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Foundations of Wave Phenomena, Version 8.2

21. Non-linear Wave Equations and Solitons.

In 1834 the Scottish engineer John Scott Russell observed at the Union Canal at

Hermiston a well-localized* and unusually stable disturbance in the water that propagated

for miles virtually unchanged. The disturbance was stimulated by the sudden stopping

of a boat on the canal. He called it a “wave of translation”; we call it a solitary wave.

As it happens, a number of relatively complicated – indeed, non-linear – wave equations

can exhibit such a phenomenon. Moreover, these solitary wave disturbances will often be

stable in the sense that if two or more solitary waves collide then after the collision they will

separate and take their original shape. Solitary waves which have this stability property

are called solitons. The terminology stems from a combination of the word solitary and the

su�x “on” which is used to signify a particle (think of the proton, electron, neutron, etc. ).

We shall discuss a little later the sense in which a soliton is like a particle. Solitary waves

and solitons have become very important in a variety of physical settings, for example:

hydrodynamics, non-linear optics, plasmas, meteorology, and elementary particle physics,

to name a few. Our goal in this chapter is to give a very brief — and completely superficial

— introduction to solitonic solutions of non-linear wave equations.

To begin, let me point out that the humble wave equation in one dimension already

provides an illustration of some of the phenomena we want to explore, principally by virtue

of its linearity.† We have already seen that the solutions to the wave equation✓
@2

@t2
� v2

@2

@x2

◆
q(x, t) = 0 (21.1)

take the general form

q(x, t) = f(x+ vt) + g(x� vt), (21.2)

where the functions f and g are determined by initial conditions. Let us suppose that we

choose our initial conditions so that the solution has f = 0, so that the wave is simply the

displacement profile q = g(x� vt), that is, a traveling disturbance with the shape dictated

by the curve y = g(x) translating rigidly to the “right” (toward positive x) at speed v.

Let us also suppose that g is a function that is localized in some region, so that it has a

finite width. We have a “pulse”, which travels to the right, unchanged in shape. Thus the

pulse is a solitary wave. To visualize this, imagine that you and your friend are holding a

rope taut between you and you shake the end of the rope one time. The result is a pulse

which travels toward your friend (with a speed depending upon the density and tension

of the rope). This “pulse” has its shape described by the function g. Now suppose we

also allow f to be a localized non-trivial function, you then get a pulse traveling to the

* About 10 meters long and half a meter in height.
† The truly remarkable thing about solitonic behavior is that there are highly non-linear
equations which also can exhibit it.
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left superposed with the pulse traveling to the right. Suppose the two pulses are initially

separated, the one described by f sitting o↵ at large, positive x, and the one described

by g sitting o↵ at large negative x, say. The pulses will approach each other at a relative

speed of 2v and at some point they will overlap, giving a wave profile which is, evidently,

the algebraic sum of the individual pulses. Eventually, the pulses will become separated

with the pulse described by g moving o↵ toward large positive values of x and the pulse

described by f moving to large negative values of x. The pulses “collide”, but after the

collision they retain their shape – their “identity”, if you will. To visualize this, return to

the rope experiment. You shake the rope once, and your friend also shakes the rope once.

Each of you produce a pulse which travels toward the other person, overlap for a time, then

separate again unscathed. Try it! (You may need a long rope to see this work.) This is a

simple example of solitonic behavior. In this example the solitonic behavior results from

the linearity of the wave equation (superposition!) and its dispersion relation. Indeed, it

is di�cult to imagine such behavior emerging from anything but a linear equation. Our

model of coupled oscillators that led to the wave equation is about as simple as it can be.

As such, it does not take into account many details of the behavior of the medium that the

waves propagate in. More realistic or alternate wave equations do not necessarily exhibit

this solitary wave behavior because they lack the superposition property and or they lack

the requisite dispersion relation.

For example, let us consider the Schrödinger equation for a free, non-relativistic, quan-

tum mechanical particle with mass m moving in one dimension:

ih̄
@ 

@t
= �

h̄2

2m

@2 

@x2
. (21.3)

This equation, being linear, respects the superposition property, but you will recall it does

not have the simple dispersion relation possessed by the wave equation. As we saw, the

general solution of (21.3) is a superposition of traveling waves

 (x, t) =
1

p

2⇡

Z
1

�1

C(k)ei(kx�!(k)t) dk, (21.4)

where C(k) is determined by a choice of initial wave function,  (x, 0), and where

!(k) =
h̄k2

2m
. (21.5)

The traveling waves appearing in the superposition have di↵erent speeds. To see this, just

note that the wave with wavenumber k has a speed given by

v(k) =
!(k)

k
=

h̄k

2m
. (21.6)

The consequence of this dispersion relation is that at any time t 6= 0 a well-localized initial

wave function does not retain its shape. Indeed, the wave pulse will spread as time passes
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because its di↵erent frequency (or wavelength) components do not travel at the same speed.

(Physically, this is a manifestation of the uncertainty principle: localizing the particle at

t = 0 within the support of the initial pulse leads to an uncertainty in momentum which,

at later times, reduces the localization of the particle.) One says that the Schrödinger

waves exhibit dispersion because the wave profiles “disperse” as time runs. So we see that

solitary wave behavior is not a universal feature of wave phenomena.

Let us look at another linear wave equation that exhibits dispersion. The following

equation is known as the Klein-Gordon equation (in one spatial dimension):✓
1

c2
@2

@t2
�

@2

@x2

◆
q(x, t) +m2c2q(x, t) = 0. (21.7)

This equation can be used to describe a relativistic quantum particle with rest mass de-

termined by m (moving in one dimension). In this context, c is the speed of light – it

is not the speed of the waves. You can think of it as a relativistic generalization of the

Schrödinger equation.

Just like the Schrödinger equation, the general solution of the Klein-Gordon equation

can be constructed by superimposing sinusoidal wave solutions over amplitudes, phases

and wavelengths. To see that dispersion arises, we simply compute the dispersion relation

that arises for a sinusoidal wave. Consider a (complex) solution of the form

q(x, t) = Aei(kx�!t). (21.8)

It is not hard to see that this wave solves the Klein-Gordon equation if and only if

!2 = c2k2 +m2c4 () ! = ±c
p

k2 +m2c2. (21.9)

As you can see, the wave speed !/k again depends upon k, leading to dispersion.

Evidently, dispersion in linear wave equations does not allow for solitary wave phenom-

ena. Remarkably, one can compensate for dispersion by carefully altering the superposition

property using non-linearities in the wave equation. A detailed study of non-linear wave

equations is way beyond the scope of this text. My plan is to just have a quick at one,

relatively simple non-linear partial di↵erential equation to get a glimpse of how solitons

can arise.

A relatively simple non-linear equation is given by a modification of the Klein-Gordon

equation (in one spatial dimension) for a scalar field �(x, t):

@2�

@t2
�

@2�

@x2
+

m3
p

�
sin(

p

�

m
�) = 0. (21.10)

For simplicity in what follows we have chosen units in which c = 1. The presence of the

non-linearity is controlled by m. If m = 0 we have the usual wave equation. The new
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parameter � is going to be a “self-coupling constant”. The equation (21.10) is sometimes

called the “sine-Gordon equation”, showing that mathematicians have a sense of humor

to some extent. We will use this terminology, also. The sine-Gordon equation is a wave

equation that includes a “self-interaction” thanks to the sine term. Because of this term the

equation is non-linear. Consequently, the superposition property (wherein one can linearly

combine two solutions to make a third solution) is not present. To see the relationship

between the sine-Gordon equation and the Klein-Gordon equation, suppose that we restrict

attention to solutions which always have a bounded, small magnitude for �. In this case,

for su�ciently small � we can make the approximation:

sin(

p

�

m
�) ⇡

p

�

m

✓
��

1

6

�

m2�
3 + · · ·

◆
. (21.11)

Using this Taylor expansion in the sine-Gordon equation, you will see that the first term

in the expansion gives the Klein-Gordon equation (with c = 1) while the next (and higher)

terms provide non-linearities. Physically, these describe a “self-interaction” of �. The

strength of the self-interaction is defined by �. Indeed, if you consider the limit as � ! 0

in (21.10) you will recover the Klein-Gordon equation (exercise).

There is an extensive body of literature that analyzes the sine-Gordon equation and

methods for its solution. Here we merely point out that the sine-Gordon equation admits

the solution

�(x, t) = 4
m
p

�
arctan

⇣
em(x�x

0

)
⌘
, (21.12)

where x0 is an arbitrary constant. This is the static soliton solution to the sine-Gordon

equation. To verify this you should first note that this putative solution does not depend

upon time (it is a static solution), so the time derivatives of � in (21.12) vanish and we

only need to compare the x derivatives to the sine term. The key thing to check is that

d2

dy2
(4 arctan(ey)) = sin(4 arctan(ey)). (21.13)

To check this, you will need the math facts:

d

dy
arctan(y) =

1

1 + y2
, (21.14)

sin(4 arctan(y)) = �4
y(y2 � 1)

(1 + y2)2
. (21.15)

(These calculations are a good place to try your skills with some algebraic computing

software!) With these results in hand, it is a simple matter to see that (21.12) does solve

the sine-Gordon equation (exercise).

The solution we have exhibited to the sine-Gordon equation is not, at first glance, a

solitary wave such as we discussed for the wave equation. To see this, just plot the graph of
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soliton solution (see Problems) to see that the wave profile is rather spread out. However,

it has the property that its energy density is localized about x = x0. The energy density

of � is defined as follows:

E =
1

2

✓
@�

@t

◆2

+
1

2

✓
@�

@x

◆2

+
m4

�

"
1� cos(

p

�

m
�)

#
. (21.16)

This definition is used because it leads to the continuity equation

@E

@t
+

@j

@x
= 0 (21.17)

when � satisfies the sine-Gordon equation. Here we define the energy current density just

as we did for the wave equation:

j = �

@�

@t

@�

@x
. (21.18)

(You will be asked to verify this continuity equation in the Problems.) To see the local-

ization of energy, set x0 = 0 (just for simplicity) and compute the energy density for the

static soliton solution (21.12). You will find:

Ex
0

=0 = 16
m4

�

e2mx

(1 + e2mx)2
. (21.19)

This function is peaked about x = 0 and decays rapidly as |x| grows. Thus the static

soliton solution can be viewed as defining a “lump” of energy at x = x0.

It is not too hard to see that the sine-Gordon equation actually allows for a (time-

dependent) solution in which the soliton we have exhibited moves at any constant speed

V . To see this, we employ an elegant trick, which is based upon the observation that if

�(x) is a (static) solution to the equation then so is

�(x, t) = �(
x± V t
p

1� V 2
). (21.20)

To check this, we just need the chain rule. We have

@�(x, t)

@x
=

1
p

1� V 2
�0(

x± V t
p

1� V 2
) (21.21)

and so
@2�(x, t)

@x2
=

1

1� V 2�
00(

x± V t
p

1� V 2
). (21.22)

We also have
@�(x, t)

@t
= ±

V
p

1� V 2
�0(

x± V t
p

1� V 2
), (21.23)
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and
@2�(x, t)

@t2
=

V 2

1� V 2�
00(

x± V t
p

1� V 2
), (21.24)

Here we using the notation

�0(z) =

✓
d�(y)

dy

◆
y=z

, �00(z) =

✓
d2�(y)

dy2

◆
y=z

. (21.25)

So the formulas with �0, etc. are the derivatives of the function � evaluated at the point
x±V t
p

1�V 2

. Now, using these formulas, plug the result into the sine-Gordon equation to see

that � satisfies this equation because, as we showed earlier,

�00 =
m3
p

�
sin(

p

�

m
�). (21.26)

The interpretation of this result is that one has solutions (21.20) of the sine-Gordon

equation which are “lumps” of energy, propagating without change in shape at any constant

speed V . It is this feature of the solution, particularly its energy density, that justifies the

description of (21.12) as a “solitary wave”. One can view these solutions – these solitary

waves – as a continuum model of a free particle.

The change of variables

x !

x± V t
p

1� V 2
, (21.27)

when complemented with

t !
t± V x
p

1� V 2
, (21.28)

is an example of a Lorentz transformation. It defines the relation between time and space

as determined in two inertial reference frames that are moving at constant relative velocity

±V , according to Einstein’s special theory of relativity. Using a computation similar to that

performed above, it can be shown that any solution of the sine-Gordon equation, �(x, t)

is transformed to another solution �(x, t) of the sine-Gordon equation by the Lorentz

transformation:

�(x, t) = �(
x± V t
p

1� V 2
,
t± V x
p

1� V 2
). (21.29)

This state of a↵airs is characterized by the statement that Lorentz transformations are

symmetries of the sine-Gordon equation. You can think of two solutions related by (21.29)

as a single solution being viewed in two di↵erent reference frames moving at constant

relative velocity.

So far we have only shown how to get solitary wave solutions to the sine-Gordon

equation, and this is all we shall do here. However, it can be shown that there exist

solutions to the sine-Gordon equation that have properties such as we saw when we looked
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at the wave equation and which justify calling these solutions “solitons”. At very early

times (mathematically: t ! �1) the solution takes the form of two solitary waves of the

type just described, very far apart and approaching each other at relative speed 2V . This

(more complicated) solution is usually called a “two soliton solution”. For the sake of our

further discussion, let us call the solitary wave moving toward the left as “soliton 1” and

the one moving to the right as “soliton 2”. As time runs the solution has a relatively

complicated wave profile as the two solitary waves overlap and “interact”. At late times

(mathematically: t ! 1), the solution again takes the form of two solitons, with soliton

1 now moving o↵ toward x = �1 and soliton 2 moving o↵ toward x = +1. Thus this

solution can be viewed as a continuum model of two particles which approach each other,

interact, then continue on their way unscathed. Moreover, solutions of this type also

exist for any number of solitons. It is this stability of the solitons as they propagate and

interact with each other which is the defining feature of the soliton solutions. The structural

stability of the individual solitons is due to another remarkable property exhibited by the

sine-Gordon equation: it admits infinitely many conservation laws! This will be explored

in the Problems.
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