
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

International Junior Researcher and Engineer 
Workshop on Hydraulic Structures 

6th International Junior Researcher and 
Engineer Workshop on Hydraulic Structures 

(IJREWHS 2016) 

May 31st, 11:20 AM - 11:35 AM 

Coupling Process for 1D-2D Numerical Flash Flood Simulation: A Coupling Process for 1D-2D Numerical Flash Flood Simulation: A 

Parameter Study of Involved Variables for Gullies and Manholes Parameter Study of Involved Variables for Gullies and Manholes 

S. Schlauß 
Lübeck University of Applied Sciences 

M. Grottker 
Lübeck University of Applied Sciences 

Follow this and additional works at: https://digitalcommons.usu.edu/ewhs 

 Part of the Civil and Environmental Engineering Commons 

Schlauß, S. and Grottker, M., "Coupling Process for 1D-2D Numerical Flash Flood Simulation: A Parameter 
Study of Involved Variables for Gullies and Manholes" (2016). International Junior Researcher and 
Engineer Workshop on Hydraulic Structures. 2. 
https://digitalcommons.usu.edu/ewhs/2016/Session3/2 

This Event is brought to you for free and open access by 
the Conferences and Events at DigitalCommons@USU. It 
has been accepted for inclusion in International Junior 
Researcher and Engineer Workshop on Hydraulic 
Structures by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/ewhs
https://digitalcommons.usu.edu/ewhs
https://digitalcommons.usu.edu/ewhs/2016
https://digitalcommons.usu.edu/ewhs/2016
https://digitalcommons.usu.edu/ewhs/2016
https://digitalcommons.usu.edu/ewhs?utm_source=digitalcommons.usu.edu%2Fewhs%2F2016%2FSession3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=digitalcommons.usu.edu%2Fewhs%2F2016%2FSession3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/ewhs/2016/Session3/2?utm_source=digitalcommons.usu.edu%2Fewhs%2F2016%2FSession3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


6th IAHR IJREWHS 2016       Lübeck, Germany, May 30th to June 1st 2016 

DOI:10.15142/T3759N 

Coupling Process for 1D-2D Numerical Flash Flood Simulation: A 

Parameter Study of Involved Variables for Gullies and Manholes  

S. Schlauß1 and M. Grottker1

1Laboratory for Urban Water Management 

Civil Engineering Department 

Lübeck University of Applied Sciences 

Lübeck, Germany 

E-mail: sebastian.schlauss@fh-luebeck.de

ABSTRACT 

Urban flash floods and their hydronumerical coupled modelling are influenced by various parameters and 

assumptions for model setup and implementation. Hence, the present paper deals with coupling details of 1D-

sewer and 2D-surface models. Considered hydraulic parameters will be analyzed concerning their impact on 

computed results for flood levels and the discharge rate (bi-directional) between both, 1D and 2D, model 

approaches. Additionally, flood durations will be investigated. Considered parameters are the inlet area, the 

limitation of the discharge capacity according to standards of the legislation and the discharge coefficient, 

which has only minor impacts on the discharge rates in this configuration. Comparisons of limited and unlimited 

numerical computation for discharge capacity at the coupled nodes show that the flood duration will be 

influenced more than flood levels. The quantitative exchange at each node is calculated by applying the 

Torricelli approach and by including variable parameters. Analyzing flash floods with coupled numerical 

models allows the implementation of measures and their evaluation regarding flooding depth and thus provides 

security against flooding. Exemplary improvements will be shown. Additionally, the model is primarily evaluated 

by comparing its results with measurements in the sewer system.  

Keywords: gullies, flash flood, coupled numerical modeling, parameter study, discharge coefficient, inlet 

capacity. 

1. INTRODUCTION

The present investigation is part of the “RainAhead” project, which is funded by the Federal Ministry for the 

Environment, Nature Conservation, Building and Nuclear Safety (BMUB). The main aim of the project is to 

develop an integrated planning and warning tool for heavy rain events and their resulting flash flood in urban 

areas. Heavy rain events and possible resulting flash floods occur locally or regionally as a result of convective 

precipitation of high intensity (e.g. Maniak 2010). These events can mostly be observed during the summer 

period (Hatzfeld et al. 2008). The analysis of an event data-base regarding flash floods (within the project 

URBAS) shows that flash floods arise with an occurrence of 72 % between March and September (Oertel 2012). 

Intensities of heavy rains can vary considerably regarding their precipitation quantity as well as their duration. 

Consequently, the German Meteorological Service defines three warning intensities (GDV 2015). DIN-4049-3 

(1994) also describes heavy rain events by comparing their duration and intensity. IPCC (2014) expects an 

increase of intensive rain events and with it an increase of urban flash floods. The number of extreme events has 

increased significantly since 1980 according to MunichRE (2015). Additionally, with an increase of surface 

sealing, negative effects can be assumed regarding heavy rainfalls. Infiltration (g), evapo-transpiration (v) and 

runoff will change the water cycle in urbanized regions compared to natural conditions (Figure 1).  



 

 

Figure 1. Increase of runoff (a) due to surface sealing and decrease of infiltration (g) and evapo-transpiration (v) 

in urban areas (Kruse et al. 2014) 

Urban drainage systems are designed for defined water amounts and rainfall return periods within a particular 

catchment area. Hatzfeld et al. (2008) mentioned a variation of design boundary conditions for various 

catchment areas. Generally, the design return period for urban drainage facilities is defined in DWA-A 118 

(2006). With residential areas, as an example, the typical design frequency (or return period) is n = 0.2 to 0.5 (or 

T = 5a to 2a respectively). DIN EN 752 requests a proof of the return period for the investigated catchment area 

depending on the usage (DIN EN 752 2008).  

 

Numerical flash flood analyses usually use 2D surface runoff simulations to describe resulting flood situations. 

Other methods are based on Geographic Information Systems (GIS) with integrated flow-path analyses (e.g. 

Koch et al. 2015 and Chen et al. 2009) or coupled 1D-1D models (Maksimovic et al. 2009). Additionally, 

experimental models are used to describe detail processes like inlet capacities of gullies and to compare these 

with in-situ measurements (Kemper et al. 2015) as well as with 3D numerical models only for gullies or other 

details of the drainage system (Djordjevic et al. 2013). Results can also be used for validating and calibrating 

numerical models. The present paper focuses on coupling processes of drainage systems with surface runoff by 

means of analyzing the coupling process of independent numerical hydrodynamic models. Thereby, the 

parameters considered within applied analytical solutions are in the main focus of interest. In contrast to other 

research projects and national handling rules for urban flash floods, a coupled hydrodynamic numerical 1D-2D 

model allows a more detailed analysis of occurring flow paths and pipe capacity utilization. It represents an 

expensive method regarding time consumption (Ghostine et al. 2015), data input, data accuracy, simulation 

duration and expert knowledge (see Henonin et al. 2013 and DWA-T1 2013). Nevertheless, coupled 1D-2D 

models are often used in urban areas (Hunter at al. 2008; Vojinovic and Tutulic 2009; Leandro et al. 2009). 

Additionally, measures to avoid flash flood damage (e.g. retention areas or barrier removal, see e.g. Hoppe et al. 

2011) can be adopted and investigated accurately. Forecasting of storm events can also be used to manage flash 

floods (Einfalt et al. 2009). 

2. INVESTIGATOIN AREA AND HYDRODYNAMIC NUMERICAL MODEL 

The investigation area is located in the northern part of Germany within the city of Lübeck. The district St. 

Lorenz Süd is located close to the city center at the river Trave (Figure 2). The catchment area is A = 2.4 km². 

Within the current investigation the commercial numerical models DHI MIKE21 (2D) and MOUSE (1D) are 

used. The 1D model allows a time-dependent simulation of the sewage system. The 2D model is a surface runoff 

model with a mesh resolution of 1 m in x- and y-direction and 5.1 Mio. cells in total (Table 1). Both models are 

coupled via connecting nodes. These nodes represent gullies and manholes in the sewage system, allowing a bi-

directional mass transfer. The governing equations are the Saint-Venant-Equations complying with the principles 

of the conservation of mass and momentum. A detailed description can be found in DHI (2015). Details of the 

coupling process, as implemented here, are shown in Figure 3.  
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Figure 2. Overview of the investigation area (St. Lorenz Süd), left: exemplary flooding results for a once in 100 

years rain event, right: exemplary investigation point within the catchment area 

 

Table 1. List of control points within the catchment area, coordinates and nearest manhole ID in Mike Urban 

Point no.  Location  Type  x [m]  y [m]  Manhole [MUID] 

1 Stettinerstr. low point 281 602 7480001 

2 Hansestr. elevated point 392 1004 7170014 

3 Moislinger Allee elevated point 501 501 7370309 

4 Lachswehr Allee close to low point 729 729 7280101 

5 Lindenstr. low point 613 1145 7310022 

 

Table 2. Types and number of the 1D sewer model MOUSE of nodes, links and catchments, and 2D overland 

model  

Type Amount / length 

Catchments (roofs) 4216 

Nodes (total) 2572 

Manholes 1031 

Gullies 1513 

Basin 1 

Inlets 3 

Outlets 24 

Coupled nodes 2549 

Links (pipes) 2580 

total length of links 73.9 km 

Weirs 6 

Area 2D 2.4 km² 

Number of cells 2D (1m) 5.1 Mio 

Number of cells 2D (2m) 2.8 Mio 

 

 

 



 

 

Figure 3. Schematic overview of coupling process for 1D and 2D numerical model (according to Kühnel 2015) 

 

The input data is rainfall data provided by the German Meteorological Service (DWD), which is also used by 

local authorities to calculate drainage facilities. A precipitation runoff model computes the runoff from the 

house’s roof areas; these areas are directly connected to the 1D sewage model. The same precipitation data set is 

used for the 2D surface runoff computation.  Both models are connected via nodes so that an exchange of water 

can be calculated by an implemented analytical approach. Details of the coupling process are shown in Figure 4. 

Table 2 gives additional information about the models used in the present investigation.  

Other connective configurations of the catchment areas with the 1D-sewer model are described and applied 

during different investigations. Runoff computation without a separate precipitation runoff model can be applied. 

The rainfall boundary is thus applied to the bathymetry (2D) only. Therefore, the roughness values for the 

buildings should be lowered allowing the flow time towards the coupled nodes to be shortened (Babister and 

Barton 2012). The direct connection of runoff into the sewer system is not possible in this way.  

Figure 4 illustrates two varying flow directions for the coupled nodes: (1) surcharge and (2) inflow. The 

mathematical description is implemented in the numerical model via the analytical Torricelli approach (DHI 

2015): 

hgCAQ D  2  (1) 

 

where Q is the total gully discharge, A is the inlet area, CD is the discharge coefficient, g is the acceleration due 

to gravity and h is the flow depth above the coupled node. The principle is the exchange of energy between the 

potential energy at the surface and the kinetic energy at the opening. Q is also defined as the inlet capacity, 

which can be limited to a maximum allowed value within the numerical model according to standards like Ras-

Ew (see e.g. Kemper et al. 2015) out of FGSV (2005). 

 

 

Figure 4. Schematic plot of coupled nodes (manholes and gullies) with bi-directional exchange of water between 

1D-2D model, left (1): surcharge, right (2): inflow from 2D overland (DHI, 2015) 

 

h h 



 

Default values for maximum gully discharges and their discharge coefficients within the numerical software are 

Q = 0.1 m3/s and CD = 0.98. The gully’s flow area A is computed with geometric specification of each node (the 

same is valid for manholes), g is constant and the flow or flooding depth h is computed during the simulation 

process because of the time-dependent flow development.   

Within the present paper above mentioned parameters will be studied concerning their influence on resulting 

sewage and surface discharges. Therefore, particular DIN regulations or maximum inlet capacities for gullies 

and manholes are used. As an example, Figure 5 shows two established gully dimensions in Germany especially 

chosen, as they are located in the analyzed catchment area. Within the investigated numerical model, various 

pre-defined inlet areas will be set as a constant.  

  

Figure 5. Exemplary gully geometries, left: 300 mm x 500 mm, A = 0.0515 m², middle: 500 mm x 500 mm, 

A = 0.0815 m², right: example of a manhole with an inlet area A = 0.025 m² (DIN-19583-1, DIN-19594-1, DIN-

19584-1) 

 

The conducted simulation runs with different set- ups and different variations of applied parameters of the 

coupling process are listed below. The boundary condition for the rainfall intensity is the once in 100 years storm 

event with a rainfall duration of D = 10 min. for each model run. For variations of the inlet area a duration of  

D = 30 min. was chosen with the same return period of once in 100 years and its correlating intensity of rainfall. 

3. RESULT ANALYSIS 

3.1. General remarks 

Results will be analyzed concerning the influence of parameter variation within the analytical coupling approach 

(see Eq. 1) on flooding processes, like e.g. flooding depth, flood duration and exchange rate between both 

models. This exchange rate is called discharge MOUSE to MIKE21. Therefore, it is positive for a surcharge 

flowing from the 1D-sewage model into the 2D surface model. Furthermore, it is negative for an inflow running 

from the 2D model into the 1D model. Generally, a surcharge can be observed with early time steps, which is 

characteristic for the investigated catchment area. After a defined time, the exchange turns into an inflow 

discharge into the gully. (The boundary condition of the rainfall time series starts after 10 min. of the simulation 

period for both models). 

 

Following model variations will be investigated: 

 

(1) Influence of implemented measures (simulation period 2 h, grid resolution 2 m, 2D and 1D-2D) 

(2) Comparison between 2D and 1D-2D model (simulation period 2 h, grid resolution 1 m)  

(3) Influence of inlet area and inlet capacity variation (simulation period 2 h, grid resolution 2 m 

(4) Influence of discharge coefficient variation (simulation period 2 h, grid resolution 2 m) 

(5) Comparison of 1D sewage model with in-situ measurements (simulation period 8 h) 

 

For all parameter variations, a once in 100 years rainfall event is used, with an intensity of rainfall of  

r(15,1) = 106 l/(s ha)1 which corresponds with an investigation of the DWD of rainfall data analysis of Lübeck 

                                                           
1 In this case D = 15 [min]. and n = [1/a] with D: duration and n: frequency of rain event per year and T = [a] 

annuity 



 

from 1973. For data analysis, an exemplary control node was selected (point nr. 1) to identify flooding variations 

and changing exchange rates. The chosen node is a low point with a nearby manhole (see Figure 2 and Table 1). 

In this case, only point 1 is referred to in the results. It is located on the street and is a low point where flooding 

depth usually increases significantly during storm events (See Figure 2). 

 

The coupling process will be analyzed by investigating both the separated 2D surface model and the coupled 1D-

2D sewage-surface model. Figure 6 gives exemplary results. It shows that the flooding depth and its time-

dependent development vary significantly. With the 2D surface model, a continuous increase of resulting flow 

depths can be observed. As opposed to this, the coupled model shows a major increase just after the beginning of 

the rainfall event for the first 25 min. until a peak flow depth is reached. Finally, the sewage system will be 

involved in the discharge process and subsequently a decrease of inundation can be observed. It should be noted 

that the flooding process occurs with greater intensity within a shorter time period due to the effects of involved 

underground pipe systems. In this regard, Johnson (2013) refers to the Direct Rainfall Method (DRM), which 

cuts the flood peak due to losses especially in cases of low intensities with separated 2D overland computation 

(trough losses due to the bathymetry). This phenomenon is presented in Figure 6. The DRM takes only trough 

and depression losses of the bathymetry into account, but no evaporation and infiltration.  

 

The influence of the 1D sewage system can be claimed to contribute to defined and fast flood levels on the one 

hand and to drain the surface floods on the other hand. Whereas the 2D computation results in an accumulation 

of flood level during the simulation as there is no drainage capacity available and no infiltration or evaporation 

implemented in the model. The results show reasonable differences between the two model configurations and 

leads to the statement that the coupling is implemented correctly, because the peak of the flooding depth is not 

shifted towards the end of the simulation period as in the 2D computation. Correctness can also be verified 

according to the above-mentioned correlations.  

 

    

Figure 6. Comparison of exemplary model results (flooding depth) for the simple 2D surface model (2D) and the 

coupled sewage-surface model (1D-2D), left: T= 5a, right: (b) T = 100a of D = 30 min. (according to Kühnel 

2015) 

3.2. Inlet area and inlet capacity 

The inlet area was varied for manholes only between the aerated area and the completely open manhole without 

the lid. With gullies the areas are bound to the known values according to their dimensions (see Figure 5) 

Investigated gullies have their particular area as described previously. The inlet area has a direct impact on the 

exchange rate between the two models (discharge MOUSE to MIKE21). The effect is comparable to a limitation 

of the inlet capacity itself (Figure 7 and Figure 8).  

 

It can be found that the discharge for the fully opened manhole is Q = 280 l/s. In comparison with resulting gully 

discharges, which are mainly responsible for surface drainage, these values are much too high compared to those 

of gullies defined in Ras-Ew corresponding with Thiele (1983). Consequently, a limitation of the area is 

recommended to be set as A = 0.025 m² (see Figure 7).  

When limiting the capacity to a certain threshold value, the resulting influence on exchange discharges is 

comparable to an area limitation. Since limiting values for manholes are not established, they have been set as 

default values within the numerical model (Figure 8) which means to Q = 100 l/s for the manholes, as they are 

not defined in Ras-Ew.  



 

 

The gullies’  inlet capacity has been limited due to their area and according to Ras-Ew FGSV (2005) to 

Q = 2.5 l/s and 5.0 l/s respectively (according to their area shown in Figure 5) for a longitudinal slope of 2.5 % 

and a lateral slope of 1 % to 2 %, according to Ras-Ew FGSV (2005).  

 

 

    

Figure 7. Comparison of manhole inlet area variation (A = 0.025 m² = aerated area and A = 0.283 m² = manhole 

fully opened), left: influence on flooding depth and flood duration, right: influence on exchange rate (discharge 

MOUSE to MIKE21) T = 100a and D = 30 min. 

 

   

Figure 8. Comparison of limited and unlimited inlet capacity of gullies, left: influence on flooding depth and 

flood duration, right: influence on exchange rate (discharge MOUSE to MIKE21), T = 100a and D = 10 min. 

3.3. Discharge coefficient 

Another investigated parameter is the discharge coefficient CD. Therefore, default values of CD = 0.98 will be 

decreased in steps of 1/3 and 2/3 of the default value (CD = 0.98; 0.65; 0.32). It can be found, that there is only a 

minor influence on resulting flooding depths and exchange discharges compared to the variations of the area  

(A = 0.283 m² and 0.025 m²) and the inlet capacity (Figure 9), limited according to the geometry of gullies  

(Q = 5 l/s or 2.5 l/s) or unlimited capacity. The variation of CD seems to have minor influence on the flooding 

depth and the discharge. Similar behavior was observed when changing the area for the manholes. For small 

variations, no changes were observed. Only for changes of a factor of 10, the different discharges are visible, as 

shown in Figure 7. Thus, CD could well be lowered further in order to see a clear impact on the discharge. The 

implementation of the coefficient is not well documented in the software and needs to be investigated further as 

the results are not reasonable.  

 



 

 

Figure 9. Comparison of discharge coefficient variation, left: influence on flooding depth and flood duration, 

right: influence on exchange rate (discharge MOUSE to MIKE21), T = 100a and D = 10 min 

 

A reduction of CD of 1/3 or 2/3 should also result in a reduction for Q in the same order of magnitude. Instead, a 

change of Q is observed only by appr. 15 to 20%.  

3.4. Model verification 

The model results have been compared to measured data so far in one spot that drains an area with a separated 

sewer system. The parameters compared are the water depth in the sewer pipes and the flow velocity 

respectively. The precipitation data gathered and defined as boundary condition in the model was radar data from 

the HydroNet-SCOUT portal of hydro & meteo GmbH. The rain intensity was relatively low (6 mm/6h) and did 

not cause a surcharge given off by the sewer system. Nevertheless, the hydrographs measured and simulated 

correspond to each other and are in the same order of magnitude (see Figure 10).  

 

 

Figure 10. Comparison of measured water depth and flow velocity and simulated results for these parameters 

with the 1D model, duration from 8 a.m. until 4 p.m. at the 15th of April 2016 

 

Velocity is simulated to a greater extent than it is measured. This can rely on the fact that ground water was 

infiltrated into the pipes and this caused an algae layer on the surface, which increased the roughness compared 

to the roughness implemented in the model matching the material of the specific pipe. If no measured data are 

available, recorded damages and fire brigade data can be used to validate the model (Velasco et al., 2016) by 

comparing these data with the results of the inundation computation. Both methods where applied here and 

helped to trust the results.  

The model can be used for implementing possible measures at the flooded areas. The comparison of the change 

of the flood levels can lead to a judgement about the efficiency of different measures.  



 

Figure 11gives an exemplary result of the comparison of implemented measures in the coupled model and of the 

comparison with a simple 2D model approach. 

 

 

Figure 11. Exemplary results for the comparison of implemented measures at two points within the modelled 

catchment area for a simple 2D surface model and 1D-2D coupled model, left: a low point on the street, without 

and with retention basin as measure, right: a low point in front of a house without and with gully as measure,  

T = 100a and D = 10 min 

3.5. Parameter value choice and recommendations for coupled numerical 1D-2D 

simulations 

According to the parameter analysis, the variables can be adopted and changed different from their default state. 

In terms of manholes the area is set to the aerated area A = 0.025 m². The areas gullies require are set to  

(A = 0.0515 and 0.0815 m²) the inlet capacity is limited for the gullies in reference to the Ras-Ew (Q = 2.5 and 

5.0 l/s). The discharge coefficient with a value of CD = 0,6 is defined due to sharp-edged openings found in 

literature (Schneider et al. 2010). The limitation for the inlet capacity of manholes cannot be defined, 

nevertheless the limitation is implemented by the aerated area because the capacity of manholes is not defined in 

any regulation or standard as they are no drainage facilities like gullies. Despite of this, manholes do influence 

the situation in case of completely flooded streets by draining the water.  

 

4. CONCLUSIONS 

The different parameter variations have a relatively minor impact on the flooding depth concerning its 

maximum. The flood duration is clearly influenced. The limitation of the inlet capacity has the greatest impact 

on the exchange rate between the two models apart from the area limitation of manholes. The default values in 

the model are not adopted to the situation in urban sewer systems. The values computed due to the default 

settings do not relate to the values found in the Ras-Ew (FGSV, 2005).  

The differences between Ras-Ew and the computed values as well as in in respect to other surveys might be 

bound to the fact that there is a certain safety factor implemented and that  gullies are usually blocked by leaves 

and sand and are not maintained or cleaned regularly.  

Concluding it can be stated that hydro numerical coupled modelling for urban flash flood analysis is an 

appropriate tool for the identification of areas susceptible of flooding and to implement appropriate measures. 

The model shows reasonable changes of the flooding depth and duration as well as the exchange rate by the 

parameters that were varied. The comparison between the results of the only use of a 2D overland computation 

and the coupled results can also be explained and show that the coupled method is the most accurate analysis in 

urban areas.  

Further events need to be captured, different spots need to be measured and their results need to be compared to 

the simulated results. Especially storm events with high intensities need to be surveyed in order to prove the 

parameter settings for the coupling details. For the discharge coefficient, more variations need to be conducted 

and the implementation needs to be investigated.  

To analyze suitable  measures and to evaluate the improvement of flooding depth the coupled numerical model is 

an appropriate tool and should be preferred to the 2D overland modelling as these results show only limited 

validity. 
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