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Foundations of Wave Phenomena, Version 8.2

Problem Set 4

Problem 4.1

Make a computer animation which depicts the time evolution of the solution of the wave

equation with the square pulse initial conditions (8.58). Describe the resulting motion.

Problem 4.2

In the text we solved the wave equation with initial data consisting of a Gaussian

displacement with with vanishing initial velocity profile. Find the solution to the wave

equation with initial data

q(x, 0) ⌘ a(x) = A exp
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where v is the constant (with units of speed) appearing in the wave equation.

Problem 4.3

Consider a wave propagating along the whole x-axis. Write the wave displacement in

terms of its Fourier transform at each time:

q(x, t) =
1

p

2⇡

Z
1

�1

dk a(k, t)eikx.

Substitute this expression for q(x, t) into the wave equation and derive an equation for

a(k, t). Solve this equation for a(k, t) and show that q(x, t) can be put into the form

(8.64).

Problem 4.4

Using a computer, graph the function D✏ in (8.40) and show that as ✏ gets smaller D✏

becomes a narrowly peaked function with ever-increasing maximum value.

Problem 4.5

Recall the Gaussian wave packet discussed in §8.6. Consider the limit in which the

Gaussian width vanishes, a ! 0, and the Gaussian height blows up, A ! 1, such that

the product of the width and height approaches a non-zero constant, Aa ! const. 6= 0.

Show that the solution to the wave equation becomes a delta function displacement at rest
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at t = 0 which then splits into two delta function pulses traveling in opposite directions.

Hint: Consider the limit of the Fourier transforms.

Problem 4.6

Check Plancherel’s identity (8.34) using the properties of the delta function. (Hint:

Substitute the Fourier expansion for f(x).)

Problem 4.7

Compute the most basic Gaussian integral,

I(a) =

Z
1

�1

dx e�a2x2

,

using the following very clever strategy. First, consider the square of the integral:

[I(a)]2 =

Z
1

�1

dx e�a2x2

Z
1

�1

dy e�a2y2 .

Next, notice that this is simply the integral of a function over the whole x-y plane. Change

integration variables to polar coordinates x = r cos ✓ and y = r sin ✓ (note: dx dy = rdr d✓).

You should now be able to easily compute the integral [I(a)]2. Finally, note that I(a) is

positive and take the square root to determine the original integral.

Problem 4.8

In §8.6 we considered the Fourier representation of a wave with Gaussian initial dis-

placement and vanishing initial velocity. We computed the Fourier transform and showed

that h(k) = w(k). Show that h(k) = w(k) is always true (not just for a Gaussian) whenever

we choose vanishing initial velocity profile.

Problem 4.9

In the text we computed the Fourier transform of a square pulse, viewing it as a

function on the interval [0, L] which vanishes at the endpoints. We can, of course, view

the square pulse as a (square-integrable) function on the whole x axis. From this point of

view, compute the Fourier transform h(k) of the square pulse:

f(x) =
n
1, if a < x < b;
0, otherwise.

Plot the real part, imaginary part and absolute value of h(k). Why is the Fourier transform

di↵erent than what we found for a square pulse back in §8.1, equation (8.11)?
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Problem 4.10

Let f be an even function, f(x) = f(�x). Show that the Fourier transform (8.25) of

f , when applied twice, gives back the original function. In (8.77) we gave a formula for the

Fourier transform h(k) of the Gaussian function f(x) = e�x2/a2 , which is an even function.

Compute the Fourier transform of this Gaussian h(k); show you get f(x). (Hint: You don’t

need to do any integrals to compute the Fourier transform of the Gaussian h(k).)

Problem 4.11

Show that Z
1

�1

dx e�ax2

sin bx = 0.

(Hint: this one is really easy.)

Problem 4.12

Find the Fourier series form of the solution q(x, t), 0 < x < L, to the wave equation

with q(0, t) = q(L, t) = 0 such that

q(x, 0) = x2 � Lx,
@q(x, 0)

@t
= 0.

Problem 4.13

Show that, for a 6= 0,

�(ax) =
1

|a|
�(x).

(Hint: This means you must showZ
1

�1

dx �(ax)f(x) =
1

|a|
f(0)

for any function f(x).)

Problem 4.14

Verify that q(x, t) defined by (8.47) and (8.54) does indeed satisfy the wave equation

and match the initial conditions (8.48).

Problem 4.15
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A function f on an interval [�L,L] is said to be even if f(�x) = f(x) for all x 2 [�L,L].

Similarly, a function is said to be odd if f(�x) = �f(x). For even (odd) functions, show

that the Fourier series representation (8.14) becomes a series involving only cosines (sines).

Problem 4.16

Show that for any two (real-valued, square-integrable) functions, f and g, on an interval

(a, b) the following defines a scalar product on the vector space of such functions:

(f, g) =

Z b

a
dx f(x)g(x).

(See the Appendix for the definition of a scalar product.)

Problem 4.17

Relate the coe�cients ↵n, �n, and �n in the two equivalent Fourier series (8.14) and

(8.15).

Problem 4.18

In the text it is asserted that

�(x) = lim
✏!0+


1

p

⇡✏
e�

x

2

✏

�
.

Test this by checking that

lim
✏!0+
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✏

�
= x2.
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