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ABSTRACT 

In this paper several astrodynamical formation flying models are assessed against the experimental results derived 

from the SPACE-SI formation flying experiments performed in September 2011with the OHB Sweden developed 

Prisma satellites Mango and Tango. In these formation flying experiments critical manoeuvres for three types of 

missions were investigated with respect to in-orbit performances. The experiments included parallel flying with in-

track displacement demonstrating high-resolution optical dual satellite imaging and radar interferometric 

constellation, circumvolution as well as encircling of the target demonstrating debris observation and parallel flying 

with the radial displacement demonstrating fractionated spacecraft and accurate pointing of the formation. The 

astrodynamic data of the experiment are used to verify several formation flying models including a nonlinear model, 

a linear Hill-Clohessy-Wiltshire model, STK models with four propagators (Earth mass point, J2, default HPOP and 

HPOP with all disturbances) and the hereby originally proposed extension to the Hill-Clohessy-Wiltshire model, a 

linear model for orbits with small eccentricities.  

INTRODUCTION 

In this paper seven astrodynamics formation flying 

models are assessed against the experimental results 

derived from the SPACE-SI formation flying 

experiments that were performed with the Prisma [1, 2, 

3, 4] satellites Mango and Tango developed by OHB 

Sweden. The motivation for this study steams from the 

needs for reliable data and models that will be required 

to analyse various formation flying concepts including 

distributed instruments geometries for astronomy, 

communications, metrology and remote sensing of 

Earth as well as in-orbit inspections and servicing. To 

investigate these scenarios SPACE-SI and OHB 

Sweden performed a set of formation flying 

experiments in September 2011 with the Prisma 

satellites Mango and Tango, that were launched into a 

sun synchronous orbit with 725 km altitude and 06.00h 

ascending node in June 2010. In the SPACE-SI 

formation flying experiments critical maneuvers for 

three types of missions were investigated with respect 

to the in-orbit performances. 

In the Prisma mission Mango and Tango are flying 

close to each other, therefore close formation flying will 

be discussed in the paper, i.e. the satellites will be 

considered to fly at distances ranging from five to few 

hundred meters. In spacecraft formation flying mission 

design the relative spacecraft position is more important 

than the knowledge of the absolute position of the 

formation. In addition, knowledge of the relative states 

of spacecraft in a formation is often far more accurate 

than knowledge of the formation’s absolute state. For 

these reasons, the theoretical part of this paper will be 

focused on studies of the relative positions of two 

spacecraft which are forming a close formation. We 

will use the common terms leader and follower to 

describe them. The leader is supposed to be in the 

centre of the local vertical/local horizontal (LVLH), 

sometimes also called Radial/In-track/Cross-track 

(RIC), coordinate system [5,6]. Its coordinates will be 

always at the origin and its absolute position (orbit) will 

not be controlled. The leader may also be called target 

satellite since in some manoeuvres it will represent the 
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target to be observed or approached. In the Prisma 

mission Mango is the main satellite and Tango the 

target. In our case Mango represents the follower while 

Tango represents the leader. This is due to the fact that 

Mango is chasing Tango. 

The paper is organized as follows: First the SPACE-SI 

experiments on Prisma satellites are briefly described. 

Afterwards the well-known formation models are 

shortly outlined. An extension of the Hill-Clohessy-

Wiltshire (HCW) model to orbits with small 

eccentricity is derived by the method of small 

perturbation, which is the main contribution of this 

paper. Further, an analytical solution of the linear 

model for small eccentricity is given and the paper 

concludes with the validation of the models against the 

Prisma experiment. 

FORMATION FLYING EXPERIMENTS  

In September 2011, on the Prisma satellites Mango and 

Tango that were launched into a sun synchronous orbit 

with 725 km altitude and 06.00h ascending node in 

June 2010, SPACE-SI and OHB Sweden performed a 

series of experiments involving critical maneuvers for 

three mission types with respect to in-orbit 

performance, to investigate formation flying paradigms.   

In-Flight Simulated Radar Interferometry  

Formation flying capabilities are especially important 

for satellite based radar interferometry (InSAR), one of 

the more interesting applications for the acquisition of 

synthetic aperture radar imagery. Because the phase 

angle of the backscattered signal for a given pixel is 

available, and phase is easily measured, it is possible to 

compare the phase differences of two different images 

of the same region and, from that comparison the 

relative locations of pixels in three dimensions is found 

[7]. The interferometry is using radar images, acquired 

from slightly different positions which correspond to 

different orbits. By comparing the phase (Φ, and the 

phase difference ΔΦ) of a pair of images the height of 

the reflection and the shape of the surface (digital 

elevation model, DEM) can be determined. Depending 

on the imaging configuration, surface changes (i.e. 

displacements, movements) can also be observed. 

One can obtain the best results with a satellite 

constellation, where a pair of satellites is in two 

different orbits that are separated by a distance of 

several hundred meters (e.g. 100-200 m). The satellites 

can be either in the same orbit (along-track) or in 

parallel orbits (across-track). One of the satellites emits 

a radar signal, while both of them receive the signal. 

During imaging the relative separation of the satellites 

has to be stable and precisely known (in the range of 

millimeters) to enable interferometric processing and 

achieve optimal results [7]. 

 

Fig 1. Along-track interferometric geometry 

With the Prisma experiment we have tested the along-

track interferometric configuration (see Fig. 1). Along-

track synthetic aperture radar interferometry is currently 

not widely in use since the only system capable of 

providing it is the German TanDEM-X constellation, 

developed by DLR, EADS Astrium and Infoterra [7,8]. 

It offers, however, entirely new opportunities. This 

application uses two separate radar antennas arranged 

longitudinally along the direction of flight; a method 

that permits the measurement of the speed of moving 

objects, as the two satellites image the same area 

successively, with a brief interval in between. The 

method is used particularly in oceanography, 

glaciology, and traffic research [9]. For successful 

determination of speed measurements an optimal 

distance between the satellites (so called baseline) has 

to be used and maintained. It has been proven that the 

baseline should be between hundred and several 

hundred meters [7]. 

In our experiment the Tango and Mango satellites were 

positioned at a distance of approximately 200 m along-

track and the relative position was maintained for three 

consecutive orbits. Natural forces have influenced the 

relative position of the satellites. We have observed the 

stability of the formation and have allowed small 

drifting of the satellites, since these can be detected and 

corrected in InSAR processing. We have observed the 

absolute and relative position of both satellites. The 

Prisma constellation has proven to have the stability 

that is required for interferometric data processing [10]. 

All the drifting effects are small and can be removed in 

the processing step. The orbital stability and accuracy 

influence the estimated accuracy of velocity 

measurements obtained with along track interferometry. 

We have estimated that the water current speeds 

accuracy of 0.05 m/s can be obtained. In a similar 

across-track constellation with similar orbital 
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parameters and orbital accuracy the vertical accuracy of 

the digital elevation model production could reach 1 m.  

The astrodynamic data of this experiment are used to 

verify the formation flying models in Section 

Validation of the Models Against Prisma Experiment. 

Observation of Non Cooperative Objects–space debris 

It is expected that non-cooperative objects such as 

space debris will become a serious problem in the near 

future. Debris orbits often overlap with trajectories of 

operational spacecraft, and represent a potential 

collision risk. In order to remove or mitigate the debris 

collision risk, it must be first identified. To simulate the 

required procedures, two experiments were performed: 

orbit identification and close observation. 

On the basis of the space debris Two Line Elements 

(TLE) the Mango’s camera was directed in the direction 

of the point of the closest approach and several images 

were taken in a sequence. The Simulation toolkit (AGI - 

STK) was used to simulate the trajectories of Mango 

and the debris. The newest TLE database was used to 

identify the satellites or debris flying closer than 25km 

to Mango as well as the corresponding time frame. The 

criteria for choosing the objet to be observed with 

Mango vision based camera (VBS), was the distance 

and the vicinity period. Besides these two criteria 

additional constraints were also considered. During 

imaging the camera should not be pointing neither 

towards the Sun (the azimuth of the camera targeting 

the object was limited to the range between 180° and 

360° according to the VVLH coordinate system) nor 

towards the Earth (the elevation was limited to the 

values larger than -20° according to the VVLH 

coordinate system). 

In the simulations, the Geosat satellite (ID number 

15595) was chosen for observation. The optimal time of 

closest approach was September 20, 2011 09:26:54.000. 

The Mango VBS was pointed in the calculated direction 

and several images were taken in a sequence. Three 

consecutive shots, taken by the VBS camera, were 

compared with the STK simulations to prove the 

viability of the procedure. The Geosat can be clearly 

seen in the second shot shown in Fig. 2. 

Just one minute before the Geosat closest approach, the 

satellite SL-14 R/B with ID number 22237 was also 

recorded by the VBS camera in two consecutive shots, 

shown in Figs 3 and 4 respectively. The experiment has 

shown, that it is possible to predict close encounters 

between two satellites (including debris), as 

documented in details in [12]. 

 

Fig. 2: VBS camera shot at 2011 09 20, 09:26:53.254  

 

Fig. 3: VBS camera shot at 2011 09 20, 09:26:00.254 

Close observation was also performed with the satellites 

flown in the (in-track) distance of 5 m. Mango was 

pointing with its Digital Video System (DVS) camera 

all times towards Tango, which was rotating around 

(with a bit of wobbling) its cross-track axis, pointing all 

times with its solar panels toward the sun. Several 

pictures of Tango (which simulated the debris) were 

taken in order to make a 3D model of the observed 

object. From the captured figures the 3D model 

reconstruction was performed. The reconstruction was 

satisfactory with the views provided by the DVS 

camera, while the reconstruction of the parts that were 

not imaged (or marginally – due to wobbling) was 

degraded. A better 3D model would be obtained with 

the use of an accurately calibrated camera on the 

imaging spacecraft. In order to have diversified images, 

also an encircling of Tango by Mango in a relative 60 

degrees inclined orbit on a circle with radius 20 m was 

performed. Corresponding images (with far less detail) 
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are still being processed. The timing of imaging (during 

encircling) was adjusted to have some areas of interest 

on the Earth (Kuwait, shown in Fig 5, Djibouti, Crete) 

in the background.  

 

Fig. 4: VBS camera shot at 2011 09 20, 09:26:02.754 

In Flight Simulated Distributed Instrument  

Precise formation flying of small satellites can also lead 

to interesting scenarios for optical remote sensing. One 

of these is when a satellite camera is formed by two 

satellites flying one above the other or one after the 

other. To obtain high multispectral resolution and to 

keep the combined instrument as small as possible both 

satellites should be placed close to each other, in the 

range of less than 5 m. One of the satellites holds the 

optical system with lenses and/or mirrors and the other 

one the detectors (sensors). 

In this case the idea is to form a telescope that can 

acquire high-resolution multispectral images of the 

Earth’s surface with the use of two small satellites 

instead of one big and more expensive satellite. If the 

satellites fly one after the other (along-track) then one 

of the satellites must carry a mirror at an angle of 

approximately 45° that reflects the beam to the 

detectors on the other satellite. This formation is 

preferable as the consumption of propellant is very 

small. Regarding the imaging types, there are two 

possibilities for acquiring images. If a linear scanner is 

used a sweeping motion can be exploited that can cover 

a larger area. The other type is the “pointing mode” 

acquisition that can also be used when the same area is 

imaged during various times. In this case a full frame 

detector that covers a smaller area would be needed. In 

this experiment the Tango was simulating the holder of 

the optical system with lenses and/or mirrors while 

Mango, simulating the holder of detectors (sensors), 

was driven to an appropriate position. This experiment 

was performed in two different versions: in-track and 

cross-track. 

 

Fig. 5: The DVS shot of the Persian Gulf with Tango in 

the foreground. 

With the in-track displacement a very precise formation 

flying geometry is needed. To avoid blurred images 

when imaging, both systems have to be precisely 

aligned and kept at a constant relative distance and 

orientation. The satellites were flown in approximately 

the same orbit (parallel flying – in-track displacement). 

Inn this constellation a mirror would have to be placed 

at an angle of approximately 45° to reflect the beam to 

the sensors. 

We have tested the above mentioned configuration 

where Mango and Tango were positioned one after the 

other at a relative distance of approximately 5 m. The 

position was kept for two orbits. During these orbits the 

absolute and relative position and attitude of the 

satellites were measured. From the obtained data we 

assessed the stability and capability of the formed 

instrument for high-resolution imaging. The results 

showed quite an instable motion of the satellites during 

both orbits. Figure 6 shows the degree of change in the 

viewing direction of Mango body axis. The changes are 

mainly below 0.1 degrees in all axes but contain major 

fluctuations that can reach values over 1 degree due to 

orbit thrusting. This means at least approximately a 1 

cm pointing shift. The situation with Tango is even 

worse as the axis deviate more than 20 degrees due to 

Tango having only a 3-axis magnetic body control [13]. 

The relative position of the satellites was maintained 

with the use of Mango thrusters that regulated the 
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satellite motion. During the orbits the relative distance 

between the satellites changed up to more than 10 cm in 

all axes (Fig 7). The variations are relatively small but 

show clear instability. The flight direction axis showed 

the highest stability. 

14 14.5 15 15.5 16 16.5 17
0

0.05

MAIN: -Yscb degrees from +Yslo(Sun)

14 14.5 15 15.5 16 16.5 17
0

0.5
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179.5

180
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Figure 6: Changes of attitude for all Mango axes during 

the two consecutive orbits. 

From the obtained results we can conclude that the 

regulation accuracy of the relative distance and attitudes 

are inadequate for a distributed instrument where 

relative positions and attitude shifts of satellites 

involved should be kept within millimeters. This is true 

both for line scanner and for a full frame camera 

because of the axis instability that also cannot be 

predicted accurately.  
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Figure 7: Relative distance variations between the 

satellites during two consecutive orbits (5 m have been 

subtracted from the – requested – along-track distance). 

For satisfactory results both satellites should include 

reaction wheels, thrusters with a precise regulation as 

well as a precise relative navigation system. Relative 

GPS navigation as used in this experiment is not a 

suitable choice when position accuracy of millimeter 

accuracy is targeted. 

With the radial and cross-track displacement the 

satellites were flown in slightly different orbits (parallel 

flying – radial and cross-track displacement). The 

satellites were aligned with predefined target locations 

on the Earth, including Cape Town (South Africa), 

Piran (Slovenia) and Punta Arenas (Chile). The 

experiment was initially planned for July, however, due 

to delays it was shifted to mid-September – the time of 

autumnal equinox. This is an inappropriate time for 

imaging the Earth’s surface from a dusk-dawn orbit. In 

addition due to the inclination of the orbit the targets on 

the southern hemisphere had much better lighting 

condition than those on the northern, where our 

preferred area of interest Piran/Portorož, the venue of 

the 2012 Small Satellites Systems and Services (4S) 

Symposium, was located. 

Orbitron [14] was used to determine the approximate 

time of an appropriate passage. The approximate time 

and the TLE data of Tango were supplied to a Matlab 

[15] based satellite simulator, which calculated the 

closest satellite position with respect to the target. 

Using the satellite-target vector and desired Mango-

Tango distance the relative position of Mango in the 

Tango co-ordinate system was calculated and supplied 

to the STK [16] program for verification. The 

orientation of Tango was unchanged (the solar panels 

facing the Sun), while Mango was turned to track the 

ground target with its DVS camera during the passage. 

While performing this experiment on September 21, 

lighting conditions and weather played an important 

role, as described in details in [12]. Fig. 8 depicts the 

STK verification and the outcome of the In Flight 

Simulated Distributed Instrument Remote Sensing 

experiment for the Cape Town target, where the 62nd 

International Astronautical Congress was held one 

month later. 

FORMATION FLYING MODELS 

In this Section different models, which will be studied 

in later Sections, are presented. With respect to the 

experiment with the Prisma formation, the local co-

ordinate system will be fixed to the target (Tango) 

satellite, which has no orbit control, while the orbit 

controlled satellite (Mango) will be named main.  

Nonlinear model 

Formation flying can be described by the following set 

of nonlinear equations [5,6] 
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Fig. 8: The STK simulated (upper) and real DVS 

(lower) shot of Cape Town. 
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where xn (Radial), yn (In-track) and zn (Cross-track) are 

the coordinates of the main satellite in the target 

satellite coordinate system (called Radial/In-

track/Cross-track − RIC) and ax, ay, az are the 

accelerations of the main satellite in the radial, in-track 

and cross-track direction, respectively. In the above 

equations R is the distance of the target satellite from 

Earth mass point, 
 
the Earth gravitational constant, 

and 
R  the true anomaly of the target. 

 

The movement of the target satellite is described by the 

following nonlinear equations:  
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These equations include the influence of the 

eccentricity and nonlinear differential gravitation, 

however do not include disturbances, such as oblateness 

of the earth (e.g. J2 coefficient) and third bodies 

influences. The model is realized within STK as Earth 

mass point propagator. 

Hill-Clohessy-Wiltshire (HCW) model 

For close formation flying and small eccentricities 

Equations () can be linearized [6], yielding a set of 

linear equations with time-varying parameters 
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If the first satellite has a circular orbit (R=a), its angular 

acceleration is zero ( 0
R  ), then its mean motion can 

be expressed by 

3R
n

a


    (5) 

and the linear system of equations with constant 

coefficients, called Hill-Clohessy-Wiltshire (HCW), is 

obtained as follows  

22 3

2

2

c c c x

c c

c c z

ya

x ny n x a

y nx

z n z a

  

 

  

 (6) 



Matko 7 26th Annual AIAA/USU 

  Conference on Small Satellites 

These equations describe the movement of the main 

satellite with respect to the target satellite for circular 

orbit and small deviations. For constant accelerations 

ax, ay, and az, this system of equations can be solved 

analytically [17]. The solution of the non-homogenous 

system of equations () is 
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Where 0( )cx t
, 0( )cy t

, 0( )cz t
, 0( )cx t

, 0( )cy t  and 

0( )cz t  are the initial conditions. The HCW model does 

not include neither perturbations nor the eccentricity of 

the orbit. 

LINEAR MODEL FOR SMALL ECCENTRICITY 

Nonlinear equations () are valid for Keplerian orbits 

without any disturbances, their linearized version () for 

circular (eccentricity 0  ) orbits only. In this section 

the influence of non-zero eccentricity will be 

investigated by the method of small deviations 

(perturbations). First a linear model of equations of the 

target satellite movement (Eqns. , ) will be obtained for 

small   by linearization of orbit deviations from the 

circular orbit. Next the influence of these deviations on 

relative position of a satellite will be investigated. 

Linearization of the orbit  

First a linear model of deviations from circular orbit 

will be developed for small . The distance of the 

target satellite to the Earth centre point and the time 

derivative of its true anomaly can be expressed as 

deviations from the semi major axis of the motion 

ellipse a and its mean motion n respectively, so they 

can be expressed as 
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According to the method of perturbations the deviations 

are expressed as 
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Introducing Eqns. () and , Eqns () and () become 
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and with expanding the fractions into Taylor series  

2 2 2

1 1 1 1 1

3 2 1
1 1 2

2 2

(1 2 ...)

R an an n R R n

R
R

a a

    


  

    

   
 (12) 

(...))(
2 2

1
11

1 


  



a

R
nn

a

R

 (13) 

Collecting the terms with   and observing Eq. (5), we 

get two linear equations for 1R and 1  

2

1 1 12 3R an n R   (14) 

1 1

2n
R

a
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Next initial conditions for 1 1,R R  and 1  will be 

developed. It is supposed that the time starts ( 0)t   

when the leader (target) satellite passes the perigee and 

so its true anomaly (0)  is zero and its distance to the 

Earth mass point is 

(0) (1 )R a f a    
,
 (16) 

where f is the distance from the centre of the ellipse to 

the focus. From this equation it follows 

1(0) (0)R a R a       (17) 

At the perigee, R has its minimum, so 
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10 (0) 0R R R      (18) 

Using well known equations for the true ( ) mean (M) 

and eccentric (E) anomaly 

sinM n t E E     (19) 

21

1 cos
d dE

E









  

(20) 

we get for 0t   that (0) (0) 0E    and 

0 0 0

(1 cos ) (1 )
t t t

dM dE dE
n E

dt dt dt
 

  

      (21) 

and consequently 

2

2

(0) 1
(0)

(1 )

d
n

dt

 





 


.

 (22) 

Using () and expanding () into Taylor series we get 

2
2

2

1 5
(0) (0) ( 1) 2 ...

2(1 )
n n n n


   




       



 (23) 

Considering only the first term of Eq. , the initial 

condition for 1  is obtained as follows: 

n2)0(1 
 (24) 

Equations  have an analytical solution which will be 

developed next using the derived initial conditions (), () 

and . The integration of Eq.  yields 

1 1 1 1

1 1

2
( (0)) (0)

2 2
( ) 2

n
R R

a

n n
R a n R

a a

     

     

 (25)) 

Eq.  now becomes 

1

2

1

2

11 3)
2

(2 RnRnR
a

n
anR 

 (26) 

and its solution with respect to initial conditions (), () is  

1( ) cosR t a nt   (27) 

Eq.  now becomes 

ntnnta
a

n
cos2)cos(

2
1 

 (28) 

The deviations R  and   now become: 

( ) cos

2
( ) ( cos ) 2 cos

R t a nt

n
t a nt n nt

a



  

  

    
 (29) 

Equations () represent the analytical solution of the 

linear deviation model with respect to derived initial 

conditions. 

Linearization of the velocity 

Due to changing radius of the orbit and changing radial 

velocity, also the linear velocity of the main satellite is 

changed and will be elaborated next.  

The orbital velocity of the main satellite is  

2

( ) ( ) ( ) (1 cos ) (1 2 cos )

(1 cos ) ( )

v t R t t a nt n nt

an nt O

  

 

     

  
 (30) 

where the term with 
2  will be neglected. Introducing 

0( ) ( ) ( )v t v t v t 
 (31) 

The nominal velocity v0 and the deviation of the 

velocity Δv are 

0 ( )

( ) cos

v t an
a

v t an nt





 

 

 (32) 

Next the influence of all above given deviations on the 

deviations of relative distance of satellites will be 

investigated. 

Application of the method of perturbations to the 

formation flying model 

By the method of perturbations, the deviations from the 

solutions for circular orbit are described by   

1

1

1

( ) ( )

( ) ( )

( ) ( )

x t x t

y t y t

z t z t







 

 

 

 (33) 

where   is a small parameter. In our case the 

eccentricity  , which is supposed to be small, will be 

used. The x, y and z components for the perturbed 

model now become 
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1

1

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

p c c

p c c

p c c

x t x t x t x t x t

y t y t y t y t y t

z t z t z t z t z t







    

    

    

 (34) 

Linear equations with time varying parameters.  can 

now be written using Eqns. (34), (), () as follows 

1 1

2

1

2 1
1 3 3

( ) 2( 2 cos )( )

2 sin ( )

2 ( )
( 2 cos ) ( )

(1 cos )

c c

c

c
c x

x x n n nt y y

n nt y y

x x
n n nt x x a

a nt

  

 

 
 



    

  


    



 (35) 

1 1

2

1

2 1
1 3 3

( ) 2( 2 cos )( )

2 sin ( )

2 ( )
( 2 cos ) ( )

(1 cos )

c

c

c
c y

y y n n nt x x

n nt x x

y y
n n nt y y a
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  

 

 
 



    

  


    



 (36) 

1
1 3 3

( )

(1 cos )

c
c z

z z z
z z a

a nt

 





   


 (37) 

Collecting the left hand side of these equations with 

respect to   and expanding the right hand side into 

Taylor series, we get  

2

1 1

2 2 2

1

2 3

2 2

1

2 2 2

1

2 3

2 ( 4 cos 2

2 sin 4 cos )

(...) (...) ...

2 ( )(1 3cos (...) ...)
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(...) (...) ...
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c
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x

x ny n x x ny nt ny
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n x x nt

n x n x n x nt

a



 
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

 

     

   
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   
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 (38) 

2

1 1

2 2 2

1

2 3

2 2

1

2 2 2

1
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2 ( 4 cos 2

2 sin 4 cos )

(...) (...) ...
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c
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y

y nx n y y nx nt nx
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n y y nt
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a



 

  



 

     

   

   

      

     
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 (39) 

2

1 1

2 3

2 2 2

1

2 3

(1 3 cos )( )

(...) (...) ...

( 3 cos )

(...) (...) ...

c c

c

z

z z n nt z z

n z n z n z nt

a

  

 



 

     

   

    

   

 (40)
 

The terms without  represent the original system of 

equations for circular orbit  (6) while the terms with  
 

represent a new system of equations for x1, y1 and z1, 

respectively. The terms with higher exponents will be 

neglected.  

The system of equations for x1 ,y1 and z1 now becomes 

2

1 1 1

2 2

2 3

(10 4 )cos 2 sinc c c

x ny n x

n x ny nt n y nt

  

  
 (41) 

2 2

1 1

2 2

2 ( 4 4 3 )cos

( 4 )cos 2 sin

c c

c c c

y nx nx n y n yc nt

n y nx nt n x nt

     

  

 (42) 

2 2

1 1 3 cos .cz n z n z nt    (43) 

The initial conditions for deviations are obtained under 

presumption that the centre of the elliptical orbit 

remains in the centre of the circular orbit as follows 

1 1

1 0

(0) (0) 0

(0)

x z

y y

 


 (44) 

Due to the eccentricity of the orbit, the Along-track 

initial distance y0 causes velocity changes in the Radial 

and In-track directions. Due to the In-track distance y0, 

the satellites are flying along the same track however 

they pass the perigee with a time shift of t
 

0 0 0

(0) (0) (1 )

y y y
t

R an an 
   


 (45) 

The initial velocities for deviations are then 

1 1 1

2

0

1

1

(0) ( ) (0)

sin

(0) ( ) (0)

cos cos0 0

(0) 0

x R t R

an n t an t ny

y v t v

an n t an

z

 

   

    

    

   



 (46) 
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The linear model for small eccentricities is given by 

equations (41), (42), (43) with initial conditions (44) 

and (45).  

ANALYTICAL SOLUTION OF THE LINEAR 

MODEL FOR SMALL ECCENTRICITY 

Deviations for the cross-track motion are decoupled 

from the deviation of the radial and in-track motion so 

both motions will be treated separately. First the 

deviations for the in-track-and radial motion will be 

solved analytically for different manoeuvres which 

actually correspond to different initial conditions. Since 

the model is linear, the solution for combined initial 

condition is the sum of the solutions for individual 

initial conditions. 

Initial Radial displacement  

This manouevre corresponds to the radial parallel flying 

(drifting); without continuous acceleration the satellites 

can not fly in this constellation for a long time. The 

analytical solution of Eqns. (41), (42) with initial 

conditions (44) (46) considering 0 0 00, 0y x y    

describes the deviations of the orbit of the main satellite 

relative to the target from the motion, which is the 

solution of the HCW equations (1) and is as follows 

 

2 2

0 0
1 0 0

2 2

0
0 0

2

0
0 0

6 sin 24 sin
2 2 2

12 sin 56 sin
2 2 2

30 sin 6 sin
2

nt ntn t
x x nt x

ntnt n t
x x

nt
x nt x nt

   
       

   

   
     

  

 
  

 

 

   

     

   

   

 

0
1 0 0

0
0 0 0

0 0 0 0 0

0 0 0

0 0

9
sin 2 48 sin

2

15
sin 12 sin cos

2

36 cos sin 42 6

6 cos 27 cos

6 cos

x
y nt nt x nt

x
nt x nt n t

x nt n t n t x nt x

nt x nt n t x nt

n t x nt

   

  

   

  



 (47) 

Where x0 is the initial displacement of the main satellite 

in the target satellite co-ordinate system and t0 is the 

initial time. If the manoeuvre starts at perigee 0( 0)t   

or at apogee 0( / )t n  or mean anomaly of 900 

0( /(2 ))t n . or mean anomaly of 2700 0( 3 /(2 ))t n , 

these equations become 

   
2

2

1 02 3sin 3 sin 10sin
2

nt
x x nt nt nt

  
       

     

 

1 03 4sin 5 3cos sin

2 cos

y x nt nt nt nt

nt nt

   



 (48) 

Initial In-track displacement 

This manouevre corresponds to the along track parallel 

flying. The analytical solution of Eq. (41), (42) with 

initial conditions (44), (46) considering 

0 0 0 0x x y    is 

 1 0 sinx y nt
 (49) 

 1 0 cosy y nt
 (50) 

The follower is not flying in constant displacement to 

the main, as it is in a circular orbit; rather, it is 

circulating around this point on a circle with radius, y0. 

The solution does not depend on the initial time. 

Initial Radial velocity 

This manouevre corresponds to the circumvolution of a 

point on the orbit of the target satellite. The analytical 

solution of Eq. (41), (42) with initial conditions (44), 

(46) considering 0 0 00, 0x y y    describes the 

deviations of the orbit of the main satellite relative to 

the target from the ellipse, which is the solution of the 

HCW equations (1) and is as follows 

   

   

0

1 0 0

0 0

2sin 4sin

sin 2 5sin

x
x nt nt nt nt

n

nt nt nt

   

  

 
2

0 0
01 0

2 2

0 0

22

0

9 sin 6sin
2 2

32sin 16sin
2 2 2 2

8sin 10sin
2 2

ntx
y t n t n tx

n

nt ntnt n t

n tn t

  
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   
       

   

  
          

 (51) 
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If the manoeuvre starts at perigee 0( 0)t   these 

equations become 

 
2

0

1

4
sin sin

2

ntx
x nt

n

 
   

 

 
2

20

1 3sin 4sin
2

ntx
y nt

n

  
         (52) 

If the manoeuvre starts at apogee 0( / )t n  these 

equations become 

     0
01

2
sin sin 2 0sin

x
x nt nt y ntx

n
  

     
2 20 0 0 0

1

7 6 4
cos cos sin

x x x x
y nt nt nt

n n n n
    

 (53) 

If the manoeuvre starts at the true anomaly of 900 

0( /(2 ))t n , equations for deviations become 

 
2

20 0

1

2 12
sin sin

2

ntx x
x nt

n n

 
   
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 
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n
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 



(54) 

If the manoeuvre starts at the true anomaly of 2700 

0( 3 /(2 ))t n , equations for deviations become 

 
2

20 0

1

12 2
sin sin

2

ntx x
x nt

n n

 
  

 

 

   

2

0 0
01

0

12 4
sin 9 sin

2

3
cos sin

ntx x
y nt t x

n n

x
nt nt

n

 
    

 



(55) 

Initial In-track velocity 

This manouevre corresponds to the change of the In-

track displacement. The analytical solution of Eq. (41), 

(42) with initial conditions (44), (46) considering 

0 0 00, 0x y x    describes the deviations of the 

orbit of the main satellite relative to the target from the 

motion, which is the solution of the HCW equations (1) 

and is as follows 

   

   
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 (56)

If the manoeuvre starts at perigee 0( 0)t   these 

equations become 

   
2

20
1 0

4sin 4sin 3 sin
2

y nt
x nt t nty

n
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 (57) 

If the manoeuvre starts at apogee 0( / )t n  these 

equations become 
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If the manoeuvre starts at the true anomaly of 900 

0( /(2 ))t n , equations for deviations become 
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 (59) 

If the manoeuvre starts at the true anomaly of 2700 

0( 3 /(2 ))t n , equations for deviations become 
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(60) 

Cross-track deviations 

The deviations of orbit of the main satellite relative to 

the target from the sinusoidal motion, which is the 

solution of the HCW equations (1) is the solution of Eq. 

(43) with initial conditions (44) and (46) and is as 

follows 
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If the manoeuvre starts at perigee 0( 0)t   these 

equations become 

 

 

2
2

1 0 0

2

0

( ) ( )sin 2 ( )sin
2

2 ( )
sin sin

2

nt
z t z t n t z t

z t n t
n t

n

 
    

 

 
  

 

 (62) 

If the manoeuvre starts at apogee 0( / )t n  these 

equations become 
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If the manoeuvre starts at the true anomaly of 900 

0( /(2 ))t n , equations for deviations become 
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If the manoeuvre starts at the true anomaly of 2700 

0( 3 /(2 ))t n , equations for deviations become 
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 (65) 

VALIDATION OF THE MODELS AGAINST THE 

PRISMA EXPERIMENT 

In this section the experimental data acquired during in-

flight simulated radar interferometry propagation will 

be used to evaluate and compare the models with 

respect to how they capture relative dynamics of the 

satellites considering different phenomena, such as orbit 

eccentricity and Earth oblateness. The experimental 

measurements have been improved by Precise Orbit 

Determination (POD) [18]. It should be noted that the 

models are not compared with respect to their ability to 

predict the relative propagation but with the repect to 

their ability to cope various phenomena, such as e.g. 

Earth oblateness etc. 

The experiment was performed on September 19, 2011 

from 3 to 9 am UTC. The data used for the evaluation 

start in the Tango perigee, at 03:18:20 and ends at 

08:14:20 with the sampling time of 10s. The precision 

of the relative position with POD data is 2 cm, 3D, rms.  

During this experiment Mango was flown without 

trajectory control, the safety box for Mango was set to 

10m. In an ideal case (HCW model, zero relative initial 

velocity) the satellites would fly in constant in-track 

distance. However the experiment exhibits some 
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periodic motion and a parabolic drift, which are due to 

an elliptical orbit, nonzero initial conditions and real 

environment. To eliminate the influence of initial 

conditions, the models were individually optimized. We 

believe that the parabolic drift was due to the difference 

of the drag of both satellites. In order to eliminate it, a 

constant acceleration in the in-track direction was added 

to Mango. Initial relative positions, initial relative 

velocities and a constant in-track acceleration were 

obtained by means of optimisation. 

There was a slight cross-track sinusoidal movement of 

Mango in Tango’s RIC co-ordinate system with 

amplitude of 57cm. All models cope with this 

movement within an error of 16mm which is below the 

precision of the POD data. So only the Radial/In-track 

models will be evaluated. 

The optimization was performed in Matlab using 

function fminsearch with the cost function equal to 

the average distance of the model response to the POD 

data 

      2 2 2

0

1 N
m m m

i i i i i i

i

D x x y y z z
N 

       

where xi, yi, zi are the POD data and , ,m m m

i i ix y z  are the 

model data. N is the number of data. As described 

above only the projection of the results into the orbit 

plane will be presented; the influence of the cross-track 

movement was negligible. The optimal initial 

conditions for various models are given in Table I, 

while Table II presents the optimal values of the cost 

function D. Table III exposes the acceleration needed to 

compensate the parabolic drift. The meaning of the 

abreviations in all tables is as follows: HCW = Hill-

Clohessy-Wiltshire, Non_LIN = non-linear model, Lin-

Pert = Linear model derived by the method of 

perturbation, STK-EMP = STK Earth Mass Point, STK-

J2 = STK J2, STK-HPOP-d = STK High Precision 

Orbit Propagator with default settings, STK-HPOP-a = 

STK High Precision Orbit Propagator with all 

disturbances included. 

Figure 9 represents the projection of the relative Mango 

orbit into the Tango orbital plane for various models 

with the same designation as in the Tables. Figures 10 

and 11 depict radial and in-track deviations of the 

model response to the POD data respectively for 

various models. 

From presented results it is obvious that there are three 

groups of models.  

 

Table I: Optimal initial conditions for various models  

 
0( )x t  

[m] 

0( )y t   

[m] 

0( )x t  

[mm/s] 

0( )y t
 [mm/s] 

HCW -0.8259   198.4031    -1.1112     1.7052     

Non-Lin -0.8313 198.2495 -0.7931 1.6396 

Lin-Pert -0.8289   197.5694    -1.5415     1.7187 

STK-EMP -0.8078 198.2876 -0.8321 1.7137 

STK-J2 -0.8675 198.1536 -0.6074 1.6449 

STK-HPOP-d -0.8671 198.1539 -0.6056 1.6427 

STK-HPOP-a -0.8673 198.1534 -0.6047 1.6429 

 

Table II. Optimal values for the cost function D for 

various methods. 

Model HCW Non-Lin Lin-Pert STK-EMP 

D
 

0.2515 0.1308 0.1292 0.1307 

Model STK-J2 STK-HPOP-d STK-HPOP-a 

D
 

0.1312 0.1326 0.1326 

 

Table III: Accelerations needed to compensate the 

parabolic drift. 

Model HCW Non-

Lin 

Lin-

Pert 

STK-

EMP 

ay [10-9 m/s2]

 
7.109 7.287 7.316 6.779 

Model STK-J2 STK-HPOP-d STK-HPOP-a 

ay [10-9 m/s2]

 
7.569 7.559 7.580 
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Fig. 9: The projection of the relative Mango orbit into 

the Tango orbital plane for various models. 
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Fig. 10: Radial deviations of the model response to the 

POD data for various models. 

In the first group there is the simple HCW model 

(represented in solid green) with the worst cost function 

and greatest deviations. The first harmonic deviations in 

this model are the consequence of orbit eccentricity. 

In the second group there are the non-linear model 

(dotted), the STK Earth Mass Point model (dashed) and 

the newly developed (by the method of perturbations) 

linear model (solid). All three models are presented in 

red colour. It should be noted that the non-linear and the 

STK-EMP model are theoretically identical and that the 

newly developed linear model is very similar to them 

due to the small eccentricity of the Prisma orbits 

(0.004). Second harmonic deviations can be observed, 

which are due to the oblateness of the Earth. STK J2 

and High Precision Orbit Propagator models form the 

third group. It can be observed that they eliminated the 

effect of the Earth oblateness. 
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Fig. 11: In-track deviations of the model response to the 

POD data for various models. 

 

Obviously the HPOP propagators (default settings and 

with all disturbances included) do not exhibit any 

improvement of the model. In all STK models a 

numerical noise can be observed too. It can be 

concluded that the newly developed linear model for 

orbits with small eccentricities can cope with this 

phenomenon adequately and mitigates for the 

shortcomings of the currently widely used model sets. 

Conclusion 

Three sets of experiments performed by SPACE-SI and 

OHB Sweden in September 2011 with Prisma satellites 

are presented. They include the in-flight simulated radar 

interferometry, the observation of non-cooperative 

objects - space debris and the in-flight simulated 

distributed instrument experiment. A collateral outcome 

of close debris observation from an orbit, which is 

encircling the target by its natural motion, were also 

images of interesting areas (Kuwait, Djibouti, Crete) in 

the background. The timing of acquisition was precisely 

calculated in order to capture both targets 

simultaneously. The in-flight simulated distributed 

instrument experiment included alignment of Mango 

and Tango satellites with the predefined locations on 

the Earth (Piran, Cape Town, Punta Arenas). The 

successful positioning of the satellites during the is 

demonstrated by satisfactory pictures although imaging 

conditions were not favourable due to the very 

unsuitable dusk-dawn orbit, autumnal equinox time slot 

and bad weather.  

Several formation flying models are reviewed, such as 

nonlinear model and its linearization − the HCW model. 

An extension of the linear HCW model to orbits with 

small eccentricities is derived by the method of 

perturbations. The obtained model is linear with time 
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varying parameters (depending on the target’s satellite 

true anomaly). 

The astrodynamic data of the in flight simulated radar 

interferometry remote-sensing experiment were used to 

verify several formation flying models including a 

nonlinear model, a linear Hill-Clohessy-Wiltshire 

model, STK models with four propagators (Earth mass 

point, J2, default HPOP and HPOP with all 

disturbances) and the hereby originally proposed 

extension to the Hill-Clohessy-Wiltshire model, a linear 

model for orbits with small eccentricities,  which can 

cope with the phenomenon of eccentricity adequately 

and mitigates for the shortcomings of the currently 

widely used model sets. 
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