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ABSTRACT 

The high resolution and low measurement uncertainty goals for next generation atmospheric sounders will require FTS-
based spectrometers which exhibit improved velocity stability and disturbance rejection over previous systems. This 
paper documents the characterization of and improvements made to existing SDL FTS systems as part of an internal 
study to meet the demands of future missions. Improved velocity tracking and disturbance rejection performance is 
documented along with selected lessons learned.  

Keywords: Interferometer, Fourier Transform Spectrometer, Control System, Velocity Tracking, Velocity Stability, 
Servo, Disturbance Rejection 

1. INTRODUCTION 
The Space Dynamics Laboratory (SDL) has a long history of success with its Michelson Interferometer design as 
discussed in Robinson 2002, et al.[1] This includes cryogenic flight instruments operating down to liquid helium 
temperatures. Figure 1 shows the components of the Moving Mirror Carriage (MMC) of an SDL Fourier Transform 
Spectrometer (FTS). 

 
Figure 1. Components of a Moving Mirror Carriage (MMC) 

A key element of this interferometer is the velocity control of the MMC, which requires very good velocity stability. The 
control system that executes this motion is commonly called the servo, and a block diagram of this system is shown in 
Figure 2. This block diagram shows the MMC, the control law, and the main source of feedback for this effort (which is 
not shown in Figure 1): velocity estimation using a laser interferometer channel realized in parallel with the science 
instrument.  
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Figure 2. Servo System Signal Block Diagram 

This paper documents major contributions to FTS servo performance in the areas of setpoint (command) tracking and 
disturbance rejection. Section 2 outlines groundwork done to characterize the MMC and laser velocity estimation 
elements using first principles modeling and system identification (System ID) techniques. Section 3 describes the 
hardware and algorithmic improvements made to the servo control law. Section 4 highlights some experimental results, 
focusing on the improved tracking and disturbance rejection performance. Section 5 summarizes our work and indicates 
research areas in which the next performance gains are likely to be found. 

2. FTS SERVO CHARACTERIZATION 
The following section focuses on characterization of the MMC, laser interferometer feedback and velocity estimation. 
The amplifier (AMP in Figure 2) is not discussed in this section. Sample results from System ID are presented at the end 
of the section, which provide validation of the first principles models.  

2.1 Moving Mirror Carriage (MMC) 

The MMC is the plant for the servo control system, with a position denoted as x in Figure 2. It is an underdamped mass-
spring system, with a resonant peak due to the torsional stiffness of the flex pivots. For reference, see Figure 1, which 
shows the elements of the MMC. 

The transfer function of the MMC rotational dynamics (neglecting the motor) is second order according to Elwell:[2] ఏ்೘ ൌ భ಻௦మାಳ಻௦ା಻಼       (1) 

where, 

 θ = MMC rotation angle 

 Tm = Torque applied by the motor 

 J = Moment of inertia of the MMC 

 B = Combined damping coefficient of flex pivots 

 K = Combined spring constant of flex pivots 

For small angles, the relationship of position to rotation is x=rθ, where r is the moment arm of the MMC. In reality 
x=rsin(θ), but the small angle approximation holds well enough for this effort. 
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The motor in the interferometer typically operates at very low speeds. Back-emf is negligible, and therefore the 
relationship between motor torque and applied current is  

௠ܶ ൌ ௄೟ோ i 

where, 

 Kt = Motor torque constant 

 R = Motor armature winding resistance  

Collecting all these relationships gives the MMC transfer function (now including motor effects) from applied current to 
mirror translation: ௫௜ ൌ ೝ಼೟ೃ಻௦మାಳ಻௦ା಻಼       (1a) 

This is the physical plant to be controlled. 

2.2 Laser Interferometer Feedback 

The laser channel of the interferometer is the main source of feedback for this effort. As such, a significant effort was 
made to understand and improve this sensor. 

2.2.1 Transducer 

The purpose of the servo control loop is to control the velocity of the translating mirror, but the laser channel of the 
interferometer (our feedback transducer) provides position. This requires us to numerically differentiate the position 
signal. There are countless ways to do this, and several were investigated in this study. The next section describes one of 
several velocity estimation algorithms investigated. 

2.2.2 Fixed-Position Velocity Estimation 

In the past, mirror velocity in the FTS was typically calculated from the laser feedback using what Brown et al[3] refer to 
as a “fixed-position velocity estimator”. In this scheme of things, the velocity estimate is based on the measurement of 
time between the last two fringe crossings (Δt in Figure 3) during which the mirror traveled the known fixed distance 
λ/2. When a controller sample occurs, the estimate of mirror velocity used at time tk is as follows: ݒሺݐ௞ሻ ൌ ሺఒ ଶൗ ሻ୼௧ ൌ ఒଶ୼௧     (2) 

This first-order derivative corresponds to the average velocity between the most recent laser fringe crossing and the one 
preceding it. A first-order backwards-difference velocity estimate like this introduces Δt/2 latency into the estimate, as 
discussed in Carpenter et al.[4] 
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Figure 3. Velocity estimation quantities 

In addition, this estimate of velocity was not valid at time tk. Its time of validity is in the past, at time tf, which is when 
the most recent fringe crossing actually occurred. It is clear from Figure 7 that this introduces an additional latency of tk-
tf into our estimate of velocity using this method. The total latency inherent to the velocity estimation method of 
Equation 2 is then ݐ௟ ൌ ቀ୼௧ଶ ቁ ൅ ൫ݐ௞ െ  ௙൯     (3)ݐ

This latency will cause phase loss, which degrades margins of stability in a controller. Note that the latency is velocity-
dependent for a given laser wavelength. At very slow mirror speeds, where we have few or no laser fringe crossings 
during a sample time, either term of tl could grow to be larger than the sample time T. At nominal speeds, where we 
have multiple fringes per controller sample time, the total latency must be a fraction of the sample time T. 

At a constant mirror velocity V, we will see a fringe frequency of 

௙݂ ൌ ܸቀ2ߣቁ 

fringes per second. Counting these fringes at the high counter rate fcount, we get ܥ ൌ ௖݂௢௨௡௧௙݂  

counts per fringe. We can resolve time within a quantization interval of ݍ௧ ൌ  ܥ1

or one part in C. This means that at this nominal velocity V, our velocity measurement is quantized to a level of 

௩ݍ  ൌ ௧ܸݍ ൌ ଶ௏మఒ௙೎೚ೠ೙೟   (4) 
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Our velocity resolution is velocity-dependent, increasing with the square of velocity. If we had an infinite counter, we 
could resolve steady-state velocities approaching zero. The result of using a finite counter will be shown below. 

Quantization noise is often assumed to be approximated by ߪ௩ଶ ൌ ௩ଶ12ݍ  

from which the standard deviation of the noise due to velocity quantization can be found: ߪ௩ ൌ ଶ௏మఒ௙೎೚ೠ೙೟√ଵଶ    (5) 
Our minimum resolvable velocity (due to saturation of the high rate counter) of 

௠ܸ௜௡ ൌ ቀഊమቁ୼௧೘ೌೣ ൌ ఒ௙೎೚ೠ೙೟ଶௌ೎೚ೠ೙೟   (6) 

This deadband around zero velocity means we have a non-linear sensor. Our maximum resolvable velocity lies at the 
other end of the counter spectrum. 

௠ܸ௔௫ ൌ ቀഊమቁ൬ భ೑೎೚ೠ೙೟൰ ൌ ఒ௙೎೚ೠ೙೟ଶ     (7) 

The amplifier (not discussed here) and the physical plant (Equation 1a), coupled with the velocity estimate (Equation 2) 
comprise the plant to be controlled as shown in Figure 4. 

 
Figure 4. The controlled plant 

2.3 System Identification (System ID) 

System Identification is the method of exciting the plant with a known signal and measuring the response, in order to 
characterize the frequency response of the plant. The product of this process could be an input/output open-loop Bode 
plot or a transfer function that has been fit to the data. The System ID plant is then compared to the plant derived from 
first-principles as a check of the model. Many times, un-modeled dynamics are discovered during the System ID process, 
and these should be accommodated in the design of the control law. Simons et al[5] provide guidance on excitation signal 
selection and design. 

For the purposes of System ID, the definition of the plant is broadened to include the sensors. The controlled plant is 
shown in Figure 4, and it includes the laser transducer as well as the velocity estimation method. Also included are 
sample-and-hold and calculation time effects. 

Figure 5 shows the results of our final open-loop system IDs in a Bode plot format. The red curve represents the first 
principles model, and the blue curve represents the Bode plot obtained using system ID techniques. Previous system IDs 
had uncovered some un-modeled dynamics in the system, highlighting the need for hardware and software 
improvements. The system ID results, shown in Figure 5, were taken after these improvements were made. These results 
exhibit excellent model matching within the region of interest bounded by the range of the excitation frequency (~1-
100Hz). 
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Figure 5. System ID compared with first principles 

These results give confidence in taking the next step: improving the interferometer servo performance. There are no 
unexpected or un-modeled dynamics at play in this frequency range.  

3. FTS SERVO IMPROVEMENTS 
Our servo improvement approach concentrated on the following three areas: 

• Improve the quality of velocity estimation 

• Develop feedback control laws with enhanced bandwidth 

• Develop advanced algorithms for disturbance rejection 

The following subsections review our work in these three technology advancement areas. 

3.1 Velocity Estimation Improvements 

Several advanced velocity estimation techniques were developed during this study. All of these were simulated and only 
a subset were tested on the hardware. The simulation results indicate that several of these advanced estimation methods 
could significantly improve the quality of our velocity estimate. The results of our research on these topics are beyond 
the scope of this paper and will be presented elsewhere. 
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3.2 Improved Feedback Control Laws and Algorithms 

A broad survey of candidate control laws and algorithms was conducted for this application. Twenty-eight control laws 
were narrowed down to the most likely five candidates, and sixteen assistive on-line control algorithms were narrowed 
down to the seven most likely candidates. Cost and schedule constraints prevented us from implementing all of these in 
hardware, but many were proven to perform well in simulation. 

Of the two control laws, we had time to test on the FTS hardware, the front-runner was not surprisingly the ubiquitous 
PID controller.[6,7] Our model-based control design using the System ID plant to develop controller parameters paid off 
well, giving very good velocity stability and high bandwidth with our initial gains. Subsequent tuning only improved the 
servo performance. Results of our testing using the PID controller can be found in Section 4. 

Although only four assistive on-line control algorithms were tested on interferometer hardware, all seven showed great 
potential in simulation. Of the four tested on the hardware, the two standouts were input shaping and a model-based 
disturbance rejection algorithm which we called Enhanced Control. Input shaping allowed for higher gains by keeping 
the system from reaching saturation. The Enhanced Control algorithm demonstrated our new ability to target specific 
monotonic disturbances (such as cryocooler harmonic vibrations) and effectively nullify their effect on mirror velocity. 
See Section 4 for more details. 

4. EXPERIMENTAL RESULTS 
This section presents some highlights from the results of hardware testing the candidate control laws and algorithms on a 
Michelson Interferometer. 

4.1 PID Controller Results 

The system generally matched simulation, although we were able to apply more gain than what we achieved in 
simulation before the onset of instability. This was perhaps due to a disparity between the simulated and the actual 
amplifier gain.  

Figure 6 shows the drastically improved velocity stability of the updated FTS servo, using the PID controller. Bandwidth 
was significantly higher (~10x higher) than in previous servos, and therefore transient response and disturbance rejection 
were greatly improved with this updated servo control system design. Velocity response at turn-around (at the end of a 
mirror scan) was nearly critically-damped, notwithstanding the deadband around zero velocity described in Equation 6. 

Our Enhanced Control successfully rejected the cryocooler fundamental vibration disturbance (reproduced using a 
loudspeaker with additional moving mass and confirmed with an accelerometer on the interferometer cube). This is 
shown in Figure 7. The FTS mirror no longer responds to the 53Hz fundamental of the crycooler, further improving 
velocity stability of the SDL interferometer. More than one monotonic disturbance can be rejected using this Enhanced 
Control algorithm at once. 

 
Figure 6. Velocity stability comparison of updated servo (using PID controller) to previous design 

Previous Servo Design Updated Servo Design

Velocity error: 2.01% RMS Velocity error: 0.15% RMS
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Figure 7. Experimental results of enhanced control rejecting monotonic vibration disturbance 

5. CONCLUSIONS AND FUTURE WORK 
The Space Dynamic Laboratory (SDL) continues to demonstrate its leading role in the development of Fourier 
Transform Spectrometers (FTS) by demonstrating an updated mirror control servo. This servo has significantly more 
bandwidth (~10x) and better velocity stability than its predecessors. The addition of Enhanced Control is an exciting 
development for future SDLs Michelson Interferometers, as this technology rejects monotonic disturbances from 
vibrations sources like crycoolers. The result of these improvements is an FTS servo with outstanding velocity stability 
which can meet the challenging demands of future science missions. 
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