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ABSTRACT 
 

Movement Patterns and Multi-scale Factors that Influence Exotic Brook Trout and 

Endemic Bonneville Cutthroat Trout Distribution and Abundance  

in the Mill Creek Drainage, Utah 
 
 

by 
 
 

Benjamin K. Nadolski, Master of Science 
 

Utah State University, 2008 
 
 

Major Professor: Dr. Phaedra Budy 
Department: Watershed Sciences 

 
 

 Introduced brook trout (Salvelinus fontinalis) are implicated as a primary factor 

leading to the decline in distribution and abundance of native cutthroat trout 

(Oncorhynchus clarkii).  However, not all introductions are successful, suggesting local 

conditions influence the success of invasions.  Therefore, I sought to determine the multi-

scale factor(s) that influence brook trouts’ invasion success of native Bonneville cutthroat 

trout (Oncorhynchus clarkii utah) habitats in Mill Creek, Utah.  I conducted patch 

occupancy surveys to determine watershed-scale brook trout and cutthroat trout 

distribution.  I also determined the relative abundance of brook trout and cutthroat trout at 

the reach-scale by conducting three-pass depletion electrofishing surveys at ten index 

sites throughout the drainage.  Upon completion of those surveys, I collected key 

watershed and reach-scale biotic and abiotic data twice during base-flow conditions.  In 
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addition, to determine watershed-scale population connectivity and the potential for 

upstream invasion by brook trout, I assessed fish movement using two-way weir traps.  

At the watershed-scale, stream slope appeared to limit brook trout invasion into some 

portions of the drainage.  Intermittent stream-flows and extreme levels of stream slope (> 

10%) appeared to limit cutthroat trout distribution.  At the reach-scale, regression 

analyses indicated aquatic invertebrate abundance and low winter water temperatures 

may have influenced the abundance of brook trout, but my models explained little 

variation in cutthroat trout abundance overall.  I observed high rates (74%) of site fidelity 

amongst brook trout, and mobile brook trout moved short distances (range=62-589 

meters) overall.  Cutthroat trout also exhibited high site fidelity (92%), but their 

movement was more variable, as few individuals moved long distances (up to 12.15 km).  

These findings will help prioritize cutthroat trout management actions in this watershed, 

and will be useful in determining why brook trout are successful invaders in some 

systems, yet remain in low and patchy abundance in others.   

              (91 pages) 
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INTRODUCTION 

 
The worldwide proliferation of nonnative species invasions is well documented 

and poses one of the greatest threats to the persistence of native fauna (Williamson 1999).  

In fact, the introduction of nonnative species has been implicated in 49% of all species 

listings under the Endangered Species Act (Wilcove et al. 1998).  For these reasons, the 

introduction of nonnative species is cited as one of the foremost causes of biotic 

impoverishment both worldwide (Scott and Helfman 2001), and in the United States.   

Historically, in an effort to increase species diversity amongst western streams, the 

United States Fish Commission used the transcontinental railway to transport eastern 

aquatic species to the west.  As a result, one in four fish that occur in streams of 12 

western states is nonnative (Schade and Bonar 2005).  Despite the well documented 

impacts to native fish species, nonnative species introductions have continued. 

The introductions of nonnative salmonid species, such as brook trout (Salvelinus 

fontinalis), have occurred since the late 1800’s (MacCrimmon and Campbell 1969), and 

are implicated in the decline, and in some cases, loss of native trout species throughout 

the intermountain west (Gresswell 1988).  The negative impacts of these introductions 

to native trout species include hybridization (Carmichael et al. 1993; Henderson et al. 

2000; Hitt et al. 2003), agonistic behavioral interactions (Wang and White 1994), 

predation (McGrath and Lewis 2007), habitat use overlap (Gunckel et al. 2002), and 

diet overlap (Hilderbrand and Kershner 2004).  Through interspecific competition, 

these negative interactions can lead to reduced body condition, growth, and ultimately 

fitness of native fish populations, including native cutthroat trout (Oncorhynchus 

clarkii).   
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The cutthroat trout is a salmonid species native to portions of western North 

America (Trotter 1987), and has the broadest distribution of native western trout species 

(Behnke 1992).  The details of its evolutionary origin are not clearly understood, but 

fossil records indicate that a divergence of a common ancestor, ancient “Parasalmo,” 

occurred approximately 2-8 million years ago, and gave rise to ancient forms of cutthroat 

trout and rainbow trout (Behnke 1988; Smith et al. 2002).  Natural dispersal of cutthroat 

trout followed by geographic isolation events led to the evolutionary divergence of 

multiple cutthroat trout subspecies.  Currently, there are eight putative subspecies of 

cutthroat trout in western North America (Behnke 1992), including the Bonneville 

cutthroat trout (Oncorhynchus clarkii utah), which is a plesiomorphic sister group to all 

other native cutthroat trout subspecies (Smith et al. 2002).  Extant populations of 

Bonneville cutthroat trout persist in portions of Utah, Idaho, Wyoming, and Nevada 

(Gresswell 1988), and have experienced reductions in historically occupied habitats, with 

populations primarily relegated to headwater tributary streams (Lentsch et al. 1997).  

Many factors have contributed to this decline, including habitat degradation (Binns and 

Remmich 1994), disease (de la Hoz Franco and Budy 2004), hybridization (Weigel et al. 

2003), and negative interactions with nonnative fish species such as brook trout (Griffith 

1988).   

The introduction and subsequent invasion of brook trout has occurred throughout 

western United States (Behnke 1992; Adams et al. 2002; Dunham et al. 2002; Shepard 

2004), often in drainages containing native cutthroat trout populations (Tyus and 

Saunders 2000; Shepard 2004; Meyer et al. 2006).  Brook trout are native to portions of 
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eastern Canada, the Atlantic, Great Lakes and Mississippi River Basins, Minnesota, and 

northern Georgia (Page and Burr 1991), and have been introduced into 35 out of 50 states 

to be used for sport fish purposes (Fuller et al. 1999).  Negative competitive interactions 

between brook trout and cutthroat trout are well studied and include diet (Dunham et al. 

2000; Hilderbrand and Kershner 2004) and habitat use overlap (Destaso and Rahel 1994; 

Peterson and Fausch 2003), as well as direct competition through agonistic behavioral 

interactions (Cunjak and Green 1984; Hutchison and Iwata 1997).  These interactions 

often result in reduced body condition, growth, and fitness of native cutthroat trout 

populations, and can be so adverse that Behnke (1992), observed a virtual replacement of 

cutthroat trout by brook trout within Black Hollow Creek, Colorado during a five-year 

period.   

Despite the prolific history of brook trout introductions, not all invasions are 

successful, suggesting that environmental factors can mediate brook trout invasion 

success.  These environmental factors operate at multiple spatial and temporal scales 

(Poff 1997), and are important in determining local species assemblages by acting as a 

species “filter.”  According to this concept, species’ pass through a hierarchy (i.e., large-

scale to small-scale) of spatially and temporally-nested environmental filters, and as 

species’ pass through increasingly finer filters, local biotic and abiotic conditions 

determine a species presence or absence.  The declining status of brook trout in its native 

range (Hudy et al. 2005), and widespread invasion success outside its native range, have 

resulted in numerous studies of the biotic and abiotic variables that influence brook trout 

distribution and abundance at multiple hierarchical scales (e.g., filters).  Some examples 
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include geology and geomorphology (Nelson et al. 1992; Kocovsky and Carline 2006), 

stream slope (Chisholm and Hubert 1986; Adams et al. 2000; Isaak and Hubert 2000), 

macrohabitat characteristics (Lindstrom and Hubert 2004), water temperature (Shepard 

2004; Mullner and Hubert 2005), stream pH (Cleveland et al. 1986; Jordahl and Benson 

1987), fine sediment abundance (VanDusen et al. 2005; Hartman and Hakala 2006), 

invertebrate abundance (VanDusen et al. 2005), and life-history stage (Kennedy et al. 

2003).  In addition, large scale (i.e., watershed-scale) movement dynamics play an 

important role in determining the likelihood of successful invasion.  Movement behaviors 

of potamadromous (i.e., migration within flowing freshwaters) brook trout are well 

studied, and include movements into and out of spawning, over-wintering, and feeding 

habitats (Northcote 1997; Gowan and Fausch 2002).  These behaviors can be influenced 

by environmental factors including, stream discharge (Chrisholm et al. 1987), and 

frequency of pool habitats (Lindstrom and Hubert 2004).  In addition, if suitable habitats 

are patchily distributed, connectivity amongst those areas through movement is an 

important mechanism for successful invasion, and in many cases, these movements 

promote the invasion of native cutthroat trout habitats (Adams et al. 2002; Peterson and 

Fausch 2003; Benjamin et al. 2007).  However, the location, timing, duration, and 

distance of these movements can vary within and across populations, habitats, and diel 

periods (Gowan and Fausch 1996), making it important to understand large-scale, 

population-specific movement dynamics when investigating the factors that influence the 

success and spatial extent of brook trout invasion.   
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The goal of my research was to better understand why brook trout are successful 

invaders in some systems, yet, remain in low, patchy abundance in similar systems.  To 

determine this, I 1) determined the watershed-scale biotic and abiotic factors that 

influence the distribution of brook trout and cutthroat trout in a northern Utah stream, 2) 

determined the reach-scale biotic and/or abiotic factors that influence the abundance of 

brook trout and cutthroat trout, and 3) characterized watershed-scale brook trout and 

cutthroat trout movement patterns and assessed the effects of movement on brook trout 

distribution and invasion.   
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STUDY AREA 

 
Mill Creek is a tributary to the headwater portions of the Bear River, and is 

located approximately 2,740 meters above sea level in Summit County, Utah (Figure 

B.1).  The Bear River Basin encompasses portions of Utah, Wyoming, and Idaho before 

terminating into the Great Salt Lake.  The upper portions of Mill Creek has a single 

channel of low sinuosity and high slope, whereas the lower portion has greater sinuosity 

and less slope.  Mill Creek supports a unique and diverse community of native fish 

species including Bonneville cutthroat trout, northern leatherside chub (Lepidomeda 

copei), longnose dace (Rhinichthys cataractae), speckled dace (Rhinichthys osculus), 

sculpin (Cottus spp.), mountain whitefish (Prosopium williamsoni), mountain sucker 

(Catostomus platyrhynchus), Utah sucker (Catostomus ardens), and redside shiner 

(Richardsonius balteatus hydroflox).  The only nonnative fish species in Mill Creek is 

brook trout.  The Utah Division of Wildlife Resources considers the Bonneville cutthroat 

trout population in Mill Creek a “core conservation population,” thereby warranting 

increased conservation protection (Lentsch et al. 1997).  Mill Creek and its tributaries 

contain one of the largest remaining genetically pure metapopulations of Bonneville 

cutthroat trout.  In addition, Mill Creek and its tributaries support one of only two extant 

populations of northern leatherside chub in Utah. 

In 2003 and 2004, as part of a large-scale electrofishing survey to document the 

spatial distribution of northern leatherside chub in Mill Creek and its tributaries, the Utah 

Division of Wildlife Resources coarsely identified watershed-scale fish species 

distributions.  Those findings suggested that cutthroat trout occupied large portions of the 
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watershed, while brook trout were patchily distributed throughout the watershed and had 

not invaded some nearby tributary streams, despite no apparent physical or biological 

barrier(s).  In addition, these surveys documented dynamic spatial and temporal 

differences in fish density at multiple locations, suggesting expansion and contraction of 

brook trout and cutthroat trout populations throughout the drainage.  I used these pilot 

data to design my study of the watershed and reach-scale factors that influence the 

distribution and abundance of brook trout and Bonneville cutthroat trout in the Mill 

Creek drainage.  
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METHODS 

 
Watershed-scale assessment 

Watershed-scale patch occupancy surveys were conducted to describe large-scale 

brook trout and cutthroat trout distribution in Mill Creek and its tributaries.  Survey 

methods were based on protocols developed by Peterson et al. (2002), but modified to 

meet the constraints and objectives of this project.  Starting at the upstream extent of 

known brook trout occupancy (based on pilot study results) in Mill Creek and each of its 

tributaries, I measured a 50-meter electrofishing study unit.  A one-pass electrofishing 

depletion survey was conducted within that 50-meter study unit.  All fish were captured, 

identified, measured, weighed, and released.  Upon completion of that survey, moving in 

an upstream direction, within another 50-meter study unit separated by a 500-meter 

stream segment, another one-pass electrofishing depletion survey was completed.  This 

process was repeated until no brook trout or cutthroat trout were detected at three 

consecutive 50-meter study units, or when the water source was reached, whichever came 

first.  At each study unit, Universal Transverse Mercator (UTM) coordinates were 

recorded.  The lowest 50-meter study unit that contained brook trout represented the 

upstream extent of brook trout distribution.  Likewise, the lowest 50-meter study unit that 

contained cutthroat trout represented the upstream extent of cutthroat trout distribution.   

Watershed-scale stream slope was determined by using stream layers in ArcGIS 

software to divide Mill Creek and its tributaries into 250-meter stream segments.  I then 

overlaid the stream layers with a 10-meter resolution digital elevation model, and 

assigned top and bottom elevation values (i.e., meters above mean sea level) to each 
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stream segment.  The difference between the top and bottom elevations was calculated 

and divided by the distance between the two points (i.e., 250-meters) to determine the 

percent slope of each stream segment.  That process was repeated throughout the 

watershed to construct a watershed-scale longitudinal profile of stream slope. 

Watershed-scale patterns of water chemistry were determined by measuring pH, 

salinity (ppm), conductivity (μ/cm), turbidity (NTU), and total dissolved solids (TDS; 

g/L) at multiple locations along the longitudinal gradient of Mill Creek and its tributaries 

(Figure B.2).  All water chemistry measurements were collected using a YSI model 556 

MPS multi-meter.  Turbidity samples were collected and analyzed using a LaMotte 

model 2020e turbidimeter following the manufacturers guidelines. 

 
Watershed-scale analysis 

The results of patch occupancy surveys were used to determine if stream slope or 

water chemistry influenced large-scale brook trout and cutthroat trout distribution.  I used 

the results of patch occupancy surveys to determine where brook trout and cutthroat trout 

occurred, and qualitatively compared that distribution to stream slope and water 

chemistry measurements.  

 
Reach-scale assessment 

Based on spatially explicit patch occupancy surveys, and to represent all habitat 

types present along the longitudinal stream gradient of Mill Creek and its tributaries, I 

identified ten permanent 100-meter index sites throughout the watershed that represented 

the lower, middle, and upper portions of Mill Creek (Mill Creek border, low, middle, and 
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high), Deadman Creek (Deadman Creek low, middle, and high), and North Fork 

(North Fork low, middle, and high; Figure B.3).  At each index site, I collected 

information describing key biotic and abiotic variables twice during base-flow summer 

conditions: once in July and August.  Three-pass depletion electrofishing surveys were 

performed at each index site in order to understand the relationship of these variables to 

brook trout and cutthroat trout abundance.   

Nutrient samples were collected using 250-milliliter amber bottles.  Immediately 

following collection, all samples were placed in coolers containing dry ice.  Samples 

were analyzed by High Sierra Water Lab in Truckee, California to determine the 

concentrations of ammonia, total nitrogen, Kjeldal nitrogen, nitrates, nitrites, dissolved 

phosphorous, soluble phosphorous, and total phosphorous.  In addition, I measured 

stream pH, conductivity, salinity, and turbidity following the protocols described 

previously (see watershed-scale assessment).  

To determine water temperature profiles at all ten index sites, hourly water 

temperature was measured using temperature data loggers.  This data was summarized 

using yearly minimum, median, mean, and maximum values for each index site.  Due to 

some incidence of logger loss or malfunction, I obtained temperature profiles for some 

index sites by regressing known temperatures of two “nearest neighbor” locations and 

applying the regression equation to areas of unknown temperature.  For example, the 

temperature profiles of the Mill Creek middle and Mill Creek high index sites during 

2007 were highly related (n=5,521, R2=0. 98), thus allowing me to predict temperature 

profiles where data were missing.   
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Pebble counts were used to characterize substrate composition.  Each index site 

was divided into ten evenly spaced longitudinal stream segments.  At one randomly 

selected location within each stream segment, I collected ten substrate particles across the 

width of the stream channel using the heel-toe method.  Particle size was determined by 

recording the largest slot that retained the particle using an Albert Scientific field sieve-

gravelometer (Bunte and Abt 2001). 

Stream discharge was measured by placing a meter tape over the width of the 

stream channel.  Total stream width was recorded at 20 equal distance locations across 

the stream channel.  Stream velocity, depth, and distance from shore were also measured.  

Velocity measurements were recorded using a Marsh-McBirney Flo-Mate model 2000 

electromagnetic flow-meter set at 0.6 of the total stream depth.  I calculated stream 

discharge using methods outlined by Harrelson et al. (1994).   

Stream slope was measured using an engineering level.  At each index site, a staff 

gauge was placed at the downstream end of a riffle habitat near the downstream end of 

the index site, as well as at the downstream end of a riffle habitat near the upstream end 

of the index site.  I estimated stream slope as the difference in elevation at the two staff 

gauges divided by the total stream distance between staff locations.  When necessary, I 

used turning points to ensure direct line of sight between the laser and the staff gauge.  

Aquatic invertebrates were collected both qualitatively and semi-quantitatively to 

determine species richness and species abundance.  For qualitative samples, I used a 

25cm x 46cm kick-net with 500-micron mesh to collect a sample from all habitat types 
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(e.g., pool, riffle, run, beaver pond), present within each index site.  For quantitative 

samples, I collected two kick-net samples from four riffle habitats within the index site.             

As an index of algal abundance, periphyton samples from ten rocks were taken 

from each index site.  Rocks were chosen randomly from ten evenly spaced longitudinal 

stream segments.  Upon collection, rocks were placed on ice and transported to the 

laboratory.  Two subsamples of the scrubbate were collected and filtered through a glass 

fiber filter to determine concentrations of chlorophyll a.  After filtration, I froze all filters 

until they were processed using protocols outlined in Clesceri et al. (1989).  

Brook trout and cutthroat trout abundance was estimated using standard 3-pass 

depletion techniques (Krebbs 1999).  Stream distance of all 100-meter electrofishing 

survey locations was measured using a drag tape.  A block net was placed at the lower 

and upper ends of each index site and electrofishing surveys were completed using 

battery powered backpack electrofishing units.  Electrofishing settings varied depending 

upon levels of conductivity within the stream.  In general, I set the pulse at J (70 Hz), the 

frequency at 4 (4 ms), and the voltage at 300 V.  Electrofishing commenced with a crew 

ranging from 3-6 people.  Three electrofishing passes were conducted and all the fish 

encountered were removed and placed into live cages.  I identified all fish to species, 

weighed them to the nearest gram, and measured them to the nearest millimeter total 

length.  Before release, I anesthetized all brook trout and cutthroat trout that measured ≥ 

150 millimeters total length with a non-lethal dose of tricaine methanesulfonate (MS-

222) and inserted an external anchor tag posterior to the dorsal fin.  In addition, a 23-

millimeter half-duplex radio frequency identification (RFID) transponder tag was 
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surgically implanted into the ventral region slightly posterior to the pectoral fin.  Upon 

completion of the survey, I measured wetted stream width at ten randomly selected 

locations along the longitudinal gradient of the index site to determine average stream 

width. 

 
Reach-scale data analyses 

To standardize fish abundance across index sites, all estimates were converted 

from linear abundance (i.e., number of fish per kilometer of stream) to aerial abundance 

(i.e., number of fish per hectare of stream) using average stream width values.  To 

determine the variable(s) that influenced the magnitude of brook trout and cutthroat trout 

abundance at the reach-scale, I plotted each biotic and abiotic variable as continuous 

explanatory variables versus the log-transformed brook trout and cutthroat trout 

abundance estimates for each index site as the response variable.  I used linear and 

quadratic regression models to determine the relationship between each explanatory 

variable and brook trout and cutthroat trout abundance estimates.  Regression analyses 

were generated using the REG procedure in SAS/STAT software, Release 9.1.3 of the 

SAS System for Windows.  P-values were assessed with significance determined a priori 

at a=.05, and I evaluated goodness of fit, homogeneity of variance, and influence. 

 
Movement 
 

To determine the extent of large-scale brook trout and cutthroat trout movement, 

and to identify the primary pathways of fish movement throughout the watershed, in-

stream, two-way weir traps were deployed at two locations in Mill Creek, one location in 
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Deadman Creek, and one location in North Fork (Figure B.4).  All traps were checked 

daily from June through September, 2007.  I identified all captured fish to species, 

weighed them to the nearest gram, and measured them to the nearest millimeter total 

length.  If a marked fish was captured (e.g., from index site sampling), the unique tag 

identification was recorded. In addition, for all fish captured I recorded the direction of 

movement (i.e., upstream or downstream) and the date of capture.  All unmarked trout ≥ 

150 millimeters total length were anesthetized with a non-lethal dose of tricaine 

methanesulfonate (MS-222), and internal and external tags were surgically administered.  

In addition, during September, 2007, I “spotshocked” portions of Mill Creek, North Fork, 

and Deadman Creek to supplement the movement data collected from index site and 

weir-trap sampling.  All marked fish were identified to species, measured to the nearest 

millimeter total length, and weighed to the nearest gram.  In addition, the date of capture 

and unique tag identification were recorded.  Finally, the location of each capture was 

recorded using Universal Transverse Mercator (UTM) coordinates. 

 
Movement model 

  A multi-strata mark/recapture model in Program MARK was used to estimate 

capture, survival, and movement probabilities for brook trout and cutthroat trout.  Four 

main areas (i.e., strata) of brook trout and cutthroat trout occupancy throughout the 

drainage were identified (Figure B.5).  I assigned each stratum a unique identification 

code (A, B, C, or D), then divided all six encounter occasions into six categories as 

follows: 1) index sites sampled during July, 2006, 2) index sites sampled during August, 

2006, 3) two-way weir traps sampled from June through September, 2007, 4) index sites 
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sampled during July, 2007, 5) index sites sampled during August, 2007, and 6) study 

streams spot electrofished during September, 2007.  The individual encounter histories of 

all marked fish were used to determine which stratum each fish occupied during each 

encounter occasion.  I expressed the encounter history of each fish as a contiguous series 

of locations (strata A-D) for each encounter occasion (1-6), and assigned a “0” to fish that 

were not observed in any strata for that particular encounter occasion.  For example, a 

fish with encounter history “AA0BCD” was originally captured in stratum A during 

index site sampling in July of 2006, was recaptured in stratum A during index site 

sampling during August of 2006, was not seen in any strata during weir trap sampling 

from June through September of 2007, was recaptured in stratum B during index site 

sampling during July of 2007, was recaptured in stratum C during index site sampling in 

August of 2007, and was captured in stratum D during spot electrofishing surveys in 

September of 2007.  All encounter histories were compiled into an input file (Table A.1), 

and I estimated the probability of capture (p), the probability of survival (Ф), and the 

probability of transition (i.e., movement; ψ) among all strata for brook trout and cutthroat 

trout.  I started by estimating the best model (i.e., global model) for all three probability 

estimates (p, Ф, and ψ) by varying recapture, survival, and transition structure.  Next, I 

calculated subsequent iterations with one probability structure varying at one time, while 

the remaining two probability structures remained constant.  This was repeated for all 

combinations of all three probability estimates.  I then used corrected Akaike’s 

Information Criteria (AICc) to choose the most parsimonious top model of capture, 

survival, and transition probabilities.
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RESULTS 

 
Watershed-scale assessment 

Despite the apparent lack of physical or biological barriers to fish movement, 

brook trout were patchily distributed throughout portions of the Mill Creek drainage and 

had not invaded some nearby tributary streams.  More specifically, brook trout invaded 

and were established in approximately 24.68 of 30.92 km (80%) of Mill Creek, and were 

only sparsely distributed throughout an additional 4.69 km (15%) of Mill Creek.  In 

addition, brook trout had invaded and were established in approximately 4.54 of 6.19 km 

(73%) of Deadman Creek, but had not invaded Carter Creek, Christmas Tree Creek, 

McKenzie Creek, the unnamed tributary near the headwater portions of Mill Creek, and 

the unnamed tributary adjacent to McKenzie Creek.  In total, brook trout occupied 

approximately 33.91 of 71.12 total km (48%) of the Mill Creek drainage.  Conversely, 

cutthroat trout were widely distributed throughout the drainage and occupied large 

portions of Mill Creek, Carter Creek, Christmas Tree Creek, Deadman Creek, McKenzie 

Creek, North Fork, and the unnamed tributary adjacent to McKenzie Creek.  In total, 

cutthroat trout occupied approximately 55.52 of 71.12 total km (78%) of the Mill Creek 

drainage.     

Based on watershed-scale stream slope profiles, patch occupancy surveys, and 

index-site abundance estimates, brook trout were established in areas with low to 

moderate stream slopes.  More specifically, mean stream slope of all areas where brook 

trout were established was 0.019%, and ranged from 0.002% to 0.046% in Mill Creek, 

and 0.013% to 0.060% in Deadman Creek (Table A.2).  In both streams, brook trout 
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establishment ended at a point of precipitous increase in stream slope (Figure 1).  

Conversely, cutthroat trout were established in areas that ranged from low to high stream 

slope.  More specifically, stream slope in areas where cutthroat trout were established 

averaged 0.035%, and ranged from 0.005 to 0.101% (Table A.2).   

In general, conductivity, pH, and TDS measurements were lower in North Fork 

and McKenzie Creek than in Mill Creek, Deadman Creek, and Carter Creek, while 

turbidity and salinity measurements varied widely across sample sites and sample streams 

(Table A.3).  Brook trout occupied some areas with higher levels of conductivity, pH, and 

TDS (i.e., portions of Mill Creek and Deadman Creek), and were generally absent in 

areas of low conductivity, TDS, and pH (i.e., North Fork and McKenzie Creek).  

Cutthroat trout were widely distributed throughout all sampled tributaries and occupied 

stream reaches that varied in turbidity, conductivity, salinity, pH, and TDS.   

Overall, the density of brook trout ranged from 23 (North Fork low July, 2006) to 

6084 (Deadman Creek middle August, 2007) individuals per hectare, and varied across 

sample periods and years (Figures 2, B.6, and B.7).  Brook trout were detected at eight 

index sites, and in general, population abundance was lowest in North Fork, highest in 

Deadman Creek, and intermediate in Mill Creek.  Overall, the density of cutthroat trout 

ranged from 59 (Deadman Creek low July, 2007) to 1870 (Mill Creek middle August, 

2007) individuals per hectare, and varied within index sites and across sample periods 

and years (Figures 2, B.6, and B.7).  Cutthroat trout were detected at all ten index sites 

and, in general, abundance was lowest in North Fork, highest in Mill Creek, and 

intermediate in Deadman Creek.  Overall, cutthroat trout were more abundant than brook  
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trout in Mill Creek and North Fork, and brook trout were more abundant than cutthroat 

trout in Deadman Creek. 

 
Nutrient concentrations, water temperature, substrate, discharge, stream slope, 

and aquatic invertebrate abundance and diversity varied widely within and across all 

index sites and study streams (Tables 1, and A.4-A.10).  Nutrient concentrations were 

generally higher in 2007 than in 2006, and differences across sites remained similar 

across years (Table A.4).  Water temperatures were generally cooler in 2006 than in 

2007, and were highest in Deadman Creek, lowest in North Fork, and intermediate in 

Mill Creek (Table A.5).  In addition, median water temperature distribution was skewed 

towards cooler temperatures (Figure 3).  In general, substrate size was greatest in North 

Fork, smallest in Deadman Creek, and intermediate in Mill Creek.  Percent fines ranged 

from zero to 74, with the lowest values from the Mill Creek high index site and the 

highest values from the Deadman Creek low index site (Table A.6).  Stream discharge 

measurements varied widely across index sites, sample periods, and sample years, but 

were generally highest in Mill Creek, lowest in Deadman Creek, and intermediate in 

North Fork (Table A.7).  Stream slope varied across index sites and study streams, and 

was highest in North Fork, lowest in Deadman Creek, and intermediate in Mill Creek 

(Table A.8).  Total invertebrate abundance was generally highest in Mill Creek, lowest in 

Deadman Creek, and intermediate in North Fork, and species diversity was highest in 

Deadman Creek, lowest in Mill Creek, and intermediate in North Fork (Table A.9).  For 

watershed-scale water chemistry results, conductivity and pH values measured in Mill 
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Creek and Deadman Creek were similar, but were generally higher than those 

measured in North Fork (Table A.10).    

Median temperature, dissolved phosphorous, minimum temperature, D16, and 

conductivity were significantly related to brook trout abundance based on a linear model, 

and total invertebrate abundance, percent fines, and mean temperature were significantly 

related to brook trout abundance based on a quadratic model (Table 2; Figure 4).  I 

observed no other significant relationships among the remaining explanatory variables 

and brook trout abundance.   

Maximum temperature, nitrate-nitrite, chlorophyll a abundance, D84, D90, D64, 

and D50 were significantly related to cutthroat trout abundance based on a linear model 

(Table 3; Figure 5).  In addition, soluble reactive phosphorous was significantly related to 

cutthroat trout abundance based on a quadratic model.  I observed no other significant 

relationships among the remaining explanatory variables and cutthroat trout abundance.  

However, due to low r2, none of the explanatory variables measured appeared to explain a 

meaningful portion of the variation in cutthroat trout abundance. 
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Figure 1.  Longitudinal stream profile of percent stream slope (solid line) of Mill Creek 
and Deadman Creek (y-axes), with the location and number of brook trout per hectare 
(bars) at each index site positioned along the longitudinal stream profile (x-axes).  
Dashed vertical lines indicate the approximate upstream extent of brook trout 
establishment based on patch occupancy surveys.
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Figure 2.  Mean brook trout and cutthroat trout abundance at all ten index sites during 
2006 and 2007.  Error bars represent 95% confidence intervals. 
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Table 1.  Mean (SD) values of all biotic and abiotic variables measured at all ten index 
sites in Mill Creek, Deadman Creek, and North Fork during July and August, 2006 and 
2007. 
 
 

Variable Mill Creek Deadman Creek North Fork 
Conductivity 253.19 (38.96) 355.58 (93.65) 40.51 (12.53) 
pH 8.21 (0.41) 8.11 (0.43) 7.56 (0.32) 
Turbidity 0.96 (0.47) 1.68 (0.88) 1.66 (0.63) 
Minimum Temperature -0.12 (0.18) -0.03 (0.33) -0.33 (0.23) 
Median Temperature 0.24 (0.18) 0.5 (0.36) 0.03 (0.13) 
Mean Temperature 2.67 (0.54) 3.11 (0.32) 1.87 (0.01) 
Maximum Temperature 20.03 (3.39) 18.85 (3.19) 17.94 (1.47) 
Discharge 0.17 (0.19) 0 (0) 0.01 (0) 
Soluble Reactive Phosphorous 2 (0.76) 1 (0) 2.67 (2.66) 
Dissolved Phosphorous 7.75 (1.49) 8.67 (2.73) 7.33 (1.97) 
Total Phosphorous 13.75 (3.73) 12.17 (3.54) 11.17 (3.25) 
Nitrate-Nitrite 112.25 (109.57) 5.33 (3.08) 47.17 (47.13) 
Total Keljdal Nitrogen 216.75 (43.27) 189.83 (69.43) 118.5 (15.76) 
Total Nitrogen 329 (112.74) 195.17 (69.57) 165.67 (36.26) 
Ammonia 5.25 (3.77) 2.17 (0.41) 17 (34.8) 
Chlorohlyll a Abundance 3.33 (1.61) 36.4 (73.15) 1.36 (1.41) 
Hill Eveness 0.56 (0.09) 0.58 (0.13) 0.6 (0.1) 
Number OUT 27.13 (6.13) 38.17 (8.28) 30.83 (3.82) 
Shannon Diversity 2.19 (0.22) 2.49 (0.53) 2.46 (0.27) 
Simpson Diversity 0.19 (0.05) 0.16 (0.15) 0.14 (0.06) 
EPT Abundance 361.88 (42.66) 185.33 (143.23) 337.5 (75.88) 
Total Invertebrate Abundance 482.25 (51.64) 434.83 (76.21) 455.17 (54.35) 
D16 37.44 (14.12) 4 (0) 38.5 (12.75) 
D50 76.94 (30.38) 12.75 (9.1) 77.67 (21.91) 
D64 98.06 (37.08) 20.75 (14.01) 104.17 (30.52) 
D84 149.81 (50.13) 52.92 (22.88) 171 (35.06) 
D90 183.56 (60.06) 78.5 (27.7) 220.17 (35.72) 
Percent Fines 3.44 (3.44) 47.5 (23.88) 2.58 (2.27) 
Percent Slope 0.03 (0.02) 0.02 (0.02) 0.06 (0.01) 
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Figure 3.  Median (open circles) and mean (dark circles) annual water temperatures at all index sites during 2006 and 2007.  Bars 
represent minimum and maximum annual water temperatures. 
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Table 2.  Outputs of all linear models and all significant quadratic models for brook 
trout.  All models are ranked in descending order of r2.   
 

 

Variable P-value r2 Parameter Estimate SE Model Type 
Total Invertebrate Abundance *0.003 0.737 0.000 0.000 Quadratic 
Median Temperature *0.001 0.664 2.239 0.504 Linear 
Percent Fines *0.000 0.520 -0.001 0.000 Quadratic 
Mean Temperature *0.029 0.463 -1.510 0.581 Quadratic 
Dissolved Phosphorous *0.038 0.395 0.205 0.084 Linear 
Minimum Temperature *0.044 0.346 1.767 0.768 Linear 
D16 *0.012 0.276 -0.017 0.006 Linear 
Conductivity *0.033 0.207 1.598 0.396 Linear 
Simpson's Diversity 0.074 0.312 3.636 1.801 Linear 
Hill Evenness 0.077 0.308 -3.361 1.680 Linear 
Maximum Temperature 0.092 0.260 5.115 1.600 Linear 
D50 0.054 0.173 -0.069 0.003 Linear 
Shannon's Diversity 0.219 0.163 -0.641 0.485 Linear 
D64 0.070 0.154 -0.005 0.003 Linear 
D84 0.108 0.124 -0.004 0.002 Linear 
Total Invertebrate Abundance 0.304 0.117 -0.004 0.004 Linear 
D90 0.131 0.110 -0.003 0.002 Linear 
Soluble Reactive Phosphorous 0.372 0.089 -0.325 0.347 Linear 
Percent Slope 0.523 0.086 15.426 22.485 Linear 
Percent Fines 0.262 0.062 0.008 0.007 Linear 
Mean Temperature 0.444 0.060 0.362 0.454 Linear 
Turbidity 0.304 0.053 0.213 0.202 Linear 
Total Phosphorous 0.248 0.050 0.077 0.062 Linear 
Discharge 0.594 0.019 -0.815 1.496 Linear 
EPT Abundance 0.811 0.007 0.000 0.002 Linear 
Number OTU 0.813 0.007 0.006 0.026 Linear 
Chlorophyl a 0.744 0.005 0.015 0.046 Linear 
pH 0.801 0.003 0.095 0.371 Linear 
Nitrate-Nitrite 0.896 0.002 0.000 0.003 Linear 
Total Keljdal Nitrogen 0.920 0.001 0.000 0.004 Linear 
NH4_N 0.944 0.001 -0.007 0.090 Linear 
Total Nitrogen 0.974 0.000 0.000 0.002 Linear 

* significant (p<.05)      
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Figure 4.  Log-transformed brook trout abundance (y-axes) plotted against conductivity 
(A; μ/cm), dissolved phosphorous (B; ppb), D16 (C), minimum yearly water temperature 
(D; °C), median yearly water temperature (E; °C), mean yearly water temperature (F; 
°C), aquatic invertebrate abundance (G; m2), and percent fine substrate material (H) on 
the x-axes. 
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Table 3.  Outputs of all linear and all significant quadratic models for cutthroat trout.  
All models are ranked in descending order of r2.   
 
 

Variable P-value r2 Parameter Estimate SE Model Type 
Soluble Reactive Phosphorous *0.030 0.289 -0.052 0.022 Quadratic 
Maximum Temperature *0.044 0.260 -0.056 0.025 Linear 
Nitrate-Nitrite *0.025 0.248 0.002 0.001 Linear 
Chlorophyl a *0.005 0.203 0.048 0.016 Linear 
D84 *0.007 0.187 0.003 0.001 Linear 
D90 *0.007 0.184 0.002 0.001 Linear 
D64 *0.022 0.137 0.003 0.001 Linear 
D50 *0.040 0.112 0.003 0.002 Linear 
Median Temperature 0.067 0.220 0.554 0.279 Linear 
Total Phosphorous 0.081 0.160 0.044 0.024 Linear 
Total Nitrogen 0.133 0.121 0.001 0.001 Linear 
Minimum Temperature 0.215 0.108 0.425 0.327 Linear 
Percent Fines 0.071 0.088 -0.004 0.002 Linear 
Percent Slope 0.414 0.085 4.563 5.301 Linear 
pH 0.148 0.057 0.181 0.122 Linear 
Soluble Reactive Phosphorous 0.326 0.054 0.056 0.056 Linear 
Hill Evenness 0.516 0.048 -1.647 2.437 Linear 
Simpson's Diversity 0.376 0.046 0.633 0.696 Linear 
EPT Abundance 0.408 0.041 0.000 0.001 Linear 
Mean Temperature 0.492 0.034 -0.100 0.142 Linear 
D16 0.275 0.033 0.003 0.003 Linear 
Total Invertebrate Abundance 0.462 0.032 0.001 0.001 Linear 
Shannon's Diversity 0.475 0.031 -0.126 0.172 Linear 
Dissolved Phosphorous 0.502 0.026 0.031 0.044 Linear 
Number OTU 0.614 0.015 0.004 0.008 Linear 
Turbidity 0.693 0.004 -0.033 0.082 Linear 
Total Keljdal Nitrogen 0.786 0.004 0.000 0.001 Linear 
Discharge 0.730 0.004 2.659 0.075 Linear 
NH4_N 0.798 0.004 0.001 0.005 Linear 
Conductivity 0.980 0.000 0.000 0.000 Linear 

* significant (p<.05)      
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Figure 5.  Log-transformed cutthroat trout abundance (y-axes) plotted against nitrates-
nitrites (A; ppb), soluble reactive phosphorous (B; ppb), Chlorophyl a abundance (C; 
ug/cm2), D50 (D), D64 (E), D84 (F), D90 (G), and maximum yearly water temperature 
(H; °C) on the x-axes.   
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Movement model 

In total, I marked 86 brook trout and 291 cutthroat trout.  Recapture rates were 

relatively high: of those marked fish, 23 brook trout and 90 cutthroat trout were 

recaptured.  For all recaptured brook trout, 17 were recaptured once, five were recaptured 

twice, and one was recaptured four times.  All but six of those fish were recaptured at 

their initial capture location.  Of those brook trout that were recaptured outside of their 

initial capture location, all were recaptured within the same stratum, and each of those 

fish moved from 62-589 meters (mean = 247 meters).  For all recaptured cutthroat trout, 

69 were recaptured once, 18 were recaptured twice, and three were recaptured three 

times.  All but seven of those fish were recaptured at their initial capture location.  Of 

those cutthroat trout that were recaptured outside of their initial capture location, five 

were recaptured within the same stratum, and each of those fish moved from 152-991 

meters (mean = 508 meters).  

I analyzed seven mark/recapture model combinations (Table 4).  Based on ∆AICc 

values, the most parsimonious top model included capture and survival probability that 

varied by group with a constant transition probability structure [i.e., s(g) p(g) psi(.)].  The 

top-ranking model provided plausible estimates of survival and capture probability for 

both brook trout and cutthroat trout, and accounted for 66% of the Akaike weights.  The 

next three models accounted for 13%, 10%, and 10% of the Akaike weights, respectively.  

Transition probability could not be estimated for brook trout with any model, as no brook 

trout transitioned amongst strata.  Estimates of cutthroat trout transition probability were 

very low in all four top-ranking models, as only two out of 291 cutthroat trout 
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transitioned amongst strata.  Of the two cutthroat trout that moved amongst strata, one 

was initially captured in stratum A during index site sampling in July, 2006 and was 

recaptured in stratum C during spot electrofishing in September, 2007, for a total 

downstream movement of approximately 12.15 km.  The other cutthroat trout was 

initially captured in stratum C during index site sampling in July, 2006, and was 

recaptured in stratum D during index site sampling in July, 2007, for a total downstream 

movement of approximately 6.37 km.  The top ranking model did not plausibly estimate 

brook trout or cutthroat trout survival for most strata.  Capture probability was higher for 

cutthroat trout than for brook trout in all four strata.       

 

Table 4.  Rankings of seven multi-strata mark/recapture models of survival (Ф), capture 
(p), and transition (ψ) probabilities for brook trout and cutthroat trout in the Mill Creek 
watershed based on program MARK output and AIC selection criteria, where AICc= 
corrected Akaike’s information criterion, NP = number of parameters, (g) = grouped 
parameters, and (.) = constant parameters.   
 
 

Model AICc  ∆AICc  AICc weight Model likelihood NP Deviance 
Ф(g), p(g), ψ (.) 870.20 0 0.659 1 24 290 
Ф(.), p(g), ψ (.) 873.41 3.21 0.132 0.2005 22 297 
Ф(.), p(.),ψ (.) 873.87 3.68 0.105 0.1591 20 302 
Ф(g), p(.),ψ (.) 873.89 3.69 0.104 0.1583 22 298 
Ф(g), p(.),ψ (g) 886.75 16.56 0.000 0.0003 28 297 
Global (no group effects) 887.28 17.08 0.000 0.0002 32 289 
Ф(.), p(g), ψ (g) 898.38 28.18 0 0 35 293 
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DISCUSSION 

 
Based on watershed and reach-scale surveys, brook trout distribution and 

establishment appeared to be limited by precipitous increases in stream slope in both Mill 

Creek and Deadman Creek.  In Mill Creek, brook trout abundance increased in an 

upstream direction, but the upstream extent of brook trout establishment then terminated 

abruptly upstream of the Mill Creek middle index site.  Within that same area, stream 

slope increased from approximately 0.027% to 0.046%.  In addition, patch occupancy 

surveys suggest that brook trout were abundant just upstream of the Mill Creek middle 

index site, but were sparsely distributed near the Mill Creek high index site.  With one 

exception (see Deadman Creek below), at the lower reaches of all tributaries, stream 

slopes exceeded those of most areas of brook trout establishment in this drainage.     

A similar pattern persisted in Deadman Creek, where again, brook trout 

establishment ended at a point of a precipitous increase in stream slope.  Therefore, the 

pattern of brook trout distribution and establishment observed here suggests that steep 

stream slopes in the upper reaches of Mill Creek and its tributary confluences may limit 

additional brook trout invasion and establishment.   

Species segregation along a streams longitudinal gradient is not unique to this 

watershed (Rieman et al. 2006), and many studies have investigated the potential effect 

of stream slope on salmonid distribution (Chrisholm and Hubert 1986; Fausch 1989; 

Hilderbrand 1998; Isaak and Hubert 2000; Hicks and Hall 2003).  Findings by 

Hilderbrand (1998) and Fausch (1989), for example, suggest that brook trout perform 

better in lower slope (< 3%) stream reaches, and struggle to establish populations in 
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streams that exceed 4-7%.  Additional studies suggest that higher slope stream reaches 

limit brook trout abundance (Chisholm and Hubert 1986; Kozel and Hubert 1989; Bozek 

and Hubert 1992), potentially limiting successful establishment in some areas.  These 

findings are consistent with this study, as areas of brook trout establishment in the Mill 

Creek watershed ranged from 0.02% to 6% in stream slope, but averaged only 2%.  

Fausch (1989) hypothesized that brook trout are weaker swimmers compared to other 

salmonids, making it difficult for brook trout to ascend steep stream slopes (but see 

Adams et al. 2000).  In addition, other habitat variables that are associated with steep 

stream slope (e.g., low water temperature) may pose demographic challenges to brook 

trout by limiting spawning, recruitment, and survival (Fausch 1989), and thus the 

potential for successful establishment in some areas.   

Based on Utah Division of Wildlife Resources stocking records, brook trout were 

first introduced into this system in 1948, with eight additional stocking events that 

occurred between 1949 and 1966.  The precise locations of these introductions are not 

known, but given the absence of public property near the lower portions of the watershed 

and poor vehicle access in the upper portions of Mill Creek, most fish were probably 

stocked at the road crossing near the Mill Creek middle index site.  Despite the close 

proximity of those introductions to the confluences of North Fork and McKenzie Creek, 

as well as the upper portions of Mill Creek, brook trout have not become established in 

those areas.  During patch occupancy surveys, only three brook trout were captured 

upstream of the apparent stream slope barrier in Mill Creek, and all were large adults 

(172-226) in good condition (mean Fulton’s K=1.25; Anderson and Newman 1996).  
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These findings suggest brook trout can ascend steep slopes in this watershed, and are 

consistent with the findings of Adams et al. (2000) who observed brook trout ascending 

stream slopes as steep as 22%.  However, the ability of few brook trout to ascend the 

apparent stream slope barrier does not indicate successful invasion of those areas.   

Given the length of time since brook trout were initially introduced into this 

system, the close proximity of those introductions to the upper portions of Mill Creek and 

its tributaries, and the paucity of brook trout above the apparent stream slope barrier, it 

appears local conditions in the upper portions of this watershed have limited successful 

establishment, and therefore successful invasion of those areas.  While stream gradient 

appears to be the factor that limits the upstream distribution of brook trout in this system, 

smaller-scale factors that are associated with steep stream gradient may be more 

influential in determining brook trout distribution and establishment in this watershed.  

Given the large size (i.e., absence of sub-adult fish) and good condition of the few fish 

captured above the apparent stream slope barrier, it appears that brook trout experience 

poor spawning and/or recruitment success in the upper portions of Mill Creek, thereby 

limiting successful invasion of those areas by brook trout.  Therefore, factors that are 

known to be influential in the early life-history of salmonids, such as water temperature 

and groundwater discharge (see below), may limit brook trout invasion in this system.    

While stream slope, or environmental attributes associated with steep stream 

slope, appeared to influence watershed-scale brook trout distribution, additional factors 

appeared to influence brook trout abundance at the reach-scale, and therefore successful 

establishment in some areas.  Based on model relationships, invertebrate abundance 



 

         

33

 

appeared to be influential in determining brook trout abundance; a quadratic model 

was positively related to brook trout abundance and had the highest explanatory power of 

all models.  However, two data points were highly influential in determining the 

curvilinear relationship, and both of those data points were from the Deadman Creek 

middle index site, where brook trout were the most abundant and aquatic invertebrates 

were the least abundant.  While upon first examination, this relationship may make little 

biological sense, it is possible that invertebrate abundance in the Deadman Creek middle 

index site was low because brook trout abundance was high, as there were more fish 

present to consume invertebrate taxa and reduce invertebrate abundance (Bechara et al. 

1993; Flecker and Townsend 1994; Huryn 1996).  In addition, the Deadman Creek low 

and high index sites, which are located just upstream and downstream of the middle 

index site, contained among the highest densities of aquatic invertebrates, and brook trout 

abundance was markedly lower at both index sites compared to the middle index site, 

further suggesting that brook trout reduced the abundance of aquatic invertebrates in the 

middle index site.  Finally, the data from all other index sites (i.e., excluding Deadman 

Creek middle) best represented a positive linear relationship between brook trout 

abundance and aquatic invertebrate abundance, suggesting that indeed, invertebrate 

abundance may influence brook trout abundance in this watershed.   

Despite the potentially confounding effects of other factors, a positive relationship 

between invertebrate abundance and trout biomass has also been observed in other 

systems (Murphy et al. 1981; Bowlby and Roff 1986; Jowett 1992; VanDusen et al. 

2005).  In fact, Bowlby and Roff (1986) and Jowett (1992) modeled the effects of 
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multiple biotic and abiotic variables simultaneously, and both studies concluded that 

invertebrate abundance is among the most important factors influencing the biomass of 

stream-dwelling salmonids, further suggesting that invertebrate abundance may influence 

brook trout abundance in this watershed.  However, while invertebrate abundance may 

influence brook trout abundance in this watershed, this factor alone cannot fully explain 

why brook trout were so abundant in the Deadman Creek middle index site compared to 

other areas in the watershed. 

Of the remaining variables evaluated, the abundance of fine substrate material 

(i.e., percent fines) appeared to positively influence brook trout abundance as well.  

However, it appears that again, two data points were highly influential.  Both influential 

data points were from the Deadman Creek low index site where the substrate was 

composed of a much higher percentage of fine material relative to the other index sites, 

and brook trout were detected only twice during this study and at very low abundance 

both times.  When those data points were excluded from the analysis, the linear model 

was highly significant (p-value=<0.001) with reasonable model fit (r2=0.579).  

Nevertheless, in this watershed the abundance of fine substrate material was positively 

related to brook trout abundance, regardless of the model.     

This relationship may not make biological sense, as increased fine substrate 

material is often associated with low trout biomass.  Some studies suggest that abundance 

of fine substrate material negatively affects salmonid reproduction by reducing the rate of 

intergravel flow, thereby reducing the levels of dissolved oxygen delivered to developing 

embryos (Waters 1995).  Hall (1986) and Tagart (1984) both report an inverse 
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relationship between survival of salmonid eggs and abundance of percent fines, 

observing minimal survival when the percent of fine substrate material was greater than 

10% and 20%, respectively.  Percentage of fine substrate material in Deadman Creek 

exceeded 30% during all sample periods.  In fact, in the Deadman Creek middle index 

site where brook trout were the most abundant, the percent of fine substrate material far 

exceeded detrimental levels during all sample periods (mean = 41%, range = 34-47%).  

In addition to the detrimental effects of fine sediment abundance on early life stages of 

salmonids, excess levels can also negatively affect aquatic invertebrate communities, the 

primary forage for stream-dwelling salmonids.  More specifically, by altering substrate 

composition, excess fine substrate material can decrease aquatic invertebrate standing 

stock and alter invertebrate community structure (see Lenat et al. 1979).  These findings 

suggest that fine substrate material may not influence brook trout abundance at the reach-

scale in this watershed.   

Of the remaining explanatory variables evaluated, minimum, mean, and median 

annual water temperatures were related to brook trout abundance.  In this watershed, the 

distribution of water temperature is skewed towards cooler temperatures, as cold winter 

periods are prolonged and warm summer periods are protracted.  These data suggest that 

cold winter water temperatures may negatively influence brook trout abundance.  The 

effects of winter stream conditions on salmonid habitat selection and movement have 

been firmly established (Chrisholm et al. 1987; Lindstrom and Hubert 2004), and in 

addition, some authors have linked (Reiser and Wesche 1979; Wood 2008) or postulated 

a link (Harshbarger and Porter 1979; Wiley et al. 1993) between low early life-history 
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survival rates of fall spawning salmomids (e.g., brook trout), and cold winter water 

temperature.  Those studies suggest that eggs that are deposited in the fall rather than 

spring or summer are exposed to harsh winter conditions (e.g., anchor and frazile ice) 

shortly after deposition.  In the Mill Creek study area, it appears that water temperatures 

were below freezing for extended periods during the winter at most index sites, excluding 

the Deadman Creek middle index site during 2006. These data suggest that warm winter 

water temperatures in the Deadman Creek middle index site may positively influence 

early life-stage survival of brook trout. 

The stream channel at the Deadman Creek middle index site was narrow and 

deeply incised, and riparian vegetative cover was dense relative to channel width.  These 

conditions may have facilitated snow-bridging during winter months, thereby insulating 

the stream channel and recently deposited brook trout eggs from harsh winter conditions 

(Chisholm et al. 1987).  Conversely, at North Fork and some areas of Mill Creek, the 

stream channel was shallow and wide, and riparian vegetation was less dense in relation 

to its channel width, leaving those stream channels exposed to harsh winter conditions.  

The formation of anchor ice occurred in some areas of Mill Creek as early as mid-

November, while in Deadman Creek anchor ice was comparatively absent.  While winter 

stream conditions were not a focus of this study, field observations suggest that anchor 

ice did not form in all areas of this drainage, perhaps a result of groundwater discharge 

(Prowse 1994).  In the midst of harsh winter conditions, brook trout as well as other fall-

spawning salmonids can spawn successfully in areas of groundwater upwelling (Webster 

and Eiriksdottir 1976; Curry and Noakes 1995; Baxter and Hauer 2000).  However, like 
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other stream systems (e.g., Baxter and Hauer 2000), these areas of upwelling may be 

patchily distributed throughout the Mill Creek watershed, a factor that may explain, in 

part, the patchy distribution and abundance of brook trout throughout this system. 

Cutthroat trout were widely distributed throughout the watershed making it 

difficult to elucidate the factors that limit their watershed-scale distribution and reach-

scale abundance, if any.  All significant models explained little variation in cutthroat trout 

abundance, making it difficult to determine with a high degree of confidence, the 

variables that influence cutthroat trout abundance at the reach-scale.  Given the high 

abundance of cutthroat trout in this watershed compared to other streams within its 

historical range, this result is not surprising, as Mill Creek and its tributaries likely 

represent high quality, suitable habitats for Bonneville cutthroat trout.  

However, it does appear that extreme levels of stream slope (>10%) may limit 

cutthroat trout distribution in this system, and in some cases, upstream cutthroat trout 

distribution was limited only when tributaries became intermittent.  Other research 

suggests that Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) rarely occur in 

stream reaches that exceed 10% (Kruse et al. 1997), however; Lohantan cutthroat trout 

(Oncorhynchus clarkii henshawi) can occupy stream reaches as steep as 26% (Dunham et 

al. 1999).  Stream slope tolerance is not well studied for Bonneville cutthroat trout, but 

based on research of other closely related subspecies, it is possible that cutthroat trout 

distribution in this watershed could transcend stream slopes that exceed 10%, given 

adequate in-stream flows.     
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Despite the patchy abundance and limited distribution of brook trout in this 

watershed, movement dynamics can facilitate their continued upstream invasion by 

providing source populations from areas with suitable spawning and rearing habitats 

(Peterson and Fausch 2003; Peterson et al. 2004; Benjamin et al. 2007).  In this study, I 

evaluated population-level movement dynamics to determine if areas of core brook trout 

occupancy were connected through movement.  My results suggest that few brook trout 

move long distances in this watershed, as no brook trout were observed moving from one 

stratum to another.  In addition, a relatively high percentage (74%) of brook trout were 

recaptured at their initial capture location, indicating high site fidelity.  Finally, of the 

brook trout that were captured outside their initial capture location, but within the same 

stratum as their initial capture location, all had moved relatively short distances 

(mean=247 meters).   

 Salmonid movement, and in particular brook trout movement is well studied, but 

divisive contradictions exist amongst researchers (Gowan et al. 1994; Gowan and Fausch 

1996).  Gowan et al. (1994) reviewed the extensive literature that studied salmonid 

movement and concluded that most stream-dwelling salmonids are sedentary, later 

coining the term, “restricted movement paradigm”.  These findings were consistent with 

the restricted movements of fish first described by Gerking (1959).  However, subsequent 

research by Gowan and Fausch (1996) urged a reconsideration of this paradigm, 

suggesting that sampling bias is responsible for the observed patterns of restricted 

movement amongst many studies.  To date, refuting studies report that brook trout are 

largely sedentary (i.e., typical movement <1.61-river kilometers; Shetter 1968), or highly 
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mobile (Riley et al. 1992).  However, it may be misleading to describe a population as 

entirely sedentary or entirely mobile.  Some studies suggest that seasonal variations in 

movement amongst stream dwelling salmonids exists, and populations contain primarily 

sedentary individuals, with few individuals moving over long distances (Hilderbrand and 

Kershner 2000).  While these contradictions have not been resolved, movement patterns 

across populations appears variable, and are likely influenced by both environmental 

factors and life-history characteristics (Lindstrom and Hubert 2004; Diana et al. 2004; 

Colyer et al. 2005), suggesting that movement is dependant upon local conditions.  When 

compared to other studies, movement of brook trout in this watershed was primarily, if 

not entirely restricted, as no individuals were observed moving over long distances (i.e., 

>1.61-river kilometers).  While sampling bias may have played a role in these findings 

(see Gowan and Fausch 1996), the high rate of site fidelity and short distance of 

movement amongst recaptured brook trout in this study is compelling evidence that brook 

trout movement was restricted.   

In contrast, cutthroat trout movement was more variable, as two individuals were 

observed moving amongst strata and both fish moved considerably long distances (12.15 

km and 6.37 km).  However, based on transition probabilities attained from my top 

mark/recapture model, the overall probability of cutthroat trout movement amongst all 

strata remained low.  The five cutthroat trout captured outside of their initial capture 

location, but within the same stratum, moved longer distances on average (508 meters) 

than brook trout (247 meters).  However, I recaptured 92% of cutthroat trout at their 

initial capture location, indicating relatively high site fidelity by many individuals within 
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this population (but see Budy et al. 2007).  Overall, it appears that cutthroat trout in 

this watershed moved more often and over longer distances than brook trout; however, 

the spatial-scale of cutthroat trout movement in this watershed remains minimal 

compared to similar systems (Hilderbrand and Kershner 2000; Colyer et al. 2005).   

Financial and logistic restraints precluded the evaluation of all explanatory 

variables for all sample periods.  As a result, my dataset contained missing observations 

for some explanatory variables, making more rigorous statistical testing (e.g., multiple 

regression and model selection techniques) impossible.  Nevertheless, I provide evidence 

of the factors that influence brook trout and cutthroat trout distribution and abundance at 

multiple spatial scales.  Additional research should further investigate the affects of low 

winter water temperature on brook trout egg and fry survival in this watershed, given 

fine-scale heterogeneity in habitats.  Finally, the temporal-scale of this movement study, 

from late-spring to early-fall, may not have adequately assessed spawning migrations.  

Despite these limitations, I observed a relatively high rate of sight fidelity by both 

species, and movement patterns did not appear to facilitate additional upstream invasion 

by brook trout, nor limit watershed-scale cutthroat trout movement. 

The results of this study will aid in prioritizing management actions for cutthroat 

trout in this watershed.  More specifically, continued upstream invasion by brook trout 

does not pose an immediate threat to cutthroat trout in the headwater portions of Mill 

Creek or Deadman Creek, as local conditions appear to limit brook trout invasion of 

those areas.  Based on those findings, the use of artificial barriers to prevent additional 

upstream brook trout invasion is not necessary in this watershed.  In addition, I observed 
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some cutthroat trout moving long distances in this watershed, therefore; the use of 

artificial barriers could impede watershed-scale cutthroat trout movement and hinder their 

natural dispersal and migration patterns (Peterson et al. 2008).  Finally, if resource 

managers decide to eradicate brook trout from this system, my species distribution and 

establishment data will help identify and prioritize areas where those projects should 

occur.   

In conclusion, the results from this study suggest that stream slope, or smaller-

scale factors associated with stream slope, limits the upstream distribution of brook trout 

at the watershed-scale, and aquatic invertebrate abundance and low winter water 

temperatures influence the magnitude of brook trout abundance at the reach-scale.  

Within this watershed, brook trout movement appeared minimal overall, as I observed 

relatively high site fidelity and no movement across strata.  I could not explain the 

variation in cutthroat trout abundance at the reach-scale based on the explanatory 

variables I measured, but given the high abundance of cutthroat trout in this watershed 

relative to other historically occupied habitats, this system likely represents high quality 

habitat for cutthroat trout.  In addition, while small-scale cutthroat trout movement was 

more variable than that of brook trout, few individuals within the population moved long 

distances.  These results provide resource managers with critical demographic data and 

information describing the invasion potential of a ubiquitous and often aggressive 

nonnative species.  Mill Creek contains one of the largest remaining genetically pure 

metapopulations of Bonneville cutthroat trout.  Protection of this metapopulation is 
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critical for the future persistence of this subspecies, and the results of this study aid in 

prioritizing cutthroat trout management actions in this watershed. 
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Table A.1.  Input file for multi-strata mark-recapture model in Program MARK, including 
unique fish ID and capture history (stratas A-D) for each recaptured cutthroat trout (1 0) 
and brook trout (0 1). 
 
/* 087C518D */  AA0A00  1  0 ; 
/* 087C518A */  A00000  1  0 ; 
/* 087C518E */  A00000  1  0 ; 
/* 087C518F */  A00000  1  0 ; 
/* 087C5191 */  AA0000  1  0 ; 
/* 087C5192 */  A00000  1  0 ; 
/* 087C5193 */  AA0000  1  0 ; 
/* 087C5190 */  AA0000  1  0 ; 
/* 087C5195 */  AA0000  1  0 ; 
/* 087C518C */  AA0A00  1  0 ; 
/* 087C5108 */  0A0AA0  1  0 ; 
/* 087C5107 */  0A0A00  1  0 ; 
/* 0876472A */  00AA00  1  0 ; 
/* 08764723 */  000AA0  1  0 ; 
/* 08764724 */  000A00  1  0 ; 
/* 0876472B */  000AA0  1  0 ; 
/* 087643F8 */  0000A0  1  0 ; 
/* 087643F7 */  0000A0  1  0 ; 
/* 087643F9 */  0000A0  1  0 ; 
/* 087643FA */  0000A0  1  0 ; 
/* 087C5183 */  CC0000  1  0 ; 
/* 087C5188 */  C00000  1  0 ; 
/* 087C5186 */  C00000  1  0 ; 
/* 087C5189 */  CC000C  1  0 ; 
/* 087C5194 */  C00000  1  0 ; 
/* 087C511F */  0C0000  1  0 ; 
/* 08764726 */  000C00  1  0 ; 
/* 08764728 */  000CC0  1  0 ; 
/* 087643FC */  0000C0  1  0 ; 
/* 087643FE */  0000CC  1  0 ; 
/* 087643FF */  0000CC  1  0 ; 
/* 087C518B */  A00A00  1  0 ; 
/* 087C5185 */  A00A00  1  0 ; 
/* 087C517F */  A00000  1  0 ; 
/* 087C5182 */  A0000C  1  0 ; 
/* 087C5184 */  A00000  1  0 ; 
/* 087C516C */  A00000  1  0 ; 
/* 087C516D */  A00000  1  0 ; 
/* 087C5181 */  A00A00  1  0 ; 
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/* 087C5197 */  A00000  1  0 ; 
/* 087C5187 */  A00000  1  0 ; 
/* 087C50E0 */  0A0000  1  0 ; 
/* 087C511A */  0A0000  1  0 ; 
/* 0876471F */  000A00  1  0 ; 
/* 08764729 */  00AA00  1  0 ; 
/* 08764722 */  00AA00  1  0 ; 
/* 08764727 */  00AA00  1  0 ; 
/* 087C518B */  0000A0  1  0 ; 
/* 087C5157 */  CC000C  0  1 ; 
/* 087C50E3 */  C00000  1  0 ; 
/* 087C5105 */  CC0000  1  0 ; 
/* 087C514C */  CC0000  1  0 ; 
/* 087C5145 */  CC000C  1  0 ; 
/* 087C5144 */  C00000  1  0 ; 
/* 087C5142 */  CC0000  1  0  
/* 087C513D */  CC0000  1  0 ; 
/* 087C5118 */  CC0C0C  1  0 ; 
/* 087C512A */  CC0000  1  0 ; 
/* 087C5149 */  C00000  1  0 ; 
/* 087C5148 */  C00000  1  0 ; 
/* 087C514A */  C00000  1  0 ; 
/* 087C5143 */  C00000  1  0 ; 
/* 087C5106 */  C00000  1  0 ; 
/* 087C5104 */  C00000  1  0 ; 
/* 087C50E1 */  CC0000  1  0 ; 
/* 087C5147 */  CC0C00  1  0 ; 
/* 087C5148 */  C00000  1  0 ; 
/* 087C515D */  CC0C00  1  0 ; 
/* 087C514E */  C00000  1  0 ; 
/* 087C512E */  C00000  1  0 ; 
/* 087C515C */  C00000  0  1 ; 
/* 087C5150 */  C00000  0  1 ; 
/* 087C5156 */  C00000  0  1 ; 
/* 087C5111 */  C00000  1  0 ; 
/* 087C5159 */  CC0000  1  0 ; 
/* 087C516A */  C00000  1  0 ; 
/* 087C514F */  C0000C  0  1 ; 
/* 087C5131 */  0C0000  1  0 ; 
/* 087C5120 */  0C0000  1  0 ; 
/* 087C5125 */  0C0000  1  0 ; 
/* 087C5123 */  0C0000  1  0 ; 
/* 087C5113 */  0C0000  1  0 ; 
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/* 087C5119 */  0C0000  1  0 ; 
/* 087C5124 */  0C0000  1  0 ; 
/* 087C5116 */  0C0000  1  0 ; 
/* 087C5129 */  0C0000  1  0 ; 
/* 087C5121 */  0C0000  0  1 ; 
/* 087C5122 */  0C0000  0  1 ; 
/* 087C5127 */  0C0000  0  1 ; 
/* 087C511E */  0C0000  1  0 ; 
/* 087C511B */  0C0C00  1  0 ; 
/* 087643A4 */  000C00  1  0 ; 
/* 087643A6 */  000CCC  1  0 ; 
/* 087643A5 */  000CCC  1  0 ; 
/* 087643A3 */  000CC0  1  0 ; 
/* 08763955 */  000C00  1  0 ; 
/* 087643AC */  000C00  1  0 ; 
/* 087643A7 */  000C0C  1  0 ; 
/* 087643A8 */  000CCC  1  0 ; 
/* 087643AF */  000CC0  1  0 ; 
/* 087643B2 */  000CC0  1  0 ; 
/* 087643B0 */  000C00  1  0 ; 
/* 087643B3 */  000C00  1  0 ; 
/* 087643AE */  000CC0  1  0 ; 
/* 087643B6 */  000CC0  1  0 ; 
/* 087643D7 */  000CC0  1  0 ; 
/* 087643B1 */  000C00  1  0 ; 
/* 087643B4 */  000CCC  1  0 ; 
/* 087643AA */  000C00  1  0 ; 
/* 087643A9 */  000CCC  1  0 ; 
/* 087643B5 */  000C00  1  0 ; 
/* 087643AD */  000CC0  1  0 ; 
/* 087643B9 */  000C00  1  0 ; 
/* 087643AB */  000C00  0  1 ; 
/* 087643B8 */  000C00  1  0 ; 
/* 087643BB */  000CCC  1  0 ; 
/* 087643BA */  000CC0  1  0 ; 
/* 087643BD */  000CC0  1  0 ; 
/* 0876440E */  0000C0  1  0 ; 
/* 08764408 */  0000C0  1  0 ; 
/* 0876440B */  0000C0  1  0 ; 
/* 08764409 */  0000C0  1  0 ; 
/* 0876440C */  0000C0  1  0 ; 
/* 08764418 */  0000C0  1  0 ; 
/* 08764414 */  0000C0  1  0 ; 
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/* 08764416 */  0000C0  1  0 ; 
/* 08764411 */  0000C0  1  0 ; 
/* 08764413 */  0000C0  1  0 ; 
/* 08764417 */  0000C0  1  0 ; 
/* 0876440D */  0000C0  1  0 ; 
/* 08764412 */  0000CC  1  0 ; 
/* 08764415 */  0000C0  1  0 ; 
/* 0876441B */  0000C0  1  0 ; 
/* 08764419 */  0000C0  1  0 ; 
/* 0876441A */  0000C0  1  0 ; 
/* 0876440F */  0000C0  1  0 ; 
/* 0876440A */  0000CC  0  1 ; 
/* 08764410 */  0000C0  1  0 ; 
/* 0876441D */  0000C0  1  0 ; 
/* 0876441C */  0000CC  1  0 ; 
/* 08764294 */  0000C0  1  0 ; 
/* 08764420 */  0000C0  1  0 ; 
/* 08764290 */  0000CC  1  0 ; 
/* 0876441F */  0000C0  1  0 ; 
/* 08764293 */  0000C0  1  0 ; 
/* 087C5154 */  DD0000  1  0 ; 
/* 087C5158 */  DD0000  1  0 ; 
/* 087C515A */  DD0000  1  0 ; 
/* 087C515E */  D00000  1  0 ; 
/* 087C5117 */  D00000  1  0 ; 
/* 087C5153 */  D00000  1  0 ; 
/* 087C5155 */  DD0000  1  0 ; 
/* 087C515B */  D00000  1  0 ; 
/* 08764355 */  D00000  1  0 ; 
/* 08764354 */  D00000  1  0 ; 
/* 087C5140 */  D00000  1  0 ; 
/* 087C514B */  D00000  1  0 ; 
/* 087C512C */  DD0000  1  0 ; 
/* 087C50E4 */  D00000  1  0 ; 
/* 087C515F */  D00000  1  0 ; 
/* 087C514D */  D00000  1  0 ; 
/* 087C510E */  D00000  1  0 ; 
/* 087C5161 */  D00000  1  0 ; 
/* 087C5110 */  DD0000  0  1 ; 
/* 087C5151 */  D00000  0  1 ; 
/* 087C510D */  D00000  0  1 ; 
/* 087C510E */  D00000  0  1 ; 
/* 087C5104 */  C00D00  1  0 ; 
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/* 087C50F6 */  0D0000  1  0 ; 
/* 087C50EB */  0D0000  0  1 ; 
/* 087C50FF */  0D0000  1  0 ; 
/* 087C50EE */  0D0000  1  0 ; 
/* 087C50FE */  0D0000  1  0 ; 
/* 087C50FC */  0D0000  0  1 ; 
/* 087C5102 */  0D0000  1  0 ; 
/* 087C50FD */  0D0000  1  0 ; 
/* 087C5100 */  0D0000  0  1 ; 
/* 087C50FB */  0D0000  1  0 ; 
/* 087C50FA */  0D0000  1  0 ; 
/* 087C512F */  0D0000  1  0 ; 
/* 087C513B */  0D0000  1  0 ; 
/* 087C5141 */  0D0000  0  1 ; 
/* 087C5133 */  0D0000  1  0 ; 
/* 087C5134 */  0D0000  1  0 ; 
/* 087C5130 */  0D0000  0  1 ; 
/* 087C5132 */  0D0000  1  0 ; 
/* 087C5135 */  0D0000  0  1 ; 
/* NONE  */  0D0000  1  0 ; 
/* 08763932 */  0D0000  1  0 ; 
/* 08763934 */  0D0000  1  0 ; 
/* 08763938 */  0D0000  1  0 ; 
/* 087643D4 */  00D0D0  1  0 ; 
/* 08763936 */  0000D0  1  0 ; 
/* 0876393A */  0000D0  1  0 ; 
/* 08763975 */  0000D0  1  0 ; 
/* 08763961 */  0000D0  1  0 ; 
/* 08763965 */  0000D0  1  0 ; 
/* 087643C7 */  0000D0  1  0 ; 
/* 087643C9 */  0000D0  1  0 ; 
/* 087643C8 */  0000D0  1  0 ; 
/* 08763976 */  0000D0  1  0 ; 
/* 087643C4 */  0000D0  0  1 ; 
/* 087643C6 */  0000D0  0  1 ; 
/* 087C5175 */  B00000  1  0 ; 
/* 087C516E */  BB0000  1  0 ; 
/* 087C5174 */  B00000  1  0 ; 
/* 087C5172 */  B00000  1  0 ; 
/* 087C5171 */  B00000  1  0 ; 
/* 087C517A */  BBB000  1  0 ; 
/* 087C5162 */  BB0000  1  0 ; 
/* 087C517B */  B00000  1  0 ; 
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/* 087C5101 */  BB0BB0  1  0 ; 
/* 087C5164 */  B00000  1  0 ; 
/* 087C5103 */  BB0000  1  0 ; 
/* 087C50E5 */  B00BB0  1  0 ; 
/* 087C50E6 */  BB0000  1  0 ; 
/* 087C5126 */  0B0000  1  0 ; 
/* 087C512B */  0B0000  1  0 ; 
/* 087C511C */  0B0000  1  0 ; 
/* 087C5112 */  0B0000  1  0 ; 
/* 087C5114 */  0B0000  1  0 ; 
/* 087C511D */  0B0000  1  0 ; 
/* 0876470A */  000B00  1  0 ; 
/* 0876470B */  000BB0  1  0 ; 
/* 08764707 */  000B00  1  0 ; 
/* 08764709 */  000B00  1  0 ; 
/* 08764708 */  000BB0  1  0 ; 
/* 08764700 */  000BB0  1  0 ; 
/* 08764701 */  000BB0  1  0 ; 
/* 087C5172 */  000B00  1  0 ; 
/* 08764702 */  000B00  1  0 ; 
/* 08764703 */  000B00  1  0 ; 
/* 08764705 */  000BB0  1  0 ; 
/* 08764704 */  000B00  1  0 ; 
/* 087646FF */  000B00  1  0 ; 
/* 08764706 */  000BB0  1  0 ; 
/* 08764403 */  0000B0  1  0 ; 
/* 087643FB */  0000B0  1  0 ; 
/* 08764400 */  0000B0  1  0 ; 
/* 087643FD */  0000B0  1  0 ; 
/* 08764402 */  0000B0  1  0 ; 
/* 08764404 */  0000B0  1  0 ; 
/* 08764407 */  0000B0  1  0 ; 
/* 08764406 */  0000B0  1  0 ; 
/* 08764401 */  0000B0  1  0 ; 
/* 087C5146 */  D00000  1  0 ; 
/* 087C5138 */  D00000  1  0 ; 
/* 087C51F */  D00000  1  0 ; 
/* 087C513C */  D00000  1  0 ; 
/* 087C5137 */  D00000  1  0 ; 
/* 087C5139 */  D00000  1  0 ; 
/* 087C5136 */  D00000  1  0 ; 
/* 087C513A */  D00000  1  0 ; 
/* 087C513E */  DD0D00  1  0 ; 



 

         

60

 

 
/* 087C510B */  D00000  1  0 ; 
/* 087C512D */  D00000  1  0 ; 
/* 087C5115 */  D00000  1  0 ; 
/* 087C50EC */  0D0000  1  0 ; 
/* 187C50E9 */  0D0000  1  0 ; 
/* 087C50EF */  0D0000  1  0 ; 
/* 087C50ED */  0D0000  1  0 ; 
/* 087C50F4 */  0D00D0  1  0 ; 
/* 087C50F9 */  0D0000  1  0 ; 
/* 087C50F5 */  0D0000  1  0 ; 
/* 087C50F1 */  0D0000  1  0 ; 
/* 087C50F2 */  0D0DD0  1  0 ; 
/* 087C50F3 */  0D0000  0  1 ; 
/* 087C50F0 */  0D0000  0  1 ; 
/* 087C50F7 */  0D0000  1  0 ; 
/* 087C50F8 */  0D0000  1  0 ; 
/* 0876471A */  000D00  1  0 ; 
/* 08763953 */  000D00  1  0 ; 
/* 0876395C */  000D00  1  0 ; 
/* 08763957 */  000D00  1  0 ; 
/* 08763940 */  000D00  1  0 ; 
/* 08763968 */  000D00  1  0 ; 
/* 0876395A */  000D00  0  1 ; 
/* 08763964 */  000DD0  0  1 ; 
/* 08764717 */  000D00  0  1 ; 
/* 08763962 */  000D00  0  1 ; 
/* 0876470F */  000D00  1  0 ; 
/* 08764711 */  000DDD  1  0 ; 
/* 08764299 */  0000D0  1  0 ; 
/* 08764298 */  0000D0  1  0 ; 
/* 0876429A */  0000D0  1  0 ; 
/* 0876428F */  0000D0  1  0 ; 
/* 08764296 */  0000D0  1  0 ; 
/* 08764295 */  0000D0  1  0 ; 
/* 08764297 */  0000D0  1  0 ; 
/* 08764291 */  0000D0  1  0 ; 
/* 087C5165 */  DD0000  1  0 ; 
/* 087C5168 */  DD0000  1  0 ; 
/* 087C5169 */  D00D00  0  1 ; 
/* 087C5177 */  DD0000  0  1 ; 
/* 087C5179 */  DD0D00  0  1 ; 
/* 087C5176 */  D00000  0  1 ; 
/* 087510C */  D00000  0  1 ; 
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/* 087C517C */  DD0DDD  0  1 ; 
/* 087C517D */  D00000  0  1 ; 
/* 087C517E */  D00DD0  0  1 ; 
/* 087C5165 */  D00000  0  1 ; 
/* 087C5163 */  D00DD0  0  1 ; 
/* 087C5166 */  D00000  0  1 ; 
/* 087C5173 */  D00000  0  1 ; 
/* 087C5167 */  DD0DD0  0  1 ; 
/* 087C5178 */  D00DD0  0  1 ; 
/* 087C5109 */  0D0D00  0  1 ; 
/* 087C50E8 */  0D0D00  0  1 ; 
/* 087C50CB */  0D0000  0  1 ; 
/* 08764710 */  000DD0  0  1 ; 
/* 0876470D */  000D00  0  1 ; 
/* 0876470C */  000DD0  0  1 ; 
/* 08764718 */  000DD0  0  1 ; 
/* 08764719 */  000D00  0  1 ; 
/* 0876470E */  000DD0  0  1 ; 
/* 08764716 */  000DD0  1  0 ; 
/* 08764712 */  000DD0  1  0 ; 
/* 08764714 */  000DD0  0  1 ; 
/* 08764715 */  000D00  0  1 ; 
/* 08764713 */  000D00  0  1 ; 
/* 087643CD */  0000D0  0  1 ; 
/* 08763951 */  0000D0  0  1 ; 
/* 08764302 */  0000D0  0  1 ; 
/* 0876395FT */  0000D0  0  1 ; 
/* 087643D1 */  0000DD  0  1 ; 
/* 087643CFT */  0000D0  0  1 ; 
/* 087643CE */  0000D0  0  1 ; 
/* 087643D3 */  0000D0  0  1 ; 
/* 087643CB */  0000D0  0  1 ; 
/* 087C5198 */  DD0DD0  1  0 ; 
/* 087C5199 */  DD0000  1  0 ; 
/* 087C5160 */  DD0000  1  0 ; 
/* 087C5170 */  DD0000  1  0 ; 
/* 087643C0 */  000D00  0  1 ; 
/* 087C519A */  D00000  0  1 ; 
/* 087C5180 */  D00000  0  1 ; 
/* 087C516E */  D00000  0  1 ; 
/* 087C510A */  0D0000  0  1 ; 
/* 08764721 */  000DD0  0  1 ; 
/* 0876471E */  000D00  0  1 ; 
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/* 0876471C */  000D00  0  1 ; 
/* 087643D0 */  0000D0  0  1 ; 
/* 087643D4 */  0000D0  0  1 ; 
/* 08764734 */  00D000  0  1 ; 
/* 08764732 */  00D000  0  1 ; 
/* 08764730 */  00D000  0  1 ; 
/* 0876472E */  00D000  1  0 ; 
/* 0876472F */  00D000  1  0 ; 
/* 0876472D */  00D000  1  0 ; 
/* 087643A1 */  00C000  1  0 ; 
/* 08764733 */  00C000  1  0 ; 
/* 0876472C */  00C00C  1  0 ; 
/* 0876471D */  00C000  0  1 ; 
/* 087643BE */  00C000  1  0 ; 
/* 087643BF */  00C000  0  1 ; 
/* 08763948 */  00C000  0  1 ; 
/* 087643C1 */  00C000  1  0 ; 
/* 08763946 */  00C000  1  0 ; 
/* 08763943 */  00C00C  0  1 ; 
/* 08763952 */  00C000  0  1 ; 
/* 0876392B */  00C000  0  1 ; 
/* 087643C2 */  00C000  1  0 ; 
/* 0876392E */  00C000  1  0 ; 
/* 087643C3 */  00D000  1  0 ; 
/* 08764731 */  00D000  0  1 ; 
/* 087643A2 */  00C000  1  0 ; 
/* 08764735 */  00C000  1  0 ; 
/* 08764720 */  00C000  1  0 ; 
/* 087643BC */  00C000  1  0 ; 
/* 0876394A */  00C000  1  0 ; 
/* 08763930 */  00C000  1  0 ; 
/* 08763930 */  00C00C  1  0 ; 
/* 0876393B */  00C00C  0  1 ; 
/* 0876396B */  00C000  0  1 ; 
/* 08764731 */  00D000  0  1 ; 
/* 08763946 */  00D000  0  1 ; 
/* 0876393C */  00D000  0  1 ; 
/* 0876395B */  00D00D  1  0 ; 
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Table A.2.  Minimum, mean, median, and maximum percent slope values at all stream 
reaches that contained brook trout (BKT) and Bonneville cutthroat trout (BCT) during 
patch occupancy sampling.  
 
 

Stream Name Minimum % Slope Mean % Slope Median % Slope Maximum % Slope Species
Deadman Creek 0.013 0.028 0.027 0.060 BKT 
Mill Creek 0.002 0.017 0.016 0.046 BKT 
Carter Creek 0.029 0.051 0.047 0.092 BCT 
Christmas Tree Creek 0.022 0.039 0.034 0.089 BCT 
Deadman Creek 0.013 0.030 0.027 0.064 BCT 
McKenzie Creek 0.025 0.047 0.049 0.083 BCT 
Mill Creek 0.023 0.023 0.018 0.060 BCT 
North Fork 0.005 0.054 0.056 0.101 BCT 
Unnamed Tributary 1 0.027 0.057 0.048 0.099 BCT 
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Table A3.  Water chemistry measurements collected along the longitudinal gradient of 
Mill Creek, North Fork, Deadman Creek, McKenzie Creek, and Carter Creek.   
 
 

Stream Location Turbidity Conductivity (ms/cm3) Conductivity (ms/cm) Salinity pH TDS
Mill Creek High 0.38 279 209 0.13 8.6 181 
Mill Creek Middle 1.55 308 235 0.15 7.51 200 
Mill Creek Low 1.19 286 274 0.14 8.72 0.186
North Fork High 0.99 33 24 0.01 7.51 0.021
North Fork Middle 0.8 60 48 0.04 7.89 0.4 
North Fork Low 2.53 60 60 40 6.84 0.035
Deadman High 0.33 427 344 0.21 8.52 0.277
Deadman Middle 1.49 437 350 0.21 8.65 14.45
Deadman Low 3.03 423 336 0.2 8.43 0.275
McKenzie High 1.56 309 226 0.1 7.96 0.058
McKenzie Middle 1.58 68 54 0.02 8.18 0.034
McKenzie Low 0.44 77 64 0.1 6.86 122.3
Carter Creek High 4.3 329 281 0.16 7.73 0.214
Carter Creek Middle 1.71 325 278 0.16 7.81 211 
Carter Creek Low 1.58 332 280 0.16 7.83 0.216
 
 



 

Table A4.  Nutrient concentrations collected at all ten index sites during August, 2006 and 2007, measured in parts per billion. 
 
 

Index Site Year Ammonia
Nitrates-
Nitrites 

Soluble 
Reactive 

Phosphorous
Dissolved 

Phospohorous
Total 

Phosphorous

Total 
Keljdal 

Nitrogen 
Total 

Nitrogen 
Deadman Creek High 2006 3 8 1 7 8 192 200 
Deadman Creek Low  2 1 1 7 11 181 182 
Deadman Creek Middle  2 6 1 7 10 71 77 
Mill Creek Creek Border  2 2 1 8 8 146 148 
Mill Creek Creek High  3 279 2 10 17 211 490 
Mill Creek Creek Low  6 51 1 5 10 206 257 
Mill Creek Creek Middle  2 223 2 8 18 206 429 
North Fork High  88 128 8 11 17 105 233 
North Fork Low  2 22 1 6 7 128 150 
North Fork Middle  5 43 1 8 11 114 157 
Deadman Creek High 2007 2 7 1 8 11 181 188 
Deadman Creek Low  2 2 1 9 16 237 239 
Deadman Creek Middle  2 8 1 14 17 277 285 
Mill Creek Creek Border  4 3 2 9 12 239 242 
Mill Creek Creek High  11 179 3 7 14 233 412 
Mill Creek Creek Low  3 11 2 7 13 298 309 
Mill Creek Creek Middle  11 150 3 8 18 195 345 
North Fork High  2 75 2 6 11 100 175 
North Fork Low  2 8 2 6 11 143 151 
North Fork Middle  3 7 2 7 10 121 128 
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Table A.5.  Minimum, mean, median, and maximum yearly water temperatures 
collected at all ten index sites during 2006 and 2007.   

 
 

Index Site Year Min. Temp. Mean Temp. Median Temp. Max. Temp 
Deadman High 2006 -0.07 3.08 0.57 18.56 
Deadman Low  -0.41 3.61 0.07 23.30 
Deadman Middle   0.45 2.87 1 18.65 
Mill Creek Border  -0.10 2.90 0.06 21.81 
Mill Creek High  -0.05 2.07 0.43 15.86 
Mill Creek Low  -0.56 2.41 0.07 19.33 
Mill Creek Middle  -0.12 2.42 0.45 19.03 
North Fork High  * * * * 
North Fork Low  -0.67 1.89         -0.09 18.54 
North Fork Middle  -0.33 1.87  0.17 16.22 
Deadman High 2007 * * * * 
Deadman Low  * * * * 
Deadman Middle  -0.10 2.89 0.34 14.90 
Mill Creek Border   0.06 3.74 0.19 26.33 
Mill Creek High   0.01 2.13 0.45 16.71 
Mill Creek Low  -0.10 3.14 0.01 23.10 
Mill Creek Middle  -0.10 2.51 0.23 18.05 
North Fork High  * * * * 
North Fork Low  -0.10 1.87 -0.10 19.85 
North Fork Middle   -0.22 1.86  0.13 17.14 

 
 * Measurements not collected 
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Table A.6.  Substrate characteristics collected at all ten index sites during 2006 and 
2007. 

 

Index Site Year
Sample 
period 

Percent 
Fines D16 D50 D64 D84 D90 

Deadman High 2006 July 15 4 17 27 50 62 
Deadman Low   74 4 4 4 33 54 
Deadman Middle   36 4 26 42 78 93 
Mill Creek Border   5 24 56 70 90 110 
Mill Creek High   6 15 53 71 170 237 
Mill Creek Low   11 28 59 79 137 176 
Mill Creek Middle   3 45 131 155 205 260 
North Fork High   2 25 55 76 180 252 
North Fork Low   1 43 86 137 200 240 
North Fork Middle   6 35 85 111 203 271 
Deadman High  August 34 4 23 29 62 81 
Deadman Low   74 4 4 4 25 41 
Deadman Middle   34 4 18 35 61 84 
Mill Creek Border   8 33 50 63 97 127 
Mill Creek High   0 33 54 68 113 145 
Mill Creek Low   7 34 57 67 84 97 
Mill Creek Middle   1 34 67 85 120 150 
North Fork High   2 25 47 59 100 196 
North Fork Low   3 36 60 76 127 155 
North Fork Middle   8 30 55 71 125 158 
Deadman High 2007 July 28 4 17 26 57 82 
Deadman Low   80 4 4 4 31 64 
Deadman Middle   47 4 4 15 83 137 
Mill Creek Border   0 35 63 80 146 165 
Mill Creek High   0 31 69 125 230 281 
Mill Creek Low   6 42 76 91 148 175 
Mill Creek Middle   0 71 148 185 247 279 
North Fork High   2 24 68 87 166 228 
North Fork Low   1 48 82 105 180 211 
North Fork Middle   3 52 104 137 179 219 
Deadman High  August 20 4 25 35 59 83 
Deadman Low   81 4 4 4 14 47 
Deadman Middle   47 4 7 24 82 114 
Mill Creek Border   1 35 60 71 91 114 
Mill Creek High   4 26 69 90 163 180 
Mill Creek Low   3 61 104 127 175 216 
Mill Creek Middle   0 52 115 142 181 225 
North Fork High   1 30 71 105 185 223 
North Fork Low   0 63 110 142 205 247 
North Fork Middle     2 51 109 144 202 242 
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Table A.7.  Stream discharge measurements collected at all ten index sites during 
2006 and 2007.   

 
Index Site Year Sample Period Discharge (m3/s) 

Deadman High 2006 July * 
Deadman Low   0.0030 
Deadman Middle   * 
Mill Creek Border   0.7392 
Mill Creek High   0.0477 
Mill Creek Low   0.263 
Mill Creek Middle   0.4751 
North Fork High   0.0005 
North Fork Low   0.0157 
North Fork Middle   0.0066 
Deadman High  August * 
Deadman Low   0.0025 
Deadman Middle   * 
Mill Creek Border   * 
Mill Creek High   0.0355 
Mill Creek Low   0.0862 
Mill Creek Middle   0.0861 
North Fork High   0.0021 
North Fork Low   0.0047 
North Fork Middle   * 
Deadman High 2007 July 0.0012 
Deadman Low   0.0106 
Deadman Middle   0.0027 
Mill Creek Border   0.1000 
Mill Creek High   0.1011 
Mill Creek Low   0.1000 
Mill Creek Middle   0.0887 
North Fork High   0.0063 
North Fork Low   0.0125 
North Fork Middle   0.0065 
Deadman High  August 0.0039 
Deadman Low   0.0097 
Deadman Middle   0.0035 
Mill Creek Border   0.1293 
Mill Creek High   0.0391 
Mill Creek Low   0.1200 
Mill Creek Middle   0.0657 
North Fork High   0.0125 
North Fork Low   0.0067 
North Fork Middle     0.0046 

                             * Measurement not collected 
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Table A.8.  Percent stream slope values measured at all ten index sites. 
 
 

Index Site Percent Slope 
Deadman High 0.040 
Deadman Low 0.003 
Deadman Middle 0.032 
Mill Creek Border 0.013 
Mill Creek High 0.053 
Mill Creek Low 0.023 
Mill Creek Middle 0.032 
North Fork High 0.069 
North Fork Low 0.056 
North Fork Middle 0.058 



 

Table A9.  Number of organizational taxonomic units, Shannon’s diversity index, Simpson’s diversity index, and Hill evenness 
calculated from all qualitative and semi-quantitative invertebrate samples at all ten index sites during 2006.   

 
 

Index Site Sampling Period

Organizational 
Taxonomic 

Units 

Shannon's 
Diversity 

Index 

Simpson's 
Diversity 

Index 
Hill 

Evennes 

Total 
Invert. 

Abundance
EPT Taxa 

Abundance 
Deadman High July 31 2.649 0.113 0.599 563 406 
Deadman Low  46 2.921 0.080 0.655 486 37 

Deadman Middle  30 1.432 0.458 0.371 373 197 
Mill Creek Border  22 2.308 0.160 0.579 495 359 
Mill Creek High  27 2.407 0.150 0.561 370 303 
Mill Creek Low  28 2.362 0.146 0.609 515 376 

Mill Creek Middle  33 1.970 0.271 0.436 524 317 
North Fork High  29 2.406 0.140 0.608 483 387 
North Fork Low  34 2.463 0.131 0.618 427 239 

North Fork Middle  29 2.740 0.084 0.755 469 373 
Deadman High August 32 2.660 0.096 0.707 423 198 
Deadman Low  41 2.635 0.101 0.684 397 21 

Deadman Middle  49 2.655 0.138 0.470 367 253 
Mill Creek Border  29 2.124 0.221 0.479 483 404 
Mill Creek High  34 2.408 0.135 0.632 528 398 
Mill Creek Low  29 2.061 0.234 0.478 452 325 

Mill Creek Middle  15 1.840 0.209 0.716 491 413 
North Fork High  33 2.477 0.131 0.607 523 395 
North Fork Low  25 1.989 0.262 0.446 364 241 

North Fork Middle   35 2.705 0.115 0.554 465 390 
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Table A.10.  Conductivity, pH, and turbidity measurements at all ten index sites during 
2006 and 2007.   
 
    

 Location Year Conductivity (μ/cm) pH Turbidity (NTU) 
Deadman Creek High 2006 101 8.34 0.53 
Deadman Creek Low  447 8.32 1.95 
Deadman Creek Middle  443 8.23 2.10 
Mill Creek Border  309 8.36 1.49 
Mill Creek High  258 8.53 1.13 
Mill Creek Low  263 8.42 1.13 
Mill Creek Middle  289 8.35 1.27 
North Fork High  21 7.19 2.16 
North Fork Low  45 7.70 2.22 
North Fork Middle  38 7.47 2.26 
Deadman Creek High  412 8.35 0.68 
Deadman Creek Low  415 8.37 1.43 
Deadman Creek Middle  428 8.35 2.82 
Mill Creek Border  293 8.41 0.15 
Mill Creek High  301 8.38 0.48 
Mill Creek Low  261 8.49 0.84 
Mill Creek Middle  305 8.34 0.91 
North Fork High  39 7.72 0.97 
North Fork Low  52 7.87 1.29 
North Fork Middle  46 7.75 2.16 
Deadman Creek High 2007 341 8.32 0.72 
Deadman Creek Low  348 8.44 1.43 
Deadman Creek Middle  364 8.41 1.58 
Mill Creek Border  225 8.13 0.37 
Mill Creek High  197 7.62 0.74 
Mill Creek Low  192 7.94 1.66 
Mill Creek Middle  218 8.73 0.27 
North Fork High  47 8.07 1.37 
North Fork Low  36 6.85 1.51 
North Fork Middle  57 7.72 1.08 
Deadman Creek High  318 7.37 1.00 
Deadman Creek Low  329 7.42 3.02 
Deadman Creek Middle  321 7.39 2.86 
Mill Creek Border  260 7.38 1.50 
Mill Creek High  213 8.41 0.79 
Mill Creek Low  222 7.38 1.15 
Mill Creek Middle  245 8.48 1.50 
North Fork High  14 7.47 1.88 
North Fork Low  52 7.46 2.50 
North Fork Middle   40 7.49 0.48 
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Figure B.1.  Map of the Mill Creek watershed located in northern Utah.   
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Figure B.2.  Map of the Mill Creek watershed, with watershed-scale water 
chemistry sampling locations marked by shaded circles.   

 



 

 

75

 
 

Wyoming

Utah

Mill Creek

0 3 6 9 121.5
Kilometers

Deadman Creek

North Fork

Figure B.3.  Map of the Mill Creek watershed with the locations of ten permanent 
index sites marked by shaded circles. 
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Figure B.4.  Map of the Mill Creek watershed with two-way weir trap locations marked by shaded 
circles. 
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Figure B.5.  Map of the Mill Creek watershed with the locations of four mark/recapture 
stratum marked by ovals.  Letters within each stratum indicate the unique stratum 
identification. 
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Figure B.6.  Brook trout and cutthroat trout abundance (number of fish per hectare) at all 
ten index sites during July and August, 2006.  Error bars represent 95% confidence 
intervals. 
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Figure B.7.  Brook trout and cutthroat trout abundance (number of fish per hectare) at all 
ten index sites during July and August, 2007.  Error bars represent 95% confidence 
intervals.                       
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