Utah State University [DigitalCommons@USU](https://digitalcommons.usu.edu/)

[Posters](https://digitalcommons.usu.edu/mp_post) **Materials Physics Posters** Materials Physics

Fall 10-2015

Density of State Models of Steady-State Temperature Dependent Radiation Induced Conductivity

Jodie Corbridge Gillespie

JR Dennison Utah State Univesity

Follow this and additional works at: [https://digitalcommons.usu.edu/mp_post](https://digitalcommons.usu.edu/mp_post?utm_source=digitalcommons.usu.edu%2Fmp_post%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Condensed Matter Physics Commons](https://network.bepress.com/hgg/discipline/197?utm_source=digitalcommons.usu.edu%2Fmp_post%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Gillespie, Jodie Corbridge and Dennison, JR, "Density of State Models of Steady-State Temperature Dependent Radiation Induced Conductivity" (2015). American Physical Society Four Corner Section Meeting. Posters. Paper 23.

[https://digitalcommons.usu.edu/mp_post/23](https://digitalcommons.usu.edu/mp_post/23?utm_source=digitalcommons.usu.edu%2Fmp_post%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Poster is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Posters by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Density of State Models of Steady-State Temperature Dependent Radiation Induced Conductivity

Jodie Corbridge Gillespie and JR Dennison Materials Physics Group, Utah State University

Radiation induced conductivity (RIC) occurs when incident radiation deposits energy and excites electrons into the conduction band of insulators. The magnitude of the enhanced conductivity is dependent on a number of factors **including temperature and the spatial- and energy-dependence and occupation of the material's distribution of** localized trap states within the band gap-or density of states (DOS). Expressions are developed for steady-state RIC **over an extended temperature range, based on DOS models for highly disordered insulating materials. A general** discussion of the DOS of disordered materials can be given using two simple distributions: one that monotonically decreases below the band edge and one that shows a peak in the distribution within the band gap. Three **monotonically decreasing models (exponential, power law, and linear), and two peaked models (Gaussian and delta** function) are developed, plus limiting cases with a uniform DOS for each type. Variations using the peaked models are considered, with an effective Fermi level between the conduction mobility edge and the trap DOS, within the peaked trap DOS, and between the trap DOS and the valence band. Explicit solutions, limiting cases, and applications of the **models to RIC measurements are presented.**

Supported through funding from NASA Goddard Space Flight Center and a Senior Fellowship from the National Research Council and AFRL. Members of the USU Materials Physics Group, including Josh Hodges, Ryan Hoffmann, John Abbot and Justin Dekany helped acquire the RIC data presented here.

Fig. 2. Fermi Dirac distribution function approximations. (a) Fraction of occupied states versus a scaled energy, $[E/E_F^{eff}(T)]$ from $E_c \equiv 0$ to 3[•] $E_F^{eff} \equiv 0.3$ eV at three **temperatures: (i) a low temperature, 10 K, which is below typical spacecraft operating environments and temperatures at which RIC is measured; (ii) room temperature; and (iii) a high temperature, 500 K, above which most polymeric materials melt or disassociate an few spacecraft operate. (b) Absolute error versus scaled energy, for the zero and low T approximations. The relative error peaks at ~11% at** $\pm [2k_BT/E^{eff}_F(T)]$, independent of T.

Using the low temperature Fermi-Dirac function approximation from above and assuming $E_F^{eff}(T) \gtrsim 2k_BT$, we can calculate the density of filled trap states, n_t , for the steady-state condition at low T by integrating an expression for the trap state **density as a function of energy over all occupied states, or over all trap states in the** distribution $n_A(E)$:

Table 2 column 2 shows expressions for $n_c(T)$ in the low T approximation, for all **DOS listed in Table 1 evaluated with** $E_F^{eff}(T)$ **below, above, or within** $\pm 2k_BT$ **of the distributions.**

Fig. 1. Density of States (DOS) models. The graphs plot the normalized energy below the conduction band edge as a function of the normalized DOS, $n_A(E)$ / N_T . (a) Monotonically decreasing DOS models, **including the linear, power law and exponential models, as well as the limiting case uniform model.** Power law distributions are shown for two cases, $p = \frac{1}{2} < 1$ and $p = 2 > 1$. The energies are normalized by dividing by the width of the distributions, E_o^A . (b) Peaked DOS models, including the Gaussian and delta function models. Gaussian distributions are shown for two cases, $(E_0^G/E_0^t) = \frac{1}{3} < 1$ and $(E_0^G/E_0^t) =$ **3 > 1; the later approaches the limiting case uniform top hat model. The energies are normalized by** dividing by the peak of the distributions, E_o^t .

Calculations

$$
n_c(T) \approx N_c e^{-E_F^{eff}(T)/k_B T} = \frac{1}{N_T} \int_0^{\infty} f_{FD}(E, T) n_A(E) dE \approx
$$

$$
\frac{1}{N_T} \left\{ \int_0^{E_F^{eff}-(T)} n_A(E) dE + \int_{E_F^{eff}-(T)}^{E_{F}^{eff}+(T)} \frac{1}{2} \left[1 + \frac{E-E_F^{eff}(T)}{2k_B T} \right] n_A(E) dE \right\}
$$
 where $E_F^{eff} (T) = E_F^{eff} (T)$

This expression is the only part of the RIC expression that contains information about the material, at least up to a proportionality constant. The second integral in this expression contains all of the temperature dependence of RIC. Inserting this expression into the standard conductivity equations for electron carriers, we arrive at the final expression for temperature dependant RIC:

- **material with a peaked DOS with** $E_o^t \gg E_f^{eff}(n_c, T) \gg k_B T$ **.** • **Difficult to distinguish over the limited T range whether this is in**
- **better agreement than a fit linearly proportional to T.** • **USU Data Set 2 shows a smaller decrease in RIC at the lowest T than predicted by either fit; this may have resulted from increased**
- **charging during measurements at low T, where conductivity is smallest or may a indicate that the description of the DOS is not exact or other bands are present.**
- **RIC for SiO2 increases by only ~4X from ~100-420 K, almost three orders of magnitude less than observed for LDPE over similar T** ranges. Cathodoluminescence for these SiO₂ materials have **suggested the presence of fairly narrow (~10-50 meV wide) deep level trap DOS distributions within the bandgap [15].**

$$
\sigma_{RIC}(T) = k_{RIC}(T) \dot{D}^{A(T)} = q_e \mu_e n_c(T) \approx q_e \mu_e C_o \dot{D} T^{1/2} \left[\int_0^\infty f_{FD}(E,T) f_A(E) dE \right]^{-1}
$$

with
$$
C_o \equiv \rho_m [N_T s_C E_{eh} \sqrt{3k_B/m_e}]^{-1}
$$
.

[1] J.R. Dennison, J. Gillespie, J.L. Hodges, R.C. Hoffmann, .J. Abbott, A.W. Hunt and R. Spalding, "Radiation Induced Conductivity of Highly-Insulating Spacecraft Materials," in *Application of Accelerators in Research and Industry*, Am. Instit. Phys. Conf. Proc. Series, Vol. 1099, ed. F.D. McDaniel and B. L. Doyle, (Am. Instit. of Phys., Melveille, NY, 2009), pp. 203-208.

[2] A.M. Sim and J.R. Dennison, "Comprehensive Theoretical Framework for Modeling Diverse Electron Transport Experiments in Parallel Plate Geometries," Paper Number, AIAA-2013-2827, *5th AIAA Atmospheric and Space Environ. Conf.*, (San Diego, CA, June, 2013). [3] J.R. Dennison, J. Dekany, J.C. Gillespie, P. Lundgreen, A. Anderson, A.E. Jensen, G. Wilson, A.M. Sim, and R. Hoffmann, "Synergistic Models of Electron Emission and Transport Measurements of Disordered SiO2," Proc. 13th Spacecraft Charging Techn. Conf., (Pasadena, CA, June, 2014).

- [4] A. Rose, 1951, "An Outline of Some Photoconductive Processes," RCA Review **12**, 362-414. [5] A. Rose, 1963, *Concepts in Photoconductivity and Allied Problem* (John Wiley and Sons, New York).
- [6] Fowler, J. F., 1956a, "X-Ray Induced Conductivity in Insulating Materials," M. S. thesis (University of London). [7] J. F. Fowler, "X-ray induced conductivity in insulating materials," Proc. Royal Soc. London A, 236(1207), 464 (1956).
- [8] M. C. J. M. Vissenberg, 1998, "Theory of the Field-Effect Mobility in Amorphous Organic Transistors," Phys. Rev. **57**, 12964-12968. [9] H.J. Wintle, "Conduction Processes in Polymers," *in Engineering Dielectrics – Volume IIA: Electrical Properties of Solid Insulating Materials: Molecular Structure and*
- *Electrical Behavior,* R. Bartnikas, Eds, (Am. Soc. Testing and Materials, Philadelphia, PA 19103, 1983). [10] P. Molinié, R. Hanna, T. Paulmier, M. Belhaj, B. Dirassen, D. Payan, and N. Balcon, "Photoconduction and radiation-induced conductivity on insulators: a short review and some experimental results," *Proc.* 12*th Spacecraft Charging Techn. Conf.,* (Kitakyushu, Japan, May, 2012). [11] A. Tyutnev, V. Saenko, and P. Evgeny, "Experimental and Theoretical Studies of Radiation-Induced Conductivity in Spacecraft Polymers," *Proc.* 13*th Spacecraft Charging Techn. Conf.,* (Pasadena, CA, June, 2014).
- [12] K. Yahagi and A. Danno, "Effect of Carrier Traps in Polyethylene under Gamma-Ray Irradiation," J. Appl. Phys., 34, 804 (1963). [13] V.E Culler and H.E. Rexford, "Gamma-radiation-induced conductivity in glasses," Proc. IEE, 112(7), 1462, 1965.
- [14] J.R. Dennison, A.M. Sim, J. Brunson, S. Hart, J.C. Gillespie, J. Dekany, C. Sim and D. Arnfield, "Engineering Tool for Temperature, Electric Field and Dose Rate Dependence of High Resistivity Spacecraft Materials," Paper Number AIAA-2009-0562, *Proc. 47th Am. Inst. Aeronautics and Astronomics Meet. on Aerospace Sci.*, 2009. [15] J.R. Dennison and J. Brunson, "Temperature and Electric Field Dependence of Conduction in Low-Density Polyethylene," *IEEE Trans. Plasma Sci*., 36(5), 2246-2252, 2008. [16] J.C. Gillespie, "Measurements of the Temperature Dependence of Radiation Induced Conductivity in Polymeric Dielectrics," MS Thesis (Utah State University), 2013.

Density of States (DOS) Models

T-Dependent Conductivity Models

Comparison with Experimental Results

- **decreasing DOS [15].**
- **At T≤250 K, LDPE data exhibits a modest factor of ~3 increase in RIC. Such an increase at low T is predicted for an exponential monotonically decreasing DOS. However, for expected values of** $\frac{E_{o}^{x}}{2}$ and N_{T} , these increases are predicted below ~30-50 K. **Behavior observed in LDPE may alternately be related to a LDPE structural phase transition seen at between 250 K and 262 K. This structural β phase transition is routinely observed in branched PE, and associated with conformational changes along polymer chains in the interfacial matrix of disordered polymer between**
- **nanocrystalline regions in the bulk.** • **Changes near ~250 K seen in prior studies of mechanical and thermodynamic properties and in dark current conductivity [14,15], RIC [1,14], and other electronic properties.**

UtahStateUniversity **MATERIALS PHYSICS GROUP**

$(\pm 2k_BT)$

References