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Abstract

It is a typical feature of high dimensional data analysis, for example a microarray study,

that a researcher allows thousands of statistical tests at a time. All inferences for the tests

are determined using the p-values; a smaller p-value than the α-level of the test signifies a

statistically significant test. As the number of tests increases, the chance of observing some

small p-values is very high even when all null hypotheses are true. Consequently, we make

wrong conclusions on the hypotheses. This type of potential problem frequently happens when

we test several hypotheses simultaneously, i.e., the multiple testing problem. Adjustment

of the p-values can redress the problem that arises in multiple hypothesis testing. P-value

adjustment methods control error rates [type I error (i.e. false positive) and type II error (i.e.

false negative)] for each hypothesis in order to achieve high statistical power while keeping the

overall Family Wise Error Rate (FWER) no larger than α, where α is most often set to 0.05.

However, researchers also consider the False Discovery Rate (FDR), or Positive False Discovery

Rate (pFDR) instead of the type I error in multiple comparison problems for microarray

studies. The methods involved in controlling the FDR always provide higher statistical power

than the methods involved in controlling the type I error rate while keeping the type II error

rate low. In practice, microarray studies involve dependent test statistics (or p-values) because

genes can be fully dependent on each other in a complicated biological structure. However,

some of the p-value adjustment methods only deal with independent test statistics. Thus, we

carry out a simulation study with several methods involved in multiple hypothesis testing.
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Our result suggests a suitable method given that the test statistics are dependent with a

particular covariance structure while allowing different values of the underlying parameters in

the alternative hypotheses.
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Chapter 1

Introduction

The most common biological question in a DNA microarray data analysis is identifying genes

whose expression levels change with the different levels of the variable of interest such as a

covariate, or the response variable. The response variable could be clinical outcome or cen-

sored survival time; the covariate can be the dose of a drug, time, treatment/control group,

and so forth (Dudoit et al., 2003). Multiple hypothesis testing is often applied to identify

differentially expressed genes in the presence of different levels of the variable of interest. The

null hypothesis for each gene is that the expression levels are not associated with the variable

of interest. We have the same number of alternative hypotheses in the study. And each null

hypothesis has the same type I error rate. Therefore, it becomes difficult to control the overall

type I error rate at level α in order to achieve desired statistical power (= 1-type II error rate).

Because of the mixture of null and alternative hypotheses, the obtained p-values follow differ-

ent types of distributions, for example Beta distributions, instead of the Uniform distribution.

Multiple comparison p-value adjustment procedures control the type I error, FDR, or pFDR

to achieve higher power while minimizing the type II error rate. In microarray studies, most

often controlling the FDR, or pFDR ensures more statistical power rather than controlling

the type I error rate (Dudoit et al., 2003; Pounds and Cheng, 2004).
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Microarray data always deal with a large number of genes. Each gene has a complex

network involving other genes with known and unknown dependence structures. When we ex-

ecute hypothesis testing of gene expression levels, the natural dependency phenomena of genes

results in wrong conclusions. But if we know the number of correlated genes in a given system,

how strongly they are correlated with each other, and their differential expression value under

the alternative hypotheses, then we may be able to determine a reasonable adjusted p-value

method. A reasonable method can improve the statistical power with increasing numbers of

correlated genes, increasing correlation value, and increasing differential expression value of

genes under the alternative hypotheses while controlling the FDR. Although all of the con-

ventional p-value adjustment methods can work with dependent test statistics (or p-values),

very few of them accomplish good statistical power.

In Chapter 2 we summarize several procedures in the literature to control error rates in

multiple comparisons and the positive regression dependency condition. In Chapter 3 we

propose methods and analyze several multiple comparison procedures with results. We finish

with a conclusion and remaining questions in Chapter 4. The R code for this report is included

in Appendix. All computations were done with R (R Development Core Team, 2009), using

packages MASS (Venables and Ripley, 2002), Matrix (Bates and Maechler, 2010), Biobase

(Gentleman et al., 2004), multtest (Pollard et al., 2009), qvalue (Dabney et al., 2010), and

lattice (Sarkar, 2010).
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Chapter 2

Controlling the error rates

Suppose a study involves testing simultaneously m hypotheses Hk, k =1,2,...,m. In a microar-

ray experiment, each Hk stands for testing the differential expression of a gene k.

An unknown parameter m0 (i.e. the number of true null hypothesis ) along with some

random variables of the m specific hypotheses can be summarized by Table 2.1, in accordance

with Benjamini and Hochberg (1995). We always encounter four unknown random variables

when we test m hypotheses simultaneously. The variables are S, T, U, and V presented in

Table 2.1. Also we can observe a random variable, R, presented in Table 2.1 in the decision

status. Here R is the total number of significant tests (and in a microarray study R is the

total number of declared significant genes). Generally we want to minimize the number V

of false positives (or type I errors), and the number T of false negatives (or type II errors)

in all multiple hypothesis testing. So controlling V while minimizing T ensures maximum

achievement of power.
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Table 2.1: Number of errors that occurred in m hypotheses

Declared tests

Hypotheses Insignificant Significant Total

Null (H0) U V m0

Alternative (H1) T S m-m0

Total m-R R m

2.1 Methods involved in controlling family wise error

rate (FWER)

The FWER is defined as the probability of one or more false positive events (or type I errors).

That is,

FWER = P [V > 0]. (2.0)

2.1.1 Bonferroni correction in multiple testing (or the Bonferroni

procedure)

In multiple comparisons, the Bonferroni correction is widely used to control the probability

that a true null hypothesis is incorrectly rejected, although it gives a conservative upper bound

on the FWER. Let p1, p2, ..., pn be random p-values of a set of given hypotheses H1, H2, ..., Hn.

The Bonferroni procedure (Dudoit and Van der Laan, 2007, page 113) gives significant hy-

pothesis Hi when pi ≤ {α/n}, using the Bonferroni inequality,

P{
n⋂
i=1

(pi ≤ α/n)} ≤ α, 0 ≤ α ≤ 1. (2.1)
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That is, given all true null hypotheses, the probability of type I error does not exceed the

desired level α.

2.1.2 Šidák’s single step and step-down procedures

Šidák (1967) proposed an alternative method of multiple comparison for controlling FWER at

level α. The main motivation was the conservative result of the Bonferroni correction. Based

on the Bonferroni inequality (Equation 2.1) it is obvious we compare the p-values to a very

small significance level when there is a large number of hypotheses. So, in order to improve

the conservative result of multiple comparisons, at first the Šidák Single Step (SS) procedure

(Dudoit and Van der Laan, 2007, page 115; Šidák, 1967) declares a hypothesis Hi statistically

significant when pi ≤ 1− (1− α)1/n, for i = 1, 2, . . . n.

When a study allows several tests at a time, the Šidák Step-down (SD) procedure

(Dudoit and Van der Laan, 2007, page 123) declares a hypothesis Hi statistically significant if

pi ≤ 1− (1− α)1/(n−j+1) for j=1,2,. . . i and i=1,2,. . . n.

2.1.3 A simple sequentially rejective multiple test procedure (or

the Holm procedure)

Holm (1979) demonstrated a new procedure of multiple comparisons that controls the type I

error rate at level α, and this procedure is called the Holm procedure. Regardless of various

combinations of true and false null hypotheses, this procedure considers significance tests se-

quentially (i.e,‘one at a time’) as long as the previous result rejects. Because Bonferroni first

used the Bonferroni inequality (Equation 2.1) in the multiple hypothesis setting and Holm

used also the same inequality, it was called ‘the sequentially rejective Bonferroni test.’ Order-

12



ing the p-values as p1 ≤ p2 ≤ p3 ≤...≤ pn of the corresponding null hypotheses H1, H2, ..., Hn;

then one can execute this step-down procedure for given α level test as follows:

Step 1: Reject H1 if p1 ≤ α/n

Step 2: Reject H2 if p2 ≤ α/(n− 1)

...

Step n: Reject Hn if pn ≤ α.

Generally, the Holm method rejects hypothesis Hi when pi ≤ α/(n− i+1). The procedure

stops at the smallest i for which Hi is accepted (or not rejected). This method gains more

power than the Bonferroni method, but this power gain is not large (Holm, 1979). Another

advantage of the Holm procedure is this procedure is a closed testing procedure. An idea of

closed testing procedure (Westfall and Wolfinger, 2000) is below:

Suppose there are n hypotheses H1, H2, ...Hn and the overall type I error rate is α. If not

only any of these elementary hypotheses, say Hk, is significant but also all of the intersection

hypotheses that include Hk are significant, then Hk will be declared significant based on the

closed testing principle.

But Holm (1979) mentioned that the test statistics need to be independent not only for

‘computational reasons’ but also ‘a good experimental design requires the different hypotheses

to be tested by variables.’
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2.1.4 A stage wise rejective multiple test procedure (or the Hom-

mel procedure)

Consider the p-values (p1, p2, ...pn) of the test statistics (Y1, Y2, ..., Yn) for n hypotheses

H1, H2, ..., Hn. Based on Rüger’s (1978) inequality, regarding the overall hypothesis

H0 =
n⋂
i=1

Hi and level α test, one can reject H0 when pi ≤ {iα/n} for i = 2,3,. . . n, where

pi is the ith smallest of the p-values. The index i is determined before executing the n tests.

In contrast, Hommel (1983) proposed an alternative inequality to reject overall hypothesis

H0 at level α if pi ≤ {iα/(n
n∑
k=1

1

k
)} for at least one i (i = 1,2,...,n). In fact, Hommel’s in-

equality does not require calculation of the index i in advance because this inequality is a

combination of the Bonferroni test and all (n-1) possible Rüger tests (Hommel, 1988). But

this inequality can not make inference on individual tests (Hommel, 1988). Therefore, Hom-

mel (1988) proposed a multiple testing procedure combining the idea of an overall test H0

and the principle of closed testing procedure. Considering the overall hypothesis H0, Simes

(1986) described a modified Bonferroni method, which controls the FWER at level α when

the test statistics are independent. The Simes procedure (Simes, 1986) has higher statistical

power than the classical Bonferroni method if several hypotheses are correlated. In the Simes

procedure, the rejection criterion is obtained for hypotheses H0 = {H(1), H(2), ..., H(n)} corre-

sponding to {p(1) ≤ p(2) ≤ ... ≤ p(n)} with p(i) ≤ iα/n for at least one i. Although Simes did

not provide a clear idea about how to draw inferences on an individual hypothesis in H0, it

was recommended that the classical Bonferroni procedure or the Holm procedure be used to

make statements on individual hypotheses when H0 is rejected (Hochberg, 1988).

On the other hand, considering the same overall hypothesis H0, Hommel (1988) presented

another approach of multiple testing in order to make inference on individual hypothesis in

overall hypothesis H0. Inference for Hi depends on an index j, where j = max{i ∈ {1, 2, ..., n} :

14



pn−i+k > {kα/i}; k ∈ {1, 2, ..., i}}. Then Hi is declared significant when pi ≤ {α/j}. Other-

wise, reject all Hi if j does not exist.

In general if test statistics are independent, then the Hommel (1988) method controls the

FWER at α level.

2.1.5 A sharper Bonferroni method (or the Hochberg procedure)

Hochberg (1988) suggested a modified Bonferroni procedure for multiple testing extend-

ing Simes (1986) idea, but based on the closed test procedure. Suppose H0 =
m⋂
i=1

Hi and

H
′
0 =

i
(m

′
)⋂

n=i(1)

H
′

n, where H0 ⊇ H
′
0 of m

′ ≤ m individual hypotheses. Based on the closure test

theorem (Alt, 1991, page 3) rejection of at least one hypothesis H
′
n at level α indicates the

rejection of H0. So Hochberg (1988) proposed the statement that the FWER will be strongly

controlled when the Bonferroni inequality (Equation 2.1) is applied on hypothesis H
′
0 instead

of H0 for all H0 ⊇ H
′
0.

In order to resolve the issue of making the statements on hypotheses, after Hommel (1988)

Hochberg as well simplified Simes’s idea based on the closure principal of tests. Then Hochberg

(1988) demonstrated a new step-up procedure of multiple testing in the following way:

Order the p-values of H
′
0 as pi(1) , pi(2) , ..., pi(m′ ). The Hochberg procedure rejects any hy-

pothesis in H
′
0 when pi(j) ≤ {jα/m

′′} for all H
′′
0 ⊇ H

′
0 and for any hypothesis Hi(j) ∈ H

′′
0 ,

where H
′′
0 =

i
(m

′′
)⋂

k=i(1)

H
′′

k . So Hochberg (1988) again reinforced that the Hochberg procedure

controls ‘the family wise error rate in strong sense under any H
′
0’ (see Equation 2.1).
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The Hochberg procedure makes inference on individual hypotheses in the following way:

applying the step-up technique in which, for the ordered p-values as (pm ≥ pm−1 ≥ ... ≥ p1),

one rejects all Hi′ with p(i) ≤ α/(m − i + 1) for (i
′ ≤ i) and i = m, m-1,...,1. At the initial

stage, if pm ≤ α, then reject all Hi′ (i
′

= m,m-1,...1). Otherwise, Hm is accepted; then the

procedure rejects the rest of hypotheses, Hi′ (i
′

= m-1,m-2,...1) compared to pm−1 ≤ {α/2}

and so on. Like the Hommel procedure, this procedure also performs well on independent

test statistics. But the Hommel procedure increases the power of the tests while controlling

the FWER. Sarkar (1998) showed that the Hochberg procedure controls the FWER when

test statistics follow the multivariate total positivity of order 2 (that is, MTP2) condition

[described in Section 2.4].

2.2 Methods controlling the false discovery rate (FDR)

Recalling Table 2.1 and according to Benjamini and Hochberg (1995), the False Discovery

Proportion (FDP) is the number of false positives (or false rejections) divided by the number

of rejections. That is,

Q = V
R
. (2.2)

And the FDR is the expected FDP. That is,

FDR = E(Q). (2.3)
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2.2.1 Controlling the FDR rate (or the Benjamini and Hochberg

procedure)

Benjamini and Hochberg (1995) provided a completely different idea of controlling error rates

of multiple hypothesis testing. The procedure involves a step-up technique for non-parametric

statistics in order to control the error rates. They suggested the multiplicity problem will be

reduced if we only consider the FDP instead of the usual idea of the probability of making at

least one type I error among all tests. Also the exact controlling will be accomplished by the

FDR while providing a smaller type II error rate.

They proposed a linear step-up technique, considering the Simes (1986) test, that ensures

the FDP converges to a desired level α in the 1st order mean. Also their proposed method,

referred to as the BH procedure, provides a non-parametric and finite sample method for

choosing the p-value threshold, which is often more powerful than the traditional methods

associated with controlling the FWER.

The linear step-up BH procedure works in the following way: consider the ordered p-values

as p(m) ≥ p(m−1) ≥ ... ≥ p(1) of the hypotheses, {Hm, Hm−1,...,H1}. The BH procedure rejects

all hypotheses Hk starting with p(m) when k = max {i : p(i) ≤ (iα/m)}. Otherwise the process

stops when k does not exist. For independent tests the BH procedure controls the FDR at

level α.

Following Table 2.1 and Equation 2.3, one of the important features of this error rate

mentioned by Benjamini and Hochberg (1995) is that it will not be controlled at level α if

m0 = m even if Q = 1. Also controlling (V/R|R > 0) is not possible when Q = 1. Thus, the

alternative formulation of the FDR is

17



P (R > 0)E(V/R|R > 0). (2.4)

2.2.2 The control of the FDR in multiple testing under dependency

(or the Benjamini and Yekutieli procedure)

A follow-up paper extended the work of the original BH procedure when the test statistics

or the p-values are dependent. Benjamini and Yekutieli (2001) pointed out that the BH

procedure controls the FDR at level α when the test statistics have positively dependent

structure [described in Section 2.4]. However when the test statistics are negatively correlated

or a different dependency exists, the modified BH procedure, referred to as the BY procedure

(Benjamini and Yekutieli, 2001), controls the FDR with upper bound m0α/(m
m∑
i=1

1

i
). But

the error rate gives a conservative bound.

2.2.3 The adaptive linear step-up procedure of the BH procedure

(or the adaptive Benjamini and Hochberg procedure)

Benjamini et al. (2006) reported a gain in power can be expected when the procedure involves

the estimation of m0 (i.e. the number of true nulls). In addition the same authors recom-

mended the improvement of controlling the FDR based on the ‘knowledge of m0’.

Assuming independent tests to estimate m0 by the original BH procedure, the adaptive

BH procedure, referred to as the ABH procedure by Benjamini et al. (2006), involves the

following steps:

Step 1: Use the linear step-up procedure (that is, original BH procedure) at α,

and if no hypothesis is rejected stop; otherwise, proceed.

18



Step 2: Estimate m0(k) by (m+ 1−k)/(1−p(k)), where k = max{i : p(i) ≤ (iα/m)}

for which we reject all H(i) (i = 1,2,...,k).

Step 3: Starting with k = 2 stop when for the first time m0(k) > m0(k − 1).

Step 4: Estimate m̂0 = min{m0(k),m} rounding up to the next highest integer.

Step 5: Use the linear step-up procedure with α
′
= mα/m̂0.

Benjamini et al. (2006) suggested the following calculation that involves Step 2 above.

Suppose r(α) = number of significant tests. Then m − r(α) is the number of true null hy-

potheses except that m0α true null hypotheses are expected to be among the r(α) rejected.

For m0 solve the following equation

m0 ' m− {r(α)−m0α} (2.5)

m0 ' {m− r(α)}/(1− α). (2.6)

Then use α = p(k) in Equation 2.6 to approximate m0(k).

The ABH procedure controls the FDR exactly at level α, while the original BH procedure

was shown to provide a slightly conservative upper bound. Besides the ABH procedure has

greater power than the original BH procedure (Benjamini and Hochberg, 2000; Benjamini et

al., 2006).
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2.2.4 The two stage procedure of controlling the FDR (or the two

stage Benjamini and Hochberg procedure)

According to Benjamini et al. (2006), the two stage linear step up procedure of the BH pro-

cedure, which is referred to as the TSBH procedure, is summarized in the following way:

Step 1: Use the linear step-up procedure (or the original BH procedure) at level

α
′
= α/(1 + α). Let r1 be the number of rejected hypotheses. If r1 = 0 do

not reject any hypothesis and stop; also if r1 = m reject all m hypotheses

and stop; otherwise proceed.

Step 2: Assume m̂0 = m-r1.

Step 3: Use again the linear step-up procedure with α
′′

= mα
′
/m̂0.

In Step 2 the TSBH procedure, by Benjamini et al. (2006), involves estimating m0 follow-

ing Table 2.1 and constraint,

m0 ≤ m−(R−V ). (2.7)

The BH procedure is used in the initial stage, ensuring E(V/R) ≤ {mα/m0}, so that

V ≤ {αm0R/m}. Putting V in Equation 2.7 above we obtain the following equations:

m0 ≤ m - (R - αm0R
m

) (2.8)

m0 ≤ (m−R)

1−Rα
m

≤ (m−R)
(1−α)

≤ (m−R)(1 +α). (2.9)
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The right-most bound of Equation 2.9 is inherently used in the TSBH procedure. This

procedure also controls the FDR at level α when test statistics are independent. Benjamini et

al. (2006) showed that the TSBH procedure controls the FDR below but close to the nominal

level α and provides higher power than the original BH procedure when tests are correlated.

2.3 A direct approach to FDR (or the q-value method)

In the original BH procedure, the rejection of all hypotheses H(i) (i =1,2,...,k) is determined

with p(i) ≤ iα/m, where k is the largest number of rejected nulls. Storey (2002) mentioned

the missing information about the estimation process that is involved in selecting the maxi-

mum number of rejected hypotheses, (i.e.,‘k̂’) from each possible combination of hypotheses in

the BH procedure. Benjamini and Hochberg (1995), mentioned the usual estimation process

involves finding k̂. But Storey (2002) again pointed out that the original BH process may

be unreliable for choosing a reliable estimate of k̂ when a large number of hypotheses are

considered, because the original BH procedure requires an estimation process to control the

FDR. Another flaw of the BH procedure addressed by Storey (2002) was that the procedure

controls the FDR at the level α ‘for all values of m0 (i.e.,the number of true null hypotheses)

simultaneously.’ Perhaps there was also missing information about m0 in the original BH

procedure. In fact, Benjamini and Hochberg (2000) and Benjamini et al. (2006), proposed

the adaptive procedure of controlling the FDR and the two stage procedure of controlling

FDR. Indeed these methods estimate m0 prior to adjusting the FDR.

Storey (2002) demonstrated a new way of controlling the error rates with the pFDR at

the desired level α. The error rate, pFDR, preserves information about m0 by applying point

estimation techniques and a Bayesian framework. Storey introduced a new term ‘q-value’ that
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quantifies the pFDR. Storey (2002) defined the positive false discovery rate as follows:

pFDR = E(V/R|R > 0). (2.10)

That is the expected portion of erroneously rejected hypotheses among all rejected hy-

potheses when positive findings have occurred.

Again Storey (2002) indicated the problem of controlling the FDR for the BH procedure

is that the BH procedure literally controlled the error rate at α/P (R > 0) instead of at α

level given any significant result (that is, R > 0) regarding Equation 2.4. In fact since the

estimation process of pFDR sets the error bounds after allocating the rejection region to each

test, the q-value method proposed by Storey (2002) achieves higher statistical power than the

original BH method while controlling the pFDR.

The estimation of the error rate can be obtained, in accordance with Storey (2002), for

independent tests Hi with statistics T = {T1, T2, ...Tm} and for the same rejection region Γ

of each statistic in the following way. Let Hi = 0 when null hypothesis i is true, and Hi = 1

otherwise.

pFDR(Γ) = π0P (T∈Γ|Hi=0)
P (T∈Γ)

= P (Hi = 0|T ∈ Γ). (2.11)

Here, P (T ∈ Γ) = π0P (T ∈ Γ|Hi = 0) + π1P (T ∈ Γ|Hi= 1),

π0 = P (Hi = 0), and π1 = P (Hi = 1); they are prior knowledge.

Storey (2002) defined the ‘q-value’ as for an observed statistic, T = t
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q(t) = min
{Γ:t∈Γ}

pFDR(Γ) = min
{Γ:t∈Γ}

P (Hi = 0|T ∈ Γ).

That is, ‘The q-value is a measure of the strength of an observed statistic with respect

to pFDR - it is the minimum pFDR rejecting a statistic with value t for the set of nested

rejection regions.’

On the other hand, the P-value is defined as

p(t) = min
{Γ:t∈Γ}

P (T ∈ Γ|H0 = 0).

The q-value measures the error rate with respect to the pFDR, but the p-value measures

the error rate with respect to the type I error. Thus, Storey (2002) said the q-value is analo-

gous to the p-value.

2.4 Positive regression dependency

Benjamini and Yekutieli (2001) showed that the original BH procedure controls FDR at level

α when the joint distribution of the test statistics corresponding to the true null hypotheses

has “Positive Regression Dependency on each one from the Subset (PRDS).” A technical def-

inition of PRDS is as follows. Let D be the entire set of test statistics and it is an increasing

set. Let X and Y be two subsets of D, and X ≤ Y as well. Also the random elements of X (say

X1, X2, ..., Xn) correspond to the true null test statistics. If P (X1, X2, ..., Xn ∈ D|Xi = x) is

increasing in each X for any i ∈ {1, 2, ..., n} then X is called the PRDS on each one from the

subset of X. In the context of microarrays, conditioning on each hypothesis (i.e., gene), each

time, the PRDS is required to hold for a subset of the test statistics corresponding to the true

null hypotheses.
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Based on Bejamini and Yekutieli (2001), another type of positive dependency is explained

in the following way. Let X = {X1, X2, ..., Xn} and Y = {Y1, Y2, ..., Ym} be random test

statistics. X is multivariate total positivity of order 2 (MTP2) if, for all X and Y,

f(x)f(y) ≤ f(min(x, y))f(max(x, y)). (2.12)

Here, f is the joint density function or the joint probability function. MTP2 is widely used

to follow the notion of positive regression dependency of the tests corresponding to the null

hypotheses, because it is easier to prove (Benjamini and Yekutieli, 2001). ‘Positive regression

dependence implies in turn that X is positively associated, in the sense that for any two

functions f and g, which are both increasing (or both decreasing) in each of the coordinates,

cov(f, g) ≥ 0.’ Benjamini and Yekutieli (2001) mentioned that PRDS has two properties in

which it is different from the above concept, MTP2. First, monotonicity is required after

conditioning only on one test at a time. Second, the conditioning is done only on any one

from a subset of the tests. Thus, if X is MTP2 then it follows that X is PRDS.

2.5 Abbreviation of relevant procedures

All the abbreviations of multiple comparison procedures are shown with their sections in below

Table 2.2. These methods are used in our simulation study [Section 3.1] in order to adjust

p-values. And their abbreviations are used in our simulation results [Section 3.2] to make

plots.
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Table 2.2: Abbreviations of the multiple comparison procedures with sections

Procedures Abbreviations Section

The Bonferroni procedure Bonferroni procedure 2.1.1

The Šidák single step Sidak SS procedure 2.1.2

The Šidák step down Sidak SD procedure 2.1.2

The Holm procedure Holm procedure 2.1.3

The Hommel procedure Hommel procedure 2.1.4

The Hochberg procedure Hochberg procedure 2.1.5

The Benjamini and Hochberg procedure BH procedure 2.2.1

The Benjamini and Yekutieli procedure BY procedure 2.2.2

The adaptive Benjamini and Hochberg procedure ABH procedure 2.2.3

The two stage Benjamini and Hochberg procedure TSBH procedure 2.2.4

The q-value method q-value method 2.3
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Chapter 3

Methods and results

3.1 Simulation

Simulation study is a fundamental part of the data analysis process. Such a study is useful to

verify theoretical as well as large sample properties of statistical methods and test statistics.

Then we can connect the results obtained from large samples with the small sample properties

of statistical methods. We simulate 2000 test statistics Z (corresponding to 2000 genes in a

microarray study), assuming Z ∼ N(µ,Σ). Moreover, we investigate the performance of

multiple comparison procedures involved in adjusting the p-values under various dependence

scenarios through Monte Carlo simulation study generating several sets of p-values of size

2000. Each p-value associates with a test statistic. Our main dependent scenario of test

statistics (or p-values) is present in the covariance matrix (i.e., Σ) with different numbers of

correlated tests and their varying correlations. We also focus on different mean values of the

non-true nulls’ test statistics in order to see the pattern of performance of multiple comparison

procedures. Our general hypothesis as follows:

H0
i : µ = 0 vs H1

i : µ 6= 0 for i = 1,2,...,2000.
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In our study our first and the most important dependency scenarios are in the covariance

matrix (Σ2000×2000) of test statistics (Zs). Thus the construction of Σ includes two issues:

(1) number of total correlated Zs (corresponding to genes) and (2) correlation value (r) of

dependent Zs. Regarding the first issue, our main motivation is to examine the pattern of

change of various multiple comparison procedures for increasing the total number of corre-

lated Zs. So we consider two different total numbers of correlated Zs. In addition, in order

to define the total number of correlated Zs out of 2000 Zs we consider two different groups.

The first group has 120 dependent Zs and the second group has 360 dependent Zs. Again

in order to distribute the number of dependent Zs for each group into several symmetrical

matrices we consider some blocks. For the first group we have six blocks and each block has

twenty dependent Zs. In terms of second group, we consider six blocks of sixty dependent

Zs. Besides, for the two groups, the dependent Zs of the first three blocks always associate

with the alternative hypotheses, and the dependent Zs of the remaining three blocks represent

the null hypotheses. We reinforce our first dependency phenomena of the Σ matrix for both

groups in that we have always the same number of blocks associated with the alternative

hypotheses as associated with the null hypotheses. Then we assume all remaining hypotheses

are independent. Therefore the diagonal elements of the entire Σ2000×2000 matrix consist of

six blocks with the remaining elements being ones, and the off diagonal elements being zeros.

So it seems that all blocks under a specific total number of correlated Zs always appear at

diagonal positions of the entire Σ matrix. Indeed each block is a symmetric matrix inside the

Σ matrix. In our study for the first group we allow six matrices with dimension 20× 20, but

for the second group we have six 60 × 60 dimensional matrices. Because of the symmetric

matrix all diagonal elements of the blocks are ones, but the off-diagonal elements represent

the degree of correlation between Zs.
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We choose four arbitrary non-negative correlation coefficients, that is r ∈ {0, 0.20, 0.50, 0.99}.

The values of r are chosen to represent a reasonable range of values. Non-negative value of

r ensures that covariance between Zs is always non-negative. So we satisfy the condition of

positive regression dependency of correlated Zs [Section 2.4 of this report]. These correla-

tion values r measure how much dependent Zs are correlated with each other. Specifically

r = 0 indicates genes are completely independent; by contrast r = 0.99 indicates that the

linear association between genes are almost to 1. The main motivation of our study is to

understand how various multiple comparison methods are affected by the correlation values

(or r) of Zs. Based on the preceding paragraph, we put the same correlation value r in the

off-diagonal positions of each block (or symmetric matrix) so that we can explain the per-

formance of various multiple comparison procedures when the same degree of dependency is

present in the same number of alternative hypotheses as well as in the same number of null

hypotheses. Changing the r values we obtain different off-diagonal elements in the blocks.

Thus we summarize the construction of our general Σ2000× 2000 matrix in such a way so that

under a given number of correlated Zs all blocks (or symmetrical sub-matrices) appear at the

diagonal position of entire Σ matrix and the off-diagonal elements of the blocks preserve the de-

gree of dependency of correlated Zs. The following is the general form of our Σ2000×2000 matrix:

Σ =



 1 r

r 1

 0
 1 r

r 1


0

 1 r

r 1


... ... ... ... 1
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The block-diagonal structure of the Σ matrix affects the construction of our mean vector

µ. For null hypothesis, µi = 0, while for alternative hypothesis, µi = A for some A > 0. We

use the same A for all alternative hypotheses to allow an inspection of the effect of A, and

consider separately A ∈ {0.5, 1.5, 3, 4.7}. Here these values of A are chosen to represent a

reasonable range of values.

Three of the six dependent blocks in the Σ matrix correspond to null hypotheses (so their

corresponding µi = 0), and the remaining three dependent blocks correspond to alternative

hypotheses (so their corresponding µi = A). In all our simulations we have total 200 al-

ternative hypotheses (out of 2000 hypotheses), thus we have either 140 (= 200 - 3 × 20) or

20 (= 200 - 3× 60) completely independent alternative hypotheses, depending on the depen-

dence group size. Notice that implicit in our simulation is the assumption that a group of

dependent hypotheses will have a shared truth (nulls all true or all false). This assumption

is made for computational convenience and to facilitate interpretation. The following is our

general form of µ1×2000 vector.

µ =

[
A A ... A 0 0 0 ... A

]
.

For any total number of dependent Zs and for each simulation we replicate 2000 Zs under

a specific A with four different r in the Σ2000×2000 matrix. Each Σ2000×2000 matrix will be dis-

tinguishable from each other in the off-diagonal elements of the blocks under a given number

of total dependent Zs. We run our simulation 6000 times considering a given number of total

dependent Zs. Then for each combination of µ1×2000 vector and Σ2000×2000 matrix we gener-

ate 6000 sets of 2000 p-values. Next we adjust these p-values with the multiple comparison

methods described in Section 2.1 and 2.2 of this report. Finally we calculate power, FDR
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and type I error for the corresponding multiple comparison procedures, averaging for each

procedure across simulations for each combination of r, A, and a specific total number of

dependent Zs.

3.2 Simulation results

Figures 3.1 through 3.4 show the average FDR value and Figures 3.5 through 3.8 show the

average power of different A values for the two group sizes, with panels representing the r

values. The average here is taken across all simulations. 360 dependent tests are defined

with red color and open triangle, and 120 dependent tests are defined with blue color and

open circle. The filled circle and triangle are used to highlight the q-value method. Rows,

representing the different methods, in each panel are sorted in decreasing order (from top to

bottom) based on the results when r = 0.5 for 120 dependent tests. We order the methods

based on the ranks of the average FDR for r = 0.5 because it is the middle of each figure, and

we can see the effect of higher and lower r values by comparison with that middle panel.

Referring to Figure 3.1 and 3.2, it is obvious that all of the procedures involved in con-

trolling not only the FWER but also the FDR, control the FDR level above the usual desired

level 0.05 when A is below or equal to 1.5 under the alternative hypotheses. The procedures

tend to increase their average FDR levels with increasing value of r when there are a large

number of dependent tests, for example 360 dependent genes in our study, for the value of

A at level 0.5 compared with the value at 1.5 (Figure 3.1 and 3.2). But at r = 0.2, for 360

dependent tests all methods, except the BY procedure, provide smaller average FDR rate

compared with 120 dependent tests when A is 0.5 (Figure 3.1). In general for r ≈ 1 and for a

large number of dependent tests, all methods involved in controlling the FWER, such as the
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Bonferroni, Holm, Sidak SD procedures and so forth, have a higher value of the average FDR

level than the methods involved in controlling the FDR when A is small (Figure 3.1 and 3.2).

In Figure 3.2, all plots show that the BY procedure usually gives lower average FDR measures

than the remaining procedures, though for r ≈ 1 and for a larger number of dependent tests

this procedure can increase the average FDR value. Due to our positive regression condition

of dependent tests, the BY procedure gives a small FDR rate. Actually increasing value of A

decreases the average FDR level for all methods (Figure 3.2).

When we start increasing the value of A from 1.5 the TSBH, ABH, BH and q-value meth-

ods can control the FDR at level 0.05, and all the remaining multiple comparison procedures

control the average FDR level below 0.01 (Figure 3.3 and 3.4). All methods involved in con-

trolling the FWER show that they have higher average FDR values than the BY procedure

when A is 3 and there are 360 dependent tests with r ≈ 1 (the top panel of Figure 3.3). As the

value of A rises from 3, actually the BY procedure as well as the methods involved in control-

ling the FWER are very conservative. The estimated FDR values are close to zero (Figure 3.4).

Regardless of the increasing number of dependent tests and increasing r, for A = 3 and

4.7 the q-value method usually provides higher FDR values compared with the TSBH, and

ABH methods (Figure 3.3 and 3.4). The gap between their obtained FDR values is a mea-

ger amount. For increasing r and for all numbers of dependent tests, the q-value method is

always able to retain its average FDR level exactly at 0.05 (Figure 3.3 and 3.4). By contrast

when A is equal to 3, for 360 dependent tests the ABH, and TSBH methods have a small

amount of average FDR value at r = 0.99 compared at r = 0 (Figure 3.3). The BH procedure

also has a downward trend towards r = 0.99 for controlling FDR with increasing number of

dependent tests when A is equal to 3 (Figure 3.3). Moreover an average FDR value of the
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BH procedure is between 0.04 and 0.05 when A is more than or equal to 3 (Figure 3.3 and 3.4).

In a microarray study, controlling the type I error rate is not useful because the calculation

of it involves the number of true false positives over the number of total true null hypotheses.

So we always obtain a very conservative type I error measure to compare the p-values given

the true null hypotheses. It often fails to detect alternative hypotheses (i.e., genes). Even

though we are able to reject some true null genes using an estimated conservative type I error

measure, power becomes low to reject the alternative genes in a microarray study. Therefore

we will not continue to discuss type I error rate control in this section.

When A is below 2, none of the procedures give very good power (Figure 3.5 and 3.6).

Increasing the value of A we can expect a power improvement for the BH, TSBH, ABH and

q-value methods if we consider a large number of dependent tests with r ≈ 1 (top panels

in Figure 3.5 and 3.6). Of course all methods gain power when A is around 4.7 (Figure

3.8). Also it is noticeable that for A = 4.7 only the BH, TSBH, ABH and q-value methods

accomplish power of about 98% (Figure 3.8); whereas the methods involved in controlling the

FWER achieve power of about 70%. Under the positive regression dependent situation and for

A = 4.7, the BY procedure is also able to increase power by 4.5 times compared with the

power when A is 3 (Figure 3.7 and 3.8). Increasing the value of A from 3, the BH, TSBH,

ABH and q-value methods always increase power, and their observed powers are very close to

each other (Figure 3.8).
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Figure 3.1: Average FDR of A = 0.5
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120 Dependent tests (Blue & Circle) / 360 Dependent tests (Red & Triangle)
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Figure 3.2: Average FDR of A = 1.5
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120 Dependent tests (Blue & Circle) / 360 Dependent tests (Red & Triangle)
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Figure 3.3: Average FDR of A = 3
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120 Dependent tests (Blue & Circle) / 360 Dependent tests (Red & Triangle)

Bonferroni Procedure
Sidak SS Procedure

Holm Procedure
Hochberg Procedure

Hommel Procedure
Sidak SD Procedure

BY Procedure
BH Procedure

ABH Procedure
TSBH Procedure
q−value Method

0.00 0.01 0.02 0.03 0.04 0.05

●
●
●

●
●

●
●

●

●

●

●
r = 0

Bonferroni Procedure
Sidak SS Procedure

Holm Procedure
Hochberg Procedure

Hommel Procedure
Sidak SD Procedure

BY Procedure
BH Procedure

ABH Procedure
TSBH Procedure
q−value Method

●
●
●

●
●

●
●

●

●

●

●
r = 0.2

Bonferroni Procedure
Sidak SS Procedure

Holm Procedure
Hochberg Procedure

Hommel Procedure
Sidak SD Procedure

BY Procedure
BH Procedure

ABH Procedure
TSBH Procedure
q−value Method

●
●
●

●
●

●
●

●

●

●

●
r = 0.5

Bonferroni Procedure
Sidak SS Procedure

Holm Procedure
Hochberg Procedure

Hommel Procedure
Sidak SD Procedure

BY Procedure
BH Procedure

ABH Procedure
TSBH Procedure
q−value Method

●
●
●

●
●

●
●

●

●

●

●
r = 0.99

Figure 3.4: Average FDR of A = 4.7
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120 Dependent tests (Blue & Circle) / 360 Dependent tests (Red & Triangle)

BY Procedure
Holm Procedure

Hochberg Procedure
Hommel Procedure

Bonferroni Procedure
Sidak SS Procedure
Sidak SD Procedure

BH Procedure
TSBH Procedure

ABH Procedure
q−value Method

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

●
●
●

●

●

●
●

●
●

●

●
r = 0

BY Procedure
Holm Procedure

Hochberg Procedure
Hommel Procedure

Bonferroni Procedure
Sidak SS Procedure
Sidak SD Procedure

BH Procedure
TSBH Procedure

ABH Procedure
q−value Method

●
●
●

●

●

●
●

●
●

●

●
r = 0.2

BY Procedure
Holm Procedure

Hochberg Procedure
Hommel Procedure

Bonferroni Procedure
Sidak SS Procedure
Sidak SD Procedure

BH Procedure
TSBH Procedure

ABH Procedure
q−value Method

●
●
●

●

●

●
●

●
●

●

●
r = 0.5

BY Procedure
Holm Procedure

Hochberg Procedure
Hommel Procedure

Bonferroni Procedure
Sidak SS Procedure
Sidak SD Procedure

BH Procedure
TSBH Procedure

ABH Procedure
q−value Method

●
●
●

●

●

●
●

●
●

●

●
r = 0.99

Figure 3.5: Average power of A = 0.5
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120 Dependent tests (Blue & Circle) / 360 Dependent tests (Red & Triangle)
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Figure 3.6: Average power of A = 1.5
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120 Dependent tests (Blue & Circle) / 360 Dependent tests (Red & Triangle)
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Figure 3.7: Average power of A = 3
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120 Dependent tests (Blue & Circle) / 360 Dependent tests (Red & Triangle)
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Figure 3.8: Average power of A = 4.7
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Chapter 4

Conclusion and remaining questions

Based on our results, we conclude when gene expression value of alternative genes is small

(for example approximately 2) the FDR value increases with respect to increasing number

of dependent genes as well as increasing correlation values. Also the intrinsic nature of the

q-value method proposed by Storey (2002) has the flexible ability to allow for dependency of

hypotheses in a microarray study. In general, the q-value method has the ability to provide a

satisfactory amount of power while controlling the FDR at level α especially when the gene

expression value of non-true null genes is around 3. The q-value method ensures gains in

power for a larger number of dependent genes or a higher positive correlation value. For a

large gene expression value, such as 4, of alternative genes, the typical methods ABH, and

TSBH can also gain in power to about 97% while controlling the FDR. If we consider gene

expression value of non-true null genes of below 1.5, the q-value method still can provide a

satisfactory FDR measure under a positive dependence condition. Indeed, our calculated FDR

by the q-value method completely depends on the process that at first controls the pFDR.

This is the main difference of the common methods BH, ABH, TSBH, and BY that involve

controlling the FDR. So we can expect better results (power and error rate) considering our de-

pendency conditions if we apply the q-value method to control the FDR in a microarray study.
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It is not necessary that genes in a microarray study always follow positive regression

dependence condition. If the genes are negatively correlated, then another method proposed

by Yekutieli (2008) may work. However the method will again give a conservative FDR

(Yekutieli, 2008). In order to eliminate the conservative error rate, we may apply gate keeping

techniques (Dmitrienko and Tamhane, 2007; Dmitrienko et al., 2008). We can also consider

the p-value weighting approach by Genovese et al. (2006). The crucial question still unresolved

under the dependent genes in microarray study is determining which strategy will provide a

higher power when genes are both positively and negatively correlated.
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Appendix A

Appendix

A.1 R script for the big block issue

.libPaths("/home/A01382510/R")

cat(’Starting script’,date(),’\n’)

library(MASS);library(Biobase);library(multtest);library(qvalue)

rho<-c(0,.2,.5,.99);mu<-c(0.5,1.5,3,4.7);num_sim<-6000

Matrix1<-array(dim=c(length(rho),33,length(mu)))

alternative<-c(1:180,400:419)

MU<-rep(0,2000)

null<-which(MU==0)

n_true_null<-length(null);n_true_alternative<-length(alternative)

for(i in 1:length(mu))

{

MU[alternative]<-mu[i]

for(j in 1:length(rho))

{
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block<- matrix(rho[j],ncol=60,nrow=60);diag(block) <- 1

Sigma1 <- as.matrix(bdiag(block,block,

block,block,block,block,diag(2000-360)))

z<-mvrnorm(num_sim,mu=matrix(MU,ncol=1),Sigma1,tol=.1,empirical=F)

# get p-values

# p.mat is a matrix, with row for each simulation;

# so dim(p.mat) will be Num.Sim x 2000

p.mat<- 2*(1-pnorm(abs(z)))

sim.mat<-matrix(nrow=num_sim,ncol=33)

for( sim in 1: num_sim)

{

if((floor(sim/100)==(sim/100)) | (is.element(sim,c(1:5))))

{ cat(’Starting simulation’,sim,’of’,num_sim,date(),’\n’) }

p.values<-p.mat[sim,]

adj_p_value_BY<-p.adjust(p.values,method=‘BY’)

adj_p_value_BH<-p.adjust(p.values,method=‘BH’)

adj_p_value_hochberg<-p.adjust(p.values,method=‘hochberg’)

adj_p_value_hommel<-p.adjust(p.values,method=‘hommel’)

adj_p_value_holm<-p.adjust(p.values,method=‘holm’)

adj_p_value_bonferroni<-p.adjust(p.values,method=‘bonferroni’)

## To run the following function need to load the ’multtest’

adj_p_value_SidakSS<- mt.rawp2adjp(p.values,proc=‘SidakSS’)

adj_p_value_SidakSD<- mt.rawp2adjp(p.values,proc=‘SidakSD’)

adj_p_value_TSBH<- mt.rawp2adjp(p.values,proc=‘TSBH’)

adj_p_value_ABH<- mt.rawp2adjp(p.values,proc=‘ABH’)

Adj_p_value_SidakSS<-adj_p_value_SidakSS$adjp[,2]

[order(adj_p_value_SidakSS$index)]
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Adj_p_value_SidakSD<-adj_p_value_SidakSD$adjp[,2]

[order(adj_p_value_SidakSD$index)]

Adj_p_value_TSBH<-adj_p_value_TSBH$adjp[,2]

[order(adj_p_value_TSBH$index)]

Adj_p_value_ABH<-adj_p_value_ABH$adjp[,2]

[order(adj_p_value_ABH$index)]

q_value<-qvalue(p.values)

adj_q_value<-q_value$qvalues

true_false_positive_q_value<-length(which(adj_q_value

[null]<=0.05))

sig_alternative_q_value<-length(which(adj_q_value

[alternative]<=0.05))

true_false_positive_SidakSS<-length(which(Adj_p_value_SidakSS

[null]<=0.05))

sig_alternative_SidakSS<-length(which(Adj_p_value_SidakSS

[alternative]<=0.05))

true_false_positive_SidakSD<-length(which(Adj_p_value_SidakSD

[null]<=0.05))

sig_alternative_SidakSD<-length(which(Adj_p_value_SidakSD

[alternative]<=0.05))

true_false_positive_TSBH<-length(which(Adj_p_value_TSBH[null]

<=0.05))

sig_alternative_TSBH<-length(which(Adj_p_value_TSBH[alternative]

<=0.05))

true_false_positive_ABH<-length(which(Adj_p_value_ABH[null]

<=0.05))

sig_alternative_ABH<-length(which(Adj_p_value_ABH[alternative]
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<=0.05))

true_false_positive_BY<-length(which(adj_p_value_BY[null]

<=0.05))

sig_alternative_BY<-length(which(adj_p_value_BY[alternative]

<=0.05))

true_false_positive_BH<-length(which(adj_p_value_BH[null]

<=0.05))

sig_alternative_BH<-length(which(adj_p_value_BH[alternative]

<=0.05))

true_false_positive_hommel<-length(which(adj_p_value_hommel

[null]<=0.05))

sig_alternative_hommel<-length(which(adj_p_value_hommel

[alternative]<=0.05))

sig_alternative_bonferroni<-length(which(adj_p_value_bonferroni

[alternative]<=0.05))

true_false_positive_bonferroni<-length(which(adj_p_value_bonferroni

[null]<=0.05))

true_false_positive_hochberg<-length(which(adj_p_value_hochberg

[null]<=0.05))

sig_alternative_hochberg<-length(which(adj_p_value_hochberg

[alternative]<=0.05))

true_false_positive_holm<-length(which(adj_p_value_holm[null]

<=0.05))

sig_alternative_holm<-length(which(adj_p_value_holm[alternative]

<=0.05))

## The following functions print out the type I error rate,and power

type_I_error_q_value<-true_false_positive_q_value/n_true_null
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type_I_error_holm<-true_false_positive_holm/n_true_null

type_I_error_hochberg<-true_false_positive_hochberg/n_true_null

type_I_error_bonferroni<-true_false_positive_bonferroni/n_true_null

type_I_error_hommel<-true_false_positive_hommel/n_true_null

type_I_error_BH<-true_false_positive_BH/n_true_null

type_I_error_BY<-true_false_positive_BY/n_true_nul

type_I_error_TSBH<-true_false_positive_TSBH/n_true_null

type_I_error_SidakSS<-true_false_positive_SidakSS/n_true_null

type_I_error_SidakSD<-true_false_positive_SidakSD/n_true_null

type_I_error_ABH<-true_false_positive_ABH/n_true_null

power_q_value<-sig_alternative_q_value/n_true_alternative

power_holm<-sig_alternative_holm/n_true_alternative

power_hommel<-sig_alternative_hommel/n_true_alternative

power_bonferroni<-sig_alternative_bonferroni/n_true_alternative

power_hochberg<-sig_alternative_hochberg/n_true_alternative

power_BH<-sig_alternative_BH/n_true_alternative

power_BY<-sig_alternative_BY/n_true_alternative

power_TSBH<-sig_alternative_TSBH/n_true_alternativ

power_ABH<-sig_alternative_ABH/n_true_alternative

power_SidakSS<-sig_alternative_SidakSS/n_true_alternative

power_SidakSD<-sig_alternative_SidakSD/n_true_alternative

significant.test.BY<-length(which(adj_p_value_BY<=0.05))

significant.test.BH<-length(which(adj_p_value_BH<=0.05))

significant.test.hochberg<-length(which(adj_p_value_hochberg<=0.05))

significant.test.hommel<-length(which(adj_p_value_hommel<=0.05))

significant.test.holm<-length(which(adj_p_value_holm<=0.05))

significant.test.bonferroni<-length(which(adj_p_value_bonferroni
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<=0.05))

significant.test.SidakSS<-length(which(adj_p_value_SidakSS$adjp[,2]

<=0.05))

significant.test.SidakSD<-length(which(adj_p_value_SidakSD$adjp[,2]

<=0.05))

significant.test.TSBH<-length(which(adj_p_value_TSBH$adjp[,2]

<=0.05))

significant.test.ABH<-length(which(adj_p_value_ABH$adjp[,2]

<=0.05))

fdr_q_value<-true_false_positive_q_value/length(which(adj_q_value

<=0.05))

fdr_BH<-true_false_positive_BH/significant.test.BH

fdr_BY<-true_false_positive_BY/significant.test.BY

fdr_Holm<-true_false_positive_holm/significant.test.holm

fdr_Hochberg<-true_false_positive_hochberg/significant.test.hochberg

fdr_Hommel<-true_false_positive_hommel/significant.test.hommel

fdr_bonferroni<-(true_false_positive_bonferroni/

significant.test.bonferroni)

fdr_SidakSS<-(true_false_positive_SidakSS/

significant.test.SidakSS)

fdr_SidakSD<-(true_false_positive_SidakSD/

significant.test.SidakSD)

fdr_ABH<-true_false_positive_ABH/significant.test.ABH

fdr_TSBH<-true_false_positive_TSBH/significant.test.TSBH

vec <

c(type_I_error_holm,type_I_error_hochberg,type_I_error_hommel,

type_I_error_BH,type_I_error_BY,type_I_error_TSBH,type_I_error_ABH,
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type_I_error_SidakSS,type_I_error_SidakSD,type_I_error_bonferroni,

type_I_error_q_value,power_holm,power_hochberg,power_hommel,power_BH,

power_BY,power_TSBH,power_ABH,power_SidakSS,power_SidakSD,

power_bonferroni,power_q_value,fdr_Holm,fdr_Hochberg,fdr_Hommel,

fdr_BH,fdr_BY,fdr_TSBH,fdr_ABH,fdr_SidakSS,fdr_SidakSD,fdr_bonferroni,

fdr_q_value)

sim.mat[sim,]<- vec

}

# now get error rate, power, fdr -- all averaged over simulations

ave.vec<-apply(sim.mat,2,mean,na.rm=T)

Matrix1[j,,i]<-ave.vec

# this is a length 33 vector for mu level i, rho level j;

}

}

Colum<-c(‘ty_I_holm’,‘ty_I_hoch’,‘ty_I_hom’,‘ty_I_BH’,‘ty_I_BY’,‘ty_I_TSBH’,‘ty_I_ABH’,

‘ty_I_SS’,‘ty_I_SD’,‘ty_I_bon’,‘ty_I_q’,‘p_holm’,‘p_hoc’,‘p_hom’,‘p_BH’,‘p_BY’,

‘p_TSBH’,‘p_ABH’,‘p_SS’,‘p_Sd’,‘p_bon’,‘p_q’,‘fdr_Holm’,‘fdr_Hoc’,‘fdr_Hom’,‘fdr_BH’,

‘fdr_BY’,‘fdr_TSBH’,‘fdr_ABH’,‘fdr_SS’,‘fdr_SD’,‘fdr_bon’,‘fdr_q’)

Row<-c(‘r=0’,‘r=0.2’,‘r=0.5’,‘r=0.99’)

mu.mat.3.1<- Matrix1[,,1] # this is matrix of results for mu level 0.5

rownames(mu.mat.3.1)<-Row

colnames(mu.mat.3.1)<-Colum

write.csv(mu.mat.3.1,"/home/A01382510/hpc_03162011/Result_0.5_bigblock.csv")

mu.mat.3.2<- Matrix1[,,2] # this is matrix of results for mu level 1.5

rownames(mu.mat.3.2)<-Row

colnames(mu.mat.3.2)<-Colum

write.csv(mu.mat.3.2,"/home/A01382510/hpc_03162011/Result_1.5_bigblock.csv")
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mu.mat.3.3<- Matrix1[,,3] # this is matrix of results for mu level 3

rownames(mu.mat.3.3)<-Row

colnames(mu.mat.3.3)<-Colum

write.csv(mu.mat.3.3,"/home/A01382510/hpc_03162011/Result_3_bigblock.csv")

mu.mat.3.4<- Matrix1[,,4] # this is matrix of results for mu level 4.7

rownames(mu.mat.3.4)<-Row

colnames(mu.mat.3.4)<-Colum

write.csv(mu.mat.3.4,"/home/A01382510/hpc_03162011/Result_4.7_bigblock.csv")

cat(‘Completed script’,date(),‘\n’)

A.2 R script for the small block issue

.libPaths("/home/A01382510/R")

cat(‘Starting script’,date(),‘\n’)

library(MASS);library(Biobase);library(multtest);library(qvalue)

rho<-c(0,.2,.5,.99);mu<-c(0.5,1.5,3,4.7);num_sim<-6000

Matrix1<-array(dim=c(length(rho),33,length(mu)))

alternative<-c(1:180,400:419)

MU<-rep(0,2000)

null<-which(MU==0)

n_true_null<-length(null);n_true_alternative<-length(alternative)

for(i in 1:length(mu))

{

MU[alternative]<-mu[i]

for(j in 1:length(rho))

{
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block<- matrix(rho[j],ncol=20,nrow=20);diag(block) <- 1

Sigma1 <- as.matrix(bdiag(block,block,

block,block,block,block,diag(2000-120)))

z<-mvrnorm(num_sim,mu=matrix(MU,ncol=1),Sigma1,tol=.1,empirical=F)

# get p-values

# p.mat is a matrix, with row for each simulation;

# so dim(p.mat) will be Num.Sim x 2000

p.mat<- 2*(1-pnorm(abs(z)))

sim.mat<-matrix(nrow=num_sim,ncol=33)

for( sim in 1: num_sim)

{

if((floor(sim/100)==(sim/100)) | (is.element(sim,c(1:5))))

{ cat(’Starting simulation’,sim,’of’,num_sim,date(),’\n’) }

p.values<-p.mat[sim,]

adj_p_value_BY<-p.adjust(p.values,method=‘BY’)

adj_p_value_BH<-p.adjust(p.values,method=‘BH’)

adj_p_value_hochberg<-p.adjust(p.values,method=‘hochberg’)

adj_p_value_hommel<-p.adjust(p.values,method=‘hommel’)

adj_p_value_holm<-p.adjust(p.values,method=‘holm’)

adj_p_value_bonferroni<-p.adjust(p.values,method=‘bonferroni’)

## To run the following function need to load the ’multtest’

adj_p_value_SidakSS<- mt.rawp2adjp(p.values,proc=‘SidakSS’)

adj_p_value_SidakSD<- mt.rawp2adjp(p.values,proc=‘SidakSD’)

adj_p_value_TSBH<- mt.rawp2adjp(p.values,proc=‘TSBH’)

adj_p_value_ABH<- mt.rawp2adjp(p.values,proc=‘ABH’)

Adj_p_value_SidakSS<-adj_p_value_SidakSS$adjp[,2]

[order(adj_p_value_SidakSS$index)]
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Adj_p_value_SidakSD<-adj_p_value_SidakSD$adjp[,2]

[order(adj_p_value_SidakSD$index)]

Adj_p_value_TSBH<-adj_p_value_TSBH$adjp[,2]

[order(adj_p_value_TSBH$index)]

Adj_p_value_ABH<-adj_p_value_ABH$adjp[,2]

[order(adj_p_value_ABH$index)]

q_value<-qvalue(p.values)

adj_q_value<-q_value$qvalues

true_false_positive_q_value<-length(which(adj_q_value

[null]<=0.05))

sig_alternative_q_value<-length(which(adj_q_value

[alternative]<=0.05))

true_false_positive_SidakSS<-length(which(Adj_p_value_SidakSS

[null]<=0.05))

sig_alternative_SidakSS<-length(which(Adj_p_value_SidakSS

[alternative]<=0.05))

true_false_positive_SidakSD<-length(which(Adj_p_value_SidakSD

[null]<=0.05))

sig_alternative_SidakSD<-length(which(Adj_p_value_SidakSD

[alternative]<=0.05))

true_false_positive_TSBH<-length(which(Adj_p_value_TSBH[null]

<=0.05))

sig_alternative_TSBH<-length(which(Adj_p_value_TSBH[alternative]

<=0.05))

true_false_positive_ABH<-length(which(Adj_p_value_ABH[null]

<=0.05))

sig_alternative_ABH<-length(which(Adj_p_value_ABH[alternative]
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<=0.05))

true_false_positive_BY<-length(which(adj_p_value_BY[null]

<=0.05))

sig_alternative_BY<-length(which(adj_p_value_BY[alternative]

<=0.05))

true_false_positive_BH<-length(which(adj_p_value_BH[null]

<=0.05))

sig_alternative_BH<-length(which(adj_p_value_BH[alternative]

<=0.05))

true_false_positive_hommel<-length(which(adj_p_value_hommel

[null]<=0.05))

sig_alternative_hommel<-length(which(adj_p_value_hommel

[alternative]<=0.05))

sig_alternative_bonferroni<-length(which(adj_p_value_bonferroni

[alternative]<=0.05))

true_false_positive_bonferroni<-length(which(adj_p_value_bonferroni

[null]<=0.05))

true_false_positive_hochberg<-length(which(adj_p_value_hochberg

[null]<=0.05))

sig_alternative_hochberg<-length(which(adj_p_value_hochberg

[alternative]<=0.05))

true_false_positive_holm<-length(which(adj_p_value_holm[null]

<=0.05))

sig_alternative_holm<-length(which(adj_p_value_holm[alternative]

<=0.05))

## The following functions print out the type I error rate,and power

type_I_error_q_value<-true_false_positive_q_value/n_true_null
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type_I_error_holm<-true_false_positive_holm/n_true_null

type_I_error_hochberg<-true_false_positive_hochberg/n_true_null

type_I_error_bonferroni<-true_false_positive_bonferroni/n_true_null

type_I_error_hommel<-true_false_positive_hommel/n_true_null

type_I_error_BH<-true_false_positive_BH/n_true_null

type_I_error_BY<-true_false_positive_BY/n_true_nul

type_I_error_TSBH<-true_false_positive_TSBH/n_true_null

type_I_error_SidakSS<-true_false_positive_SidakSS/n_true_null

type_I_error_SidakSD<-true_false_positive_SidakSD/n_true_null

type_I_error_ABH<-true_false_positive_ABH/n_true_null

power_q_value<-sig_alternative_q_value/n_true_alternative

power_holm<-sig_alternative_holm/n_true_alternative

power_hommel<-sig_alternative_hommel/n_true_alternative

power_bonferroni<-sig_alternative_bonferroni/n_true_alternative

power_hochberg<-sig_alternative_hochberg/n_true_alternative

power_BH<-sig_alternative_BH/n_true_alternative

power_BY<-sig_alternative_BY/n_true_alternative

power_TSBH<-sig_alternative_TSBH/n_true_alternativ

power_ABH<-sig_alternative_ABH/n_true_alternative

power_SidakSS<-sig_alternative_SidakSS/n_true_alternative

power_SidakSD<-sig_alternative_SidakSD/n_true_alternative

significant.test.BY<-length(which(adj_p_value_BY<=0.05))

significant.test.BH<-length(which(adj_p_value_BH<=0.05))

significant.test.hochberg<-length(which(adj_p_value_hochberg<=0.05))

significant.test.hommel<-length(which(adj_p_value_hommel<=0.05))

significant.test.holm<-length(which(adj_p_value_holm<=0.05))

significant.test.bonferroni<-length(which(adj_p_value_bonferroni
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<=0.05))

significant.test.SidakSS<-length(which(adj_p_value_SidakSS$adjp[,2]

<=0.05))

significant.test.SidakSD<-length(which(adj_p_value_SidakSD$adjp[,2]

<=0.05))

significant.test.TSBH<-length(which(adj_p_value_TSBH$adjp[,2]

<=0.05))

significant.test.ABH<-length(which(adj_p_value_ABH$adjp[,2]

<=0.05))

fdr_q_value<-true_false_positive_q_value/length(which(adj_q_value

<=0.05))

fdr_BH<-true_false_positive_BH/significant.test.BH

fdr_BY<-true_false_positive_BY/significant.test.BY

fdr_Holm<-true_false_positive_holm/significant.test.holm

fdr_Hochberg<-true_false_positive_hochberg/significant.test.hochberg

fdr_Hommel<-true_false_positive_hommel/significant.test.hommel

fdr_bonferroni<-(true_false_positive_bonferroni/

significant.test.bonferroni)

fdr_SidakSS<-(true_false_positive_SidakSS/

significant.test.SidakSS)

fdr_SidakSD<-(true_false_positive_SidakSD/

significant.test.SidakSD)

fdr_ABH<-true_false_positive_ABH/significant.test.ABH

fdr_TSBH<-true_false_positive_TSBH/significant.test.TSBH

vec <

c(type_I_error_holm,type_I_error_hochberg,type_I_error_hommel,

type_I_error_BH,type_I_error_BY,type_I_error_TSBH,type_I_error_ABH,
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type_I_error_SidakSS,type_I_error_SidakSD,type_I_error_bonferroni,

type_I_error_q_value,power_holm,power_hochberg,power_hommel,power_BH,

power_BY,power_TSBH,power_ABH,power_SidakSS,power_SidakSD,

power_bonferroni,power_q_value,fdr_Holm,fdr_Hochberg,fdr_Hommel,

fdr_BH,fdr_BY,fdr_TSBH,fdr_ABH,fdr_SidakSS,fdr_SidakSD,fdr_bonferroni,

fdr_q_value)

sim.mat[sim,]<- vec

}

# now get error rate, power, fdr -- all averaged over simulations

ave.vec<-apply(sim.mat,2,mean,na.rm=T)

Matrix1[j,,i]<-ave.vec

# this is a length 33 vector for mu level i, rho level j;

}

}

Colum<-c(‘ty_I_holm’,‘ty_I_hoch’,‘ty_I_hom’,‘ty_I_BH’,‘ty_I_BY’,‘ty_I_TSBH’,‘ty_I_ABH’,

‘ty_I_SS’,‘ty_I_SD’,‘ty_I_bon’,‘ty_I_q’,‘p_holm’,‘p_hoc’,‘p_hom’,‘p_BH’,‘p_BY’,

‘p_TSBH’,‘p_ABH’,‘p_SS’,‘p_Sd’,‘p_bon’,‘p_q’,‘fdr_Holm’,‘fdr_Hoc’,‘fdr_Hom’,‘fdr_BH’,

‘fdr_BY’,‘fdr_TSBH’,‘fdr_ABH’,‘fdr_SS’,‘fdr_SD’,‘fdr_bon’,‘fdr_q’)

Row<-c(‘r=0’,‘r=0.2’,‘r=0.5’,‘r=0.99’)

mu.mat.3.1<- Matrix1[,,1] # this is matrix of results for mu level 0.5

rownames(mu.mat.3.1)<-Row

colnames(mu.mat.3.1)<-Colum

write.csv(mu.mat.3.1,"/home/A01382510/hpc_03162011/Result_0.5_smallblock.csv")

mu.mat.3.2<- Matrix1[,,2] # this is matrix of results for mu level 1.5

rownames(mu.mat.3.2)<-Row

colnames(mu.mat.3.2)<-Colum

write.csv(mu.mat.3.2,"/home/A01382510/hpc_03162011/Result_1.5_smallblock.csv")
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mu.mat.3.3<- Matrix1[,,3] # this is matrix of results for mu level 3

rownames(mu.mat.3.3)<-Row

colnames(mu.mat.3.3)<-Colum

write.csv(mu.mat.3.3,"/home/A01382510/hpc_03162011/Result_3_smallblock.csv")

mu.mat.3.4<- Matrix1[,,4] # this is matrix of results for mu level 4.7

rownames(mu.mat.3.4)<-Row

colnames(mu.mat.3.4)<-Colum

write.csv(mu.mat.3.4,"/home/A01382510/hpc_03162011/Result_4.7_smallblock.csv")

cat(‘Completed script’,date(),‘\n’)

A.3 R script for Figure 3.1 to 3.8

install.packages(‘lattice’)

library(lattice)

#Date: May 5/2011

MU_0.5_smallblock<-read.csv("E:\\MS thesis result\\Result_0.5_smallblock.csv")

MU_0.5_smallblock<-MU_0.5_smallblock[,-1]

MU_0.5_bigblock<-read.csv("E:\\MS thesis result\\Result_0.5_bigblock.csv")

MU_0.5_bigblock<-MU_0.5_bigblock[,-1]

row_names<-c(‘Holm Procedure’,‘Hochberg Procedure’,‘Hommel Procedure’,‘BH Procedure’,

‘BY Procedure’,‘TSBH Procedure’,‘ABH Procedure’,‘Sidak SS Procedure’,

‘Sidak SD Procedure’,‘Bonferroni Procedure’,‘q-value Method’)

r<-c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’)

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{
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FDR[i,]<-matrix(c(MU_0.5_smallblock[,(i+22)]))

}

# Make Matrix with 120 tests

x<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],FDR[9,],

FDR[10,],FDR[11,]),ncol=1)

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_bigblock[,(i+22)]))

}

# Make Matrix with 360 tests

y<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],

FDR[9,],FDR[10,],FDR[11,]),ncol=1)

# Make an object set to use panel, and they are correlation values

object<-rep(c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’),22)

# Make Methods, that send in the y-axis

alg<-c(rep(‘Holm Procedure’,4),rep(‘Hochberg Procedure’,4),rep(‘Hommel Procedure’,4),

rep(‘BH Procedure’,4),rep(‘BY Procedure’,4),rep(‘TSBH Procedure’,4),

rep(‘ABH Procedure’,4),rep(‘Sidak SS Procedure’,4),

rep(‘Sidak SD Procedure’,4),rep(‘Bonferroni Procedure’,4),

rep(‘q-value Method’,4))

Alg<-rep(alg,2)

speed<-c(rep("120",44),rep("360",44))

dat32 = data.frame(object,Alg,Val = rbind(x,y),speed)

dat32$Alg = factor(dat32$Alg,levels = dat32$Alg[dat32$object == "r = 0.5"]

[order(dat32$Val[dat32$object == "r = 0.5"])])

dat32$Alg<-factor(dat32$Alg)
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summary(dat32$Alg)

pdf(‘C:\\ABDULLAH\\Ressult\\FDR_A_0.5.pdf’,height=9,width=7.2)

dotplot(Alg ~ Val |object, data = dat32, groups = speed,layout = c(1,4),

xlab = "120 Dependent tests (Blue & Circle)

/ 360 Dependent tests (Red & Triangle)",cex=1.5,

panel=function(x,y){

panel.dotplot(x, y,cex = 1.5,pch = c(c(rep(1,10),16),c(rep(2,10),17)),

col=c(rep(‘blue’,11),rep(‘red’,11) ))

}

)

dev.off()

## Following code for power A = 0.5

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_smallblock[,(i+11)]))

}

# Make Matrix with 120 tests

x<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],FDR[9,],

FDR[10,],FDR[11,]),ncol=1)

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_bigblock[,(i+11)]))

}

# Make Matrix with 360 tests

y<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],
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FDR[9,],FDR[10,],FDR[11,]),ncol=1)

# Make an object set to use panel, and they are correlation values

object<-rep(c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’),22)

# Make Methods, that send in the y-axis

alg<-c(rep(‘Holm Procedure’,4),rep(‘Hochberg Procedure’,4),rep(‘Hommel Procedure’,4),

rep(‘BH Procedure’,4),rep(‘BY Procedure’,4),rep(‘TSBH Procedure’,4),

rep(‘ABH Procedure’,4),rep(‘Sidak SS Procedure’,4),

rep(‘Sidak SD Procedure’,4),rep(‘Bonferroni Procedure’,4),

rep(‘q-value Method’,4))

Alg<-rep(alg,2)

speed<-c(rep("120",44),rep("360",44))

dat32 = data.frame(object,Alg,Val = rbind(x,y),speed)

dat32$Alg = factor(dat32$Alg,levels = dat32$Alg[dat32$object == "r = 0.5"]

[order(dat32$Val[dat32$object == "r = 0.5"])])

dat32$Alg<-factor(dat32$Alg)

summary(dat32$Alg)

pdf(‘C:\\ABDULLAH\\Ressult\\power_A_0.5.pdf’,height=9,width=7.2)

## This is the correct plot and done

dotplot(Alg ~ Val |object, data = dat32, groups = speed,layout = c(1,4),

xlab = "120 Dependent tests (Blue & Circle)

/ 360 Dependent tests (Red & Triangle)",cex=1.5,

panel=function(x,y){

panel.dotplot(x, y,cex = 1.5,pch = c(c(rep(1,10),16),c(rep(2,10),17)),

col=c(rep(‘blue’,11),rep(‘red’,11) ))

}

)

dev.off()
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## Following code FDR A =1.5

MU_0.5_smallblock<-read.csv("E:\\MS thesis result\\Result_1.5_smallblock.csv")

MU_0.5_smallblock<-MU_0.5_smallblock[,-1]

MU_0.5_bigblock<-read.csv("E:\\MS thesis result\\Result_1.5_bigblock.csv")

MU_0.5_bigblock<-MU_0.5_bigblock[,-1]

row_names<-c(‘Holm Procedure’,‘Hochberg Procedure’,‘Hommel Procedure’,‘BH Procedure’,

‘BY Procedure’,‘TSBH Procedure’,‘ABH Procedure’,‘Sidak SS Procedure’,

‘Sidak SD Procedure’,‘Bonferroni Procedure’,‘q-value Method’)

r<-c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’)

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_smallblock[,(i+22)]))

}

# Make Matrix with 120 tests

x<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],FDR[9,],

FDR[10,],FDR[11,]),ncol=1)

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_bigblock[,(i+22)]))

}

# Make Matrix with 360 tests

y<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],

FDR[9,],FDR[10,],FDR[11,]),ncol=1)
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# Make an object set to use panel, and they are correlation values

object<-rep(c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’),22)

# Make Methods, that send in the y-axis

alg<-c(rep(‘Holm Procedure’,4),rep(‘Hochberg Procedure’,4),rep(‘Hommel Procedure’,4),

rep(‘BH Procedure’,4),rep(‘BY Procedure’,4),rep(‘TSBH Procedure’,4),

rep(‘ABH Procedure’,4),rep(‘Sidak SS Procedure’,4),

rep(‘Sidak SD Procedure’,4),rep(‘Bonferroni Procedure’,4),

rep(‘q-value Method’,4))

Alg<-rep(alg,2)

speed<-c(rep("120",44),rep("360",44))

dat32 = data.frame(object,Alg,Val = rbind(x,y),speed)

dat32$Alg = factor(dat32$Alg,levels = dat32$Alg[dat32$object == "r = 0.5"]

[order(dat32$Val[dat32$object == r = 0.5"])])

dat32$Alg<-factor(dat32$Alg)

summary(dat32$Alg)

pdf(‘C:\\ABDULLAH\\Ressult\\FDR_A_1.5.pdf’,height=9,width=7.2)

dotplot(Alg ~ Val |object, data = dat32, groups = speed,layout = c(1,4),

xlab = "120 Dependent tests (Blue & Circle)

/ 360 Dependent tests (Red & Triangle)",cex=1.5,

panel=function(x,y){

panel.dotplot(x, y,cex = 1.5,pch = c(c(rep(1,10),16),c(rep(2,10),17)),

col=c(rep(‘blue’,11),rep(‘red’,11) ))

}

)

dev.off()
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## Following code for power A = 1.5

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_smallblock[,(i+11)]))

}

# Make Matrix with 120 tests

x<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],FDR[9,],

FDR[10,],FDR[11,]),ncol=1)

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_bigblock[,(i+11)]))

}

# Make Matrix with 360 tests

y<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],

FDR[9,],FDR[10,],FDR[11,]),ncol=1)

# Make an object set to use panel, and they are correlation values

object<-rep(c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’),22)

# Make Methods, that send in the y-axis

alg<-c(rep(‘Holm Procedure’,4),rep(‘Hochberg Procedure’,4),rep(‘Hommel Procedure’,4),

rep(‘BH Procedure’,4),rep(‘BY Procedure’,4),rep(‘TSBH Procedure’,4),

rep(‘ABH Procedure’,4),rep(‘Sidak SS Procedure’,4),

rep(‘Sidak SD Procedure’,4),rep(‘Bonferroni Procedure’,4),

rep(‘q-value Method’,4))
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Alg<-rep(alg,2)

speed<-c(rep("120",44),rep("360",44))

dat32 = data.frame(object,Alg,Val = rbind(x,y),speed)

dat32$Alg = factor(dat32$Alg,levels = dat32$Alg[dat32$object == "r = 0.5"]

[order(dat32$Val[dat32$object == "r = 0.5"])])

dat32$Alg<-factor(dat32$Alg)

summary(dat32$Alg)

pdf(‘C:\\ABDULLAH\\Ressult\\power_A_1.5.pdf’,height=9,width=7.2)

dotplot(Alg ~ Val |object, data = dat32, groups = speed,layout = c(1,4),

xlab = "120 Dependent tests (Blue & Circle)

/ 360 Dependent tests (Red & Triangle)",cex=1.5,

panel=function(x,y){

panel.dotplot(x, y,cex = 1.5,pch = c(c(rep(1,10),16),c(rep(2,10),17)),

col=c(rep(‘blue’,11),rep(‘red’,11) ))

}

)

dev.off()

## Following code for FDR A =3

MU_0.5_smallblock<-read.csv("E:\\MS thesis result\\Result_3_smallblock.csv")

MU_0.5_smallblock<-MU_0.5_smallblock[,-1]

MU_0.5_bigblock<-read.csv("E:\\MS thesis result\\Result_3_bigblock.csv")

MU_0.5_bigblock<-MU_0.5_bigblock[,-1]

row_names<-c(‘Holm Procedure’,‘Hochberg Procedure’,‘Hommel Procedure’,‘BH Procedure’,

‘BY Procedure’,‘TSBH Procedure’,‘ABH Procedure’,‘Sidak SS Procedure’,

‘Sidak SD Procedure’,‘Bonferroni Procedure’,‘q-value Method’)
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r<-c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’)

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_smallblock[,(i+22)]))

}

# Make Matrix with 120 tests

x<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],FDR[9,],

FDR[10,],FDR[11,]),ncol=1)

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_bigblock[,(i+22)]))

}

# Make Matrix with 360 tests

y<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],

FDR[9,],FDR[10,],FDR[11,]),ncol=1)

# Make an object set to use panel, and they are correlation values

object<-rep(c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’),22)

# Make Methods, that send in the y-axis

alg<-c(rep(‘Holm Procedure’,4),rep(‘Hochberg Procedure’,4),rep(‘Hommel Procedure’,4),

rep(‘BH Procedure’,4),rep(‘BY Procedure’,4),rep(‘TSBH Procedure’,4),

rep(‘ABH Procedure’,4),rep(‘Sidak SS Procedure’,4),

rep(‘Sidak SD Procedure’,4),rep(‘Bonferroni Procedure’,4),

rep(‘q-value Method’,4))

Alg<-rep(alg,2)

speed<-c(rep("120",44),rep("360",44))
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dat32 = data.frame(object,Alg,Val = rbind(x,y),speed)

dat32$Alg = factor(dat32$Alg,levels = dat32$Alg[dat32$object == "r = 0.5"]

[order(dat32$Val[dat32$object == "r = 0.5"])])

dat32$Alg<-factor(dat32$Alg)

summary(dat32$Alg)

pdf(‘C:\\ABDULLAH\\Ressult\\FDR_A_3.pdf’,height=9,width=7.2)

dotplot(Alg ~ Val |object, data = dat32, groups = speed,layout = c(1,4),

xlab = "120 Dependent tests (Blue & Circle)

/ 360 Dependent tests (Red & Triangle)",cex=1.5,

panel=function(x,y){

panel.dotplot(x, y,cex = 1.5,pch = c(c(rep(1,10),16),c(rep(2,10),17)),

col=c(rep(‘blue’,11),rep(‘red’,11) ))

}

)

dev.off()

## Following code for power A = 3

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_smallblock[,(i+11)]))

}

# Make Matrix with 120 tests

x<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],FDR[9,],
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FDR[10,],FDR[11,]),ncol=1)

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_bigblock[,(i+11)]))

}

# Make Matrix with 360 tests

y<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],

FDR[9,],FDR[10,],FDR[11,]),ncol=1)

# Make an object set to use panel, and they are correlation values

object<-rep(c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’),22)

# Make Methods, that send in the y-axis

alg<-c(rep(‘Holm Procedure’,4),rep(‘Hochberg Procedure’,4),rep(‘Hommel Procedure’,4),

rep(‘BH Procedure’,4),rep(‘BY Procedure’,4),rep(‘TSBH Procedure’,4),

rep(‘ABH Procedure’,4),rep(‘Sidak SS Procedure’,4),

rep(‘Sidak SD Procedure’,4),rep(‘Bonferroni Procedure’,4),

rep(‘q-value Method’,4))

Alg<-rep(alg,2)

speed<-c(rep("120",44),rep("360",44))

dat32 = data.frame(object,Alg,Val = rbind(x,y),speed)

dat32$Alg = factor(dat32$Alg,levels = dat32$Alg[dat32$object == "r = 0.5"]

[order(dat32$Val[dat32$object == "r = 0.5"])])

dat32$Alg<-factor(dat32$Alg)

summary(dat32$Alg)

pdf(‘C:\\ABDULLAH\\Ressult\\power_A_3.pdf’,height=9,width=7.2)

dotplot(Alg ~ Val |object, data = dat32, groups = speed,layout = c(1,4),

xlab = "120 Dependent tests (Blue & Circle)
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/ 360 Dependent tests (Red & Triangle)",cex=1.5,

panel=function(x,y){

panel.dotplot(x, y,cex = 1.5,pch = c(c(rep(1,10),16),c(rep(2,10),17)),

col=c(rep(‘blue’,11),rep(‘red’,11) ))

}

)

dev.off()

## Following code for FDR A =4.7

MU_0.5_smallblock<-read.csv("E:\\MS thesis result\\Result_4.7_smallblock.csv")

MU_0.5_smallblock<-MU_0.5_smallblock[,-1]

MU_0.5_bigblock<-read.csv("E:\\MS thesis result\\Result_4.7_bigblock.csv")

MU_0.5_bigblock<-MU_0.5_bigblock[,-1]

row_names<-c(‘Holm Procedure’,‘Hochberg Procedure’,‘Hommel Procedure’,‘BH Procedure’,

‘BY Procedure’,‘TSBH Procedure’,‘ABH Procedure’,‘Sidak SS Procedure’,

‘Sidak SD Procedure’,‘Bonferroni Procedure’,‘q-value Method’)

r<-c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’)

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_smallblock[,(i+22)]))

}

# Make Matrix with 120 tests

x<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],FDR[9,],

FDR[10,],FDR[11,]),ncol=1)

FDR<-matrix(0,ncol=length(r),nrow=11)
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for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_bigblock[,(i+22)]))

}

# Make Matrix with 360 tests

y<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],

FDR[9,],FDR[10,],FDR[11,]),ncol=1)

# Make an object set to use panel, and they are correlation values

object<-rep(c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’),22)

# Make Methods, that send in the y-axis

alg<-c(rep(‘Holm Procedure’,4),rep(‘Hochberg Procedure’,4),rep(‘Hommel Procedure’,4),

rep(‘BH Procedure’,4),rep(‘BY Procedure’,4),rep(‘TSBH Procedure’,4),

rep(‘ABH Procedure’,4),rep(‘Sidak SS Procedure’,4),

rep(‘Sidak SD Procedure’,4),rep(‘Bonferroni Procedure’,4),

rep(‘q-value Method’,4))

Alg<-rep(alg,2)

speed<-c(rep("120",44),rep("360",44))

dat32 = data.frame(object,Alg,Val = rbind(x,y),speed)

dat32$Alg = factor(dat32$Alg,levels = dat32$Alg[dat32$object == "r = 0.5"]

[order(dat32$Val[dat32$object == "r = 0.5"])])

dat32$Alg<-factor(dat32$Alg)

summary(dat32$Alg)

pdf(‘C:\\ABDULLAH\\Ressult\\FDR_A_4.7.pdf’,height=9,width=7.2)

dotplot(Alg ~ Val |object, data = dat32, groups = speed,layout = c(1,4),

xlab = "120 Dependent tests (Blue & Circle)
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/ 360 Dependent tests (Red & Triangle)",cex=1.5,panel=function(x,y){

panel.dotplot(x, y,cex = 1.5,pch = c(c(rep(1,10),16),c(rep(2,10),17)),

col=c(rep(‘blue’,11),rep(‘red’,11) ))

}

)

dev.off()

## Following code for power A = 4.7

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_smallblock[,(i+11)]))

}

# Make Matrix with 120 tests

x<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],FDR[9,],

FDR[10,],FDR[11,]),ncol=1)

FDR<-matrix(0,ncol=length(r),nrow=11)

for(i in 1:11)

{

FDR[i,]<-matrix(c(MU_0.5_bigblock[,(i+11)]))

}

# Make Matrix with 360 tests

y<-matrix(c(FDR[1,],FDR[2,],FDR[3,],FDR[4,],FDR[5,],FDR[6,],FDR[7,],FDR[8,],

FDR[9,],FDR[10,],FDR[11,]),ncol=1)

# Make an object set to use panel, and they are correlation values
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object<-rep(c(‘r = 0’,‘r = 0.2’,‘r = 0.5’,‘r = 0.99’),22)

# Make Methods, that send in the y-axis

alg<-c(rep(‘Holm Procedure’,4),rep(‘Hochberg Procedure’,4),rep(‘Hommel Procedure’,4),

rep(‘BH Procedure’,4),rep(‘BY Procedure’,4),rep(‘TSBH Procedure’,4),

rep(‘ABH Procedure’,4),rep(‘Sidak SS Procedure’,4),

rep(‘Sidak SD Procedure’,4),rep(‘Bonferroni Procedure’,4),

rep(‘q-value Method’,4))

Alg<-rep(alg,2)

speed<-c(rep("120",44),rep("360",44))

dat32 = data.frame(object,Alg,Val = rbind(x,y),speed)

dat32$Alg = factor(dat32$Alg,levels = dat32$Alg[dat32$object == "r = 0.5"]

[order(dat32$Val[dat32$object == "r = 0.5"])])

dat32$Alg<-factor(dat32$Alg)

summary(dat32$Alg)

pdf(‘C:\\ABDULLAH\\Ressult\\power_A_4.7.pdf’,height=9,width=7.2)

dotplot(Alg ~ Val |object, data = dat32, groups = speed,layout = c(1,4),

xlab = "120 Dependent tests (Blue & Circle)

/ 360 Dependent tests (Red & Triangle)",cex=1.5,panel=function(x,y){

panel.dotplot(x, y,cex = 1.5,pch = c(c(rep(1,10),16),c(rep(2,10),17)),

col=c(rep(‘blue’,11),rep(‘red’,11) ))

}

)

dev.off()
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