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Probabilistic Estimation of Water Conservation Effectiveness 

David E. Rosenberg1 

 

Abstract – An analytical method is derived to describe the distribution of 

water quantity saved among customers within a water-use sector who 

adopt a water conservation action. Analytical results tend towards 

lognormal distributions with long tails, quantifying a smaller subset of 

customers that show potential to achieve large savings. Example 

effectiveness distributions are shown for seven long-term conservation 

actions potentially implemented by urban, domestic water users in 

Amman, Jordan. Monte-Carlo simulations verify the analytical 

derivations. The probabilistic outputs contrast with common methods that 

estimate conservation action effectiveness as a product of typical 

(average) characteristics for disaggregated customer groups. Implications 

to size water conservation programs to meet conservation objectives and 

target customers to adopt conservation actions are discussed. 

 

CE Database Terms: Municipal water; conservation; probability distribution; 

Jordan 

INTRODUCTION 

Water consumption and the effective quantity of water conserved by implementing 

conservation actions vary significantly among customers with important effects related to 

various geographic, demographic, technological, behavioral, and temporal factors (Mayer 
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et al. 1999; Optiz and Dziegielewski 1998; Vickers 2001; Walski et al. 1985). 

Conventional approaches to estimate water conservation action effectiveness commonly 

disaggregate water use by sectors and estimate effectiveness within a sector as a simple 

product of single parameter values representing average customer characteristics (Optiz 

and Dziegielewski 1998; Vickers 2001; Walski et al. 1985). For example, Vickers (2001, 

p. 25) presents typical values of 15 liters (4 gallons) per flush for residential toilets 

manufactured before 1994, 6 liters (1.6 gallons) per flush for low-volume toilets 

manufactured after 1997, 5.1 flushes per person per day, 2.64 persons per residence, and 

365 days per year to show that a U.S. residential customer installing a low-flow toilet 

should typically conserve (15 – 6)(5.1)(2.64)(365)/(1000) = 44 m3 year-1. The number of 

customers needed to meet a conservation objective is then found by dividing the water 

conservation objective by the typical savings per customer. Sector-wide effectiveness is 

also estimated by multiplying parameters for total unrestricted water use, fractional water 

use reduction, coverage (fraction of customers adopting the action), and interaction with 

other conservation actions (Optiz and Dziegielewski 1998; Walski et al. 1985). 

 

Conventional estimation approaches work well for homogenous customer populations 

where customers within each water-use sector have nearly identical unrestricted water 

uses, similar reduction potentials, and both factors can be quantified as singular values. In 

such cases multiplying typical customer effectiveness by the number of customers in the 

water-use sector likely to adopt the action readily yields the sector-wide effectiveness. 

However, when a customer population is heterogeneous, shows multiple water use 

behaviors and reduction fractions, or the likely coverage is uncertain, effectiveness 

calculated solely from typical values can prove problematic for several reasons. First, 

parameter values are uncertain and differ for different customers. The uncertainties 

propagate and also make the resultant effectiveness uncertain. Second, customers facing 

(extreme) situations represented by one or more parameters taking values at the lower 
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end of their feasible ranges should have little or no water savings. These customers may 

have insufficient financial or other incentives to adopt a conservation action. Third, data 

gathering, computing, and analysis efforts increase multiplicatively as the analyst further 

disaggregates the customer population to form homogenous sub-sectors (Walski et al. 

1985). The analyst also must set separation points by trial and error. And fourth, 

effectiveness parameters are multiplied together so the uncertainties interact rather than 

cancel. Effectiveness will not necessarily be normally (i.e., evenly) distributed above and 

below the simple product of average parameter values. Thus, a single effectiveness value 

does not show how water savings may be distributed among the customers under study. 

 

This paper presents an alternative, probabilistic approach to describe the likely 

distribution of effectiveness among a sector of customers considering adopting a water 

conservation action. First, probabilistic information is developed to describe the range 

and likelihood of values possible for each parameter influencing effectiveness (Jaynes 

2003; Tribus 1969). Second, the uncertainties are propagated analytically—and verified 

numerically with Monte Carlo simulations—to develop the distribution of effectiveness. 

Because parameters are multiplied together, effectiveness tends to a lognormal 

distribution (Aitchison and Brown 1957). And third, the continuous effectiveness 

distribution is used to select and size water conservation programs to meet conservation 

objectives. The approach is demonstrated for seven long-term conservation actions that 

are potentially implemented by urban, residential water users in Amman, Jordan. 

Probabilistic treatment achieves a continuous disaggregating of a customer population 

and suggests the minimum number of participants needed to meet a specific water 

conservation objective. The approach is useful to planners who understand the ranges of 

potential values for customer demographic, behavioral, and technological factors 

influencing effectiveness but who cannot measure effectiveness directly. 
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PROBABILISTIC METHOD 

The probabilistic method to describe the likely distribution of effectiveness among 

customers considering adopting a water conservation action is summarized as follows: 

1. Define how effectiveness is calculated from its component parameters, 

2. Estimate a probability distribution (pdf) for each uncertain parameter, 

3. Propagate uncertainties to calculate a composite probability distribution for 

conservation effectiveness, 

4. Note statistics for the composite distribution, and  

5. Use distribution properties to size conservation programs or estimate aggregate 

water savings. 

These steps are further described as follows. 

Functional form of conservation action effectiveness 

Engineering estimates of the expected quantity of water conserved in a particular place 

over a specific period of time by implementing a conservation action are often calculated 

as a simple product of single parameter values (Optiz and Dziegielewski 1998; Vickers 

2001; Walski et al. 1985). Although the effectiveness function is specific to each 

conservation action, the general form is 
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Here, W is the uncertain water conservation effectiveness or volume conserved per 

customer per unit time when a customer implements the conservation action; Xj, Zk, and 

Yk are uncertain parameters in units specific to the conservation action; rj or rk are fixed 

powers to which those parameters may be raised; fconv is a unit conversion factor; m is the 

number of individual-termed uncertain parameters; and n – m is the number of paired 

terms. (The capital letters X, Y, Z, and W reflect notation common to the probability 
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literature where a capital letter, i.e. X, means the parameter is uncertain. The lower case 

counterpart, i.e., x, refers to a particular value that the uncertain parameter may take.) 

 

The paired parameters Zk, and Yk have the same units and occur together as a difference 

term when effectiveness is a function of change in state. For example, the effectiveness of 

installing a water-conserving fixture depends in part on the difference between the flow 

rate of the existing fixture (i.e., Z [l min-1]) and flow rate of the water-conserving fixture 

(i.e., Y [l min-1]). Both flow rates are often uncertain; therefore, their difference is also 

uncertain and must be considered explicitly. (Dividing the difference between the average 

existing flow rate and average conserving flow rate by the average existing flow rate 

gives the sector-wide reduction parameter used by Walski et al. (1985)). 

Estimate probability distributions for parameters 

The second step is to estimate probability distributions for each uncertain parameter. 

Distributions will depend on the prior information known about the parameter. They can 

be specified from detailed, statistically sampled, empirical information concerning 

customer demographics, water appliances, water-related behaviors and consumption [for 

example, see Mayer (1999)]. Distributions can also be fit to empirical data. Or, absent 

detailed information, distributions may be estimated using the method of maximum 

entropy. This method minimizes information content (maximizes entropy) to suggest the 

most simple distribution shape that completely encapsulates the limited prior information 

known for the parameter (such as upper bound, lower bound, and/or average value) [see 

Jaynes (2003) or Tribus (1969, pp. 128-130) for details]. Rows 1 and 2 of Table 1 

summarize the likely distribution forms or pdfs for different cases of prior known 

information. Cases are discussed further in the sections below. Methods to estimate 

distribution forms for difference terms common to water conservation actions are 
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summarized in rows 1 and 2 of Table 2. These resultant distributions depend on the 

distributions of the component parameters and are also discussed below. 

Known lower and upper bounds 

When only the lower and upper bounds for a parameter are known, the principle of 

maximum entropy suggests that parameter values should be uniformly (rectangular) 

distributed. The parameter should have an equally likely (or constant) probability to take 

any value in the feasible range. 

Known lower bound and mean 

When only the lower bound and mean for a parameter are known, the principle of 

maximum entropy suggests that the lower bound value is most likely to occur. However, 

the occurrence probability should decay exponentially as the potential value the 

parameter may take increases. The initial value (λ0) and rate of decay (λ1) are calculated 

analytically from the prior known lower bound and mean. 

Known frequencies for discrete ranges of parameter values 

Results from empirical surveys are often summarized as frequencies for discrete ranges 

of parameter values (histograms). Frequencies can be used as-is, or fitted with a 

continuous functional form. In addition, any analytical probability density function may 

be approximated as a set of frequencies for discrete ranges of parameter values when the 

ranges chosen are sufficiently small. 
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Difference of two parameters  

The difference of two uncertain parameters is also uncertain, and will be distributed 

according to the convolution of the uncertain parameters (Jaynes 2003, p. 677). For 

example, the uncertain difference U = Z – Y has the probability distribution, 

( ) ( ) ( )∫
∞

∞−

⋅−⋅≡ dxuxpdfxpdfuh yz . (2) 

Here, pdfz and pdfy are, respectively, the probability density functions of the component 

uncertain parameters Z and Y. For example, when Z is the uncertain flow rate of the 

existing fixture [l min-1] and Y is the uncertain flow rate of the water conserving fixture [l 

min-1], h(u) will represent the distribution of reduced flow (hereafter, the convoluted 

distribution). The convoluted distribution may exist for some or all of the negative range 

(u < 0) depending on the lower and upper bounds (if any) of Z and Y. The convolution 

distribution will depend on the distribution forms of the component parameters (see 

results in rows 1 and 2 of Table 2 for example distributions and differences common to 

water conservation actions). Convolution allows us to transform a term with two 

uncertain parameters into a term with one uncertain parameter and further generalize the 

functional form of conservation action effectiveness to 

( )∏
=

⋅=
n

j

r
jconv

jXfW
1

. (3) 

Propagate uncertainties 

With distributions specified or derived for each component parameter, the next step is to 

propagate uncertainties to determine the composite probability distribution of 

effectiveness among customers in the water use sector. Uncertainty can be propagated 

analytically or by Monte Carlo simulation. 
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Analytical propagation 

The logarithm of the generalized effectiveness equation (3) gives 

( ) ( ) ( ) ( ) ( )nconv XXXfW logloglogloglog 21 ++++=  . (4) 

Sampling from the right hand side of equation (4) and applying the Central Limit 

Theorem yields a sum that will be normally distributed about a composite mean value, 

μ(n). This observation applies irrespective of the distributions of the log-adjusted 

component parameters. Thus, the logarithm of the composite conservation effectiveness 

W is normally distributed, meaning that W is lognormal distributed with a probability 

density function of 
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Equivalently, we may write W is distributed as Λ(μ, σ2). Here μ and σ2 are, respectively, 

the mean and variance of the normal distribution describing the log-transformation of W 

(and are different than the mean and variance of W) (Aitchison and Brown 1957). To 

determine the composite mean and variance indicators, Aitchison and Brown (1957, p. 

14), find that the product ∏
=

N

j
jX

1

is asymptotically distributed as ( ) ( )( )2, nn σµΛ  when: 

• Each {Xj} is an independent, positive variate, (6a) 
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σσµµ , and (6b) 

• μj = E{log Xj} and σ2
j = D2{log Xj}. (6c) 

Here, E{} and D2{} denote, respectively, the expectation and variance operators. 
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For the more general function ( )∏
=
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that describes water conservation 

effectiveness, the multiplicative and additive properties of the natural logarithm can be 

used to recast (6b) as 
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The log-weighted first and second moments of parameter Xj are calculated as 
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and can be evaluated analytically or numerically depending on the distribution form of 

parameter Xj (rows 4 through 7 of Table 1). For these cases, the lower limit of 

integration, a, is the lower bound of the parameter distribution.  

 

The method also applies to convolution distributions (rows 4 and 5 of Table 2) with two 

modifications. These modifications avoid integrating over negative ranges for which the 

convolution distribution may exist but for which the logarithm operation is not defined, 
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First, the analyst must specify the cutoff value c – the lower limit of integration – as 

greater than zero (c > 0). This cutoff value represents the analyst’s best estimate of the 

value below which customers will not implement the conservation action because the 

reduced flow (or consumption) will be either negligible or negative (i.e., increased flow 

or consumption). Second, the analyst must re-weight the convolution pdf by a divisor 1 – 
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pc so that the cumulative proportion of customers above the cutoff value who participate 

in the conservation action sum to unity 

∫
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Rearranging (8a) and switching the integration limits show that pc is just the proportion 

of customers below the cutoff value who do not implement the conservation action 

∫
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This fraction is also the cumulative density function (cdf) evaluated at c. 

 

Because selecting a cutoff value amounts to censoring the portion of customers that do 

not implement the conservation action, the distribution of conservation action 

effectiveness must likewise reflect censoring [Λ(μ, σ2) is insufficient]. A censored 

lognormal distribution, Δ(δ,μ,σ2) can be defined (Aitchison and Brown 1957, p. 95) as: 

( )
( ) ( )








>Λ−+
=
<

=∆∂=
0,,|1
0,
0,0

,,)(
2

2

zdzz
z
z

zpdf
σµδδ

δσµδ  (9) 

Where δ is the fraction of the population that tends towards zero (or negative) values. In 

specifying the censored pdf for a conservation action, substitute pc from equation (8b) for 

δ. When δ = 0, equation (9) simplifies to (5). 

 

In summary, when all uncertain parameters are independent, have values greater than 

zero, and are multiplied together to determine conservation action effectiveness, 

equations (5), (6d), and (7a) together define the analytical probability density function, 

mean, and variance for the lognormal-distributed conservation action effectiveness. 

When one of the parameters can have negative values, the analyst must specify a cutoff 
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value, and equations (9), (6d), (7b), and (8b) define the analytical lognormal distribution 

of effectiveness for customers implementing the action. 

Monte Carlo propagation 

Uncertainties also can be propagated with Monte Carlo simulation. The general method 

is: a) generate random variates from the distributions of the component parameters [see 

(Law and Ketton 1991) for details]. b) Combine instantiations of the random variates 

according to the effectiveness function. c) Repeat steps (a) and (b) for a large number of 

samples. And (d) Sort effectiveness samples from smallest to largest and report the 

fraction (frequency) of samples falling within discrete ranges of water conservation 

action effectiveness. Together, the frequencies will form a histogram. Divide each 

frequency by the width of the range from which values were aggregated to obtain the 

Monte Carlo simulated pdf of water conservation action effectiveness.  

Statistics of the composite distribution 

When the composite distribution is lognormal distributed, the mean and quantiles are: 
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where zq’ is the z-value associated with the normal distribution N(0,1) for the quantile q’ 

= (q – δ)/(1 – δ) (Aitchison and Brown 1957, pp. 95-6). With no censoring (δ = 0), the 

mean, median, and mode are simply 
2

)()()(
2

)()( ,,5.0 nnnnn eandee σµµσµ −⋅+ , and are successively 

decreasing indicating significant positive skew. 

 

For an effectiveness distribution generated by Monte Carlo simulation, the mean is best 

estimated by the average of the entire sample of effectiveness calculations. The quantile q 
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can be approximated by the value of the (k*q)th sample in the list of simulated 

effectiveness sample results sorted from lowest to highest (k = number of simulations). 

The mode will correspond to the effectiveness range with the largest frequency. 

Size conservation programs 

The final step is to use the derived effectiveness distribution and its common properties to 

size a conservation program to meet an overall water conservation objective. Program 

sizing can be done by several methods. The first method, blanket application, as used by 

typical engineering approaches requires just 

w
tsblanket ˆ

= . (11) 

where sblanket is the estimated number of customers required to implement the 

conservation action, t is the program-wide conservation objective [m3 per year], and ŵ  is 

the average savings per customer  [m3 per customer per year] generally calculated as a 

point estimate using (typical) average parameter values. The conservation objective t 

represents the desired annual water savings and can correspond to the projected shortfall 

between future water supplies and future water demand or some portion of that shortfall 

that the utility wants to meet by encouraging customers to adopt conservation actions. 

Blanket application assumes customers adopt with uniform effectiveness. 

 

The second sizing method focuses on market segmentation and targeting customers that 

show potential to achieve large water savings. A targeted approach makes use of the 

probabilistic distribution of effectiveness. 

 

The targeted customers should have large values for effectiveness w. The sizing task is to 

determine the threshold effectiveness level, wt, so that water saved by the customer with 

the largest effectiveness plus the water saved by the customer with the next largest 
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effectiveness, and so on down to the water saved by the customer with effectiveness at 

the threshold level sum to meet the conservation goal. This sum is the integral of the first 

moment distribution of W (i.e., the customer effectiveness level w weighted by its 

probability of occurrence) evaluated from the threshold wt through infinity, or 
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Here, ssect is the sector size (number of customers) potentially available to adopt the 

conservation measure and is required to scale customer effectiveness, w [m3 per customer 

per year], to the absolute conservation objective, t [m3 per year]. Equation (12) is solved 

for wt using two identities. First, the integral of the first moment of Δ(w| μ, σ2, δ) over the 

entire feasible range of W is, by definition, the mean effectiveness, 
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Second, the first moment of Λ(w| μ, σ2) is lognormal distributed as Λ(w| μ+ σ2, σ2) 

(Aitchison and Brown 1957, p. 12). This identity also applies to the censored distribution 

Δ(w| μ, σ2, δ), so 
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Rearranging and then substituting (13a) and (13b) into (12) gives 
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Here, CDFΔ(μ+ σ2, σ2, pc) is the cumulative density function of Δ(μ+ σ2, σ2, pc). The left hand 

side of (14) is a fraction between 0 and 1 ( wst t ⋅≤≤ sec0 ). Since CDFs monotonically 

increase, they are invertible. Thus, 
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Finally, the targeted conservation program size is determined by multiplying the sector 

size by the fraction of the sector having effectiveness above the threshold wt 

( ) ( )( )( )( ) ttpetingt swCDFs
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sec,,arg 21 ⋅−=
∆ σµ

. (16) 

 

Equation (14) may also be rearranged to express the fraction t / ssect as a function of wt, 
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Varying the threshold wt (or the fraction of the community represented by wt) will 

identify the average conservation expected per customer. This formula determines the 

sizing curve for the conservation action and is demonstrated below. 

EXAMPLE APPLICATION 

We now develop distributions of water savings for seven conservation actions available 

to urban, residential water users in Amman, Jordan. The actions include rainwater 

harvesting from roofs, installing spray nozzles on garden hoses (rather than using open 

hoses), installing carpets on floors (to replace floor washing with water), and retrofitting 

showerheads, bathroom faucets, kitchen faucets, or toilets with water saving devices. 

These actions represent some of the many long- and short-term water supply 

enhancement and demand management actions that can help residential, urban customers 

cope with water shortages. Probabilistic analysis is readily applied to each action; here, 

we demonstrate the approach for seven long-term water conservation actions. 

 

The Amman water utility serves about 1,940,000 residents through 306,000 residential 

connections and reported 52.4 million cubic meters (Mm3) of residential billed water use 

in 2004. Customers face severe water shortages: water is typically available through the 
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distribution network for only 12 – 60 hours per week. Jordan is starting to implement 

water demand management programs but there is scarce empirical documentation 

showing the effectiveness of water conservation actions. Thus, probabilistic statements 

describing potential effectiveness can help guide conservation program planning. 

 

The seven functions for conservation effectiveness are: 

( )( ) ( )CBAW CatchallRa
1

inf 1000
1 −= , (18a) 

( )( )( )( )MLDTGW troShowerhead −=
1000

52
Re , (18b) 

( )( )( )DOUHW troFaucetBath −=
1000
365

Re , (18c) 

( )( )PUHW troFaucetKitchen −=
1000
365

Re , (18d) 

( )( )( )DNVIW troToilet −=
1000
365

Re , (18e) 

( ) ( ) ( )( )( )( )ERQXFJW NozzleSpray
5.02429.0= , and (18f) 

( )( )( )YSKW InstallCarpet 1000
785.352 ⋅

= . (18g) 

The letters A through V, X, and Y represent the uncertain parameters influencing 

effectiveness and are further described in Table 3 (DOS 1999; DOS 2004; IdRC 2004; 

JMD 2000; Snobar 2003; WEPIA 2000). 

 

The following details are also important. The 78-year record of rainfall at the Amman 

Airport (JMD 2000) was fitted with a Gamma distribution by estimating the shape and 

scale parameters from the mean and variance of the observed annual rainfalls. The water 

conserved by installing a spray nozzle on a garden hose was estimated by the reduction of 

flow through an open-ended hose. This flow is related to the square of the hose diameter, 
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square root of the customer water pressure, and time for which the nozzle restricts 

wastage flow. In the example, the distribution of water pressure was assumed to correlate 

directly to the distribution of households sharing a building. In Amman, rooftop tanks are 

the primary regulator of residential water pressure; thus, pressure depends on head 

differential been roof and point of use. This difference is also the number of floors (or 

apartments, i.e. households) in the building. This conservation action is only available to 

the approximately 15.4% of households that garden outdoors (DOS 1999). 

 

Limited information is available concerning several of the parameters, and in some cases, 

distributions were derived from engineering estimates of maximum upper and lower 

limits. These estimates rely on the author’s experiences living and working in Jordan and 

were verified by others with significant experience in the Jordan residential water sector 

(Tawarneh, pers. comm., 2004; Abdul Al-Khalaq, pers. comm., 2004).  

 

Some parameters may co-vary. For example, more single-family residences may be 

located in West Amman where elevation differences result in higher rainfall. With better 

data, we could segment Amman households into classes and subclasses (such as by 

geographic location and building type within a location) to eliminate covariance. Then, 

calculate effectiveness distributions for each subclass using parameter distributions 

specific to the subclass. While further disaggregating the population requires increased 

data gathering, computation, and analysis effort, the probabilistic approach can achieve 

continuous disaggregating (within the sub-classes) which is not possible with point 

estimate approaches. Based on the data readily available and for demonstration purposes, 

the population of Amman residential customers was not disaggregated. 

 

Parameter uncertainties were propagated both analytically and with Monte Carlo 

simulation (10,000 simulations for each conservation action). In analytical derivations, 
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numerical integrations of the log-weighted exponential decay functions were made with 

central differences and approximately 10,000 steps over the feasible parameter range. 

Figures 1 and 2 compare the analytically derived distribution of effectiveness to the 

Monte Carlo simulation results for the first two conservation actions.  

 

Both actions show a preponderance of the population with effectiveness close to the 

lower limit, but also a large tail stretching towards a small proportion of customers who 

show potential to realize large water savings by adopting the conservation actions. Both 

distributions have positive skew with mean > median > mode. This behavior is also seen 

in the effectiveness distributions derived for the other conservation actions (Figure 3).  

 

A chart for sizing targeted conservation programs (Figure 4) was calculated using 

equation (17). The chart shows water conservation level as a function of the coverage or 

fraction of total customers who adopt the action. This fraction is explicitly ordered from 

left to right by customers with potentials to conserve the largest down to the smallest 

volumes of water. The sizing curves are fastest rising for small program sizes as 

customers with the most effectiveness adopt first. As coverage reaches 100%, the curves 

become flat and approach the mean value of the effectiveness distribution. This value 

defines an upper bound for the savings when all customers adopt.  

 

The chart is used as follows: First, set the overall water conservation objective (in volume 

per year) and community size or number of customers that can potentially adopt the 

conservation action. Second, divide the conservation objective by the community size to 

figure the average water volume conserved per customer. Third, find this volume on the 

vertical axis. Fourth, use the sizing curve to find the corresponding targeted coverage. 

Finally, multiply the coverage by the community size to determine the number of 
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customers required to meet the conservation objective (when customers with the largest 

potential to conserve are targeted to participate in the program). 

 

The sizing chart can also help identify water efficient conservation actions. Actions with 

faster rising curves require smaller number of customers to meet a specified conservation 

objective. Thus, retrofitting showerheads or kitchen faucets are more effective than 

installing carpets or spray nozzles on garden hoses. For example, to meet a water 

conservation objective of 6.5 Mm3 per year (12% of Amman’s billed residential water 

use), the Amman water utility need only target 8% of its 306,000 residential customers to 

retrofit kitchen faucets (should the utility identify its customers with the potential to 

conserve 124.8 m3 per year or more; 60% of customers are needed with a blanket 

approach). Alternatively, the utility need only target the largest 10%, 26%, and 49% of 

customers that show potential to conserve more than 106.8, 38.8, or 20.6 m3 per year by, 

respectively, retrofitting showerheads, toilets, or collecting rainwater (Table 4). The 

utility will likely not meet the conservation object even if all customers (100%) retrofit 

bath faucets, install carpets or spray nozzles on outdoor hoses. The sizing chart also 

shows these infeasibilities: these actions never reach an average water conservation level 

of 21.2 m3 per customer per year (6.5 Mm3 per year / 306,000 customers). 

 

Including average retrofit costs for each conservation action identifies the cost-effective 

actions (Table 4). Here, costs reflect estimates for customers to purchase water saving 

devices (author’s estimates; IrDC, 2004) and exclude utility costs to implement a 

program. However, utility costs would likely be similar for each conservation action. In 

the Amman, Jordan example, retrofitting kitchen faucets appears as the most cost 

effective conservation action to meet the annual conservation objective. 
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DISCUSSION 

Although Table 4 shows that average conservation action effectiveness values calculated 

with typical point estimates and the proposed probabilistic approach are often similar, the 

implications for sizing conservation programs differ substantially. In the Amman, Jordan 

example to achieve annual water savings of 6.5 Mm3 per year, targeted conservation 

programs to retrofit kitchen faucets, showerheads, and toilets sized using the probabilistic 

approach can be much smaller than blanket application programs sized using point 

estimates of average effectiveness. These targeted conservation programs can reduce 

implementation costs by factors of 2.5 to 8 over typical blanket application approaches. 

These differences are most pronounced when the annual water conservation objective is 

small compared to the maximum savings achievable when the entire community adopts 

the conservation action. Differences are less pronounced as the conservation objective 

approaches or exceeds the maximum savings. 

 

An outstanding issue concerns how to expeditiously identify and target the customers 

with the most potential to conserve (where they are located and what characteristics 

distinguish them from low-effective customers). Three customer identification 

methods—use of surrogate indicators, customer surveys, and water audits—are 

introduced below and their relative advantages and disadvantages are discussed. These 

methods represent public awareness, education, and targeted marketing approaches 

typical for water conservation programs (Baumann et al. 1998; Vickers 2001). The single 

difference is using the probabilistic-determined threshold effectiveness level to determine 

which customers to contact and suggest to adopt the conservation action. Discussion also 

emphasizes that no one method to identify customers can efficiently and precisely 

demarcate all customers with high effectiveness from customers with low effectiveness. 

Rather, a combination of approaches is likely needed. 
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Surrogate indicators of effectiveness 

Geographic information systems and databases offer the water utility or conservation 

program coordinator a wealth of customer-specific information related to conservation 

action effectiveness. Example data include water-billing records (indicating customer 

water consumption), land assessments (indicating building size and age, i.e., a further 

surrogate indicator of water appliance age and flow rates), satellite or digital 

orthographical photos (showing landscaped areas), or census records (indicating 

household size), among others. In fact, the coordinator may have used such data to 

estimate distributions for some component parameters. Linking and joining multiple data 

sources provides a powerful tool to identify the subset of customers with co-occurrence 

of multiple factors that suggest high conservation action effectiveness. If data sources are 

not linked, low indicator values can still flag customers with low effectiveness. This 

analysis can beneficially shrink the customer pool on which to focus more costly or 

labor-intensive identification approaches. 

Customer surveys 

A utility can also telephone or distribute written questionnaires to each customer to learn 

more about the customer’s demographic makeup, water use behaviors, and other factors 

that influence water conservation action effectiveness. The utility can use responses to 

project the customer’s likely effectiveness if they adopt and then follow up with 

customers that show effectiveness larger than the threshold effectiveness level. And while 

telephone surveys and written questionnaires are quick and relatively inexpensive to 

implement, customer response rates may be low. However, positive customer response 

can also indicate strong willingness to adopt the conservation action. 
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Water Audits 

A utility can also dispatch staff to visit each customer, solicit the information that bears 

on the customer’s water conservation effectiveness, and then instantaneously estimate the 

effectiveness. If the estimated effectiveness exceeds the threshold effectiveness level, 

staff can then immediately recommend or proceed with retrofits. Although water audits 

are costly in terms of time, staff, and materials, they still serve as beneficial screening 

tools. Identifying customers for which no follow-up action is taken can save the utility 

resources required to implement the conservation action and time required for follow-up 

visits to verify continued implementation and actual water savings. 

 

Together, surrogate indicators, customer surveys, and water audits can help identify 

customers with potential to achieve large water savings. After adoption, these methods 

can also help verify that estimated effectiveness translates into actual effectiveness.  

CONCLUSIONS 

Water conservation program planners can probabilistically describe water conservation 

effectiveness by understanding the ranges of values for customer demographic, 

behavioral, and technological parameters influencing water savings. Probabilistic 

treatment achieves a continuous disaggregating of a customer population but avoids the 

time and costs of additional data gathering, computation, and analysis associated with 

common point estimates and blanket application that further disaggregate the population 

into smaller, homogenous sub-sectors. Because effectiveness is a product of uncertain 

parameter values, it tends towards a lognormal distribution with significant positive skew 

towards a small population of customers that show potential to achieve large savings by 

implementing a conservation action.  
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Effectiveness distributions are readily used to suggest cost efficient conservation actions, 

the minimum number of customers needed to meet specific water conservation 

objectives, or the threshold effectiveness levels on which to target customer adoption. 

Seven example distributions for urban, residential water users in Jordan show that a small 

subset of customers can achieve significant annual water savings by retrofitting 

showerheads or kitchen faucets. Also, that targeting consumers with the largest potential 

to conserve can significantly reduce the size and cost of programs to meet water 

conservation objectives compared to blanket application approaches. To realize these size 

and cost savings, planners must develop targeted marketing, public awareness, and 

education campaigns to first identify the customers with high conservation effectiveness 

and then persuade or encourage them to adopt. Follow-up work is also needed to verify 

that estimated effectiveness translates to actual effectiveness. 
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Table 1. Parameter Distributions and Methods to Calculate Log-Weighted Moments for Different 
Types of Known Information 
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Table 2. Probability Distributions and Methods to Calculate Log-Weighted Parameter Moments for 

Different Types of Parameter Convolutions 
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Table 3. Description of parameters influencing water conservation effectiveness 
 

 

Units Low 
value

High 
value Average St. 

Dev Distribution1 Reference (sample size)

Geographic
A. Annual rainfall mm/yr 110 550 270 94 FG JMD, 2000 (78 years)

Demographic
B. Households sharing building #/building 1 -- 2.7 -- ED DOS, 2004 (383,000 households)
C. Roof area of building m2 100 -- 206 -- ED DOS, 1999 (1,800 households)
D. Household size persons 3 -- 5.1 -- ED DOS, 2004 (383,000 households)
E. Households that garden outdoors unitless, 1 = yes 0 1 0.15 -- BI DOS, 1999 (1,800 households)

Technologic - existing infrastructure
F. House water pressure bar 0.29 -- 0.80 -- ED Linearly correlated to parameter (b)
G. Shower flow rate - current device l/min 6 20 -- -- UN Engineering estimate (10 devices)
H. Faucet flow rate - current device l/min 5.5 20 -- -- UN Engineering estimate (10 devices)
I. Toilet tank volume - current device l/flush 5.5 15 -- -- UN IrDC, 2004 (31 devices)
J. Hose diameter cm 1.3 3.8 -- -- UN Engineering estimate, 0.5 to 1.5 inches
K. Bucket size l 11.4 26.5 -- -- UN Engineering estimate, 3 to 7 gallons

Behavoiral - existing water uses
L. Length of shower - currernt min 3 -- 8.4 -- ED Engineering estimate
M. Shower frequency #/week 1 -- 3.6 -- ED Engineering estimate (28 persons)
N. Toilet flushes #/person/day 1 -- 4.03 -- ED Snobar, 2003 (30 households)
O. Faucet use - bathroom min/day/person 0.1 -- 0.6 -- ED Snobar, 2003 (30 households)
P. Faucet use - kitchen min/day 1 -- 14.36 -- ED Snobar, 2004 (30 households)
Q. Irrigation frequency #/week 0.22 -- 1.45 -- ED Engineering estimate (23 households)
R. Irrigation season weeks/year 20 40 -- -- UN Engineering estimate
S. Floor wash frequency #/week 1 7 -- -- UN Engineering estimate

Technologic - potentially adopted
T. Shower flow rate - retrofit device l/min 6 9 -- -- UN Engineering estimate (10 devices)
U. Faucet flow rate - retrofit device l/min 5.5 6.5 -- -- UN Engineering estimate (10 devices)
V. Toilet flush rate - retrofit, full l/flush 5.5 6.5 -- -- UN IrDC, 2004 (16 devices)

Behavoiral - potential modifications
X. Reduced irrigation time - nozzle minutes/use 0.5 -- 3 -- ED Engineering estimate
Y. Bucket application to floor buckets/wash 1 -- 5 -- ED Engineering estimate

1Distributions: BI=binary; FG=fitted gamma; ED=exponential decay; UN=uniform.

Effectiveness parameter
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Table 4. Indicators of Effectiveness for Conservation Actions 
 

 

 

 

Collect 
Rainwaterb

Retrofit 
Showerhead

Retofit Bath 
Faucetsb

Retrofit Kitchen 
Faucets

Retrofit 
Toilets

Spray Nozzle 
on Hosesb

Install Floor 
Carpetsb

Average effectiveness
20.4 43.8 8.0 35.4 31.7 7.7 19.7
27.4 44.7 8.2 44.7 31.7 6.6 19.9

104 % 48 % 265 % 60 % 67 % 275 % 108 %
49 % 10 % NA 8 % 26 % NA NA

20.6 106.8 NA 124.8 38.8 NA NA

$282 $82 $4 $4 $117 $4 $4,442

NA $12.1 NA $0.8 $24.0 NA NA
$42.7 $2.5 NA $0.1 $9.3 NA NA

Notes:
Targeted application (probabilistic approach)

a. Percentage based on potential customer population of 306,000 households and conservation objective of 6.5 Mm3/year

Target customers with effectiveness larger than
Threshold effectiveness level from probabistic est.

Average customer expenditure

Blanket application (point estimate)

Point estimate (typical)
Probabistic analytical estimate (proposed)

Point estimate (blanket application)
Probabilistic analytical estimate (targeted application)

[m3 per customer per year]a

b. Percentage greater than 100% or NA means not possible to achieve conservation objective

Effectiveness Indicator

Retrofit cost

Required program expenditure [$US Million]a

[$US per customer]

[m3 per customer per year]

Required program size [percentage of customers]a
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Figure 1. Distribution of Rainfall Catchment among Households
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Figure 2. Distribution among households of water conserved by retrofitting 
showerheads
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Figure 3. Analytically derived distributions of conservaton action 
effectveness
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Figure 4. Chart for sizing targeted water conservation programs
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