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Density of State Models of Steady-State Temperature 
Dependent Radiation Induced Conductivity

Materials Physics Group, Utah State University

Radiation induced conductivity (RIC) occurs when incident radiation deposits energy and excites electrons into the
conduction band of insulators. The magnitude of the enhanced conductivity is dependent on a number of factors
including temperature and the spatial- and energy-dependence and occupation of the material’s distribution of
localized trap states within the band gap—or density of states (DOS). Expressions are developed for steady-state RIC
over an extended temperature range, based on DOS models for highly disordered insulating materials. A general
discussion of the DOS of disordered materials can be given using two simple distributions: one that monotonically
decreases below the band edge and one that shows a peak in the distribution within the band gap. Three
monotonically decreasing models (exponential, power law, and linear), and two peaked models (Gaussian and delta
function) are developed, plus limiting cases with a uniform DOS for each type. Variations using the peaked models are
considered, with an effective Fermi level between the conduction mobility edge and the trap DOS, within the peaked
trap DOS, and between the trap DOS and the valence band. Explicit solutions, limiting cases, and applications of the
models to RIC measurements are presented.
* Supported through funding from NASA Goddard Space Flight Center and a Senior Fellowship from the National Research Council and AFRL. Members of the
USU Materials Physics Group, including Josh Hodges, Ryan Hoffmann, John Abbot and Justin Dekany helped acquire the RIC data presented here.

Abstract Low Temperature Approximation
Fig. 2.  Fermi Dirac distribution 
function approximations. (a) 
Fraction of occupied states versus 
a scaled energy, [𝑬𝑬/𝑬𝑬𝑭𝑭

𝒆𝒆𝒆𝒆𝒆𝒆(𝑻𝑻)] from 
EC≡0 to 3·𝑬𝑬𝑭𝑭

𝒆𝒆𝒆𝒆𝒆𝒆≡0.3 eV at three 
temperatures: (i) a low 
temperature, 10 K, which is below 
typical spacecraft operating 
environments and temperatures at 
which RIC is measured; (ii) room 
temperature; and (iii) a high 
temperature, 500 K, above which 
most polymeric materials melt or 
disassociate an few spacecraft 
operate.  (b) Absolute error versus 
scaled energy, for the zero and 
low T approximations.  The 
relative error peaks at ~11% at  
±[𝟐𝟐𝒌𝒌𝑩𝑩𝑻𝑻/𝑬𝑬𝑭𝑭

𝒆𝒆𝒆𝒆𝒆𝒆(𝑻𝑻)], independent of T. 
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Calculations
Using the low temperature Fermi-Dirac function approximation from above and 
assuming 𝑬𝑬𝑭𝑭

𝒆𝒆𝒆𝒆𝒆𝒆(𝑻𝑻) ≳ 𝟐𝟐𝒌𝒌𝑩𝑩𝑻𝑻, we can calculate the density of filled trap states, 𝒏𝒏𝒕𝒕, for 
the steady-state condition at low 𝑻𝑻 by integrating an expression for the trap state 
density as a function of energy over all occupied states, or over all trap states in the 
distribution 𝒏𝒏𝑨𝑨(𝑬𝑬): 
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This expression is the only part of the RIC expression that contains information 
about the material, at least up to a proportionality constant.  The second integral in 
this expression contains all of the temperature dependence of RIC.  Inserting this 
expression into the standard conductivity equations for electron carriers, we arrive 
at the final expression for temperature dependant RIC: 
 

𝝈𝝈𝑹𝑹𝑹𝑹𝑹𝑹(𝑻𝑻) = 𝒌𝒌𝑹𝑹𝑹𝑹𝑹𝑹(𝑻𝑻) D
𝜟𝜟(𝑻𝑻)
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 with     𝑹𝑹𝒐𝒐 ≡ 𝝆𝝆𝒎𝒎�𝑵𝑵𝑻𝑻𝒔𝒔𝑹𝑹𝑬𝑬𝒆𝒆𝒆𝒆�𝟑𝟑𝒌𝒌𝑩𝑩 𝒎𝒎𝒆𝒆⁄ �
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. 
 

Table 2 column 2 shows expressions for 𝒏𝒏𝒄𝒄(𝑻𝑻) in the low T approximation, for all 
DOS listed in Table 1 evaluated with 𝑬𝑬𝑭𝑭

𝒆𝒆𝒆𝒆𝒆𝒆(𝑻𝑻) below, above, or within ±𝟐𝟐𝒌𝒌𝑩𝑩𝑻𝑻 of the 
distributions.   

Density of States Plots

Fig. 1.  Density of States (DOS) models.  The graphs plot the normalized energy below the conduction 
band edge as a function of the normalized DOS, nA(E) / NT.  (a) Monotonically decreasing DOS models, 
including the linear, power law and exponential models, as well as the limiting case uniform model.  
Power law distributions are shown for two cases, p = ½ < 1 and p = 2 > 1.  The energies are normalized 
by dividing by the width of the distributions, 𝑬𝑬𝒐𝒐𝑨𝑨.  (b) Peaked DOS models, including the Gaussian and 
delta function models.  Gaussian distributions are shown for two cases, (𝑬𝑬𝒐𝒐𝑮𝑮/𝑬𝑬𝒐𝒐𝒕𝒕 ) = ⅓ < 1 and (𝑬𝑬𝒐𝒐𝑮𝑮/𝑬𝑬𝒐𝒐𝒕𝒕 ) = 
3 > 1; the later approaches the limiting case uniform top hat model.  The energies are normalized by 
dividing by the peak of the distributions, 𝑬𝑬𝒐𝒐𝒕𝒕 . 
 

Symmetric Peaked DOSMonotonically Decreasing DOS

Density of States (DOS) Models

𝜣𝜣(𝑬𝑬) is a Heaviside step function, equal to 0 at E < 0 and 1 at E > 0.       a From Eq. (6). 
𝜹𝜹(𝑬𝑬) is the Dirac delta function, equal to infinity at E and zero elsewhere.   b Mean energy of trap state within band gap, Eq. (2) 
erf(E) is the error function evaluated at E.                        c From Eq. (7).
 

T-Dependent Conductivity Models

Comparison with Experimental Results

Disordered Silicon Dioxide (SiO2) Low Density Polyethylene (LDPE)
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• Fit with a curve predicted for an exponential monotonically 
decreasing DOS [15].   

• At T≤250 K, LDPE data exhibits a modest factor of ~3 increase in 
RIC.  Such an increase at low T is predicted for an exponential 
monotonically decreasing DOS.  However, for expected values of 
𝑬𝑬𝒐𝒐𝑿𝑿and NT, these increases are predicted below ~30-50 K.   

• Behavior observed in LDPE may alternately be related to a LDPE 
structural phase transition seen at between 250 K and 262 K. This 
structural β phase transition is routinely observed in branched PE, 
and associated with conformational changes along polymer 
chains in the interfacial matrix of disordered polymer between 
nanocrystalline regions in the bulk.

  

• Changes near ~250 K seen in prior studies of mechanical and 
thermodynamic properties and in dark current conductivity 
[14,15], RIC [1,14], and other electronic properties.
 

• Fit with a curve proportional to T1.2, as would be expected for a 
material with a peaked DOS with 𝑬𝑬𝒐𝒐𝒕𝒕 ≫ 𝑬𝑬𝑭𝑭

𝒆𝒆𝒆𝒆𝒆𝒆(𝒏𝒏𝒄𝒄,𝑻𝑻) ≫  𝒌𝒌𝑩𝑩𝑻𝑻.   
• Difficult to distinguish over the limited T range whether this is in 

better agreement than a fit linearly proportional to T.   
• USU Data Set 2 shows a smaller decrease in RIC at the lowest T 

than predicted by either fit; this may have resulted from increased 
charging during measurements at low T, where conductivity is 
smallest or may a indicate that the description of the DOS is not 
exact or other bands are present. 

• RIC for SiO2 increases by only ~4X from ~100-420 K, almost three 
orders of magnitude less than observed for LDPE over similar T 
ranges.  Cathodoluminescence for these SiO2 materials have 
suggested the presence of fairly narrow (~10-50 meV wide) deep 
level trap DOS distributions within the bandgap [15].   

Fig. 3. Radiation induced
conductivity versus T for: (a)
disordered SiO2, showing two
data sets from USU [3] and
Culler [13] with fits proportional
to T1.2 and T; (b) LDPE, showing
data sets from USU [14], Yagahi.
[12], and Fowler [6] with a fit
based on an exponential DOS.
Data from the different studies
were scaled to normalize RIC at
room T.
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