

<table>
<thead>
<tr>
<th>Cheese Type</th>
<th>Control</th>
<th>RF</th>
<th>SF</th>
<th>RFSF</th>
<th>SEM<sup>1</sup></th>
<th>LSD<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture, %</td>
<td>50.37<sup>a</sup></td>
<td>54.75<sup>b</sup></td>
<td>49.51<sup>a</sup></td>
<td>49.49<sup>a</sup></td>
<td>.65</td>
<td>2.08</td>
</tr>
<tr>
<td>Fat, %</td>
<td>19.46<sup>a</sup></td>
<td>9.29<sup>b</sup></td>
<td>17.53<sup>a</sup></td>
<td>10.88<sup>b</sup></td>
<td>.61</td>
<td>1.95</td>
</tr>
<tr>
<td>FDB<sup>3</sup>, %</td>
<td>39.18<sup>a</sup></td>
<td>20.55<sup>b</sup></td>
<td>34.70<sup>c</sup></td>
<td>21.48<sup>b</sup></td>
<td>1.06</td>
<td>3.41</td>
</tr>
<tr>
<td>Protein, %</td>
<td>25.47<sup>a</sup></td>
<td>29.84<sup>b</sup></td>
<td>26.72<sup>a</sup></td>
<td>31.42<sup>b</sup></td>
<td>.54</td>
<td>1.71</td>
</tr>
<tr>
<td>pH</td>
<td>5.16<sup>a</sup></td>
<td>5.27<sup>b</sup></td>
<td>5.18<sup>bc</sup></td>
<td>5.02<sup>c</sup></td>
<td>.03</td>
<td>.10</td>
</tr>
<tr>
<td>TA<sup>4</sup>, %</td>
<td>.55<sup>a</sup></td>
<td>.43<sup>b</sup></td>
<td>.58<sup>ac</sup></td>
<td>.66<sup>c</sup></td>
<td>.03</td>
<td>.08</td>
</tr>
<tr>
<td>Salt, %</td>
<td>1.33<sup>a</sup></td>
<td>1.72<sup>b</sup></td>
<td>1.61<sup>b</sup></td>
<td>1.44<sup>c</sup></td>
<td>.04</td>
<td>.13</td>
</tr>
<tr>
<td>S in M<sup>5</sup>, %</td>
<td>2.65<sup>a</sup></td>
<td>3.15<sup>b</sup></td>
<td>3.25<sup>b</sup></td>
<td>2.90<sup>c</sup></td>
<td>.06</td>
<td>.20</td>
</tr>
<tr>
<td>MNFS, %</td>
<td>62.54<sup>a</sup></td>
<td>60.38<sup>b</sup></td>
<td>60.02<sup>b</sup></td>
<td>55.54<sup>c</sup></td>
<td>.61</td>
<td>1.96</td>
</tr>
</tbody>
</table>

^{a,b,c} = Means within same row not sharing same superscripts are different (P < .05).

¹ Standard error of means; SEM = [(mean square for error)/n]^{1/2}.

² Least significant difference at P < .05.

³ Fat content on a dry weight basis.

⁴ Titratable acidity.

⁵ Salt concentration in water phase of cheese.

⁶ Moisture in the nonfat substance.

TABLE 2. Average (n=4) calcium concentration of milk, whey, and cheeses for the four types of Mozzarella cheese.

<table>
<thead>
<tr>
<th>Cheese Type</th>
<th>Control</th>
<th>RF</th>
<th>SF</th>
<th>RFSF</th>
<th>SEM<sup>1</sup></th>
<th>LSD<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>milk, mg/kg</td>
<td>1056.0<sup>b</sup></td>
<td>1377.0<sup>a</sup></td>
<td>1043.5<sup>b</sup></td>
<td>1368.3<sup>a</sup></td>
<td>11.17</td>
<td>36.43</td>
</tr>
<tr>
<td>whey, mg/kg</td>
<td>392.8<sup>c</sup></td>
<td>534.5<sup>b</sup></td>
<td>424.0<sup>c</sup></td>
<td>602.5<sup>a</sup></td>
<td>14.66</td>
<td>46.90</td>
</tr>
<tr>
<td>cheese, %</td>
<td>.670<sup>b</sup></td>
<td>1.035<sup>a</sup></td>
<td>.634<sup>b</sup></td>
<td>1.002<sup>a</sup></td>
<td>.031</td>
<td>.099</td>
</tr>
</tbody>
</table>

^{a,b,c} = Means within same row not sharing same superscripts are different (P < .05).

¹ Standard error of means; SEM = [(mean square for error)/n]^{1/2}.

² Least significant difference at P < .05.
TABLE 4. Mean squares and (probability values) for the influence of different factors on indices of color changes during 51 d of storage at 4°C.

<table>
<thead>
<tr>
<th>Color Indices<sup>1</sup></th>
<th>"a" value</th>
<th>"b" value</th>
<th>"L" Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Trial</td>
<td>75.88</td>
<td>38.37</td>
<td>53.36</td>
</tr>
<tr>
<td></td>
<td>(.15)</td>
<td>(.13)</td>
<td>(.63)</td>
</tr>
<tr>
<td>Starter</td>
<td>1131.48*</td>
<td>179.96*</td>
<td>558.14*</td>
</tr>
<tr>
<td></td>
<td>(< .01)</td>
<td>(< .01)</td>
<td>(.03)</td>
</tr>
<tr>
<td>Coagulant</td>
<td>32.12</td>
<td>90.72*</td>
<td>75.34</td>
</tr>
<tr>
<td></td>
<td>(.35)</td>
<td>(.04)</td>
<td>(.38)</td>
</tr>
<tr>
<td>Starter x coagulant</td>
<td>7.41</td>
<td>38.63</td>
<td>.59</td>
</tr>
<tr>
<td></td>
<td>(.65)</td>
<td>(.15)</td>
<td>(.94)</td>
</tr>
<tr>
<td>Error</td>
<td>33.46</td>
<td>15.83</td>
<td>87.81</td>
</tr>
<tr>
<td>R square</td>
<td>.82</td>
<td>.75</td>
<td>.50</td>
</tr>
</tbody>
</table>

*Factor has a significant (P < .05) influence.

¹ "a" value is a measure of red to green, "b" value is a measure of yellow to blue, and "L" value is a measure of light to dark.

TABLE 3. Mean (and standard deviation) total plate count (n=4) of the four types of Mozzarella cheese during storage at 4°C.

<table>
<thead>
<tr>
<th>Time of storage</th>
<th>Cheese Type</th>
<th>Control</th>
<th>RF</th>
<th>SF</th>
<th>RFSF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(cfu/g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d</td>
<td>NA</td>
<td>NA</td>
<td>1,100</td>
<td>4,200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(570)</td>
<td>(3,300)</td>
<td></td>
</tr>
<tr>
<td>30 d</td>
<td>NA</td>
<td>NA</td>
<td>840</td>
<td>1,100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(360)</td>
<td>(930)</td>
<td></td>
</tr>
<tr>
<td>51 d</td>
<td>6.7x10<sup>8</sup></td>
<td>4.5x10<sup>8</sup></td>
<td>600</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.1x10<sup>8</sup>)</td>
<td>(.8x10<sup>8</sup>)</td>
<td>(320)</td>
<td>(1,000)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Changes of pH 4.6 soluble nitrogen as a percentage of total nitrogen during 4°C storage of the four types of Mozzarella cheese: control (■), starter-free (□), rennet-free (▲), and rennet-free, starter-free (x). SEM (of slopes) = .007.

Figure 2. Changes of 12% TCA soluble nitrogen as a percentage of total nitrogen during 4°C storage of the four types of Mozzarella cheese: control (■), starter-free (□), rennet-free (▲), and rennet-free, starter-free (x). SEM (of slopes) = .003.
Figure 3. Changes of relative percentage of α_{s1}- plus α_{s2}-caseins during 4°C storage of the four types of Mozzarella cheese: ■ = control; control (□), starter-free (●), rennet-free (●), and rennet-free, starter-free (x). SEM (of slopes) = .034.

Figure 4. Changes of pH 4.6 minus 12% TCA soluble nitrogen as a percentage of total nitrogen during 4°C storage of the four types of Mozzarella cheese: control (■), starter-free (□), rennet-free (●), and rennet-free, starter-free (x). SEM (of slopes) = .006.
Figure 5. Changes in "a" value during 4°C storage of the four types of Mozzarella cheese (positive value is red, negative value is green): control (■), starter-free (□), rennet-free (▲), and rennet-free, starter-free (x). SEM (of slopes) = .029.

Figure 6. Changes in "b" value during 4°C storage of the four types of Mozzarella cheese (positive value is yellow, negative value is blue): control (■), starter-free (□), rennet-free (▲), and rennet-free, starter-free (x). SEM (of slopes) = .020.
Figure 7. Changes in "L" value during 4°C storage of the four types of Mozzarella cheese (high value is lighter, low value is darker): control (■), starter-free (□), rennet-free (●), and rennet-free, starter-free (x). SEM (of slopes) = .047.
Specialty Cheese - Perspectives From The Marketplace

Part One
The Distributor and Importer

Jim Sebastiani
San Francisco International Cheese Imports

There are many important factors and considerations in choosing the proper distributor to handle your company’s needs — not only what YOU need to consider, but also what your potential distributor will be looking for.

Consider your expenses:
- shipping costs
- time and travel expenses
- debts you will be incurring
- salary

It matters a lot when setting up your pricing structure.

When choosing a distributor, get to know the potential distributor’s “history” and territories (is the end-user satisfied with the distributor? Does the distributor cover your target markets?). Furthermore, consider using the distributor’s private label: they’re more apt to accommodate your needs if you use their label.

A very important point to remember is to spread your markets — don’t cluster around one area. If your chosen distributor does not cover your entire market area, use more than one. Choose the best distributor for one particular area, another distributor for another area. Or, you may even consider a brokerage firm - but choose wisely. Sadly, there are a lot of “middle-of-the-road” brokers who won’t go the distance for their clients. But there are many who will go much further.

Choose your target customers (retail, foodservice, specialty, etc.). You NEED to know who you will be targeting, so you can make the most of your advertising efforts and, more importantly, so you can make the most of the relationships you’ll be developing with your clients. THEY are your “bread-and-butter” — meet their needs.

When you’re calling on a potential distributor, plan your presentation thoroughly. You get only one chance to make a first impression and you want it to be a good one. Send samples before you call initially. Call while your samples are enroute to introduce yourself and your product, mentioning that samples will be arriving any day.

When you finally get a face-to-face meeting, have customer orders on-hand. They hate to turn away business! And be sure to follow-up regularly (quarterly or more often) with distributors. The more you get involved in THEIR business, the more they’ll get involved in YOURS.
Marketing is vital to ANY company. Here are some general and easy suggestions:

- meet the end-user. Customers love to meet the manufacturer, and they can often offer some wonderful insights.
- offer generous introductory discounts to the end-user. An initial sampling will create interest, and introductory discounts may prompt them to try more.
- ADVERTISE!
 - use colored paper for flyers/brochures. It’s an eye-catcher.
 - attend food shows. They’re a great source for making contacts and networking. You may even share a booth with an end-user, to emphasize your involvement with your clients.
- send out LOTS of samples to LOTS of people. Nobody will know you exist if they can’t see your product.
- get involved in distributors regular promotions (monthly, quarterly). Again, the more you’re involved with THEM, the more they’ll be involved with YOU.
- let your clients tour your facility. It increases excitement and enthusiasm for your product, while leaving a “lasting image” in their minds. Be conscious of that fact! Make sure your facility meets all safety and sanitation standards.
- hire someone to regularly call on your accounts. Even the smallest of companies can’t do everything without some help. Your clients need to know they won’t be forgotten as your own company grows. A field representative hired for specific areas or accounts will make your clients feel more secure using you as their source.
- offer discounts if the client orders when your field rep is visiting.

Part Two
The Retailer and Foodservice Operator

Allen Hendricks
AMH Resources, Inc.

Mr. Hendricks discussed why specialty cheeses are important in both market segments, and demonstrated how they help enhance image and profitability in both operations. He began his presentation with a historic explanation of why specialty cheeses are important to the consumer. Immigrants coming to the New World were eager to maintain their own traditions and food preferences, which meant bringing their cheese “recipes” with them.

The influx of immigrants to various regions in the United States created regional specialties which spread to other areas of the country. Today’s “region-specific” menus continue to use specialty cheeses now produced domestically. These domestic reproductions easily enhance the image and profitability of dishes prepared with specialty cheeses.

First, for both the retailer and the foodservice operator, domestically-produced cheeses mean a longer shelf life yielding less shrink.

Second, an image is created. For retail this means a larger variety is available to the customer. Stores with more variety are apt to get more repeat customers. Better margins mean better profits.
For foodservice, specialty cheeses provide a special selection of products to the menu that the establishment can call their “own”. Further, the number of menu items which can be prepared is directly proportional to the number of cheeses available. Again, better margins mean better profits.

Third, specialty cheeses create specialty dishes out of the ordinary. Imagine the old stand-by grilled cheese sandwich, brought to the heights of taste sensation by substituting Dill-flavored Havarti.

Lastly, allowing chefs to “play” with specialty cheeses generates some wonderful new dishes, leaving the chef feeling good about his/her “creation”, and increasing the number of menu items available from the operator.

Part Three
Packaging — What Your Customers Are Looking For

Regi Hise
Wisconsin Milk Marketing Board

Mr. Hise delivered a presentation on the special considerations that should be given to the overall aspects of packaging and marketing specialty cheeses. Highlighted were examples of new specialty cheeses that have been successfully introduced.

What does “packaging” constitute? There are several factors to consider — not just “the box it comes in”.
• shape and style
• cheese finish (wax, plastic coat, vacuum, etc.)
• the box
• information ON the box
• information IN the box
• re-pack labels

First of all, who is your target? Packaging needs may vary depending on your target.
• Brokers rely heavily on product sell sheets to present to potential customers.
• Distributors need sell sheets, product specifications, and information on the box.
• Retailers and Chefs/Operators make use of information ON the box and IN the box.
 (i.e.: how an item can best be used for increased sales)

For example, in retail it is important to consider what type of cases are used in the store for display. Not all size packages will fit in all size cases. If your focus is retail, plan your packaging with this in mind.

Furthermore, retailers need more than generic information to help sell your product to the consumer. Cooking or serving suggestions, background information about the product, sizes the product is available in, what kind of turn-around time can be expected, etc. It would be a good idea to visit your customers personally to find out this information.
Mr. Hise also introduced a new marketing tool developed by the Wisconsin Milk Marketing Board, the Wisconsin Cheesecyclopedia. This new self-directed course was developed to assist distributors, brokers, retailers, and foodservice operators in the art of buying and selling cheese. Information includes: origin, production unique to variety, standards of identity, taste, usage, serving suggestions, and menu applications. Cheese handling information includes: receiving, storage, sanitation, cutting and wrapping, staff training, signage, and merchandising. Product performance is detailed for both hot and cold applications.

The Study Course package includes 3 video cassettes containing 12 study units, a corresponding reference manual, and 6 course workbooks. Unit 1 explains "How to Use This Course" and How Cheese is Made, Graded, and Classified. Unit 2 - 12 offer specific information on individual cheese varieties categorized by degree of hardness. Upon successful completion of the Study Course and workbook, participants will receive a Certificate of Achievement.
Proceedings Order Form

To receive additional copies of the 1993 Italian Cheese Seminar Proceedings, copy this order form and send it with a check or money order to:

Rhône-Poulenc
Marschall Products-1992 Proceedings
P. O. Box 592
Madison, WI 53701
Attn: Jo Ann Sterenberg

Name __

Title __

Company ___

Address ___

City, State, Zip ___

Phone ___

Quantity ____________________________

Price ($14.50 each) ___________________

Postage & Handling ($4.00 per book) _________________________________

Total _______________________________

Italian Cheese Seminar Proceedings Policy

Each exhibiting company, guest speaker, trade publication and Italian and Specialty Cheese Company in attendance will receive one free copy of the proceedings.

Proceedings from previous years are available upon request.