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ABSTRACT 

 
 

Combining Environmental History and Soil Phytolith Analysis 
  

at the City of Rocks National Reserve:  Developing 
  

New Methods in Historical Ecology 
 
 

by 
 
 

Lesley R. Morris, Doctor of Philosophy 
 

Utah State University, 2008 
 
 

Major Professor:  Dr. Ronald J. Ryel 
Department:  Wildland Resources 
 
 

Historical ecology is an emerging and interdisciplinary field that seeks to explain 

the changes in ecosystems over time through a synthesis of information derived from 

human records and biological data.  The methods in historical ecology cover a wide range 

of temporal and spatial scales.  However, methods for the more recent past (about 200 

years) are largely limited to the human archive and dendrochronological evidence, which 

can be subject to human bias, limited in spatial extent or not appropriate for non-forested 

systems.  There is a need to explore new methods by which biological data can be used to 

understand historic vegetation and disturbance regimes over the recent past especially in 

arid ecosystem types.  Soil phytolith analysis has the potential to provide much needed 

information regarding historical conditions in both areas.  Phytoliths are structures 

formed in plants through deposition and accumulation of silica within and around cell 

walls that are released from plants and preserved in sediments long after death and decay 
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of plant material.  The City of Rocks National Reserve in southern Idaho was an 

excellent place to develop new methods in historical ecology because the human records 

of historic environmental conditions were so rich.  There were two overarching and 

interconnected objectives for this dissertation research.  The first was to reconstruct an 

ecological history of the City of Rocks National Reserve from the period of overland 

emigration to present.  The second objective was to explore the utility of soil phytolith 

analysis for inferring vegetation and disturbance regime change over the recent past by 

testing its sensitivity to record known changes.  I employed modern analogue studies, a 

multi-core approach and detailed core analysis to test for known changes through analysis 

of extraction weights, relative abundance of phytolith assemblages, microscopic charcoal 

and burned (darkened) phytoliths.  My results showed that this combination of history 

and soil phytolith analysis can be useful for inferring vegetation changes (e.g. increases 

in introduced grasses) and disturbances (e.g. fire) in ecological histories.  

               (320 pages)  



 v
ACKNOWLEDGMENTS 

 
 

This research was funded by a Doctoral Dissertation Improvement Grant from the 

National Science Foundation, the National Park Service, Idaho State Parks and 

Recreation, the Ecology Center at Utah State University, and a College of Natural 

Resources S.J. and Jessie E. Quinney Doctoral Fellowship.   

I want to acknowledge the many people who helped with this project at Utah State 

University.  I appreciated the commitment from both Neil West, who retired as my 

dissertation advisor part way into this project, and Ron Ryel, who guided me through to 

the end.  Thank you to the rest of my dissertation committee:  John Malecheck, Fred 

Baker, and Chris Conte. Many thanks to Marvin Bennett and Stephanie White, in the 

Ecology Center, and to Mary Barkworth and Michael Piep, at the Intermountain 

Herbarium.  Helga Van Miegroet provided access to her laboratory and equipment.  

Darryl DeWald and Richard Mueller lent me microscopes.  Chris and Ellie McGinty gave 

me patient assistance with maps and graphics.  Field and laboratory assistance was 

provided by: Christo Morris, Jenny Wolfgram, Heather Wolfgram, Hayley Olsen, Jen 

Minnick, Stephanie Ashby, and Sean Kelly.   

Special thanks to Wallace Keck, superintendent, Brad Shilling, Venna Ward, and 

Juanita Jones at the City of Rocks National Reserve.  Special thanks also to the wonderful 

people of Almo and Elba! Special thanks to all of the oral history participants for hours of 

discussion, laughs, and hospitality!  Marion and Buddy Ward, at the Old Homestead Bed 

and Breakfast, and Darla and Darwin Bywater, at the Almo Creek Outpost, treated me 



 vi
like family.  Special thanks to Mic Nicholson, Harold O. and Lorrayne Ward, Bill and 

Phyllis Tracy, and J.R. Simplott for access to private property.    

Thanks, also, to the many staff members, librarians, and archivists who assisted 

me including:  Patty McNamee at the National Archives and Records Administration 

Pacific Alaska Regional Office in Seattle, the staff at the Idaho State Historical Society, 

Doug Misner from the Utah State Historical Society, Nancy Ady and Jim Tharp at the 

Burley District Office of the Bureau of Land Management, John Mark Lambertson at the 

Merrill Mattes Library, and Jim Riehl from Oregon California Trails Association.  

Mikhail Blinnikov from St. Cloud State University, Minnesota, trained me in 

phytolith extraction and identification.  Linda Scott-Cummings from the PaleoResearch 

Institute in Boulder, Colorado, visited me here in Logan.   

And last but not least, thanks to family for all of their support.  Especially my 

husband, Christo Morris, who has traveled with me, collected plants and soil cores, 

counted phytoliths, provided information on the introduction and extent of introduced 

plants, proofread chapters, offered his weed collection for phytolith analysis, and 

encouraged me the whole way.  You’re the best!   

Lesley Morris 



 vii
CONTENTS 

 
 

 Page 
 
ABSTRACT....................................................................................................................... iii 
 
ACKNOWLEDGMENTS ...................................................................................................v 
 
LIST OF TABLES...............................................................................................................x 
 
LIST OF FIGURES ........................................................................................................... xi 
 
LIST OF PLATES ........................................................................................................... xiii 
 
CHAPTER 
 

1. INTRODUCTION .......................................................................................1 
 
     Research objectives and questions...........................................................3 
                Research design and methodology...........................................................3 
     Chapter previews .....................................................................................4 
     References..............................................................................................10 
 
2. PHYTOLITHS: “JEWELS OF THE PLANT WORLD”..........................12 
 
     Introduction............................................................................................12 
     Physiology: production and function .....................................................13 
     Extraction, identification, and classification..........................................15 
     Issues, theory, and use ...........................................................................18 
     Analysis and interpretation ....................................................................25 
     Conclusion .............................................................................................26 
     References..............................................................................................27 
 
3. THE “LAND WITNESS”: TEMPORARY LANDSCAPES OF  

THE CITY OF ROCKS NATIONAL RESERVE.....................................31 
 
     Introduction............................................................................................31 
     Study area...............................................................................................35 
     Native American use and occupation ....................................................38 
     European exploration and emigration....................................................40 
     Period of survey and settlement.............................................................46 
     The beginning of regulation (1900-1929)..............................................56 
     Period of range management .................................................................64 
     Recognition, preservation, and changing uses.......................................71 



 viii
      
     Interpretation of vegetation changes......................................................79 
     Conclusion .............................................................................................84 
 
4. PHYTOLITH TYPES AND TYPE-FREQUENCIES IN NATIVE AND 

INTRODUCED SPECIES OF THE SAGEBRUSH STEPPE AND 
PINYON-JUNIPER WOODLANDS OF THE GREAT BASIN, USA ..123 

 
     Abstract ................................................................................................123 
     Introduction..........................................................................................124 
     Study area.............................................................................................125 
     Methods................................................................................................126 
     Results and discussion .........................................................................129 
     Native forbs..........................................................................................130 
     Native grasses, rushes, and sedges.......................................................138 
     Native trees and shrubs ........................................................................144 
     Introduced forbs ...................................................................................145 
     Introduced grasses................................................................................151 
     Introduced trees....................................................................................157 
     Conclusion ...........................................................................................158 
     References............................................................................................161 
 
5. DEVELOPING AN APPROACH FOR USING THE SOIL PHYTOLITH 

RECORD TO INFER VEGETATION AND DISTURBANCE REGIME 
CHANGES OVER THE PAST 200 YEARS CONCLUSION ...............183 

 
     Abstract ...............................................................................................183 
     Introduction..........................................................................................184 
     Regional setting ...................................................................................189 
     Materials and methods .........................................................................190 
     Results..................................................................................................193 
     Discussion ............................................................................................196 
     Conclusion ...........................................................................................200 
     References............................................................................................201 
 
6. CAN SOIL PHYTOLITH ANALYSIS AND CHARCOAL BE USED AS 

INDICATORS OF HISTORIC FIRE IN THE PINYON-JUNIPER AND 
SAGEBRUSH STEPPE ECOSYSTEM TYPES OF THE GREAT BASIN 
DESERT REGION, USA?.......................................................................211 

 
     Abstract ................................................................................................211 
     Introduction..........................................................................................212 
     Study area.............................................................................................215 
     Methods................................................................................................218 
     Results..................................................................................................221 



 ix
      
     Discussion ............................................................................................223 
     Conclusion ...........................................................................................228 
     References............................................................................................229 
 
7. TESTING SOIL PHYTOLITH ANALYSIS AS A TOOL TO 

UNDERSTAND VEGETATION CHANGE IN THE SAGEBRUSH 
STEPPE AND PINYON-JUNIPER WOODLANDS OF THE GREAT 
BASIN DESERT REGION  ...................................................................243 

 
     Abstract ................................................................................................243 
     Introduction .........................................................................................244 
     Study area.............................................................................................248 
     Methods................................................................................................254 
     Results..................................................................................................260 
     Discussion ............................................................................................266 
     Conclusion ...........................................................................................277 
     References............................................................................................278 
 
8. CONCLUSIONS AND FUTURE RESEARCH ....................................296 
 
     Conclusions .........................................................................................296 
     Future research.....................................................................................298 
     Significance of this research ................................................................300 
  

APPENDIX......................................................................................................................301 
 
CURRICULUM VITAE..................................................................................................304 
 
    
        



 x
LIST OF TABLES 

 
 

Table  Page 
 
4-1 List of all native species examined in this study..................................................167 
 
4-2 List of all introduced species examined in this study ..........................................169 
 
4-3 Production frequency (in percent) of phytolith morphotypes found in common 

native Great Basin grasses ...................................................................................171 
 
4-4 Production frequency (in percent) of phytolith morphotypes found in common 

introduced Great Basin grasses............................................................................172 
 
5-1 Common grasses, trees and shrubs of the Great Basin analyzed for phytoliths ..206 
 
5-2 Common forbs of the Great Basin analyzed for phytoliths .................................207 
 
6-1 Results from carbon dating segments from soil cores at Sites A, E, and H.........234 
 
7-1 Morphotype frequencies of the ten native and introduced grasses in CIRO .......285 
 
7-2 Results of radiocarbon dating ..............................................................................286 
 
7-3 Detailed core analysis results from Site 1A.........................................................287 
 
7-4 Detailed core analysis results from Site 3............................................................288 
 
 



 xi
LIST OF FIGURES 

 
 

Figure  Page 
 
3-1 Vicinity maps for the City of Rocks National Reserve..........................................87 
 
3-2 Five year running average precipitation for the study area....................................88 
 
3-3 Homesteads in the City of Rocks National Reserve ..............................................89 
 
3-4 City of Rocks National Reserve.............................................................................90 
 
3-5 Hectares burned per decade in the City of Rocks National Reserve .....................91 
 
4-1 Map of the western portion of the United States showing the Great Basin  
            Floristic Region....................................................................................................173 
 
5-1 Map of the western United States showing the Great Basin ecoregion boundaries 

and the location of the City of Rocks National Reserve in southern Idaho.........208 
 
5-2 Phytoliths from Alyssum desertorum. ..................................................................209 
 
5-3 Phytoliths from a) Erigeron divergens, 400x and  
            b) Mertensia oblongifolia, 400x ..........................................................................209 
 
5-4 Results from the Burned Phytolith Index analysis...............................................210 
 
6-1 City of Rocks National Reserve showing all mapped fires in study area  
            over the last approximately 100 years (modified from Morris, 2006b)...............235 
 
6-2 Photo of City of Rocks National Reserve taken in 1868 .....................................236 
 
6-3 Charcoal abundance (number of charcoal x 106 per 1 gram of soil) shown  
            with increasing distance from burned Site A.......................................................237 
 
6-4 Charcoal abundance (number of charcoal x 106 per 1 gram of soil) by depth  
            at a recently burned (Site A) and unburned site (Site H). ....................................238 
 
6-5 Charcoal abundance (number of charcoal x 106 per 1 gram of soil) by depth  
            at the historic burn sites (Sites E-G) that burned over 150 years ago..................239 
 
6-6 Burned Phytolith Index (BPI) with increasing distance from the 2000 fire ........240 
 



 xii
6-7 Burned Phytolith Index (BPI) percentages by depth at a burned site (Site A) 

and unburned site (Site H) ....................................................................................241 
 
6-8 Burned Phytolith Index (BPI) percentages by depth at the historic burn sites  
            (Sites E-G) ...........................................................................................................242 
 
7-1 Percent extraction weights for unburned sites .....................................................289 
 
7-2 Percent extraction weights for burned sites .........................................................290 
 
7-3 Percent rondels at four sites that were dominated by the introduced grass,  
            Bromus tectorum .................................................................................................291 
 
7-4 Percent extraction weights for detailed analysis cores ........................................292 
 
7-5 Phytolith percent diagram for detailed core at Site 1A........................................293 
 
7-6 Phytolith percent diagram for detailed core at Site 3...........................................294 
 



 xiii
LIST OF PLATES 

 
 
Plates in Chapter 3 Page 
 
1(a) Twin Sisters, 1868 .................................................................................................93 
 
1(b) Twin Sisters, 2005 .................................................................................................93 
 
2(a) City of Rocks View 1, 1868...................................................................................95 
 
2(b) City of Rocks View 1, 2005...................................................................................95 
 
3(a) City of Rocks View 2, 1868...................................................................................97 
 
3(b) City of Rocks View 2, 2005...................................................................................97 
 
4(a) Circle Creek 1868 ..................................................................................................99 
 
4(b) Circle Creek 2007 ..................................................................................................99 
 
5(a) Twin Sisters Road, 1940......................................................................................101 
 
5(b) Twin Sisters Road, 2005......................................................................................101 
 
6(a) Top of Camp Rock, 1900’s..................................................................................103 
 
6(b) Top of Camp Rock, 2005.....................................................................................103 
 
7(a) Mikesell Homestead ............................................................................................104 
 
7(b) Mikesell Homestead, 1930...................................................................................106 
 
7(c) Mikesell Homestead, 2005...................................................................................106 
 
8(a) Top of Treasure Rock, early 1900’s ....................................................................108 
 
8(b) Top of Treasure Rock, 2005 ................................................................................108 
 
9(a) View from Turnout, 1963 ....................................................................................110 
 
9(b) View from Turnout, 2005 ....................................................................................110 
 
10(a) Circle Creek Basin, 1967 .....................................................................................112 
 



 xiv
10(b) Circle Creek Basin, 2005 .....................................................................................112 
 
11(a) Circle Creek Road, 1940......................................................................................114 
 
11(b) Circle Creek Road, 2005......................................................................................114 
 
12(a) Twin Sisters, 1923 ...............................................................................................116 
 
12(b) Twin Sisters, 2005 ...............................................................................................116 
 
13(a) Top of Bath Rock, 1950’s....................................................................................118 
 
13(b) Top of Bath Rock, 2005.......................................................................................118 
 
14(a) Road to Bread Loaves, 1940................................................................................120 
 
14(b) Road to Bread Loaves, 1990’s .............................................................................120 
 
14(c) Road to Bread Loaves, 1990’s .............................................................................122 
 
14(d) Road to Bread Loaves, 2005................................................................................122 
 
Plates in Chapter 3 Page 
 
   I Light micrographs of native forb morphotypes ...................................................176 
 
  II Light micrographs of native grass morphotypes..................................................177 
 
 III Light micrographs of native and introduced tree and shrub morphotypes ..........178 
 
 IV Light micrographs of introduced forb morphotypes............................................180 
 
  V Light micrographs of introduced grass morphotypes ..........................................182 
 
Plates in Chapter 7 Page 
 
7-1 Morphotypes used in phytolith assemblage analysis ...........................................295 
 
 
 
 
 

 
 



CHAPTER 1 
 

INTRODUCTION 
 
 

Historical ecology is an emerging and interdisciplinary field that seeks to explain 

the changes and the processes that have created current landscapes through a synthesis of 

information derived from human records and biological data (Russel, 1997).  The human 

archive is the record of historic conditions contained within written, oral and 

photographic sources.  The biological archive is the record of historic conditions 

contained within the natural environment and is discovered through dendrochronology, 

packrat middens, palynology, and soil phytolith analysis.  The methods in historical 

ecology cover a wide range of temporal and spatial scales (Egan and Howell, 2001). 

However, methods for the more recent past (less than 200 years) are largely limited to the 

human archive and some dendrochronological evidence (Egan and Howell, 2001) which 

can be subject to human bias, limited in spatial extent and not appropriate in some forest 

types and non-forested systems (Swetnam et al., 1999).   

Phytolith analysis is quickly becoming a popular method for determining historic 

vegetation (Piperno, 2006).  Phytoliths are structures formed in plants through deposition 

and accumulation of silica within and around cell walls (Rovner, 1971; Fredlund, 2001).  

These phytoliths are released from plants into the soil through death and decay of plant 

material (Rovner, 1971).  Phytoliths preserve well in terrestrial sediments while pollen 

grains are more stable in anaerobic lacustrine (lake) sediments (Golyeva, 2001).  This is 

particularly important for arid and semi-arid environments where lacustrine evidence is 

not as common (Fredlund, 2001).  These microfossils can remain stable in sediments 

from as early as the Eocene (Stromberg, 2004).  There is a need to explore new methods 
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by which biological data can be used to determine historic vegetation and disturbance 

regimes over the past 200 years in arid and non-forested ecosystem types.  Soil phytolith 

analysis has the potential to provide much needed information regarding historical 

conditions in both areas.   

The City of Rocks National Reserve in southern Idaho is an excellent place to 

explore some unique combinations of the human and biological archive because the 

human records are rich with information regarding historical environmental conditions 

and it contains representative ecosystem types of the Great Basin Desert region.  In 

return, an ecological history for the Reserve provides much needed historical information 

that assists in interpretation, management, planning and preservation of its unique 

cultural and natural resources.  Deliverables from this dissertation to the City of Rocks 

National Reserve have included a written summary of the ecological history contained in 

the human archive (Morris, 2006a), a mapped fire history from 1926 to present (Morris, 

2006b), 42 hours of oral history, a digital library of all archival documents used in the 

study, digital copies of 100 emigrant diaries and recollections from the period of overland 

emigration, 100 historical photos, a set of over 60 repeated historical photos, and a 

replica of a Holmes stereoscope with three stereographs of the Reserve taken in 1868.  

This rich human archive, in turn, allows for the exploration of new methods using soil 

phytolith analysis by providing useful information on vegetation that can be tested as 

modern analogues. 
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Research objectives and questions  

There were two overarching and interconnected objectives for this dissertation 

research.  The first was to reconstruct an ecological history of the City of Rocks National 

Reserve from the period of overland emigration to present, approximately the last 200 

years.  The second objective was to explore the utility of soil phytolith analysis for 

inferring vegetation and disturbance regime change over the past 200 years by testing its 

sensitivity to record known changes.  These objectives were met by examining the 

following broad questions:  

1) What does the human archive reveal about how the vegetation has changed at 

the City of Rocks since the period of overland emigration?  

2) What are the characteristic phytolith types for dominant Great Basin native and 

introduced flora?  

3) Is the phytolith record useful for investigating historical fire events?   

4) Does the stratigraphy of the terrestrial soil phytolith assemblage record changes 

in vegetation and disturbance regimes over the more recent past?  

 
Research design and methodology  

This dissertation required two phases of research.  The first phase involved 

gathering information from the human archive by collecting and examining written and 

oral documentation of historic conditions at the study site.  The second phase involved 

gleaning information from the biological archive through soil phytolith analysis.  In this 

two-phase design, the first step necessarily informed the second.  Results from the human 

archive provided information about change and disturbance that were then used to 
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develop and test hypotheses about the sensitivity of the soil phytolith stratigraphy to 

record these events.  Therefore, formulation of hypotheses, sampling strategy and 

sampling location depended heavily upon what was found in the human archive.  A 

summary of how each of the four broad questions is addressed in the following chapters 

is offered below. 

 
Chapter previews 
 
 
Chapter 2 – Phytoliths: “jewels of the plant world.” 

Even with the growing popularity and utility of phytolith analysis in historical 

fields of science, the topic is still fairly new and obscure to most researchers.  Therefore, 

this chapter offers a brief overview of phytolith production, classification and 

identification, as well as the issues and theories behind phytolith analysis.   

 
Chapter 3 – The “land witness”: temporary 
landscapes of the City of Rocks National Reserve. 
 

Information regarding historic conditions of the City of Rocks National Reserve 

(CIRO) was collected from archival sources, federal land management records, emigrant 

diaries, oral histories, fire records and historic photography (Morris, 2006a).  A 

comprehensive review of archival documents was undertaken to collect any available 

information concerning historic environmental conditions within CIRO and the 

surrounding area.  Oral histories were gathered from existing sources and more than 30 

interviews were conducted with longtime residents of the area. A collection of 100 

emigrant diaries and recollections were examined for references to vegetation, fauna, fire 

and climatic conditions of the area (Morris, in press-b).  More than 100 historic photos of 
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CIRO were also collected and most of these photos were retaken from the same vantage 

point (re-photography) (Morris, in press-a).  In addition, a fire history of the CIRO was 

compiled and mapped from existing studies and historic fire reports from land 

management agencies (Morris, 2006b).  Information was also gathered concerning fire 

from archival documents, emigrant diaries, oral histories and historical photographs.  A 

digital map was created in ArcView/GIS 3.3 (ESRI, Redlands, CA, USA) of all mappable 

fires (Chapter 6).  

This study revealed several important changes in the City of Rocks since 

settlement (Morris, 2006a).  First, there has been an overall decrease in plant diversity in 

the valleys.  This change was likely due to overlapping effects of heavy livestock grazing 

in the late 1800s, periodic droughts, land clearing during the dry-farming boom of the 

early 1900s, and additional cultivation after World War II to increase forage production 

with introduced crested wheatgrass (Agropyron desertorum) seeding.  Second, there has 

been an overall increase in the woody species throughout the entire study area.  This 

increase is most likely due to changes in land use and the fire regime as well as periodic 

droughts.  Finally, there has been an increase in both the size and intensity of fires over 

the past 100 years.  This is likely due to a combination of the fuel loads that accompany 

increasing density of woody species and climate change (Morris, 2006b).  This historical 

land use and fire information was instrumental in formulating hypotheses, determining 

sampling sites and was crucial for ensuring that sample locations for soil cores have had a 

relatively stable soil profile during the time frame of interest (e.g. untilled land).   
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Chapter 4 – Phytolith types and type-frequencies 
in native and introduced species of the sagebrush  
steppe and pinyon-juniper woodlands of the  
Great Basin, USA. 
 

This chapter catalogued phytolith morphotypes and production from common 

native and introduced flora from two primary plant community types in the Great Basin 

Desert region of the USA – sagebrush steppe and pinyon-juniper woodlands.  The 

reference collection included 143 species from 40 families including 68 introduced and 

75 native plants.  We examined 96 forbs, 33 grasses, sedges and rushes as well as 14 trees 

and shrubs.  Over 100 of these species have not had their phytolith morphotypes or 

production described previously.  We found that about 51% of the plants produced none 

or only trace amounts of phytoliths while the remaining 49% were common to abundant 

producers.  All the grass species were abundant producers and our analysis revealed 

important differences in both morphotype and frequency production between native and 

introduced grass species.  At least half of the forbs were also common phytolith 

producers and mostly generated the common dicotyledon morphotypes such as silicified 

epidermal cells and hairs.  Our findings showed that several of the morphotypes in native 

and introduced forbs are unique for the genus and species within the reference collection. 

Finally, we found very little phytolith production in the woody species and no phytoliths 

for pinyon (Pinus monophylla) or juniper (Juniperus osteosperma).  Therefore, there was 

no identifiable phytolith assemblage for pinyon-juniper woodlands in the Great Basin.   



 7
Chapter 5 -  Developing an approach for using 
the soil phytolith record to infer vegetation and 
disturbance regime changes over the past 200 years. 
 

This chapter presents the preliminary work to assess the approach of combining 

historical records and soil phytolith analysis.  This paper was presented at the 6th bi-

annual International Meeting on Phytolith Research in Barcelona, Spain in September 

2006.  It was later published in a special volume of the proceedings from that meeting by 

Quaternary International (Morris et al., in press) and is reprinted here with their 

permission.  The goal of this study was to explore the development of an approach that 

combines the human archive and soil phytolith analysis to expand the biological evidence 

for inferring vegetation and disturbance regime changes in the this part of the Western 

United States since settlement in the 1800s.  We reported on some of the results from the 

human archive concerning vegetation and disturbance regime change in the City of Rocks 

National Reserve, Idaho, US.  In addition, we examined the phytoliths of native and 

introduced species from the study site and looked at how well the soil phytolith record 

reflects recent wildfires.  This chapter presented results from the first modern day 

analogue of phytolith analysis in the United States comparing burned and unburned sites. 

Our results indicate that this combination of history and soil phytolith analysis would be a 

useful approach for inferring vegetation and disturbance change in ecological histories.  

 
Chapter 6 - Can soil phytolith analysis and 
charcoal be used as indicators of historic fire in the 
pinyon-juniper and sagebrush steppe ecosystem 
types of the Great Basin Desert Region, USA? 
 

Soil charcoal and phytolith analysis have been successfully employed in other 

regions to garner information about fire regimes through the Holocene.  The modern 



 8
analogue study in Chapter 5 showed the potential utility of phytoliths for understanding 

historic fires at the study site.  The purpose of this study was to further explore the utility 

of soil phytolith analysis in terrestrial soils from the study area.  We tested if soil charcoal 

and burned phytoliths could be found in historic terrestrial sediments in these ecosystem 

types, quantified how their frequencies varied with distance and depth from a known fire, 

and assessed if a known historic fire could be detected within the soil stratigraphy.  The 

results illustrated the difficulty of interpreting phytoliths and charcoal in terrestrial 

sediments after a fire.  However, the soils in these ecosystem types were well stratified 

and contained both burned phytoliths and microscopic charcoal for examination.  This 

research demonstrated that soil charcoal and phytolith analysis could be used to examine 

questions about historical fires in these two ecosystems of the Great Basin Desert region.    

 
Chapter 7 - Testing soil phytolith analysis as a 
tool to understand vegetation change in the  
sagebrush steppe and pinyon-juniper woodlands 
of the Great Basin Desert region. 
 

The objective in this chapter was to examine the utility of soil phytolith analysis 

to reflect vegetation changes over the period of about 200 years in two common 

ecosystem types of the Great Basin – sagebrush steppe and pinyon-juniper woodlands.  

Its sensitivity as a record for the more recent past was tested by sampling in locations 

where vegetation changes were known to have occurred based on human records.  

Results from previous human archive research (Chapter 3) showed that over the past two 

centuries, the vegetation has changed in two major ways in the study area.  First, there are 

more woody species including denser sagebrush and increased cover and density of 

pinyon and juniper as these woodlands have encroached down slope and into the valleys.  
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Second, there has been a marked loss of native grasses and an increase in introduced 

grasses, particularly cheatgrass (Bromus tectorum) and crested wheatgrass (Agropyron 

desertorum).  These known changes were used to test the sensitivity of the soil phytolith 

stratigraphy to record such events.  We employed both a multi-core approach and detailed 

core analysis to test for these and other known changes through analysis of extraction 

weights, relative abundance of groups of phytoliths and detailed analysis of phytolith 

assemblages in the soils at a fine scale (one centimeter depth increments).   

This is the first study to examine the use of soil phytoliths in a continuous core 

sampling method in these ecosystem types.  We found that these soils can be stable and 

well stratified enough to record changes in the vegetation if the sampling is done with 

care to find sites that have not burned recently, have low slopes, and are outside of 

cultivated areas.  The utility of soil phytolith analysis was tested by looking for known 

vegetation changes in the soil stratigraphy such as increased cover of woody species like 

sagebrush and pinyon-juniper woodlands.  Our results show that extraction weights will 

track increases in pinyon-juniper woodland cover and density.  Phytolith assemblages in 

the soil stratigraphy also reflect increasing dominance of invasive grass species like 

Bromus tectorum.  Finally, detailed analysis at a fine scale of extraction in one centimeter 

depth increments revealed shifts in soil phytolith assemblages that suggest connection to 

known changes in climate, vegetation and land uses from the Little Ice Age to present. 

Soil phytolith analysis appears to hold promise as a biological proxy for understanding 

historic and prehistoric environmental conditions and deserves further exploration and 

research.  
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Chapter 8 – Conclusions and future research  

This chapter provides an overall summary of the conclusions from this research, 

an assessment of the method and some important future directions.   
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CHAPTER 2 

 
PHYTOLITHS: “JEWELS OF THE PLANT WORLD” 

 

Introduction 

Phytoliths have been called the “jewels of the plant world” (Fredlund, 2001, pp. 

335). They were first discovered in living plants during the rise of microscopy in 1835 by 

a German scientist named Struve (Piperno, 1988).  Christian Ehrenberg, another German 

scientist in the mid 1800s, was the first to recognize that siliceous formations in wind 

blown dust and soil samples were from plants (Fredlund, 2001).  He called these silica 

bodies “phytolitharia” from the Greek meaning “plant stone” (Piperno, 1988; Fredlund, 

2001).  The name is fitting because these structures are formed within plants through the 

deposition and accumulation of silica within, around and between cell walls (Fredlund, 

2001).  Piperno (1988) divided the history of phytolith research into four periods: 

discovery and exploration from 1835 to about 1900, a botanical phase from 1900 to 1936, 

an ecological era with applications in soil science and vegetation history from 1955 to 

about 1975, and the modern period with new focus upon archaeological research, 

production, morphology and frequency in sediments.   

Now, phytoliths are studied in nearly every major biome and from samples 

ranging from atmospheric dust to oceanic sediment cores (Fredlund, 2001).  They are 

popular with the historical fields of archeology, palaeoecology, geology, and soil genesis.  

Even with their growing popularity in historical fields of research, phytoliths remain a 

relatively obscure topic for most people.  Therefore, this chapter offers a brief overview 

of some of the basics in phytolith analysis that are not covered in the following chapters.  
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More complete reviews on the subject can be found in Piperno (1988, 2006), Pearsall 

(2000), Rapp and Mulholland (1992), or Fredlund (2001).  The following sections will 

review the production and function of silica in plants, how phytoliths are identified and 

classified, and the use, issues and underlying theories of phytolith research in vegetation 

history.   

 
Physiology: production and function 

The precise mechanisms responsible for silica structures in plants are not well 

understood (Piperno, 1988).  In general, however, phytoliths are produced by the 

concentration of silicon dioxide (SiO2) within leaves and other plant tissues (Fredlund, 

2001).  Dissolved silica in the form of monosilicic acid (Si(OH)4) is absorbed through the 

roots and carried through the transpiration stream by the xylem (Piperno, 1988).  With the 

reduction of water during transpiration, the dissolved silica is precipitated and deposited 

as a weakly hydrated silicon dioxide (SiO2 with 5-15% H2O) (Rovner, 1971; Bartoli and 

Wilding, 1980).  The silicon dioxide found in plants is identical to the well known opal 

gemstone (Rovner, 1971).  Therefore, they are also often referred to as “opal phytoliths,” 

“plant opal,” “biogenic opal,” “opaline silica,” or “grass opal” (Rovner, 1971; Piperno, 

1988).  These small incrustations range in size from 2 to 1000 microns with most around 

20 to 200 microns (Rovner, 1971).  They are found mostly within the leaf epidermal 

tissues, however, they also exist in woody tissues, seeds (Rovner, 1971; Fredlund, 2001) 

and even in roots (Sangster and Hodson, 1992).  The silicon dioxide is deposited in 

several different ways: by filling in cells forming solid casts, cell linings, cell wall 

replacement, plant hairs, spines and other miscellaneous structures (Rovner, 1971).  
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These different types of silicification are used in identification and classification 

systems that will be discussed later. 

Silica accumulation is variable between species, genus, family and even 

environmental conditions (Piperno, 1988; Fredlund, 2001).  Monocots generally 

accumulate the most silica and produce the most phytoliths (Rovner, 1971).  For 

comparison, needles from the family Pinaceae contain 0.08 to 1.37% silica (Klein and 

Geis, 1978) while shoots in the grasses contain from 5 to 20% silica by dry weight 

(Kaufman et al., 1985). Some families with high silica percent by dry weight include:  

Equisetaceae (horsetail), Poaceae (grasses), Palmae (palm), and Cyperaceae (sedges) 

(Fredlund, 2001).  Piperno (2006) offers a review of known patterns, production, and 

percent of silica phytoliths generated by plant families.  Phytolith production is variable 

but it is also patterned.  Replication of certain shapes and types of phytoliths within 

family, subfamily and tribe may indicate some genetic control over silicification 

(Piperno, 1988).  However, the proportion of silica in plants can also be influenced by the 

level of dissolved silica in the soil.  Availability of dissolved silica is affected by soil pH, 

temperature and moisture (Piperno, 1988).  

It is also not clearly understood why plants produce phytoliths or accumulate 

silica in their cells (Rovner, 1971; Kaufman et al., 1985; Massey et al., 2006).  The 

processes can be either active (expending energy to absorb) or passive (no expending of 

energy) depending upon the taxon of plant (Piperno, 1988).  Plants can exclude dissolved 

silica with cutin and/or suberin on their root surfaces (Parry and Winslow, 1977).  

Although silica is recognized as important to the normal development of grass shoots, it 

is not directly related to metabolism and, therefore, cannot be considered an “essential 
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element” (Kaufman et al., 1985, p. 487).  However, silica accumulation may provide 

several benefits for the plant including: structural support for withstanding transpiration 

pressure (Rovner, 1971; Piperno, 1988), resistance to herbivory (Massey et al., 2006) and 

fungi, increasing incident solar radiation, and possibly temperature regulation (Rovner, 

1971; Kaufman et al., 1985).    

 
Extraction, identification, and classification  

In order for phytoliths to be useful for research in vegetation history, there must 

be some means of both identification and classification.  Identification can take place 

from both the extant plant tissues (in situ) and as disaggregated particles in sediments or 

other materials.  Methods for extraction in both instances have been developed and 

refined over time.  Complete descriptions and comparisons of the methods for extraction 

from plants are provided by Parr et al. (2001a; 2001b) and from soils by Pearsall (2000) 

and Piperno (2006). 

Extraction from live plant tissue can be completed in one of two ways – chemical 

digestion or dry-ashing (Rovner, 1971; Piperno, 1988).  Chemical digestive techniques 

require the use of strong acids to digest (or dissolve) organic material (Rovner, 1971; 

Pearsall, 2000).  Dry-ashing involves heating plant material in a muffle furnace at 

temperatures from 400 ˚C to 500 ˚C (Fredlund, 2001).  Although the melting of point of 

silica is high (950 ˚C) (Piperno, 1988), this method is discouraged by some researchers 

because of its potential to disfigure the silica (Rovner, 1971).  However, it is still very 

commonly and successfully employed (Piperno, 1988; Parr et al., 2001b).  A recent 
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development for extraction from live plants, digestion via microwave oven, is 

reportedly even faster and better than dry-ashing techniques (Parr et al., 2001a).  

Extraction of phytoliths from soils (or sediments) is accomplished through 

variations on several standardized steps:  sieving sediments, dispersion of clays, 

removing organic material, and separating the phytoliths using density fractionation 

(Piperno, 2006).  Some researchers prefer to separate sand, silt and clay sediments for 

analysis, others prefer to combine them, and most just analyze the silt fraction 5 to 50 μm 

(Piperno, 2006).  There are also variations upon the type of heavy liquid used for 

floatation (e.g. zinc bromide or sodium polytungstate) but, whichever material is used, 

the silica is separated from the sediments using a specific gravity of 2.3 g m -3.  The 

phytoliths and extractant are rinsed, dried and stored either dry or in ethyl alcohol 

(Blinnikov, 2005; Piperno, 2006).  The extracted phytoliths are mounted in a fluid to 

assist with three dimensional viewing (such as Canada Balsam or other oil) with a 

biological light microscope with magnification from 400x to 1000x (Fredlund, 2001; 

Piperno, 2006).  The phytoliths can be documented with photomicroscopy and/or the use 

of SEM (scanning electron microscopes) (Wilding and Drees, 1971).   

Once separated from the plant tissues or sediments, a system of classification is 

necessary to discuss the observed phytoliths.  Mulholland and Rapp Jr. (1992a) describe 

three approaches used in classifying phytoliths – parataxonomic, botanical and 

morphological.  The following is a summary from their discussion.  The parataxonomic 

approach treats the phytoliths as separate objects to which the Linnean system of 

binomial naming is applied.  Ehrenberg’s ground breaking work in the mid 1800s was 

based upon this type of classification. Parataxonomic classification is acceptable under 
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the International Code of Botanical Nomenclature and is also used in palynology (the 

study of pollen and other microfossils).  This approach is used when identification of the 

original plant may not be possible.  The botanical approach, on the other hand, organizes 

phytoliths with information regarding their orientation and location within plant tissues.  

This system is only useful, however, if the phytoliths are observed in situ and is not as 

reliable or informative with disaggregated phytoliths in the sediments.  The 

morphological approach applies a three dimensional descriptive system to phytoliths that 

are disaggregated from plant tissues.  Within the morphological approach there are two 

methods.  One describes and classifies the phytoliths purely upon their geometric 

characteristics.  The other applies both geometric shape and an anatomical component 

(i.e. hair or hair base) (Mulholland and Rapp Jr., 1992b).  

There has been very recent work to standardize the nomenclature among phytolith 

scientists by a group appointed by the Society for Phytolith Research (Piperno, 2006).  

Their efforts include formal protocols for describing and naming new types of phytoliths 

as well as redefining some and conserving other former nicknames (Madella et al., 2005).  

This new system, referred to as the International Code for Phytolith Nomenclature 1.0 

uses three descriptors: shape, texture or ornamentation, and anatomical origin, if known.  

Former nicknames such as “dumbbell” are now known as “bilobates.”  Some of the 

conserved names include “rondels,” “papillae,” and “dendritic” (see Plates in Chapter 4 

for examples of these forms) (Madella et al., 2005).  The lack of a formal naming system 

has made comparison across studies difficult at times unless good photographic evidence 

is provided (Blinnikov, 2005).   



 18
Herbaceous and woody species are now being examined more comprehensively 

after being ignored for sometime (Bozarth, 1992; Wallis, 2003).  Therefore, 

differentiation between dicotyledons and monocotyledons, woody and herbaceous, grass 

and forbs, family, genus and even to species is beginning to open new windows for 

viewing historical vegetation.  It has long been recognized that dicotyledons and 

monocotyledons consistently produce different types of phytoliths (Rovner, 1971; 

Piperno, 1988; Bozarth, 1992) (see Plates in Chapter 4 for examples).  Grasses 

consistently form a variety of opal phytoliths (Mulholland and Rapp Jr., 1992a) and there 

are nine phytolith forms found only in dicotyledons (Bozarth, 1992).  Relatively few 

plant taxa provide diagnostic phytoliths (Ollendorf, 1992).  Cyperaceae (sedges) can be 

identified at least to the family level (Ollendorf, 1992).  Some researchers have been able 

to establish diagnostic phytoliths at the genus (Klein and Geis, 1978) and even species 

level (Kerns, 2001) within the Pinaceae. 

   
Issues, theory, and use 

Palynology had already been well developed by the time researchers began using 

phytoliths to infer past vegetation (Piperno, 1988; Fredlund, 2001). Rovner (1971) is 

credited with bringing the utility of phytoliths to the forefront for archaeology and 

palaeoenvironmental study (Piperno, 1988; Wallis, 2003).  Others credit Wilding (1967) 

for the first use of radiocarbon dating and opening the door to evidence from phytoliths in 

soils for vegetational history (Fredlund, 2001).  Other major contributors have included 

Twiss (1992) for his pivotal study that paralleled phytolith analysis with that of 

palynology (Fredlund, 2001).  Indeed, phytolith research shares a great deal in common 
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with palynology although it has advantages and disadvantages in comparison 

(Fredlund, 2001).    

Phytoliths are touted as being particularly useful in paleoecological studies of 

grasslands because, in contrast to pollen, monocotyledons produce more and systematic 

forms (Rovner, 1971).  Phytoliths preserve better in terrestrial sediments than pollen 

which persist better in anaerobic lacustrine (lake) sediments (Golyeva, 2001).  This is 

particularly important for arid and semi-arid environments where lacustrine evidence is 

not as common (Fredlund, 2001).  Phytoliths are also durable fossils that have been 

shown to date back to the late Pleistocene (Wilding, 1967) and even as early as the 

Eocene (Stromberg, 2004).  Finally, many believe that phytoliths have the potential to 

provide a more localized record of plant community changes while pollen analysis tends 

to be regional (Blinnikov et al., 2002).  On the other hand, phytolith analysis is also 

subject to many problems that are unique to this discipline including: classification, 

deposition and transportation and preservation (Fredlund, 2001). 

 
Classification 

As discussed previously, classification of phytoliths can be very complex and 

problematic.  Classification is further confounded by issues of “redundancy” and 

“multiplicity.”  While a single type of pollen may be produced by a plant taxon, this is 

not always the case with phytoliths (Fredlund and Tieszen, 1994).  Redundancy occurs 

when the same phytolith type is produced by many taxa while multiplicity occurs when 

one plant generates many different types of phytoliths (Rovner, 1971).  Redundancy and 

multiplicity clearly create problems for interpretation of past vegetation.  Two methods 
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proposed for dealing with these issues are the “black box” and the “gray box” 

approaches (Powers, 1992; Fredlund and Tieszen, 1994).  Under the black box method, 

phytoliths are assessed as entire “assemblages” or “suites” rather than attempting to 

identify the family or species of origin (Powers, 1992).  Then, ancient suites can be 

compared with modern analogs of possible source vegetational assemblages (Powers, 

1992).  The gray box method is very similar in its emphasis upon vegetational rather than 

floristic reconstruction (Fredlund and Tieszen, 1994) but it attempts to link phytolith 

morphotypes to some “element” within its source (e.g. culm, leaf or physiological 

function) (Powers, 1992).  For example, morphotypes from grass leaves have been used 

as indicators for predicting the distribution of C3 and C4 grasses (Twiss, 1992). 

 
Deposition: release and transportation 

Even beyond the issues with classification, there are questions and problems that 

arise with understanding the fossil record left behind by deposition of phytoliths into 

various sediments.  Phytoliths are released from plants through death and decay of plant 

material (Rovner, 1971).  Release can come in the form of litter fall as well as death of 

the organism in total.  Therefore, the rate of deposition can vary for a single plant as well 

as between plants.  For example, annually deposited phytoliths from leaves may be more 

concentrated in the soil record than those from woody tissues.  These variations can lead 

to overrepresentation, underrepresentation or the complete absence of phytoliths in the 

fossil record (Piperno, 1988).  This is particularly a problem when comparing grasslands 

and forests.  Grasses not only produce more phytoliths but also release more of them 

annually.  As a result, they may be over represented within the soil fossil record 
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(Fredlund, 2001).  There are also other factors that influence the deposition rates of 

phytoliths such as fire and herbivory that can further complicate interpretation.      

Transportation of released phytoliths is also a concern for interpretation.  In early 

studies involving phytoliths, many researchers assumed a “decay in place” model of 

phytolith deposition and ignored issues of “taphonomy” (Fredlund, 2001).  Taphonomy is 

the study of processes that intervene between the death of an organism and its inclusion 

into the fossil record (Shipman, 1981; Fredlund, 2001).  Phytoliths are very small plant 

fossils that are easily transported by wind erosion, water erosion, fire and herbivory.  In 

grasslands, for example, these processes are believed to horizontally transport 40 to 50% 

of the plant biomass (Fredlund, 2001).  Very recently, researchers have worked to 

develop a conceptual model of taphonomy of phytoliths using modern analogues in 

similar soil types to archeological sediments in Tanzania (Albert et al., 2006).  They 

recognized two primary filters that would bias phytolith preservation at two stages of 

incorporation into the sediments.  The first was between death of plant and addition to the 

soils (e.g. herbivory) and the second was post depositional (e.g. pH of the sediments) 

(Albert et al., 2006).  However, in areas where fire is a primary factor in the ecosystem 

processes, both of the filters Albert et al. (2006) proposed could be driven largely by this 

force.  More work is needed to understand how fire relates to the taphonomy of phytoliths 

(Piperno, 2006).  

Another issue regarding transportation of phytoliths is their potential for vertical 

movement within sediments, sometimes referred to as “illuviation” or “translocation” 

(Piperno, 2006).  Given their size, some researchers argue that phytoliths are just as 

susceptible to vertical movement in the soil profile as silt (Fredlund, 2001).  Others argue 
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that concentrations of phytoliths in the A horizons of soils indicates that the vertical 

movement is nominal (Piperno, 1988).  Over the past 40 years, researchers have “made it 

clear, however, that vertical phytolith movement does not cause unique or distinctive 

problems in phytolith study” (Piperno, 2006, pp. 111).  Phytoliths are known to be 

concentrated in the A horizons in soils and to decrease dramatically in the B horizons 

(Jones and Beavers, 1964; Piperno, 2006).  Where accumulation was substantial in the 

lower sediments, the cause was more likely to have been development of soils on loess 

(Jones and Beavers, 1964) or soils with a high degree of shrinking and swelling (Hart and 

Humphreys, 2003).  As further evidence, phytolith concentrations are typically used as an 

index for identifying buried A horizons (e.g. Hart and Humphreys, 2003; Piperno, 2006). 

Furthermore, vertical translocation would arguably cause homogenization across the 

profile as opposed to distinctive zonations of different assemblages as is observed most 

frequently (Fredlund et al., 1998).  Soil phytoliths can also move up or down in the soil 

column through bioturbation (e.g. animal burrowing) (Piperno, 2006).  In addition, post 

depositional erosion could remove whole portions of the soil profile and, therefore, 

truncate the vertical sedimentary record.  Both of these issues make chronological 

understanding of the soil phytolith record important and difficult in terrestrial sediments 

(Piperno, 2006).      

It is also important to understand that phytolith assemblages within soil sediments 

do not represent discrete “snapshots” in time (Kerns et al., 2001).  Rather, the 

assemblages within the stratigraphy represent the sum of accumulation and losses over 

time and represent more of a long term average (Kerns et al., 2001).  This notion of the 

incorporation of phytoliths into assemblages over hundreds of years was termed 
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“inheritance” by Fredlund and Tieszen (1994).  The inheritance at a site is affected by 

both the rate of soil accumulation as well as the mean residence time of the phytoliths due 

to preservation (Fredlund and Tieszen, 1994).  Therefore, interpretations of phytolith 

assemblages must include consideration of deposition and transportation in the 

inheritance at a site as well as preservation of those phytoliths.       

 
Preservation 

Finally, there are issues that arise with phytoliths due to their variable 

preservation across plant type and environmental conditions.  The degree of phytolith 

preservation is linked to several factors including: soil pH (> pH 9 will lead to rapid 

dissolution), type of silicification (entire or just cell walls), iron and aluminum absorbed 

to the surface that protects it, characteristic of the sediment (e.g. slow decomposition 

rates), and phytolith surface area (Piperno, 2006).  For example, the silicified epidermal 

sheets formed commonly by herbaceous plants and in leaves of woody taxa are often thin 

and weakly preserved in comparison to the phytoliths of grasses that almost completely 

fill in cells (Fredlund, 2001; Piperno, 2006).  Again, this has the potential to bias the 

fossil record with more representation by certain types of plants.  However, some 

researchers have been quite successful in recovering phytoliths thought to be poorly 

preserved such as hairs and silicified epidermal sheets from a variety of sediments (e.g. 

Albert and Weiner, 2000; Blinnikov, 2005).  Modern analogs can also help determine the 

differences in preservation of different phytoliths (Fredlund, 2001).  The combination of 

variable preservation and environment means that this problem may have to be addressed 

on a site-by site basis (Piperno, 2006).   
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Counting procedures and presentation 

The number of phytoliths counted per slide for analysis is a balance between the 

number needed to carry out either statistical or abundance analysis and a level of 

practicality (Piperno, 2006).  However, typically between 200-250 particle counts per 

slide are adequate even within studies with highly diverse flora (Piperno, 2006).  As with 

pollen counts, there can be little variation in percentages beyond counts of 200 

(Colinvaux et al., 1999).  When statistical analysis is applied to the data to create transfer 

functions, minimum counts of 300-400 particles may be employed (Piperno, 2006).  

Counting is carried out in a systematic linear fashion on the slide to the predetermined 

count.  Sometimes, additional scans of the slide are carried out to note the presence of 

rare taxa morphotypes (Piperno, 2006).  Conversely, the overrepresented taxa can be 

tallied to a predetermined amount and then excluded in the remainder of the count 

(Piperno, 2006). 

The results are usually presented in phytolith diagrams that plot the percent of 

each type in the assemblage against the depth and/or age of the stratigraphy (Piperno, 

2006).  The percents, in this case, represent a relative abundance of the sum counted and 

are not an absolute abundance of total particles on the slide.  As with palynological 

results, there are some researchers who apply any number of statistical analyses to the 

relative abundance counts (e.g. Kerns et al., 2001; Blinnikov, 2005) and there are just as 

many who interpret the information based upon knowledge of the site, radiocarbon 

dating, history, and other information contained in the geologic record (e.g. Blinnikov, 

1994; Piperno and Becker, 1996).  Radiocarbon dating for phytolith analysis can be 
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accomplished through bulk sediment dates or from the occluded carbon contained 

within the phytoliths (Wilding, 1967; Iriarte, 2006). 

 
Analysis and interpretation 

While diagnostic forms can be of great use in inferring past vegetation, there need 

not be an identification of specific taxon for phytolith analysis to be useful (Piperno, 

1988; Powers, 1992; Fredlund and Tieszen, 1994; Blinnikov et al., 2002).  For example, 

if the phytolith form is known to be from a woody species as opposed to a grass, this 

information is useful in identifying past community types (Piperno, 1988).  Phytolith 

researchers have used the differences between the morphotypes of the two growth forms 

to follow the cyclical changes from arboreal to grass taxa in archeological sediments 

(Grave and Kealhofer, 1999) and with ratios (or indexes) to compare changes the woody 

component density to grasslands (e.g. Alexandre et al., 1997).  Another method involves 

using overall phytolith assemblages discovered in modern analogue studies of sediments 

under current vegetation as a way of interpreting phytolith assemblages recovered in 

historic sediments (e.g. Blinnikov et al., 2002; Delhon et al., 2003).  More and more, 

researchers are discovering the importance of comparing the phytolith record to modern 

day analogues for better inference to the past (Piperno, 1988; Fredlund and Tieszen, 

1994; Fredlund, 2001; Blinnikov et al., 2002).   

Also, frequency analyses of morphotypes within extant vegetation are used to 

help interpret historic phytolith assemblages (Blinnikov, 1994; Kerns et al., 2001; 

Carnelli et al., 2004).  Finally, some have used known production differences between 

grasses and woody species to test the overall weight of the extracted phytoliths or some 
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count of total grass phytoliths expressed as percent by volume in soils to examine the 

stability of forests and grasslands (e.g. Witty and Knox, 1964; Miles and Singleton, 1975; 

Fisher et al., 1987).  

 
Conclusion 

Interest in phytoliths and their potential uses in many fields of science has gone 

through several historical phases and a great deal of development in the past 20 years 

(Piperno, 1988; Piperno, 2006).  The potential for phytolith analysis in historic vegetation 

studies has been recognized for some thirty years already.  Yet, there is still a great deal 

of work to be done to better understand all aspects of phytolith research including 

production, function, identification, classification, transportation, deposition and 

preservation (Fredlund and Tieszen, 1994).  Historically, the emphasis upon phytoliths in 

grasses and grassland research in its earliest stages created the impression that dicots do 

not form as many phytoliths or useful diagnostic forms (Fisher et al., 1995; Piperno, 

2006).  In fact, quite often the fossil record will hold distinctive forms of phytoliths that 

cannot be identified because they have not yet been catalogued (Fredlund, 2001).  

Therefore, the most recent push in this field is in the examination, identification and 

cataloguing of herbaceous and woody species across a number of plant communities.  For 

example, Wallis (2003) has just recently systematically examined phytoliths in the 

Australian flora.  However, even with its limitations and remaining questions, phytolith 

analysis has demonstrated its potential in inferring past vegetation across a broad range of 

environments and time scales.  As more research is done with these “jewels of the plant 

world,” perhaps they will exhibit an even greater value than expected. 
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CHAPTER 3 
 

THE “LAND WITNESS”: TEMPORARY LANDSCAPES OF THE  
 

CITY OF ROCKS NATIONAL RESERVE 
 

 
Introduction 

 
 

And, in 1988, Congress established the City of Rocks National Reserve, 
an area encompassing the city and the California Trail ruts as land witness 
to the Kelton-Boise stage route, the free-range cattle industry, range wars, 
the birth of forest reserves, dryland and irrigated farming, and the growth 
of stable communities.1 

 
The City of Rocks has held several titles over the years.  It has been called the 

“City of Rocks,” “Pyramid Rocks,” “City of Castles,” “Pyramid Circle,” “Steeple 

Rocks,” “The Rock City,” and the “Silent City of Rocks” by several different diarists 

during the period of overland emigration.  It was designated a National Historic 

Landmark, as a National Natural Landmark, and then a National Reserve.  Each of these 

titles has brought increasing levels of recognition, protection and preservation for the 

cultural and natural landscapes within this unique area.  

A cultural landscape can be defined as the “totality of resources that formed a 

system of land use or that now form a multiple-layer depiction of use overtime.”2  Many 

people seek out such cultural landscapes as a way to understand history.  As David 

Henige argues, “Just as chronologists attempt to make history real by placing it at a 

particular point in time, site-identifiers do the same by attempting to locate events 

 
1 Quote (emphasis added) is taken from Historical Research Associates [HRA], Historic 
Resources Study: City of Rocks National Reserve Southcentral Idaho, National Park 
Service Pacific West Field Area Columbia-Cascade System Support Office Seattle, 
Washington, 1996, 1.  
2 HRA, Historic Resources Study, 2 (note 1). 
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spatially.”  The landscape of the City of Rocks contains the viewshed and even 

identifiable ruts from the California Trail era that fulfill the “lure of the tactile 

relationship with the past” for California Trail enthusiasts. 3  Many visit this special area 

in search of experiencing history and for experiencing the unique natural environment.  

As either a cultural landscape or as a natural landscape, these unbuilt spaces become 

something that city dwellers seek to hold constant with designations as though a museum 

piece.4  Our idea about our national public lands and especially our natural parks is that 

they are to be held as “vignettes of primitive America.”5  But the law creating the City of 

Rocks National Reserve recognized both the historical and natural spaces within it for 

preservation.    

While assessing its qualification for the National Register of Historic Places in 

1996, Historic Research Associates provided it the most interesting title yet – “land 

witness”.   This description of the Reserve can be carried through as an analogy.  If it is a 

land witness, we want it to talk.  Tell us what has happened.  Tell us what went wrong, 

how to get back to where we were before.  Western writers, historians, geographers, 

ecologists, and conservationists also seem to want the land witness to tell us who to 

blame for the degradation of land in the West.  For some, it was the European settlers 

who were so out of step with the environment and with the “natural ecological native”. 

Others argue that the native people did not live in “harmony” with the land either, and 

 
3 D. Henige, ‘This is the place:’ putting the past on the map, Journal of Historical 
Geography 33 (2007) 237-253. 
4 E.W.B Russell, People and the Land through Time: Linking Ecology and History, New 
Haven, 1997, 171. 
5 A.S. Leopold, S.A Cain, C.M. Cottam, I.N. Gabrielson and T.T. Kimball, Wildlife 
Management in the National Parks: The Leopold Report, National Park Service, 1963. 
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were also potentially overexploiting the resources.  But, it seems as though there is one 

architect of rangeland degradation that authors feel most comfortable indicting – 

livestock.6  

Many authors and researchers in the Intermountain West tend to characterize 

livestock grazing as the sole agent of change on Western rangelands.  Some research has 

begun to increase awareness about other legacies of land use such as wood harvesting for 

the mines, charcoal production and even fencing.7  In the reports for the City of Rocks, 

however, there is a common assertion that cattle are the sole mechanism for soil 

degradation and fish losses and the main driver of vegetation change within the Reserve.  

One claim, for example, is that the “rivers and creeks once supported abundant 

populations of native Cutthroat trout and other small fish before they were ruined by 

 
6 Westerners have, after all, grown up with the description of cattle from Edward Abby as 
”ugly, clumsy, stupid, bawling, stinking, fly-covered, shit-smeared, disease-spreading 
brutes” in his writings in E. Abby, One Life at a Time, Please, New York, 1988, 15; John 
Muir offered no better description of sheep calling them “hooved locust” in J. Muir, The 
wild sheep of California, Overland Monthly, 12 (1874), 359;  From these and other 
famous conservationist writings, Americans have been taught to see western rangelands 
as a “cow-burnt wasteland”. Donald Worster describes the rangelands as “torched, 
chained, plowed, herbicided, desertified, and eaten down to the roots”. This attitude can 
be seen in writings about the western rangelands from D. Worster, Under Western Skies: 
Nature and History in the American West, New York, 1992; Environmental organizations 
such as Western Watersheds have taken up the cause and put out publications such as the 
oversized book edited by G. Wuerthner and M. Matteson, Welfare Ranching: The 
Subsidized Destruction of the American West, Washington, DC, 2002.   
7 See J.A. Young, and J. D. Budy, Historical use of Nevada’s pinyon-juniper woodlands, 
Journal of Forest History 28 (1979) 113-121; J.A. Creque, N.E. West, and J.P. 
Dobrowolski, Methods in historical ecology: a case study of Tintic Valley, Utah, in: S.B. 
Monsen and R. Stevens (Eds), Proceedings: Ecology and Management of Pinyon-Juniper 
Communities within the Interior West, 1997, Provo, Utah, USDA Forest Service, Rocky 
Mountain Research Station, RMRS-P-9, (1999) 121-133.  
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livestock.”8  A more comprehensive study of the impacts of land use history and 

landscape change within the Reserve, therefore, is very much needed to provide a broader 

context for understanding the environmental changes and management implications.  A 

fuller understanding of the causes of change can illuminate the inherent limits within a 

system that are important for assisting agencies in setting management priorities and 

goals.9  

The story of this landscape is different from areas that are rapidly changing under 

urbanization.10  The alterations of this land have been slower and more subtle in many 

ways.  There are many factors that influence vegetation change and they are all occurring 

simultaneously throughout time.  Therefore, the causes are difficult to tease apart and 

very rarely is there a single factor for vegetation change.  Variables that may influence 

vegetation dynamics include: climate, soils, herbivory, land use (such as dry farming or 

herbicide treatments), recreation, erosion, fire and the lack of fire, insects and parasites, 

soil microbial communities and nutrients, road building and other disturbances.  The 

historic information gathered for this research revealed that the City of Rocks has 

multiple layers of historic land uses which, coupled with a changing climate and 

 
8 D.H. Chance, and J.V. Chance, Archaeology at the City of Rocks: The Investigations of 
1991, prepared for National Park Service Pacific West Field Area Columbia-Cascade 
System Support Office, Seattle, WA., 1992, 3; See also W. J. Little, A Historical 
Overview of Livestock Use in the Area of City of Rocks National Reserve from 
Introduction to 1907, unpublished report for the National Park Service, copy on file at the 
City of Rocks National Reserve, 1994; Chance and Chance, Archeology at the City of 
Rocks, 3 (note 8). 
9  T.W. Swetnam, C.D. Allen, and J.L. Betancourt, Applied historical ecology:  using the 
past to manage for the future, Ecological Applications 9 (1999) 1189-1206. 
10 S.W. Trimble, Historical hydrographic and hydrologic changes in the San Diego creek 
watershed, Newport Bay, California, Journal of Historical Geography 29 (2003) 422-
444. 
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combinations of the variables listed above, have brought about a great deal of 

vegetation change since the era of the California Trail.  This paper looks at how the 

landscape today is a product of all these historic variables acting in concert.   

 
Study area 

The City of Rocks National Reserve is jointly managed under a cooperative 

agreement between the National Park Service and Idaho Department of Parks and 

Recreation.  Prior to becoming a National Reserve in 1988, the City of Rocks consisted 

of approximately 28% Bureau of Land Management, 4% State, 21% US Forest Service 

and 47% private land.11  A recent federal purchase of the private land has increased the 

Reserve’s portion, but private in-holdings still make up a large portion (about 30%) of the 

City of Rocks National Reserve.12  The City of Rocks National Reserve contains 

approximately 5,795 ha of the Great Basin Desert region in southern Idaho near the town 

of Almo, nestled within the Albion Mountains (Figure 3-1).  The elevation reaches from 

1,646 m in the valley floors to 2,702 m on Graham Peak.13  The vegetation includes 

sagebrush steppe, pinyon-juniper woodlands, mountain mahogany chaparral and limber 

pine forest with riparian habitat traversing all of these zones.   

Climate can be one of the most influential factors driving vegetation change.  

Vegetation is very sensitive to climate and even small variations can create large changes 

 
11 R.E. Daugherty, Legislative Land Cost Estimate for City of Rocks National Reserve 
Cassia County, Idaho, prepared for National Park Service Pacific Northwest Region, 
Seattle, WA, 1988. 
12 National Park Service acreage for the Reserve as of December 31, 2006; Wallace 
Keck, City of Rocks National Reserve Superintendent, personal communication, 2005.   
13 Daugherty, Legislative Land Cost Estimate for City of Rocks National Reserve (note 
11).  
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in plant communities and structure.14  However, climate also has a confounding 

influence in analysis of historical vegetation because it, too, is changing over time.  This 

is particularly true when looking at long lived species of trees or when there were 

significant regional or global climatic changes.  This type of climatic change is an issue 

for the time period of this history because of the impacts from the end of the Little Ice 

Age.  The Little Ice Age was a generally cooler and wetter period in the Northern 

Hemisphere from approximately 1400-1900 AD.15  Though the drop in average 

temperature was estimated to be only 1° C, it had marked impacts upon ecosystems in 

North American, Europe and other parts of the globe.16  This Little Ice Age plays an 

important role in the interpretation of vegetation change over the last 200 years because it 

ended coincidently with European exploration and settlement in most of the 

Intermountain West.  It is difficult to tease apart the influence of humans from the climate 

in historic vegetation studies.17  

Precipitation trends in the Great Basin generally show a marked pattern of winter 

maximum and summer minimum due to influence of winter storms that develop off the 

Pacific coast in the winter.18 The City of Rocks, however, is part of the eastern portion of 

 
14 D.G. Sprugel, Disturbance, equilibrium, and environmental variability: what is 
‘natural’  
vegetation in a changing environment? Biological Conservation 58 (1991) 1-18; C.D. 
Allen and D.D Breshears, Drought-induced shift of a forest-woodland ecotone: rapid 
landscape response to climate variation, Proceedings of the National Academy of 
Sciences of the United States of America 95 (1998) 14839-14842.  
15 C.I. Millar and W.B. Woolfenden, The role of climate change in interpreting historical 
variability, Ecological Applications 9 (1999) 1207-1216.     
16 N. Roberts, The Holocene: An Environmental History, Oxford, 1998.   
17 Millar and Woolfenden, The role of climate change (note 15).   
18 R.F. Miller, T.J. Svejcar, and N.E. West, Implications of livestock grazing in the  
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Idaho that shows maximum monthly amounts in summer and minimums in the winter 

due to influence of moisture from storms originating from the south in the Gulf of 

Mexico and the Caribbean region.19  The average total monthly precipitation in the area 

peaks during the months of April, May and June.  This increased proportion of April-

September precipitation in the eastern portion of the sagebrush steppe region has been 

used to explain the predominance of grass species in some areas.20  

The mean annual precipitation over the period of record (1914-2005) was 276 

mm.  Peaks in precipitation occurred in the 1910s and into the early 1920s when it began 

to decline rapidly (Figure 3-2).21  This period of lower than average precipitation lasted 

from the early 1920s until the early 1930s when annual precipitation began to climb.  It 

did not, however, rise to average precipitation again until about 1942.  There was a short 

(two year) period of above average precipitation and then it dipped back below average 

 
Intermountain sagebrush region: plant composition, in: M. Vavra, W.A. Laycock, and 
R.D. Pieper (Eds.), Ecological Implications of Livestock Herbivory in the West,  Society 
for Range Management Publications, 1994, 101-146; Western Regional Climate Center 
[WRCC], Climate of Idaho, 2006, accessed on line at http://www.wrcc.dri.edu.   
19 There are no long term climate data stations within the City of Rocks National Reserve.  
Data from the Oakley station is used here because it offers the best proxy for climate 
information given its proximity to the Reserve, similarity in elevation of the valleys 
(4,584 feet in Oakley and 5,400 feet in City of Rocks), and positioning among mountain 
ranges.  Its approximation for higher elevations is, of course, less reliable but there are no 
long-term weather data stations available at those locations.  Furthermore, the Oakley 
climate data contains the longest running data set for the area.  Climate data for Oakley, 
Idaho was obtained from the Western Regional Climate Center (note 18). This dataset 
represents 92 years of measurements both monthly and annually from 1914 to 2005.   
20 L.A. Stoddart, The Palouse grassland association in northern Utah, Ecology 22 (1941) 
158-163.  
21 Graphs of annual precipitation can be very “noisy” and difficult to interpret.  
Therefore, a common method for identifying trends is the 5 year running average.  The 5 
year running average for the Oakley dataset was calculated and graphed using methods 
found in C.J. Bahre and M.L. Shelton, Historic vegetation change, mesquite increases, 
and climate in southeastern Arizona, Journal of Biogeography 20 (1993) 489-504.   

http://www.wrcc.dri.edu/
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again from about 1944 through to 1960.  The decade of the 1960s enjoyed above 

average levels of precipitation with a short slump in the early 1970s.  The first half of the 

1980s was marked by above average peaks in precipitation followed with below average 

levels in the latter part of the decade.  The 1990s, once again, received precipitation not 

seen since the 1960s.  Temperatures can also be highly variable in the region.  The annual 

mean temperature is 9° C with a maximum of 41° C and a minimum of -33° C.22   

 
Native American use and occupation 

Even though there have been several archaeological studies commissioned by the 

City of Rocks National Reserve to research the cultural history of the Native Americans 

in the area, there are still many unanswered questions about the land use of the first 

human inhabitants at the Reserve.23  The earliest identified cultural materials within the 

City of Rocks date back to 4,000 years ago, but most information about the peoples 

inhabiting the area comes from contact with fur trappers, explorers and emigrants.24  By 

that time (about 150 years ago) there were two overlapping Shoshoni cultures around the 

City of Rocks described as the “pedestrian” desert peoples and the “mounted” northern 

 
22 L. Morris, Ecological History of the City of Rocks National Reserve, Part I: The 
Human Archive, National Park Service Pacific Northwest Region, 2006. 
23  D.H Chance, The Tubaduka and the Kamuduka Shoshoni of the City of Rocks and 
Surrounding Country, prepared for National Park Service Pacific West Field Area 
Columbia-Cascade System Support Office Seattle, WA, 1989; D.H. Chance and J.V. 
Chance, The Archaeological Reconnaissance of the City of Rocks Reserve, prepared for 
National Park Service Pacific West Field Area Columbia-Cascade System Support 
Office, Seattle, WA, 1990; Chance and Chance, Archaeology at the City of Rocks (note 
3); D.H. Chance and J.V. Chance, Riddles of a Stagecoach Station and Other Questions 
at the City of Rocks, prepared for National Park Service Pacific West Field Area 
Columbia-Cascade System Support Office, Seattle, WA, 1993. 
24 Chance and Chance, The Archaeological Reconnaissance (note 23).   
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groups who hunted buffalo (Bison bison) on horses.25 The “Northwestern Shoshoni” 

near the City of Rocks used the area for pinyon pine (Pinus monophylla) nut harvesting 

and hunting in the autumn, even after being forced onto the Fort Hall Indian Reservation 

in 1869.26  In addition, the Northwestern Shoshoni were also believed to have been 

collecting many harvestable berries and plants, fishing and grazing horses and some 

cattle within and around the City of Rocks prior to Euro-American settlement.27  

It is now widely accepted that many Native Americans were “managing” grazing 

lands and food resources with fire before European settlement in the United States.28  

However, there were no specific accounts found of the Northwestern Shoshoni burning 

the land within the City of Rocks.29  Given that the pinyon nuts were so important in the 

Northwestern Shoshoni diet, it seems counterintuitive to set fire near these trees because 

they do not typically survive burning.  However, recent work from the Sierra Nevada 

region in California suggests that the Timbisha Shoshoni were managing the pinyon trees 

by pruning low branches and thinning stands of trees to prevent loss by fire.30  There is 

no evidence yet to suggest that this occurred in the City of Rocks; however, it deserves 

consideration given how little is known about the fire history and the Native American 

use in the Reserve.   

 
25 Chance, The Tubaduka and the Kamuduka Shoshoni (note 23).    
26 Chance, The Tubaduka and the Kamuduka Shoshoni (note 23); B.D Madsen, The 
Northern Shoshoni, Caldwell, 1980.   
27 Chance and Chance, Archaeology at the City of Rocks (note 3); Chance, The Tubaduka 
and the Kamuduka Shoshoni (note 23); Little, A Historical Overview of Livestock Use 
(note 8).   
28 Miller, Svejcar, West, Implications of livestock grazing (note 18).    
29 Chance provides only one story by a Gosiute Shoshone woman, Maude Moon, about 
when a fire went out of control. See Chance, The Tubaduka and the Kamuduka (note 23). 
30 M.K. Anderson, Tending the Wild:  Native American Knowledge and the Management 
of California’s Natural Resources, Berkeley, 2005.   
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There were regional reports of elk (Cervus canadensis) and bighorn sheep 

(Ovus canadensis) in the Albion Mountain Range and surrounding areas the City of 

Rocks in the 1820s and 1830s.31 Yet, the archeological studies thus far have not found 

any bone or tooth evidence of these species in the City of Rocks.  Instead, faunal remains 

of eight different species were recovered including: mountain cottontail (Sylvilagus 

nuttallii), yellow-bellied marmot (Marmota flaviventris), coyote (Canis latrans), red fox 

(Vulpes vulpes), mink (Mustela vison) mule deer (Odocoileus hemionus), pronghorn 

(Antilocapra americana), and bison.  There were also bones that could only be identified 

to genus including: jackrabbit (Lepus sp.), ground squirrel (Spermophilus sp.), and dog 

(Canis sp.).32  In addition to elk and bighorn sheep, beaver (Castor canadensis) were 

remarkably absent from any of the fossil remains.  Its absence was remarkable because it 

was the lure of fur bearing animals (such as beaver) that pulled the first European people 

into the West.  

 
European exploration and emigration 

 
Fur trappers 

The first European people to have potentially entered the City of Rocks were the 

fur trappers in the early 1800s.  Thomas Hunt speculated that Joseph Redford Walker 

may have made his way through the City of Rocks as early as 1834.33  Unfortunately, 

many of these trappers either did not make it into the City of Rocks or did not describe 

                                                 
31 Chance and Chance, The Archaeological Reconnaissance, 37-38 (note 23). 
32 Chance and Chance, Archaeology at the City of Rocks, 87 (note 8). 
33 T.H. Hunt, Silent City of Rocks, Overland Journal 7 (1989) 13-23.  
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of 

.   

their trips into the Reserve.34  Similarly, there is no record of the exact route that 

Joseph Chiles followed in 1842, although he very likely could have passed through the 

City of Rocks.  The honor of being the first to open the route from Fort Hall through the 

City of Rocks, therefore, goes to Joseph Walker in 1843.  The Salt Lake Alternate trail 

was opened in 1848 almost by happenstance when returning members of the Mormon 

Battalion met up with the party of Samuel Hensley that had just cut into the City of 

Rocks due to a bad storm (Figure 3-1).35  These earliest wagon trains did not leave 

behind descriptive records of their journeys.  Instead, it was the emigrants who followed 

by the thousands through these newly opened wagon routes who left the best record 

the conditions along these historic trails

 
Overland emigration 

The California Trail era lasted from about 1843 until 1869 when the 

transcontinental railroad was completed.36 Emigration peaked in the early 1850s, and 

then waned in the following decades.37 Overland emigration brought and estimated 

200,000 people and their livestock to California between 1849 and 1860.  The estimates 

for livestock trailed along with these emigrants were staggering.  In 1849, there were 

reportedly 40,000 draft animals brought through the trail.  By the next year, an estimated 

7,500 mules, 31,000 oxen, 23,000 horses and over 5,000 cows were on their way to the 

golden state.  In 1852, a year of peak travel, 90,340 cattle were said to be en route from 

                                                 
34 HRA, Historic Resources Study (note 1); Hunt, Silent City of Rocks (note 33). 
35 Hunt, Silent City of Rocks (note 33). 
36 HRA, Historic Resources Study (note 1).   
37 J. Unruh, The Plains Across: The Overland Emigrants and the Trans-Mississippi West,  
1840-1860, Urbana, 1979.   



 42

                                                

Nebraska.38  The pure numerical consideration of livestock and human use along the 

California Trail has led to several assumptions regarding the detrimental and devastating 

impact the emigration had on the vegetation in and around the City of Rocks.39   

With the exhausted and very hungry emigrants came thousands of cattle, 
horses, mules, and domestic sheep. The livestock ate off the prime grass 
seed-growing areas in the river bottoms. Dead cattle filled the creeks, and 
every stick of available firewood, dry or green, was cut and burned along 
the emigration routes.40 
 

Many of these intrepid emigrants left behind journals, diaries and other written 

recollections of their journey.  The diarists frequently described the things which made 

their journey possible such as animals for food, grass for forage, wood for fuel, and 

water.  They also discussed events that broke the monotony of the day such as animal 

sightings, weather, and the scenery.  From these accounts, it is possible to find 

descriptions of the City of Rocks over seasons as well as over many decades of travel.41  

Even when the diarists do not refer to it by name, their descriptions of the “rocks jutting 

out near the road of peculiar shapes from 5 to 100 ft high” and meeting up with the “road 

from Salt Lake” or the “Mormon Road” makes it very easy to determine their location.42   

There was no evidence from the emigrant diaries, travel guide books or reports of 

the time to indicate that the nearly twenty-five years of emigration altered the plant 

 
38 Livestock estimates were compiled by Little, A Historical Overview of Livestock Use 
(note 8). 
39 Several different reports prepared for the City of Rocks National Reserve describe utter 
devastation following the era of emigration without any citation or evidence provided.   
40 Chance, The Tubaduka and the Kamuduka Shoshoni, 6 (note 23). 
41 Morris, Ecological History of the City of Rocks National Reserve (note 22); L. Morris, 
Using emigrant diaries to examine historic environmental conditions along the California 
Trail in the City of Rocks National Reserve, Idaho, Overland Journal in press.   
42 H.S. Giffen, The Diaries of Peter Decker: Overland to California in 1849 and Life in 
the Mines, 1850-1851, Santa Barbara, 1966.  
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communities in the City of Rocks. 43  Most of the emigrant groups traveled through the 

City of Rocks in the late summer and fall.  Great Basin bunchgrasses are most vulnerable 

to overgrazing in the early spring and have mostly seeded by late summer.  Although 

there was reportedly less forage toward the end of a season of use, there was no 

indication that the use was reducing the overall availability of forage grasses or the plant 

communities over the decades.   

The diaries did provide excellent anecdotal evidence of the generally cooler and 

wetter climate during the era of overland emigration that coincided with the ending Little 

Ice Age.  Out of a collection of one hundred diaries spanning twenty-five years, twelve 

mentioned either being cold or experiencing freezing temperatures while they were 

around the City of Rocks from the end of June through the end of August.  For example, 

J. Goldsborough Bruff reported on his morning of August 29th, 1849. 

Temp. 28° (frost early) Patches of snow on the adjacent mountains. We 
were all white this morning on awakening, with frost, and my hair being 
very long, the ends were froze to the saddle and ground, so that I had to 
pull it loose, but had to leave some, as a memento for the wolves to 
examine.44 

 

In addition, there were several descriptions of the snow-capped mountains from May 

through September.  On July 25th of 1850, Jones said that the snow was nearby and plants 

were still vigorous such that you could “gather ice with one hand and flowers with the 

other”.45  Even the most extreme temperatures from 1914 to 2005 did not reach below 

 
43 Morris, Ecological History of the City of Rocks National Reserve (note 22). 
44 G.W. Read and R. Gaines, Gold Rush: The Journals, Drawings, and Other Papers of J. 
Goldsborough Bruff, New York, 1949. 
45 J. C. Jones, unpublished diary on file at the Merrill Mattes Library (OCTA-MS-Jones), 
1850. 
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freezing in these months.46 Cooler temperatures could have meant less evaporation of 

soil moisture.  They could imply that there was more soil moisture available over the 

growing season as the snow slowly melted and percolated into the groundwater and 

through the streams.  The colder and potentially wetter conditions could have supported 

more grass and herbaceous vegetation than today.   

The diaries also offer a better idea of what animals were in the area than what was 

previously known from ethnographic and archeological studies.  While it was only 

surmised that the Northwestern Shoshoni fished in the areas surrounding the City of 

Rocks, it was clear from the diaries that the emigrants were fishing successfully.  They 

referred to catching fish in the Raft River and its tributaries, although not specifically 

within Circle Creek in the City of Rocks.  Most frequently, they wrote of catching fish in 

the Raft River and in the “the narrows” (Figure 3-1).  The emigrants also described 

several other very interesting meals. 

In the camps along the Raft River fresh-water lobsters are boiled and eaten 
by many, said to be good. They are about four inches long. The emigrants, 
or some of them, cook and eat rattlesnakes. They call them bush fish.  
Prairie dogs are nice eating…Marmots are used for food. They are very fat 
and good. Rabbits are abundant here.47 
 

There are no longer any crayfish in these portions of the Raft River.  Presently, the Raft 

River is mostly a dry wash in summer months and no fish inhabit its main stem although 

some still occur in the upper tributaries.48 

 
46 Morris, Ecological History of the City of Rocks National Reserve (note 22). 
47 Diary excerpt of William Swain, 1849, found in J.S. Holliday, The World Rushed In: 
The California Gold Rush Experience, Norman, 1981. 
48 Wallace Keck, personal communication, 2008 (note 12). There are three native 
crayfish in the state of Idaho, all three are in the genus Pacifastacus. Idaho Department of 
Fish and Game, Idaho Fish and Game Management Plan 2007-2012, available on line at 
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The King survey 
 

Clarence King was commissioned by Congress to conduct the exploration and 

survey of the Fortieth Parallel in 1867.  The fortieth parallel actually runs south of the 

Idaho border through the upper two thirds of Utah.49  Even so, it appears that King and at 

least some of his crew made it into the Reserve because a set of six photos taken by the 

survey photographer, Timothy O’Sullivan, in the City of Rocks were a part of the official 

record for 1868.  Although King and his party did not leave behind any written 

description of this trip, they were most likely in the Reserve around September of 1868 

when they went to explore the “supposed coal beds along Goose Creek”.50  King 

mentioned taking the stage from Rock Creek back to his Salt Lake valley camp in 

October of that year, but he provided no further detail or description in his letters and 

reports from the expedition.51   

Therefore, the only information about the environmental conditions during their 

visit to the City of Rocks was the startlingly vivid images by O’Sullivan (Plates 1-4).   

These images are the first photographic evidence of what the land was like in the City of 

Rocks prior to European settlement.  These images reveal places where there has been a 

change in plant species (Plate 1) and show what appear to be fire scars along hillsides 

within the City of Rocks (Plates 3 and 4).  King mentioned difficulty with triangulation 

                                                                                                                                                 
http://fishandgame.idaho.gov/fish/programs/fish_plan.pdf ; Idaho Department of Fish and 
Game, Management Plan for Conservation of Yellowstone Cutthroat Trout in Idaho, 
April 2007, available on line at http://fishandgame.idaho.gov/.     
49 T. Wilkins, Clarence King:  A Biography, Albuquerque, 1988. 
50 Records of the King Survey, 1867-81, letters sent to the Chief of Army Engineers, 
Mar. 28, 1867-Jan. 18, 1879, vol. 1, National Archives Microfilm Publication M622, roll 
3, Records of the U.S. Geological Survey, Record Group 57, National Archives at 
College Park; Wilkins, Clarence King (note 49). 
51 Records of the King Survey, 1867-1871 (note 50). 

http://fishandgame.idaho.gov/fish/programs/fish_plan.pdf
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work on the survey during late summer months in Northern Utah due to problems with 

haze and smoke from fires filling the valleys.52  These photos capture an important time 

of transition between the end of the California Trail as the major route for overland 

emigration and transportation (the railroad was completed in 1869) and the time just 

before the City of Rocks was settled.  But before the City of Rocks would be 

homesteaded, the land had to be surveyed.  

  
Period of survey and settlement 

As acquisition of new US territories progressed, the federal government required 

an account of the lands with the most potential for settlement.  The General Land Office 

was created in 1812 to survey the national lands for settlement and disposal.53 A standard 

survey consisted of a Township (36 mi2 block of land) containing 36 Sections (1 mi2 

blocks of land) that were aligned north-south on meridians and east-west on baselines.  

The Township boundaries were surveyed first and then the interior section lines.  In 

Idaho, these surveys were conducted from 1866 through 1925.  For the City of Rocks, the 

earliest survey was conducted by Allen Thompson in 1878 of the township boundaries 

that bisect the Reserve into four quadrants (northwest, northeast, southwest and 

southeast; Figure 3-3).  The earliest section line survey was also conducted in 1878 by 

Allen Thompson, with the others completed in 1880s and into the early 1890s.54   

 
52 Records of the King Survey, 1867-1871 (note 50).   
53 S.M. Galatowitsch, Using the original land survey notes to reconstruct pre-settlement 
landscapes in the American West, Great Basin Naturalist 50 (1990) 181-191.   
54 The survey notes for the City of Rocks are described in detail in Morris, Ecological 
History of the City of Rocks National Reserve (note 22).  
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The two northern townships in the City Rocks were not rated equally for 

settlement by the surveyors.  Allen Thompson concluded from his survey of the 

northwestern quadrant that it “contains but very little land suitable for farming, is 

generally hilly and mountainous”.55  He believed that the township was mostly “well 

adapted for grazing.”56  In 1884, J.R. Glover surveyed the same locations as Thompson 

and he concluded, “The soil is 2nd rate, producing sagebrush and in the valley, excellent 

bunchgrass.”57  The northeastern quadrant that included the area known as the Circle 

Creek Basin was different from the northwestern quadrant.  Here, Thompson concluded 

that the township, “contains a fair proportion of first rate land for farming, is well 

watered by numerous (illegible) streams which plenish (?) water for irrigation.  The 

Township is well adapted for grazing, will advise of a large settlement and should 

therefore be subdivided.”58  Oscar Sonnenkalb surveyed the remaining inner section lines 

in the Circle Creak basin area in October of 1886.  He described “dense cedars, pines and 

undergrowth of the same” along the mountain tops and into the lower hills while a 

“sagebrush plain” covered the valley with willow brush growing along the creek.59   

The southern townships were generally described as less desirable for farming 

than the land within Circle Creek Basin but fairly good range for livestock.  Thompson 

described the boundary between the two southern portions as having “good grass” but 

 
55 Description from General Land Office survey notes on file at the State Bureau of Land 
Management Office in Boise, Idaho under, A. Thompson, 1878, vol. 21, 655. 
56 A. Thompson, 1878, vol. 21, 655 (note 55). 
57 See note 55, J.R. Glover, 1884, vol 34, 462. 
58 A. Thompson, 1878 vol. 35, 647 (note 55). 
59 See note 55, O. Sonnenkalb, 1886, vol. 93, 348-388. There are no true cedar trees in 
the City of Rocks. However, “cedar” was a common name applied to junipers (Juniperus 
osteosperma).  This common name is still used in the local western vernacular.  
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only “scattering juniper and scrubby pine”.60  Frank Riblett surveyed the interior 

section lines in the southwestern quadrant of the Reserve in 1892.  He mentioned some 

aspen (Populus tremuloides) and mountain mahogany (Cercocarpus ledifolius) but 

generally found no “timber” along the western edge of the Reserve except dense junipers 

(Juniperus osteosperma) and pinyon pine.61  In the southeastern section, Oscar 

Sonnenkalb completed the section line surveys in 1886.  This area contained “small 

creeks in narrow canons (sic)” where the only soils considered “1st and 2nd rate” were 

found in “small spots”.  He believed the mountains had “sufficient grasses and herbs to 

render this part of the township a good range for stock.”  He remarked that the hills were 

“covered with a dense growth of cedars, mahoganies and pinion (sic) pines of smaller 

size and produce here and there heavy timber of cedars with dense undergrowth of the 

same.”  All this “timber”, however, was described as only good for “fencing and as fire 

wood for house use.”62    

The original survey markers, usually piles of rocks or pits, have all long since 

been replaced by new brass post markers and plastic vertical tags in subsequent surveys.  

But the legacy of the survey system is visible upon the landscape in a number of ways 

including the road system.  The only roads described in the survey records were the 

wagon and stage routes.  But after the surveys were completed, the old California Trail 

wagon routes gave way to roads that followed the new section lines as people began 

 
60 A. Thompson, 1878 vol. 35 pgs. 638-663 (note 55). 
61 See note 55, F. Riblett, 1892, vol. 112, 524-557. 
62 Oscar Sonnenkalb, 1886, vol. 93, 502-504 (note 55). 
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fencing their homesteads.63  The adjustment of roads to the section lines is still part of 

the transportation system in the Reserve today in many areas.  For example, the road 

takes an abrupt right angle in the southern section of the City of Rocks to follow the 

section lines (Figure 3-4).  The igneous parent material of the soils in the City of Rocks 

makes all roads highly susceptible to erosion.  Even if the vegetation covers the tracks of 

an old road, whether it be the California Trail or along a section line, the eroded swale 

left behind can still be located today (Plates 5 and 6).    

Homesteads 

Another way that the surveying system influenced the Reserve was through 

patterns of development and homesteading.  Those properties described as most suitable 

for farming in the Circle Creek basin were those claimed first.  Settlement within the City 

of Rocks began just after the establishment of the nearby town of Almo in the late 

1870s.64  The first land entry was George Lunsford who reported building a house and 

moving onto the land in 1882 and patented his claim in 1888 (Figure 3-3).  There were 

only three land patents filed under the original Homestead Act and two under the Desert 

Homesteads Act.  It was not until the Forest Homestead Act of 1906 and when the 

Enlarged Homestead Act came to Idaho in 1909 that settlement really began to spread 

within the Reserve.65  The era of homesteading ushered in a whole new suite of land uses 

                                                 
63 Oral history with Jim Lloyd, long time local resident, recorded by Lesley Morris, 
October 16, 2005, on file at the City of Rocks National Reserve; M. Wells, History of the 
City of Rocks, prepared for National Park Service Pacific West Field Area Columbia-
Cascade System Support Office Seattle, WA., 1990.  
64 Little, A Historical Overview of Livestock Use (note 8); HRA, Historic Resources 
Study (note 1); Wells, History of the City of Rocks (note 63); and others. 
65 HRA, Historic Resources Study (note 1).  
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including dry farming. land clearing, fence post cutting, irrigation work and livestock 

grazing.  

The increase in settlement after the turn of the century was largely due to the 

spread of dry farming into the region.  Dry farming is the practice of cultivation without 

irrigation.66  General guidelines from the period when the practice was first employed 

called for alternately plowing to a depth of 18 to 25 cm so as to avoid creating a hardpan.  

All vegetation except the crop was removed to minimize competition for water. Rotation 

of summer fallowing was said to store the water in the soil from the previous year for 

crop production during the following season.67  Early books on the subject encouraged 

people to locate their dry farms where there were vigorous stands of native grass and tall 

sagebrush.68  In other words, they were encouraged to plow under the most productive 

areas of sagebrush steppe.  

Most of these homesteaders put at least part of their land into cultivation, 

cropping winter wheat, barley, or oats, and had some areas of irrigated garden 

production.  These and other kinds of improvements were used as part of the “proving 

up” for the patent.69  By the time all the patents were filed, the homesteaders had 

collectively cleared and/or cultivated approximately 1,266 acres of land within the City 

 
66 J.A. Widtsoe, Dry-Farming: A System of Agriculture for Countries under Low Rainfall, 
New York, 1911. 
67 W. MacDonald, Dry-Farming:  Its Principles and Practice, New York, 1911; Widtsoe, 
Dry-Farming (note 66).   
68 Widtsoe, Dry-Farming (note 66). 
69 “Proving up” was a term used for the process of declaring improvements to the General 
Land Office representative at the time the patent for ownership on the land was filed.  
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of Rocks National Reserve (Plate 7).70  They likely cleared and cultivated even more 

land after filing.  Cultivation can be the most drastic disturbance of sagebrush steppe 

areas with recovery of sagebrush taking nearly a half century and restoration of many 

perennial forbs still not accomplished.71  Dry farming can influence vegetation through 

declining soil fertility, increasing erosion, and aiding in the introduction of invasive and 

weedy plant species.72 Areas of historic cultivation often have altered plant diversity and 

lowered potential for reoccupation of the site by native species.73  Many of the areas that 

were historically cultivated and repeatedly plowed in the Reserve contain little native 

vegetation beyond the sagebrush.74 The effects of this land use are visible on the 

landscape even today (Plates 7-10). 

Another form of “proving up” on a patent was to “improve” the property by 

fencing.  The homesteaders in the City of Rocks made good use of the timber described 

in the General Land Office Surveys for fence posts.  According to the Minidoka National 

 
70 Calculated from copies of the homestead records for the Reserve on file at the City of 
Rocks National Reserve headquarters in Almo, ID; Morris, Ecological History of the City 
of Rocks National Reserve (note 22). 
71 E.W. Tisdale, and M. Hironaka, The Sagebrush-Grass Region:  A Review of the 
Ecological Literature, USDA Forest, Wildlife and Range Experiment Station, University 
of Idaho, Bulletin No. 33, 1981.   
72 A. F Bracken, Extent and condition of the range lands for Utah, in: Utah Agricultural 
Experimental Station Agricultural Adjustment Survey for Utah, 1935, 37-42; H. Bolton, 
J.L. Smith, and S.O. Link, Soil microbial biomass and activity of a disturbed and 
undisturbed shrub-steppe ecosystem, Soil Biology and Biochemistry 25 (1993) 545-552; 
R. L. Piemeisel, Changes in Weedy Plant Cover on Cleared Sagebrush Land and their 
Probable Causes, USDA Technical Bulletin No. 654, 1938.   
73 Piemeisel, Changes in Weedy Plant Cover (note 72); K.D. Sanders, S.C. Bunting and 
R.G. Wright, Grazing Management Plan: City of Rocks National Reserve, prepared for 
the Pacific Northwest Region of National Park Service, on file at the City of Rocks 
National Reserve, 1996.  
74 Sanders, Bunting and Wright, Grazing Management Plan (note 73); personal 
observation of the author, 2005. 
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Forest History, “large quantities of posts and poles” were given away under free use 

permits to hundreds of settlers during the height of the dry-farming era about 1914.75  

Using descriptions from the Homestead Patents in the City of Rocks, around 140 km of 

fencing was erected in the Reserve during this era.  Most of the patents described fencing 

with posts one rod apart (5.3 m) and only two claimed fences at two rods distance (10.1 

m).  Given these approximations, some 16,520 posts would have been needed for fencing 

in the Reserve alone.  A good juniper tree for a post was approximately 2 m tall and at 

least 10 cm in diameter.76  This former land use was spotted by a surveyor for the Bureau 

of Land Management in 1952 when he described an area that was “…cut over for posts 

(approximately 10% of volume) and many small openings containing air within the 

stand”.77  

The era of homesteading and settlement likely had an impact on the wildlife as 

well.  Several of the earliest settlers in the City of Rocks made a living by trapping 

including Walter Mooso, Samuel P. Mikesell and Torrey Campbell.78  Walter Mooso, a 

homesteader west of the Twin Sisters said he bought most of his traps from Mikesell who 

had homesteaded on the east side of the Twin Sisters (Plate 7).  Mikesell was said to be 

 
75 Minidoka National Forest Personnel, History of the Minidoka National Forest [MNF 
History 1941], USDA Forest Service Intermountain Region, Sawtooth National Forest, 
on file at the City of Rocks National Reserve, 1941. 
76 Malta Civilian Conservation Corps Report, Cotterel Mt. Post Cutting Project, on file at 
the National Archives and Records Administration Pacific Alaska Regional Office, 
Seattle, WA, 1941, RG 49 BLM Burley District Office SMC and Range Improvement 
case files, G-141 Malta CCC camp.    
77 Bureau of Land Management Range Surveys, on file at the Bureau of Land 
Management Burley District Office, Burley, ID, 1952.            
78 Oral history with homesteader, Walter Mooso, interviewed by A.W. and Lillian 
Dawson, March 4, 1975, transcription on file at Cassia County Historical Society and 
Museum, Burley, ID; Chance and Chance, Riddles of a Stagecoach Station, 100 (note 
23). 
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employed by the Australian government as a trapper.79  He and other early trappers 

caught coyotes, muskrats (Ondatra zibethicus), badgers (Taxidea taxus), skunks 

(probably Mephitis mephitis or Spilogale gracilis), mountain lions (Puma concolor), lynx 

(Lynx sp.), bobcats (Lynx rufus) and weasels (Mustela sp.).80  There was no mention of 

them harvesting any beaver in the area. 

The period of settlement was synchronous with the rise of the cattle barons and 

the subsequent conflicts between cattlemen, sheep growers and farmers known as the 

range wars.  Cattle and sheep had been trailed through the City of Rocks beginning in the 

California Trail era.  The earliest known cattle drive was documented by Cyrus Loveland 

in 1850.81  Kit Carson trailed sheep through the City of Rocks in 1853, and Mrs. 

Benjamin Ferris reported a band of 4,000 sheep in the same year.82  The cattle industry in 

the area was believed to have initiated in 1869 when James Q. Shirley summered a herd 

near the City of Rocks. The settlers in the City of Rocks and Almo area had smaller herds 

of cattle that did not compare to the number of livestock that came out of the bigger 

ranches in Nevada and Utah.  For example, the consolidated ranches of Sparks and 

Tinnin in 1881 ran an estimated 175,000 head of cattle “from Junction Valley in the east 

to the Bruneau River on the west and from Snake River to the north to Humboldt Wells 

 
79 Chance and Chance, Riddles of a Stagecoach Station, 100 (note 23). 
80 Oral history transcription of Walter Mooso (note 78); B.T. Kimber, Life Story of 
Bertha T. Kimber, unpublished autobiography on file at the City of Rocks National 
Reserve, no date.  
81 Little, A Historical Overview of Livestock Use (note 8); R.H. Dillon, California Trail 
Herd: The 1850 Missouri to California Journal of Cyrus C. Loveland, Los Gatos, 1961.    
82 E. N. Wentworth, America’s Sheep Trails: History and Personalities, Ames, 1948; 
B.G. Ferris, The Mormons at Home: With Some Incidents of Travel from Missouri to 
California, 1852-3, Brooklyn, 1971. 
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nimals.   

in Nevada”.  In Utah, the Bar M Ranch, owned by Charles Crocker, had 75,000 head 

of cattle that ranged into Idaho and the Raft River valley.83  

Mr. Taylor of Almo and many others say, when they came to the country 
[Almo area], their horses or cattle could be turned any place and would fill 
up in short time.  Then came the large herds of cattle, so numerous that no 
one counted them.84   

 

Some estimated, however, that there were as many as 230,000 head of cattle and several 

thousand horses in the mid 1880s on the lands in and surrounding the City of Rocks.85   

Mining in Idaho and continued development of the railroads in the 1870s and 

1880s opened new markets and fed the growth of the livestock industry in the region.  

The livestock industry during these early years engaged in year-round grazing and did not 

supplement their feed in the winter.86  In the winter months in the Great Basin, large 

herds of cattle were moved into the desert valleys of Nevada for grazing there.87  This 

level and season of use reportedly took a toll on the range around the City of Rocks:  

…the range began to show signs of overcrowding; there were thousands of 
five and six-year old steers on the range, and too many breeding 

88a
 

According to statements of old-timers, the sagebrush plains and foothills 
were densely carpeted with bunchgrass…..Overgrazing, together with the 

                                                 
83 Little, A Historical Overview of Livestock Use, 18 (note 8).    
84 Minidoka National Forest [MNF Report 1949], Albion Ranger District Management 
Plan, National Archives and Records Administration Pacific Alaska Region, Seattle, W
RG 95

A, 
, Box 1, Sawtooth National Forest, Range Management Records, 1949, section 

ock Use (note 8); J.A. Young and B.A. Sparks, 

    
ry 1941, 4 (note 75).  

VIII. 
85 MNF History 1941, 13 (note 75). 
86 Little, A Historical Overview of Livest
Cattle in the Cold Desert, Reno, 2002.   
87 Young and Sparks, Cattle in the Cold Desert (note 86).
88 Walgamot, quoted in MNF Histo
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which were in many cases supplanted by sage.   

 

e 

sed on the 

above d

k 

ys during that drought, 

and it t

                                                

droughts of 1886 and 1891 seriously depleted these valuable forage plants 
89

Great Basin bunchgrasses do not fair well under the combination of high stocking rates 

and early spring use when they are most vulnerable.90  Jim Young and B. Abbott Sparks 

argued that this intense use before the turn of the century began to kill off the grasses in

the Great Basin that rely on seed for reproduction.  Over the decades of heavy use, th

seed bank became depleted and could not replenish the populations.91  Ba

escriptions, this was likely the case in the City of Rocks as well. 

The harsh winters and droughts in the late 1800s took a toll on the local livestoc

industry.92  From 1886 until 1891, there was a reported drought that “dried up creeks” 

and left “vegetation wilted to the ground.”93  Local residents recalled hearing stories that 

the drought of the 1890s lasted for several years and turned the land into a “dust bowl.”  

Some of the ranchers skinned the dead cows and sold the hides for 50 cents a piece.  The 

livestock had reportedly eaten down all the vegetation in the valle

ook several years before there was good grazing again.94  

On top of the droughts, the “devastating winter” of 1889-1890 brought losses that 

many say crippled the cattlemen.  William Little called it the great “equalizer” because it 

 
89 MNF History 1941, 4 (note 75). 
90 Tisdale and Hironaka, The Sagebrush-Grass Region (note 71); Miller, Svejcar, West, 
Implications of livestock grazing (note 18).   
91 Young and Sparks, Cattle in the Cold Desert (note 86).  
92 MNF History 1941 (note 75); Little, A Historical Overview of Livestock Use (note 8);  
E. Durfee, Remembrances of Almo Community, unpublished autobiography, on file at 
City of Rocks National Reserve, no date, may have been between 1970 and 1975.  
93 Durfee, Remembrances of Almo Community (note 92). 
94 Oral history with Jay Black, long time local resident, interviewed by Lesley Morris, 
May 28, 2005, on file at the City of Rocks National Reserve; Oral history with Ned 
Jackson, former City of Rocks Superintendent, interviewed by Lesley Morris, September 
5, 2005, on file at the City of Rocks National Reserve. 
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visible 

n the other hand, had already become established and were 

oised to make further gains from the increase in precipitation.  This winter also ushered 

in another change in land use as it was clearly necessary to begin supplementing livestock 

with hay in the winters.   

 

created in 1906.  It contained what was later known as the Albion Division.  In 1907 the 

elevated the sheep growers whose flocks had better survived the winter because the 

sheep could utilize more browse in the deserts and on the steep terrain.  Beginning in 

1891, sheep herds began to increase, and there were reportedly 85,000 head of sheep i

the area around the City of Rocks by 1895.  Sheep trails through the City of Rocks are 

in early photographs (Plate 6).  Although they never regained the pre-1891 

numbers, cattle and sheep had both increased by 1900 and overgrazing was prevalent 

once again.95  

That devastating winter of 1889-1890 influenced the rangelands as well.  Jim 

Young and B. Abbott Sparks speculated that this period following the great white winter 

strongly favored shrub production in the Great Basin because two decades of heavy 

grazing on the perennial grasses had largely depleted their seed banks, and the grasses 

could not take advantage of the 1890-1893 increase in precipitation.  Woody species such 

as juniper and sagebrush, o

p

96

The beginning of regulation (1900-1929) 

The impacts of these multiple uses brought by settlement helped to initiate the 

system of the Forest Reserves in the early 1900s.  The Raft River Forest Reserve was 

                                                 
95 Called a “devastating winter” in Young and Sparks, Cattle in the Cold Desert (note 
86); called the “equalizer” by Little, A Historical Overview of Livestock Use (note 8); 

 Cold Desert (note 86). 
MNF History 1941 (note 75).   
96 Young and Sparks, Cattle in the
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21% of the total area of the Reserve when it was created.  

Howev

its 

st 

years”.  He stated that the range would accommodate “only 50% of the number of stock it 

National Forests were created from the Forest Reserves and the Raft River and Cassia

Forest Reserves were combined into the Minidoka National Forest by 1908.97  The ve

large Minidoka National Forest stretched from Idaho into Northern Utah and just the 

Albion Ranger District (including part of the City of Rocks) alone contained 32,358 

hectares.98  The portion within the City of Rocks that was historically managed by the 

Forest Service made up only 

er, the US Forest Service records provide very good insight into the conditions 

and concerns of the time.99   

The new Forest Reserve managers (and later the National Forest Rangers) were 

not only responsible for timber management but also livestock grazing and wildlife 

resources.  For the Minidoka Forests, livestock grazing was one of the primary issues the 

agency faced.  Their very first attempt at regulation was a permit system initiated in 

1906.  In 1907, what was then known as the Raft River National Forest, reported perm

for 3,042 cattle and horses and 14,665 sheep.100  Seasonal use was from April 1 through 

November 30 for cattle and June 15 to October 31 for sheep.  In a 1909 report, Fore

Supervisor William McCoy lamented that, “control was 20 years late, and the effects of 

forest fires, wasteful cutting of timber, and overgrazing of the range will be felt for 

                                                 
97 MNF History 1941 (note 75).   
98 MNF Report 1949 (note 84). 
99 Historical records of the Minidoka National Forest are housed at the National Archives
and Records Administration Pacific Alaska Reg

 
ional Office in Seattle, WA, and in the 

n 

ck Use, Appendix E (note 8). 

USDA Forest Service Region 4 Office in Ogden, UT.  Historical records from the Twi
Falls Supervisors office could not be located.   
100 US Forest Service, Report on Grazing, Raft River National Forest, 1907, found in 
Little, A Historical Overview of Livesto
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Reserve was so overgrazed there was nothing but “sagebrush and dust.”103   

                                                

would years ago.”101  Despite their efforts, overgrazing was still an issue in the early 

1920s.102  The impacts were also still visible in the valleys.  A long-time resident wh

sheep in the City of Rocks as a child recalled that, in the 1920s, the land on the souther

end of the 

In addition to livestock, wild horses were also believed to have contributed to the 

overall downward trend in range conditions in the National Forests.104  Wild horses are a 

lasting part of the community’s memory in the area.  Locals remembered chasing and 

“rounding up” the wild horses.  Sometimes they corralled the ponies into the rocks and 

“practiced branding them.”  The horses were also a source of income for adults.  The sale 

of about 20-25 wild horses helped at least one young couple afford to buy their first 

house.105  The military was said to have released stallions into the wild horse herds on the 

nearby Jim Sage Mountains to improve the stock, and then they harvested close to 2,000 

animals from that area (Figure 3-1).  A massive effort to rid the range of wild horses was 

initiated in the 1920s.  Some 3,000 horses were rounded up from the foothills 

surrounding the Minidoka National Forest, and several thousand were removed from US 

Forest Service lands in 1928.106  Since 1924, 300 horses were eliminated from a grazing 

 
101 Minidoka National Forest Report [MNF Report 1909], Report for Forest, on file at the 
City of Rocks National Reserve, 12.   
102 MNF History 1941 (note 75).   
103 Oral history with Jim Lloyd (note 63). 
104 MNF Report 1949 (note 84).   
105 Oral history with Leona Jones, long time local resident, interviewed by Lesley Morris, 
August 10, 2004, on file at the City of Rocks National Reserve. 
106 MNF History 1941 (note 75); Oral history with Delmar Vail, interviewed by Linda 
Morton-Keithley, November 6, 1995, on file at the Idaho State Historical Society (IDSHS 
#1428a-c).  
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allotment that included portions of the City of Rocks.107  The wild horses were 

reportedly “taken care of” by 1930, and there are no longer any found in the City of 

Rocks.108  

The new Forest Service was also concerned with wildlife and, in particular, 

protecting their devastated deer population on the Minidoka National Forest.109  Deer 

were reportedly “killed and hauled like cordwood” in the late 1890s and were, therefore, 

depleted by the time the Forest Reserve was created.  In 1918, they believed there were 

only 20 deer left.  They were successful at increasing the herd by closing the forest to 

hunting from 1910 through 1929 but there were concerns over other game animals as 

well including birds and elk.  Game birds were a concern as early as 1918.  The “grouse” 

and “sage hens” decreased alternately in the early 1910s and 1920s as they were 

alternately protected from or listed for open hunting.110  Elk were introduced on the 

Albion Division in 1915 but they reportedly “did not prosper.”111  Deer were not the only 

 
107 Minidoka National Forest Report [MNF Report 1929], Individual Grazing Allotment 
Plan, on file at the National Archives and Records Administration Pacific Alaska Region, 
Seattle, WA, RG 95, Box 1, Sawtooth National Forest, Range Management Records. 
108 MNF Report 1949 (note 84). 
109 Wildlife Management reports for the Minidoka National Forest from 1918 to 1950 
were found at the National Archives and Records Administration Pacific Alaska Regional 
Office in Seattle, WA, Record Group 95, Box 1, Sawtooth National Forest, Wildlife 
Management Records 1917-1939 and Box 2, Sawtooth National Forest, Wildlife 
Management Records 1940-1953.  The reporting was not consistent or thorough enough 
for quantitative analysis; however, it did provide a qualitative glimpse at what was 
happening with several important species over time in the area.  Information from these 
reports is used throughout the paper.    
110 Only common names are given for these birds through out the reports. However, “sage 
hens” most likely refers to the greater sage-grouse (Centrocercus urophasianus).  The 
term “grouse” is eventually refined to “pine hen” and “blue grouse” in later reports.  
Therefore, it is likely that the grouse referred to in the reports were blue grouse 
(Dendragapus obscurus ).  
111 Information on wildlife comes from Wildlife Reports from 1918-1950 (See note 109). 
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animal to go through drastic changes on the Minidoka National Forest.  In 1925, six 

beavers were reported on the forest.  By 1936, beaver were reportedly “numerous” but 

there was still no mention of them within the Reserve.  The last report of wolves (Canis 

lupus) in the Albion Division was in 1924.  They are now locally extinct.   

There were bounties on several animals considered to be pests.  Magpies (Pica 

hudsonia), which were a problem because they were nest robbers and would get into the 

chickens and eat the eggs, carried a bounty of about 1-5 cents per bird and 2 cents for an 

egg at the local store in Almo.112  Gophers (probably Thomomys talpoides) and ground 

squirrels were considered a problem because they would get into the fields, and their 

mounds would plug up the hay swather.  There was a bounty on squirrels from about 

1912-1920, and since people could get a penny a tail, some people would put out 

poisoned oats to kill them.113  Many people recalled having rabbit drives when the 

populations would get large.114   

 
112 Oral history with Larry Edwards, long time resident, interviewed by Lesley Morris, 
March 5, 2005, on file at the City of Rocks National Reserve; Oral history with Jay Black 
(note 94); Oral history with Jack and Kathryn Erickson, long time local residents, 
interviewed by Lesley Morris, October 16, 2005, on file at the City of Rocks National 
Reserve; Oral history with Jim Lloyd (note 63). 
113 Oral history with Grace Durfee, long time local resident, interviewed by Lesley 
Morris, August 9 and 11, 2004, on file at the City of Rocks National Reserve; Oral 
history with William and Annalee Jones, interviewed by Lesley Morris, August 9, 2004, 
on file at the City of Rocks National Reserve; Oral history with Jim Lloyd (note 63).   
114 Oral history with Jack and Kathryn Erickson (note 112); Oral history with  Juanita 
Jones, City of Rocks Employee and local resident, interviewed by Lesley Morris, 
September 13, 2005, on file at the City of Rocks National Reserve; Oral history with Stan 
Lloyd, local resident, interviewed by Lesley Morris, October 16, 2005, on file at City of 
Rocks National Reserve; Oral history with Kent and Janis Durfee, local residents, 
interviewed by Lesley Morris, May 6, 2005, on file at the City of Rocks National 
Reserve.   
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The Forest Service also made an effort to increase fishing opportunities in the 

Minidoka National Forest.  Nearby Almo Creek was stocked with 5,000 fry in 1920 and 

1924.115  Immediately, there was concern that fish were getting into irrigation ditches and 

being destroyed.  In 1921, Forest Ranger Henry Smith reported, “The canals in the 

vicinity of this Division are badly in need of screening and seem to be the most important 

factor to be considered in maintaining normal supply of fish.”  The reports were unclear 

as to when this stocking was discontinued, but there was an indication that local residents 

complained about fish getting in their canals.  There were no specific reports on stocking 

fish in South Creek, Center Creek or North Creek that flow directly into Circle Creek in 

the City of Rocks.   

People living in Almo and in the City of Rocks made use of all the local natural 

resources including wildlife, wood, and water.  They used the wood from local 

woodlands and forests for building fences, homes and for fuel.  The original families got 

their timber out of the Albion Mountains for building their homes.116  A variety of fuel 

wood was used by the communities surrounding the City of Rocks.  Many liked to use 

mountain mahogany because it burned hot like coal, lasted the longest, and made a good 

nighttime wood.  People also said they used a lot of aspen, some pinyon pine, some 

juniper, and even lodge pole pine (Pinus contorta), limber pine (Pinus flexilis), and 

Douglas-fir (Pseudostuga menziesii).  Aspen was said to be the easiest to cut and made a 

 
115 As with the birds, no species names for the fish were used in these reports, only 
“trout” or sometimes “rainbow trout.” 
116 Oral history with Grace Durfee (note 113); Oral history Kent and Janis Durfee (note 
114);  Oral history with James and Dorothy Sheridan, long time local residents, 
interviewed by Lesley Morris, September 14, 2005, on file at the City of Rocks National 
Reserve.   
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good fire for cooking because it did not produce much ash.  Residents cut wood to heat 

their homes, the school house and the church.  They went all over the Albion Mountains 

and into the City of Rocks cutting both live and dead wood.  There were at least two 

wood roads in the Reserve, one was just before Bath Rock and the other was the old road 

around the Circle Creek basin (Plate 11).117  After World War II, many residents stopped 

using as much fuel wood, and many installed oil burning stoves or coal furnaces.118   

Local settlers also collected pine nuts along side the Native Americans, who 

continued to visit from Fort Hall Reservation in the fall to camp, harvest pine nuts and 

trade hides for the beaded deer skin gloves they made.119  A typical family could collect 

close to twenty-five pounds without the cones and about fifty pounds in sacks with the 

cones still on them in one day.120  Very few local families reported collecting pine nuts 

anymore.  

Even though they were mostly dry farming, the homesteaders dug wells and 

developed water for culinary use, gardening and for their livestock.  One homesteader, 

 
117 Oral history with Buddy and Marion Ward, local residents, interviewed by Lesley 
Morris, August 8, 2004, on file at the City of Rocks National Reserve; Oral history with  
Jack and Annalee Erickson (note 112);  Oral history with Kent and Janis Durfee (note 
114); Oral history with  Jay Black (note 94); Oral history with Jim and Dorothy Sheridan 
(note 116); Oral history with Klint and June Lloyd, local residents, interviewed by Lesley 
Morris, October 15, 2005, on file at the City of Rocks National Reserve; Oral history 
with Jim Lloyd (note 63); Oral history with William and Annalee Jones (note 113); Oral 
history with Richard Bruesch, local resident, interviewed by Lesley Morris, August 12, 
2004, on file at the City of Rocks National Reserve; Vinola Archibald, grew up in the 
area, personal communication, 2005.  
118 Oral history with Leona Jones (note 105); Oral history with Bob and Nancy Ward, 
local residents, interviewed by Lesley Morris, October 15, 2005, on file at the City of 
Rocks National Reserve.    
119 Chance and Chance, The Archaeological Reconnaissance (note 23).  
120 Oral history with Grace Durfee (note 113); Oral history with Buddy and Marion Ward 
(note 117). 
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Mrs. Mikesell, said their land had an abundance of water where she lived and that men 

hit water with their shovels when they were digging post holes (Plate 7).121  Walter 

Mooso also described finding a spring site easy enough to develop with just a shovel: 

….I got a hold of this piece of wood and it was as hard as anything I ever 
tried to carry. And it happened to be mahogany and I didn’t know 
anything about mahogany. But it was like carrying iron. Well I carried it 
along and I got a little tired. I stopped an stood it up there and I looked 
around. And the clouds separated and the moon shined right on the spot.  
Almost to my feet and it was little soft before I had got to it. And it shined 
there before I got to it and it shined there and I could see it was 
bare……So I rolled my sleeves up and I started to digging and I dug down 
there about twelve inches and I run into a nice bunch of water there. That 
was the spring that I developed there. They can call it developing or what 
ever they want to. But it was there and I just looked up from the shovel 
and I took off to the house with my shovel. It wasn’t a shovel but an ax. I 
took off up to the shack and I got the shovel then I com back. And the 
clouds had moved away and I didn’t have much trouble and that was about 
eleven o’clock at night. And by gosh, by two thirty I had me a nice well 
just about up to my…just above my hips a ways. 122 
 

They installed check dams, created small reservoirs and some piped water out in flood 

irrigation systems.123  All that changed beginning in 1920 when the “underground water 

suddenly disappeared…drying up the springs and stopping irrigation.”124  The climate 

records clearly show that the average annual precipitation began dropping in the 1920s 

and kept declining until the mid 1930s (Figure 3-2).  During this drought in the 1920 and 

1930s, the homesteaders who relied upon dry farming were “starved out” because they 

could not pay their taxes.   At that time, people went the way of the water.  If the water 

 
121 South Idaho Press, 1955.  
122 Oral history transcript of Walter Mooso (note 78).   
123 Oral history with Jim Lloyd (note 63); Oral history with Stan Lloyd (note 114); 
homestead records for City of Rocks in the Circle Creek basin also show irrigation 
ditches.   
124 Southern Idaho Press, 1955.  
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was gone, so were they.  Many of the early settlers moved to Almo, Oakley, or to 

Burley, Idaho.125   

 
Period of range management (1934-1960) 

After abandonment of the dry farms in the 1920s, much of this land was slow to 

revert back to natural vegetation and the forage production was very limited.126  Drought 

in the 1930s further exacerbated the declining range conditions (Figure 3-2).127  The 

drought in the 1930s was particularly hard on the communities surrounding the City of 

Rocks.  Jim Lloyd, who grew up herding sheep in the City of Rocks during the drought 

years of the 1920s and into the 1930s, said it was terribly dusty.  Stan Lloyd, also a long-

time local resident, said his parents told him that the depression was bad, but the drought 

was worse.  The people in nearby Almo and other local communities were pretty self-

sufficient for food, but they needed the money they could get from selling a cow to 

purchase other supplies, and that affected the community the worst.  Several people 

recalled the federal government bought cattle just to help people out financially and 

destroyed the animals because there was no market for them during the 1930s drought 

and depression.128  Locals recalled that their once boggy meadows turned to dust and, 

 
125 Oral history transcription of Walter Mooso (note 78).   
126 Sanders, Bunting and Wright, Grazing Management Plan (note 73). 
127 MNF History 1941 (note 75). 
128 E. Durfee, Remembrances of Almo Community (note 92); Oral history with Jack and 
Kathryn Erickson (note 112); Oral history with William and Annalee Jones (note 113).   
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because they did not have wells to compensate for irrigation needs, the community 

really suffered.129  

Land that was not patented remained under the General Land Office jurisdiction, 

and was open to unregulated livestock grazing until passage of the Taylor Grazing Act in 

1934.  Under this new system, land within the City of Rocks that was not within the 

National Forests, privately owned, or state property was managed by the Grazing Service 

as the Raft River Grazing District No. 2.130   The management of these lands was turned 

over to the newly created Bureau of Land Management (BLM) in 1946 and has been 

managed by the Burley District Office since that time.   

The BLM range surveys were not completed until 1952, but the records from the 

USFS describe the land conditions just as the BLM was being organized.131  The Albion 

Division reported 4,225 cattle and horses, 2,080 sheep and 2,200 deer around that 

time.132   The sagebrush areas on the Albion Division were in fair to poor condit

“increasing annual weeds and grasses, lessening plant vigor in the accessable (sic) plants, 

loss of top soil, and in some cases the appearance of shoestring and gully erosion”.  

Aspen stands were reportedly in very poor condition, “denuded of all palatable species of 

grasses and weeds,” and some stands were “dying out” including some in the upper 

reaches of Almo Creek just outside the boundary of the Reserve.  They also reported that 

 
129 Oral history with Venna Ward, employee of City of Rocks National Reserve and local 
resident, interviewed by Lesley Morris, September 11, 2005, on file at the City of Rocks 
National Reserve.   
130 Grazing District Map, on file at the Bureau of Land Management Burley District 
Office, 1939.   
131 BLM Range Surveys 1952 (note 77); Oral history transcription of Delmar Vail (note 
106).    
132 MNF Report 1949 (note 84). 



 66

                                                

sheet erosion and weed invasions indicated an urgent need for corrective measures.  

The “timber” range type was listed as poor to fair condition.  All range types were 

reported to have erosion of up to four inches judged by pedestaled plants.  There seemed 

to be a general concern about the loss of top soil and productivity.  Stockmen complained 

that the deer were overusing the forage as well.  The US Forest Service believed the 

district was best adapted to cattle rather than sheep grazing and there was a push to 

switch permits from sheep to cows.133 

As with the National Forests, by the 1940s, many new, introduced and invasive 

plant species had established in the valleys surrounding the City of Rocks.  A particularly 

troublesome one was the poisonous forb, halogeton (Halogeton glomeratus).  In 1945, 

both John Ward and Oscar Jones together lost over 1,500 sheep to halogeton poisoning 

after they moved their bands onto winter range in the Raft River Valley (Figure 3-1).134  

The cause of death was described by John Ward: 

I had lost a few sheep for several years in and around the area west of the 
Bridge school house.  On a day in November, 1945, a band of 1,300 of my 
sheep were moved into this halogeton area about noon.  By 2 or 3 o’clock 
that afternoon, the sheep were sick and began to die immediately, of the 
1,300 head, 1,000 died that afternoon in that area and the remainder died 
later on.135   

 
Other weedy species that thrived in areas of soil disturbances (such as roadsides, heavily 

grazed lands and fallow agricultural fields) had likely already made their way into the 

Reserve.  These included such species as Russian thistle (Salsola iberica), tumble 

 
133 MNF Report 1949, 4-5 (note 84). 
134 J.A. Young, P.C. Martinelli, R.E. Eckert and R.A Evans, Halogeton: A History of 
Mid-20th Century Range Conservation in the Intermountain Area, USDA Agricultural 
Research Service Miscellaneous Publication No. 1553, 1999. 
135 Quoted in Young, Martinelli, Eckert and Evans, Halogeton, 14 (note 134).  
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mustard (Sysymbrium altissimum), flixweed (Descurainea sophia) and cheatgrass 

(Bromus tectorum) (Plate 12).136  Cheatgrass was already on the Minidoka National 

Forest by the 1920s.137  Bulbous bluegrass (Poa bulbosa) was recommended in reseeding 

efforts and was used for aerial seeding in nearby Gooding in 1943.138  This grass species 

was reported in the Reserve by at least 1995.139   

The people and the rangelands had suffered many losses during the droughts and 

the Great Depression.  By the time World War II ended, there was very little good feed 

left, weeds had taken over the fallow fields and a new widespread effort to “regrass” the 

rangelands began to take shape.140  A good deal of previously dry farmed land was “re-

cleared of brush and seeded to crested wheatgrass” (Plates 8 and 10).141  Much like dry 

farming, the seeding projects were slated for areas where “vigorous stands of sagebrush” 

could be found because it was an indication the site was “productive and generally 

favorable for seeding.”142  It was suggested that seeding be carried out using seed drills 

or other equipment at depths from 0.5 to 1.25 cm.143  Land management agencies and 

many private land owners in the area and in the City of Rocks employed this metho

 
136 Piemeisel, Changes in Weedy Plant Cover (note 72); Morris, Ecological History of the 
City of Rocks National Reserve (note 22). 
137 M.H. Deming, Period Study Report: Minidoka National Forest, unpublished report 
prepared for the USDA Forest Service, on file at City of Rocks National Reserve, 1923.  
138 A.C. Hull, Regrassing Southern Idaho Range Lands, University of Idaho College of  
Agriculture Extension Division, Extension Bulletin No. 146, 1973. 
139 Bulbous bluegrass was included in the plant list created for the City of Rocks in T. 
John, Vascular Plants of the City of Rocks: An Annotated Checklist, prepared for the 
National Parks Service, on file at the City of Rocks National Reserve, 1995.  
140 Oral history transcription of Delmar Vail (note 106); Hull, Regrassing Southern Idaho 
Range Lands (note 138); Miller, Svejcar, West, Implications of livestock grazing (note 
18).  
141 Sanders, Bunting and Wright, Grazing Management Plan, 3 (note 73).    
142 Hull, Regrassing Southern Idaho Range Lands (note 138).   
143 Hull, Regrassing Southern Idaho Range Lands (note 138). 
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seeding.144  Despite all of the problems, some say the 1930s drought may have been 

the best thing that happened to the area because it got them to start planting crested 

wheatgrass.145  

The Forest Supervisor, S. Stewart, recognized in the 1930s that, “Sheep growers 

individually and thru their county predatory animal control boards have reduced coyotes, 

bobcats, lynx and mountain lion very materially the past three or four years.”146  It is this 

feature which appears largely responsible for the apparent increase in deer the last year or 

two”.  Deer were said to number close to 6,000 on the forest by 1935 and a special hunt 

was initiated in 1936 to cut the numbers.147 By 1946, some adjacent ranchers were 

complaining about damaged crops and competition for feed on the ranges.  High 

concentrations of deer in 1948 were becoming a concern in the Almo Park area where 

there was evidence of “highlining” (eating the browse off to the maximum height an 

animal can reach) on the mahogany, bitterbrush (Purshia tridentata), juniper, wild cherry 

(Prunus virginiana), and other browse species.  That same year there was 84% hunter 

success.  By 1949, “mahogany above the City of Rocks” had been “seriously highlined” 

as well.  The Range Report from that same year confirmed deep concerns about the 

condition of all range types within the forests.  By 1950, they estimated 3,000 deer were 

on the Albion Division alone.   

 
144 Bureau of Land Management Allotment Files, on file at the Bureau of Land 
Management Burley District Office, Burley, ID; Morris, Ecological History of the City of 
Rocks National Reserve (note 22).    
145 Oral history with William and Annalee Jones (note 113).       
146 USFS Wildlife Reports (note 109). 
147 MNF History 1941 (note 75). 
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As mentioned previously, predator control of mountain lion, coyote, bobcat and 

lynx was widely praised in the late 1920s and early 1930s.  In 1944, there was an 

expressed desire to “maintain state bounty on [mountain] lion because they are taking a 

heavy toll on deer and sheep.”148  There were reports of about 5 black bear (likely Ursus 

americanus) on the Albion division in the 1940s.  Coyotes were reportedly “getting bad 

again” in 1942.  By 1947, baiting stations with “1080” (or Thallium) were put out for 

coyotes.  The baiting effort was recorded as successful in 1948 since there were little or 

no sheep losses reported and “no coyote signs around deer herds.”  The decrease in 

predators was again attributed to assisting in the rapid increase of deer over the next two 

years.  

Interestingly, porcupines (Erethizon dorsatum) were included on the list of 

predatory animals starting in the early 1930s.  An estimated 274 porcupine were killed in 

1934 on the entire Minidoka National Forest.  There were reportedly 125 porcupines 

killed on the Albion Division in 1940.  In 1945, “an intensive campaign against 

porcupines was conducted” and the ranger suggested that control work should continue.  

Porcupines were reported to be a prevalent problem where the USFS had planted trees.149  

Porcupine did not kill the trees by barking them unless they stripped it all the way 

around, but they were considered a threat to the trees and hunters were encouraged to 

shoot them.  Local residents recalled that there used to be lot of porcupine, and people 

worried about them because they were “unpleasant” and they would get up into the 

 
148 MNF History 1941 (note 75); Oral history with Larry Edwards (note 112); Oral 
history with Jay Black (note 94); Oral history with Jack and Kathryn Erickson (note 112). 
149 MNF History 1941 (note 75).    
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orchards and strip bark from the trees.150  Porcupines were generally shot when they 

were encountered and residents say there does not seem to be as many of them now.151  

The Minidoka National Forest Service also continued the effort to transplant 

wildlife and encourage growth of important game species well into the 1950s.  In 1942, 

the Forest Ranger recommended that stocking of fish in mountain streams should be 

reinstated well above the irrigation intakes.  One report mentioned the need to build small 

reservoirs or dams along the streams to keep the fish alive through the season, but said 

the locals did not like the idea of blocking irrigation water.  It was unclear from the 

reports if this initiative was ever revisited.  There was no indication from the reports that 

cattle destroyed the streams or contributed to the disappearance of the fish.  In 1944, a 

Forest Ranger suggested that it would be “good to see some beaver planted in Almo 

creek.”  The number slowly climbed over two decades until 100 beavers were reported in 

1945.  By 1947, beavers were “becoming established in most of the drainages over the 

entire district…Almo Creek above the Forest Boundary to the mouth of Piney Creek 

shows much beaver activity.”  By this time, there were 200 beavers and a growing 

concern that they would kill the few remaining aspen stands.  An effort was started in 

1948 to remove beavers, but the reports did not specify where on the forest.   

By 1930, Forest Rangers reported that grouse were “very rarely seen anymore.”  

The reduced populations became so much of a concern that the Idaho portion of the 

Minidoka National Forest was declared a bird sanctuary in 1931 and all forms of hunting 

 
150 Oral history with Leona Jones (note 105); Oral history with Grace Durfee (note 113).   
151 Oral history with Jim Lloyd (note 63); Oral history with Alan Bruesch, local resident, 
interviewed by Lesley Morris, September 12, 2005, on file at the City of Rocks National 
Reserve; Morris, Ecological History of the City of Rocks National Reserve (note 22).    
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were prohibited.152  Some of the foresters reported that crows (probably Corvus corax) 

and magpies were having an impact on the birds’ nests in the early 1930s.  Still, by 1945, 

there was no recovery in the game bird populations.  Some of the problem was attributed 

to cold wet springs in the 1940s that were bad for the nests and hatches. Increases in 

game birds on the Albion Division were not reported until 1948.  It was concern over 

wildlife, such as birds and deer, that brought the Albion Division under protection from 

hunting, but it was concerns over a different resource that brought the City of Rocks into 

preservation status.  

 
Recognition, preservation, and changing uses    

Formal recognition of the unique granite formations and the City of Rock’s 

historical significance to America’s westward expansion began in 1957 when the school 

section was classified as an Idaho State Park.153  At the same time, a new use of the 

woodlands was added by the BLM in 1957 when it decided to sell pinyon pine for 

Christmas trees to the public.  Prior to this program, tree sales were exclusively to 

commercial cutters.  Commercial cutting was discontinued in 1961 due to popularity of 

the Christmas tree sales, and an estimated 600 trees were cut annually (based on permit 

sales) during the Christmas tree program.154  In 1961, there was already concern about 

the current level of u

 
152 MNF History 1941 (note 75). 
153 HRA, Historic Resources Study (note 1).   
154 Bureau of Land Management Christmas Tree Management Plan [BLM-CTMP], on 
file at the Bureau of Land Management Burley District Office, Burley, ID, 1981.  
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The lack of replanting and stand improvement has deprived the area to a point 
where future Xmas tree cuttings would, in a short time, eliminate the area 
of pinyon pine and leave it open for complete invasion of junipers.155  

 
The Burley District pursued some experimental plot thinning and improvements in the 

early 1960s to try to increase the yield and quality of the smaller pinyon pines favored for 

Christmas trees.156  The program proved very popular but the tree sales were 

discontinued in 1968 due to concerns with over-harvesting and a need for invent

  

Starting about the same time as the creation of the new Idaho State Park in the 

City of Rocks, the area began to experience increases in annual precipitation.  In fact,

1960s were some of the wettest years on record (Figure 3-2).  This wetter than usu

period caused some flooding, washed out reservoirs, and began down-cutting the 

streambeds in the riparian areas.  This, in turn, lowered the water table, drained the 

meadows and provided even more opportunity for sagebrush to flourish. 158  Cultivation

practices, in the 1960s and earlier, as well as herbicides may have also played a part in 

reducing the level of native herbaceous understory and increasing erosion.159  Crested 

wheatgrass seeding continued through at least the 1960s (Plates 9 and 10).  Many of t

 
155 Quote from John F. Kenny in Bureau of Land Management Burley District Report, on 
file at the Bureau of Land Management Burley District Office, Burley, ID, 1961, 1.  
156 Bureau of Land Management Memo, on file at the Bureau of Land Management 
Burley District Office, Burley, ID, 1965.   
157 BLM-CTMP 1981 (note 154).   
158 Oral history with Jim Lloyd (note 63); Oral history with Stan Lloyd (note 114).  
159 J.P. Blaisdell and W.F. Mueggler, Effect of 2,4-D on forbs and shrubs associated with 
big sagebrush, Journal of Range Management  9 (1956) 38-40. 
160 Sanders, Bunting and Wright, Grazing Management Plan (note 73); and personal 
observation of the author.   



 73

                                                

wheatgrass type covered an estimated 1,996 ha in 2005, and was the largest cover type 

recorded in the Reserve.161  

Sagebrush was not the only plant targeted by rangeland managers for removal to 

increase forage production.  Starting in the 1950s and following well into the 1960s, 

pinyon-juniper woodlands were viewed as a “king-size weed patch” in “need of 

eradication”.162  Land managers across the Intermountain West engaged in chaining, 

herbicide spraying and reseeding pinyon-juniper woodlands to increase forage 

production.163  In the 1970s, environmentalists began to challenge these drastic 

mechanical removals of pinyon-juniper woodlands.164  Additionally, the energy crisis and 

fuel costs in the 1970s refocused some attention on these woodlands as a good source of 

heating fuel.165  There was no evidence that this recurrent land use of wood fuel 

harvesting increased again in the City of Rocks.  Nor were there any large scale 

manipulations of the woodlands within the Reserve during this time.  However, local 

residents and land managers did notice the trees had been spreading further down the hill 

slopes into the valleys and increasing in cover and density (Plate 13).166  The Grazing 

 
161 G.M Wilson, Landcover Classification of the City of Rocks National Reserve Using  
ASTER Satellite Imagery, produced through the National Park Service Upper Columbia 
Basin Network Inventory and Monitoring Program, on file at the City of Rocks National 
Reserve, 2005.   
162 D. Tidwell, Multi-resource management of pinyon-juniper woodlands: times have 
changed, but do we know it? in:  Proceedings: Pinyon-Juniper Conference, Reno, NV, 
1986, R.L. Everett (Ed), Intermountain Research Station, 1986, 5-8; N.E. West and 
J.A.Young, Intermountain valleys and lower mountain slopes. In: M.G. Barbour and 
W.D. Billings (Eds),  North American Terrestrial Vegetation, 2nd ed., Cambridge, 256-
284.    
163 West and J.A.Young, Intermountain valleys and lower mountain slopes (note 162). 
164 Tidwell, Multi-resource management of pinyon-juniper woodlands (note 162).   
165 Tidwell, Multi-resource management of pinyon-juniper woodlands (note 162). 
166 Morris, Ecological History of the City of Rocks National Reserve (note 22).  
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Evaluation Summary for the Circle Creek Allotment 1984-1988 showed a 300% 

increase in pinyon pine in just four years.  This Grazing Summary further demonstrated 

the trend: 

As for unpalatable and undesirable forbs, a quick comparison will show an 
increase in forbs that are not generally grazed at all.  As for the larger 
species, large increases can be seen in Pimo [pinyon pine] as well as 
shrubs that are unpalatable to cattle and others that can be utilized by 
deer.167  
 
Livestock grazing had been working to select against the species most desirable 

for forage and in favor of the forbs and woody species cattle and sheep found 

unpalatable.  But, it may not have been just livestock grazing that was influencing the 

loss of the understory species.  Overstory crown cover has been clearly linked to the 

reduction of perennial grasses as well as associate forb and shrub species.168  Even if the 

trees are not yet touching, “the root systems [of juniper] extend two to three times wider 

than the crown canopy” and they can easily dominate the scarce water and nutrient 

resources in the soil.169  Research into mechanisms for the expansion of woodlands have 

also included historic fuel wood consumption, altered fire regimes, climate change, 

increasing atmospheric CO2 levels, competitive ability and interactions with seed 

 
167 Grazing Evaluation Summary from 1984 to 1988 for Circle Creek Allotment, Bureau 
of Land Management Allotment Files, on file at the Bureau of Land Management Burley 
District Office, Burley, ID.   
168 N.E. West, Successional patterns and productivity potentials of pinyon-juniper 
ecosystems, in: National Research Council, Developing Strategies for Rangeland 
Management, Boulder, 1984, 1301-1332.    
169 N.E. West, Junipers of the Western U.S.: classification, distribution, ecology, and 
control, in: L.F. James, J.O. Evans, M.H. Ralphs and R.D. Child (Eds), Noxious Range 
Weeds, Boulder, 1991, 326-333, 328.  
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dispersing animals.170  This expansion has been noted for causing several land 

management issues across the western US including loss of wildlife habitat, soil erosion, 

lower water yield and quality, and catastrophic stand replacing crown fires.171  

In 1981, the BLM considered options for reinstating the Christmas tree sales due 

to increased pressure from the public and in an attempt to get control of illegal cutting.172  

Following a 1981 inventory and analysis, the program switched to bi-annual sales of 

about 500 pinyon pine alternating with juniper tree sales in the early 1980s to “ensure 

good management and availability in the years to come.”173  In 1983, a multi-agency 

meeting was held between the Burley BLM District, the Sawtooth National Forest, the 

Salt Lake BLM District, and the Idaho State BLM office to discuss Christmas tree 

management programs, ways to “curb the theft of pinyon,” and how to coordinate yield to 

meet the public demand.174  At the time the Burley District’s inventory had been 

completed and an allowable cut of an estimated 250 trees per year had been established.  

After a study determined that Christmas-tree-size pinyon trees were nearly 200 years old, 

 
170 N.E. West, Spatial pattern-functional interactions in shrub-dominated plant 
communities, In:  McKell, C.M. (Ed), The Biology and Utilization of Shrubs, Burlington, 
1989, 283-305; Miller, Svejcar, West, Implications of livestock grazing (note 18).   
171 West, Spatial pattern-functional interactions in shrub-dominated plant communities 
(note 170); R.A. Evans, Management of Pinyon-Juniper Woodlands, USDA Forest 
Service, Intermountain Research Station, General Technical Report, INT-249, 1988; 
Miller, Svejcar, West, Implications of livestock grazing (note 18).    
172 BLM-CTMP 1981 (note 154). 
173 Bureau of Land Management Press Release, on file at the Bureau of Land 
Management Burley District Office, Burley, ID, 1986.   
174 Bureau of Land Management Report of Meeting, on file at the Bureau of Land 
Management Burley District Office, Burley, ID, 1983.  
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the program was abandoned for a few years.  It has since been reinstated with about 

100 to 120 trees cut per year.175  

In the mid 1980s, another concern emerged over the pinyon pine in the City of 

Rocks and surrounding area.  The black stain fungus (Verticicladiella spp.) had infected 

some of the pinyon pine.  According to a BLM report in 1986, the black stain spread 

radially through root contact from the center of the infected cluster of trees.  It tends to 

kill older trees and affected pinyons are often invaded by the Ips beetle (Ips spp.) prior to 

death.176  At that time, it was also reported that the aspen were “suffering from a foliar 

pathogen and insects” because they were “overmature and need to be regenerated.”  

However, a recent assessment of the aspen in the City of Rocks National Reserve 

suggested that regeneration in the stands was not being suppressed by the lack fire or by 

overgrazing and that there was a “relative absence” of invasion and overtopping by other 

trees.177  

The expansion of woodland and sagebrush cover is especially noticeable in the 

City of Rocks in photographs since the 1950s (Plate 13).  Another impressive increase 

followed this same trend.  There has been a pronounced increase in the number of 

hectares burned in the Reserve since the 1950s (Figure 3-5).  In the 1950s, only about 3% 

of the Reserve burned.  Throughout the 1960s, 1970s and 1980s, less than 1% was 

 
175 Jim Tharp, BLM Burley District Ecologist, personal communication, 2006.  
176 Bureau of Land Management Condition Report, on file at the Bureau of Land 
Management Burley District Office, Burley, ID, 1986.    
177 N. Batten, M. Case, J. Collette, B. Cram, H. Hill, E. Hoffnagle, N. Mullens, T. 
Rodhouse, J. Steele, J.Vincent, P. Wolken, and M. Wyse,  Baseline Survey of Quaking 
Aspen (Populus tremuloides) in City of Rocks National Reserve, produced for City of 
Rocks National Reserve through the OMSI Botany Research Team, on file at the City of 
Rocks, 2005, 7.   
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burned.  Then, from the 4% burned during the 1990s, there was a large jump when 

14% of the Reserve was blackened in just one fire in 2000.  Of the 5,795 ha within the 

City of Rocks, an estimated 1,442 ha or at least 25% of the Reserve burned over the 

reporting period from 1926 to 2005.  Fires in the Reserve not only got larger but also 

more difficult, time consuming and costly to control.178  

The City of Rocks was designated as a National Historic Landmark in 1964 and 

as a National Natural Landmark in 1974.179  Reports of “vandalism” and “indiscriminate 

use of off road vehicles and firearms, hiking and camping and poor climbing practices” 

were said to have damaged the rocks as well.180  The current boundaries of the City of 

Rocks National Reserve were established in 1988.181  A number of recreational activities 

are available in the Reserve including camping, hiking, birding, horseback riding, 

mountain biking, hunting and historical trail sightseeing.  The most popular reason for 

visiting, however, seems to be the world class rock climbing.182  The Reserve was well 

on its way to international recognition in the late 1970s and surely peaked as a rock 

climbing destination in the late 1980s with the publication of the first City of Rocks 

climber’s guide.183  Under concurrent status as a unit in the National Park System and 

Idaho State Parks, the City of Rocks National Reserve has received 80,000 to 97,0

 
178 L. Morris, Fire History of the City of Rocks National Reserve from 1926 to 2006, 
National Park Service Pacific Northwest Region, 2006.   
179 HRA, Historic Resources Study (note 1).     
180 G. Wolf, Idaho Senators want area Protected, City of Rocks study prompts action,  
Pocatello-Chubbuk, Idaho, Thursday, June 25, Idaho State Journal Section, 1987, 8.    
181 Public Law 100-696, Arizona-Idaho Conservation Act of 1988. 
182 United States Department of the Interior, National Park System (USDI-NPS), City of  
Rocks National Reserve Comprehensive Management Plan, Development Concept Plan 
and Environmental Impact Statement, 1994.   
183 HRA, Historic Resources Study (note 1).  
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visitors annually during the early to mid 1990s.184  Over the last sixteen years, average 

annual visitation was 76,617 peop

Many of the residents in the local communities have stopped going into the City 

of Rocks because they say there are too many other people up there now.  In the past, the 

City of Rocks was mostly used by local people.186  It was a popular place for the locals to 

go for picnics, family reunions or just to play.  From what the community described in 

oral histories, people have been climbing, rolling and moving rocks out there since as 

long as there have been people coming into this valley (Plate 8).  The memories as well 

as the signatures are beginning to fade and you cannot even see the emigrants’ 

inscriptions from the road anymore.187  There is now a whole generation of kids in the 

community that have only known the City of Rocks as a National Reserve.188  

The increasing visitation at the Reserve has changed the community as well as the 

landscape.  New campgrounds, water facilities, restrooms and trails have been 

constructed to accommodate its gaining popularity.  The Reserve purchased new property 

within the City of Rocks, and began construction of an equestrian campground on the 

east side of the Smokey Mountains in cooperation with the BLM.189  Some of the most 

vivid and rapid changes in the last few decades have been from soil erosion and roads, 

 
184 USDI –NPS 1994 (note 182).   
185 Sixteen year average calculated from yearly visitation numbers for 1995 through 2006 
reported by the National Park Service on its Operations Formulation System (online at 
http://www.nps.gov/ciro) only sixteen years are included because the data for 1994 was 
incomplete. 
186 Oral history transcription with Delmar Vail (note 106). 
187 Oral history with Venna Ward (note 129).  
188 Oral history with Wallace Keck, Superintendent of City of Rocks National Reserve, 
interviewed by Lesley Morris, September 12, 2005, on file at the City of Rocks National 
Reserve.   
189 Oral history with Wallace Keck (note 188).     

http://www.nps.gov/ciro
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which often go together.  The nature of the decomposed, granitic soil in the City of 

Rocks makes it very susceptible to erosion.  So much so, it could “practically be eroded 

using an eye dropper.”190  Several projects were initiated in the 1990s to control erosion 

of roads, trails and staging areas for rock climbers (Plate 14).191  There was a lot of 

culvert work completed in the 1990s in the Reserve to move the water off the roads.192   

Castle Rocks State Park, just a few miles from the Reserve, is also experiencing 

increased development as it is prepared by managers to off-set the density of climbers 

and other visitors to the Reserve in the peak summer months.193  A new road into Castles 

State Park was constructed in 2007.  The popularity of these two parks, in conjunction 

with the Back Country Byway status for the route leading into the Reserve, helped gain 

state funds to redirect and resurface the highway leading into the City of Rocks National 

Reserve.  Now, relieved of difficulties with road travel and access, people are once again 

streaming into these valleys from May through August in even greater numbers than 

during the peak of overland emigration.   

 
Interpretation of the vegetation changes  

The earliest photos of the City of Rocks National Reserve from 1868 illustrate 

very well that the vegetation has changed in the sagebrush steppe dominated valley and 

along the hillslopes now thick with pinyon-juniper woodlands (Plates 1-4).  The change 

in plant species shown in (Plate 1) the valley bottoms is a product of multiple and 

 
190 Oral history with Ned Jackson (note 94); Oral history with Wallace Keck (note 188); 
Oral history with Brad Shilling, employee at City of Rocks National Reserve, interviewed 
by Lesley Morris, September 13, 2005, on file at the City of Rocks National Reserve.  
191 Oral history with Brad Shilling (note 190).   
192 Oral history with Wallace Keck (note 188). 
193 Oral history with Wallace Keck (note 188); Oral history with Brad Shilling (note 190). 
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overlapping factors since European settlement.  The bunchgrasses of these sagebrush 

steppe areas were likely already heavily grazed and trampled by the end of the California 

Trail era, even if this use did not change the overall vegetation.  Perhaps the cooler and 

wetter climate during the Little Ice Age helped these cool season grasses recover.  But the 

droughts of late 1880s, as well as the severe overgrazing and improper timing of use by 

the cattle barons, precipitated a decline in grasses and herbaceous plant species.   

The era of dry farming followed, and any remaining vigorous stands of native 

grass and healthy sagebrush steppe in low slope areas were targeted for plowing.  In 

addition, many hectares of the valley bottom were cleared and fenced to “prove up” and 

gain patent on the land.  Clearing and plowing are all known to have severe impacts on 

sagebrush steppe that can take decades to recover.194  Fallow dry-farm plots were left 

exposed during the droughts of the 1920s and 1930s and many weedy species, such as 

cheatgrass, began to establish and spread.  Unregulated livestock grazing continued until 

at least the 1950s, when the new Bureau of Land Management allotments were 

adjudicated.  This institution of grazing management also meant that, instead of decades 

to recover from plowing, many of these same valley lands were again cleared and seeded 

with the introduced forage grass, crested wheatgrass.  The fallow dry farming lots were 

infested with weeds and many of these introduced species likely spread further with this 

repeated soil disturbance.  Grazing pressure from cattle, horses, sheep, and deer also 

 
194  Bracken, Extent and condition of the range lands for Utah (note 72); Bolton, Smith, 
and Link, Soil microbial biomass (note 72); Piemeisel, Changes in Weedy Plant Cover 
(note 72); Sanders, Bunting and Wright, Grazing Management Plan (note 73); and 
personal observation of the author, 2005.   
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likely enhanced the populations of unpalatable species (like sagebrush) by reducing the 

vigor and cover of the palatable ones (like grasses and forbs). 

Even though crested wheatgrass was an improvement in livestock forage and it 

sustained the local ranching economy, this management effort did not help increase the 

other native bunch grasses, forbs or keep the sagebrush from reestablishing.  In fact, 

continual soil disturbance, as well as spraying herbicide to maintain crested wheatgrass 

stands, probably had a devastating impact on forbs that were also already strained under 

historic sheep grazing and drought pressures.  Sagebrush has apparently had no problem 

reoccupying disturbed, cleared and plowed sites, as can be seen in many of the repeated 

images in the Plates.  Interestingly, however, pinyon-juniper woodland encroachment 

into the valleys seems to be excluded from areas that were historically plowed multiple 

times.  The most recent plow/seeding line is visible as a stark coloration contrast in 

between the grayish sagebrush in valleys and the darker woodlands on the slopes (Plates 

7, 12, 13, and 14).  Today, some areas have more grasses than were visible in earlier 

photos but much of the valley is dominated by stands of sagebrush, the invasive cheat 

grass and remnants of the introduced crested wheatgrass.  

Likewise, the pinyon-juniper woodlands have clearly been expanding down the 

slopes and increasing in cover and density since the earliest records and photos in the 

Reserve.  Multiple factors were likely involved in these increasing woodland densities as 

well.  Most residents did not recall a lot of fires during their lifetime.  There was some 

fire suppression, but there also could have been a low incidence of fire because of the 

lack of fine fuels (e.g. grasses) to carry fires through sagebrush steppe and into the 

adjacent woodlands.  Now, fire carries across the closed canopy of the woodlands and 
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across the sagebrush.  A lack of fire, in conjunction with a whole history of drought 

and land use changes, seems likely to have encouraged this encroachment.  In contrast to 

grasses and forbs, sagebrush, pinyon pine and junipers are more resistant to periodic 

droughts because of physiological and morphological differences.  For example, woody 

species do not have to rebuild their above-ground tissues each year and their deep roots 

give them access to more soil moisture.195   

In addition to drought and lack of fire, there has been a decreasing demand for 

these tree species for fuel wood as local residents switched to oil, coal and electric 

heating.  There was also decreased demand for use of juniper fence posts after the 

homesteaders left in the 1920s and as people began to use metal posts instead.  There was 

also a decrease in pressure on the pinyon pine seeds since people were no longer 

dependent upon them as a food source and collected them less as a community.  The one 

potential “predator” of pinyon or juniper, porcupine, has been significantly reduced 

through hunting.  And finally, there was no evidence of any major insect or pathogen 

outbreaks that would have controlled the populations of either tree species until very 

recently.196  

The vegetation changes in the City of Rocks National Reserve since settlement 

are not different in many ways than what has been described across the rest of the Great 

Basin desert region.  There has been an overall “lignification” or increase in the woody 

cover of sagebrush, pinyon and juniper reported across the Intermountain West.  As well 

 
195 West and Young, Intermountain valleys and lower mountain slopes (note 162); 
Brown, Ecophysiology and water relations research in the pinyon-juniper vegetation type, 
in: R.L. Everett (Ed), Proceedings – Pinyon-juniper Conference, USDA Forest Service, 
Intermountain Research Station, General Technical Report INT-215, 1987, 398-405.  
196 BLM Condition Report 1986 (note 176).   
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as decreasing overall plant diversity through loss of native perennial bunch grasses, 

decreasing native forbs, and the spread of introduced and invasive grasses. 197  Many of 

the same factors are at play as well such as previous Native American land uses, historic 

dry farming, heavy livestock overgrazing, homesteader clearing and fence building, 

changing fire regimes and forage seeding projects.198  There are, however, at least two 

very unique aspects to the changes within the Reserve.  The first was that the City of 

Rocks did not appear to have woodland cutting for use in mines.  In other areas of the 

Great Basin, particularly in Nevada, the pinyon-juniper woodlands were harvested as 

cordwood for fuel and for making charcoal to run equipment in mining operations.  This 

historical cutting left many recent observers with the impression that the woodlands were 

new instead of recovering their historic ranges.199  The second was that the City of Rocks 

National Reserve has not yet experienced the frequent fire return intervals that have 

accompanied cheatgrass in other parts of the Great Basin.200  Unfortunately, recurrent 

wildfires and monocultures of invasive annual grasses may be in the future for the 

Reserve.   

 
197 West and Young, Intermountain valleys and lower mountain slopes (note 162).  
198 West and Young, Intermountain valleys and lower mountain slopes (note 162); Miller, 
Svejcar, West, Implications of livestock grazing (note 18); R.F. Miller and R.J. Tausch, 
The role of fire in juniper and pinyon woodlands: a descriptive analysis, in: K.E.M. 
Galley and T.P. Wilson (Eds), Proceedings of the Invasive Species Workshop: The Role 
of Fire in the Control and Spread of Invasive Species, Tall Timbers Research Station, 
Miscellaneous publication no. 11, 2000, 15-30. 
199 Young and Budy, Historical use of Nevada’s pinyon-juniper (note 7).  
200 West and Young, Intermountain valleys and lower mountain slopes (note 162). 
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Conclusion 

 
The earliest people to settle in the City of Rocks and the surrounding communities 

seem to have experienced a land that was very different than today.  There was reportedly 

more grass, more water, more snow and more harsh winters.  Those earliest settlers, 

however, also experienced a land very similar to the one today.  There were droughts that 

turned boggy areas to dust, impacted their livestock, their culinary water supplies, and the 

vegetation.  Part of the difference between then and now is the technology available to 

people for coping with droughts.  For example, people can now feed livestock over the 

winter with alfalfa grown with the assistance of wells and center pivot sprinkler systems.   

Clearly there were a number of overlapping factors such as climate, stocking rates 

and timing of use, seed bank availability, fuel wood cutting, fence post cutting, land 

clearing, forage seeding, wildlife populations, agricultural developments and recreational 

activities that have all contributed to the changing vegetation over time in and around the 

City of Rocks.  Having gone more deeply into the testimony of our land witness, we find 

strong evidence of multiple causes for the changes in these treasured landscapes.   In fact, 

the causal links were overlapping, synchronous, dynamic and complex.  Certainly, 

livestock overgrazing has had a far reaching and negative impact upon western 

rangelands and in the City of Rocks National Reserve.  But if that plot line is incomplete, 

why does it continue to dominate the story? I argue that it is because blaming livestock as 

the one cause is easier.  If there is only one cause for ecological degradation then those 

changes become alluringly easy to understand and seemingly easy to solve.  After all, if it 

is just the livestock that are damaging rangelands, then take the livestock off!  This belief 

has become the rangeland equivalent of the Smokey the Bear phenomenon.  For years, 
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the National Forests promoted the idea and the public believed that if we could just 

keep fire out, the forest was well protected.201  Likewise, the public has been led to 

believe that if we can just get the livestock off the land, the range will somehow be 

protected and restored.   

It is time to look more closely into the complexities of the ecological history of 

landscapes.  This history is important for understanding the range of variability on this 

landscape and what may be its future potential.  If restoration is what we seek, we must 

follow each one of the threads in the whole knot that is the dynamic ecosystem.  A more 

complete history provides more than just a reference site as a goal for restoration.  It tells 

us what the potential may be for reaching that goal.  The idea that ecosystems are 

dynamic and that there are “multiple states” and “transitions” in which they can exist is 

gaining acceptance for rangeland managers and scientists.  Some of our rangelands may 

have crossed thresholds into new stable states that they are not going to transition out of 

easily, particularly with just the removal of livestock grazing.  We may be facing new 

ecosystem domains within which we must learn to manage, preserve and protect.202 

Both the natural and the cultural landscapes of the City of Rocks are temporary.  

And yet, it is interesting to see how many things do not change over time.  Yes, the 

 
201 For a discussion of how US Forest Service policy and Smokey the Bear influenced 
wildlands see S. Pyne, America’s Fires: Management of Wildlands and Forests, Durham, 
1997; and S. Pyne, Fire in America: A Cultural History of Wildland and Rural Fire, 
Princeton, 1987; for fire policy and impacts in the National Park Service see H. Rothman, 
Blazing Heritage: A history of Wildland Fire in the National Parks, Oxford, 2007.   
202 A more detailed discussion of the “State-and-Transition” model, thresholds and 
multiple stable states can be found in W.A. Laycock, Stable states and threshold of range 
condition on North American rangelands: a viewpoint, Journal of Range Management 44 
(1991) 427-433. 
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clothes change from fedoras to spandex, but people still climb the rocks. Yes, the 

wagons change from prairie schooners to station wagons, but people still travel through 

looking.  Yes, the axle grease changes to spray paint, but people still want to leave their 

mark.  Visitors draw it, photograph it, scramble over it and explore it.  Everyone 

envisions shapes in the rocks, names them and searches them for traces of the past.  

People still rush in by the thousands during its most accessible seasons and then leave it.  

It is a temporary landscape – visited and abandoned.  A temporary landscape – never 

remaining the same.  A land witness to change.  
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Figure 3.1  Vicinity maps for the City of Rocks National Reserve.  Map A shows location 
of Reserve in the Western US.  Map B shows local landmarks of the area.  Source:  HRA, 
Historic Resources Study (see Notes).  
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Figure 3-2  Five year running average precipitation for the study area. 
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Figure 3-3  Homesteads in the City of Rocks National Reserve. Source: Adapted from 
HRA, Historic Resources Study (see Notes).  
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Figure 3-4  City of Rocks National Reserve.  Map showing roads, trails and rocks 
mentioned in the text.   
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Figure 3-5  Hectares burned per decade in the City of Rocks National Reserve. 
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Plate 1(a)  Twin Sisters, 1868 

This photo was taken looking north toward the “Twin Sisters”.  The vegetation in the 

foreground includes: arrowleaf balsamroot (Balsamorhiza sagittata), rabbit brush 

(Chrysothamnus viscidiflorus), antelope bitterbrush (Purshia tridentata), some sagebrush 

(Artemisia tridentata) and likely bluebunch wheatgrass (Pseudoroegneria spicata).  

Photo:  Timothy O’Sullivan, National Archives and Records Administration, 1868 

 

Plate 1(b)  Twin Sisters, 2005 

About 130 years later, species diversity in the foreground is limited to sagebrush and 

crested wheatgrass (Agropyron desertorum).  Pinyon (Pinus monophylla) and juniper 

(Juniperus osteosperma) now occupy the granite apron.  Photo:  Lesley Morris, 2005 
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Plate 1(a)  Twin Sisters, 1868 

          
Plate 1(b)  Twin Sisters, 2005 
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Plate 2(a)  City of Rocks View 1, 1868 

This photo was taken looking northwest.  The area is now part of the Box Top Trail.  

Photo:  Timothy O’Sullivan, National Archives and Records Administration, 1868 

 

Plate 2(b)  City of Rocks View 1, 2005  

This repeat about 130 years later shows the increase in pinyon and juniper in both the 

foreground and along the low slopes in background.  Photo:  Lesley Morris, 2005 

 

 

 

 

 

 

 

 

 



 95

 
Plate 2(a)  City of Rocks View 1, 1868 

       
Plate 2(b)  City of Rocks View 1, 2005 
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Plate 3(a)  City of Rocks View 2, 1868 

This photo was damaged in the left corner because the original glass negative had started 

to peel.  It was taken looking northwest from near the top of Box Top Trail.  The distant 

slopes in upper right corner show signs of past fire (indicated by arrow).  Photo:  Timothy 

O’Sullivan, National Archives and Records Administration, 1868 

 

Plate 3(b)  City of Rocks View 2, 2005 

The damage to the original photo made it difficult to find a better match in the foreground 

for this photo, but the ridgeline was very similar.  About 130 years later, the fire scar is 

no longer visible on distant slopes in upper right hand corner due to infilling by conifer 

trees.  In addition, the pinyon and juniper woodlands increased on low slopes and into the 

valley bottom.  Photo:  Lesley Morris, 2005 
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Plate 3(a)  City of Rocks View 2, 1868 

 

        
Plate 3(b)  City of Rocks View 2, 2005 
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Plate 4(a)  Circle Creek, 1868  

This photo was taken looking east through the Circle Creek basin in the City of Rocks 

National Reserve.  Note the fire scar going up the hill slope in the background (indicated 

with arrow).  This low hill is known as Smokey Mountain.  The trees in the foreground 

where a human figure is seen are mountain mahogany (Cercocarpus ledifolius).  Photo:  

Timothy O’Sullivan, National Archives and Records Administration, 1868 

  

Plate 4(b)  Circle Creek, 2007  

Taken about 130 years later, the fire scar and the slopes on all of the hillsides have filled 

in with pinyon-juniper woodlands.  Pinyon and juniper are also obstructing most of the 

view in the foreground.  Mountain mahogany trees are still present in the left foreground.  

Photo:  Lesley Morris, 2007 
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Plate 4(a)  Circle Creek, 1868  

 

  
Plate 4(b)  Circle Creek, 2007  
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Plate 5(a)  Twin Sisters Road, 1940 

This image was taken from the southwest side of the Twin Sisters.  This road used to 

follow the section lines from the northeastern side of the Twin Sisters and cut through the 

rocks.  Photo:  Idaho State Historical Society, 1940 

 

Plate 5(b)  Twin Sisters Road, 2005 

This repeated image, about sixty-five years later, shows that the old road is grown over 

with sagebrush and the introduced crested wheatgrass.  Although not visible in the photo, 

locating this old road is still possible using the eroded swale it left behind.  Photo:  Lesley 

Morris, 2005   
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Plate 5(a)  Twin Sisters Road, 1940 
 

 
Plate 5(b)  Twin Sisters Road, 2005 
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Plate 6(a)  Top of Camp Rock, early 1900’s 

This photo was taken looking west from on top of Camp Rock.  This photo is likely from 

the early 1900s because a part of the California Trial (visible in the foreground) still 

appears to be the only real road, and there is no evidence of homesteading activity.  The 

smaller paths are likely sheep trails.  Photo:  Utah State Historical Society, no date 

 

Plate 6(b)  Top of Camp Rock, 2005 

Nearly 100 years later, the trails are no longer visible.  This area around Camp Rock was 

seed with crested wheatgrass by the 1960s (Plate 10).  Sagebrush has re-occupied the site, 

and has grown to nearly 3 m tall in some areas.  Photo:  Brad Shilling, Climbing Ranger, 

City of Rocks National Reserve, 2005  
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Plate 6(a)  Top of Camp Rock, early 1900’s 

 

 
Plate 6(b)  Top of Camp Rock, 2005 
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Plate 7(a)  Mikesell Homestead, no date 

This was the best reproduction of this photo that could be obtained from the South Idaho 

Press newspaper archives.  The Mikesell’s homesteaded this land by the Twin Sisters in 

1910 and lived here until 1920.  Clearly, the photo is prior to the one in Plate 7(b) from 

1930 since the windmill and the house are still intact.  Therefore, it is believed that the 

photo is probably taken in the early 1910s.  The California Trail ran across their property 

in front of the house.  It can be seen as the light streak in the foreground of the image.  

Their sheep camp is to the right of the house.  Mrs. Mikesell described their land as 

having sagebrush “like tall trees with blue grass growing among it”.  The area around the 

house and in the foreground was likely cleared for dry farming or for “proving up” on 

their patent.  Photo:  South Idaho Press, 1955, no date given for photo  
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Plate 7(b)  Mikesell Homestead, 1930  

This photo was taken looking west from what was the Mikesell’s homestead.  The 

building in this picture, according to oral histories, is a shed and not the Mikesell’s home.   

Remnants of the old windmill and corral are visible on the right side of the photo.  Photo:  

Utah State Historical Society, 1930 

 

Plate 7(c)  Mikesell Homestead, 2005 

Seventy five years after the photo in Plate 7(b), all of the structures are gone.  The 

sagebrush is not quite as dense as it appears in the 1930s photo.  There is more grass 

(mostly crested wheatgrass) visible as well.  Photo:  Lesley Morris, 2005  
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Plate 7(b)  Mikesell Homestead, 1930  

 

 

 
Plate 7(c)  Mikesell Homestead, 2005 
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Plate 8(a)  Top of Treasure Rock, early 1900’s  
 
This photo was taken from on top of Treasure Rock looking east toward Smokey 

Mountain.  Judging from clothing and no visible homesteading activity on the site, it was 

probably taken in the early 1900s.  The apparent fire scars on the hillside are even more 

evident in this view than in Plate 4.  Photo:  Cassia County Historical Society, no date   

 

Plate 8(b)  Top of Treasure Rock, 2005 

Pinyon-juniper woodlands have completely filled in the apparent fire scar.  The stark 

contrasting coloration from slope to valley is where pinyon-juniper woodlands meet the 

historic plow line.  Photo:  Brad Shilling, Climbing Ranger, City of Rocks National 

Reserve, 2005    
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Plate 8(a)  Top of Treasure Rock, early 1900’s  

 
 

 
Plate 8(b)  Top of Treasure Rock, 2005 
 

 



 109
Plate 9(a)  View from Turnout, 1963 

This photo was taken looking east near a turnout at the boundary of what was the USDA 

Forest Service land prior to the creation of the City of Rocks National Reserve.  The 

apparent old fire scar on the north slope of Smokey Mountain was still visible in the 

1960s.  Also, the signs of agricultural development are evident in the Circle Creek basin.  

These are likely areas where the land was cleared for crested wheatgrass seeding.  Photo:  

Idaho State Historical Society, 1963 

 

Plate 9(b)  View from Turnout, 2005 

About forty years later, the old fire scar has nearly disappeared as have the signs of 

agricultural fields in the valley.  The vegetation along the riparian corridor is not as 

prominent as it appears in the 1960s.  This may be due to incision of the creek bed over 

time.  Photo:  Lesley Morris, 2005 
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Plate 9(a)  View from Turnout, 1963 

 
 

    
Plate 9(b)  View from Turnout, 2005 
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Plate 10(a)  Circle Creek Basin, 1967 

This photo was taken from in the road entering the Circle Creek Basin looking southwest.  

The fields of crested wheatgrass are clearly visible in the left side of the photo.  Cattle are 

grazing in the first field to the left of the road.  Photo:  USDA Forest Service photo, on 

file at City of Rocks National Reserve, 1967 

 

Plate 10(b)  Circle Creek Basin, 2005  

Nearly 40 years later, the crested wheatgrass seedings have been re-occupied by 

sagebrush.  The formerly seeded area is still detectable by the visible lack of pinyon or 

juniper.  On the slopes, where the ground was not plowed for the seeding, there has been 

an increase in density of the woodland.  This legacy can also be seen in Plate 8.  Photo:  

Lesley Morris, 2005 
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Plate 10(a)  Circle Creek Basin, 1967 

 

  
Plate 10(b)  Circle Creek Basin, 2005  
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Plate 11(a)  Circle Creek Road, 1940 
 
This photo was taken looking west into the Circle Creek basin from the Almo road into 

the City of Rocks.  The building is a shed or a barn on the Circle Creek Ranch, but the 

house is not visible from this angle.  The sagebrush in the foreground is abundant.  There 

are no recognizable grasses in the understory.  Photo:  Idaho State Historical Society, 

1940   

 

Plate 11(b)  Circle Creek Road, 2005  

Sixty five years later, the Circle Creek Ranch building is gone, but two new structures 

have been added to the scene – a fence and telephone/power poles.  More grasses are 

visible in the foreground.  The road has been reclaimed by vegetation.  Pinyon and 

juniper now block the view of the rocks on the right.  Photo:  Lesley Morris, 2005 
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Plate 11(a)  Circle Creek Road, 1940 

 
 

   
Plate 11(b)  Circle Creek Road, 2005  
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Plate 12(a)  Twin Sisters, 1923  
 
This photo was taken from the road (visible in left hand corner of the photo) looking 

northeast toward the Twin Sisters.  The vegetation from the foreground to the distance is 

mostly sagebrush with no recognizable grass species present.  Many young junipers are 

growing in the valley.  Photo:  Idaho State Historical Society, 1923    

 

Plate 12(b)  Twin Sisters, 2005  

About 80 years later, fire burned a portion of the vegetation in the foreground at this site.  

The current vegetation along the roadside is largely invasive species such as tumble 

mustard (Sisymbrium altissimum) and cheatgrass (Bromus tectorum).  The City of Rocks 

seeded this area following the fire in 2000.  Photo:  Lesley Morris, 2005 
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Plate 12(a)  Twin Sisters, 1923  

 
 

    
Plate 12(b)  Twin Sisters, 2005  
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Plate 13(a)  Top of Bath Rock, 1950’s  

This photo was taken from on top of Bath Rock looking southeast toward Smokey 

Mountain.  The apparent fire scars are still visible along the north slopes of Smokey 

Mountain in the distance on the left.  Photo:  Courtesy of the Bruesch Family, 1950s  

 

Plate 13(b)  Top of Bath Rock, 2005  

About fifty five years later, the apparent fire scars have filled in the slope on the far left 

of the image.  Pinyon and juniper have also moved down slope and increased density on 

the east slope of the Smokey Mountain in the upper right corner.  The tree, encircled by a 

road, on the lower left portion of the 1950s photo is still present.  Photo:  Brad Shilling, 

Climbing Ranger, City of Rocks National Reserve, 2005   
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Plate 13(a)  Top of Bath Rock, 1950’s  

 

 
 

 
Plate 13(b)  Top of Bath Rock, 2005  
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Plate 14(a)  Road to Bread Loaves, 1940  
 
This photo was taken looking north from the Emery Canyon Road toward the “Bread 

Loaves”.  At the time, the road was mostly just a two-track.  The drainage to the left of 

the road is barely visible.  The vegetation in the foreground is unrecognizable.  Photo:  

Idaho State Historical Society, 1940  

 

Plate 14(b)  Road to Bread Loaves, 1990’s  

This file photo from the City of Rocks shows how much the road has cut and eroded by 

the 1990s.  Photo:  City of Rocks National Reserve, mid 1990s    
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Plate 14(a)  Road to Bread Loaves, 1940  

 

    
Plate 14(b)  Road to Bread Loaves, 1990’s  
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Plate 14(c)  Road to Bread Loaves, 1990’s  

Same photo as Plate 14(b).  Photo:  City of Rocks National Reserve, mid 1990’s 

 

Plate 14(d)  Road to Bread Loaves, 2005  

Sixty five years after the original photo, the road and the vegetation have changed a great 

deal.  Emery Canyon Road is now bladed and maintained.  Erosion has been a large 

problem for the Reserve in this area.  Several erosion projects, including planting these 

willows, were initiated in the 1990s.  Photo:  Lesley Morris, 2005    
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Plate 14(c)  Road to Bread Loaves, 1990’s  

       
Plate 14(d)  Road to Bread Loaves, 2005 
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CHAPTER 4 

PHYTOLITH TYPES AND TYPE-FREQUENCIES IN NATIVE AND INTRODUCED 

SPECIES OF THE SAGEBRUSH STEPPE AND PINYON-JUNIPER  

WOODLANDS OF THE GREAT BASIN, USA1 

 
Abstract 
 

This study catalogued phytolith morphotypes and production of common native 

and introduced flora from two primary plant community types in the Great Basin Desert 

region of the USA – sagebrush steppe and pinyon-juniper woodlands.  The reference 

collection for this study included 143 species from 40 plant families, including 68 

introduced and 75 native plants.  We examined 96 forbs, 33 grasses, sedges and rushes as 

well as 14 trees and shrubs.  The phytolith morphotypes of more than 100 of these 

species were previously not described.  We found that about 51% of the plants produced 

none or only trace amounts of phytoliths, while the remaining 49% had common to 

abundant production.  All the grass species produced abundant phytoliths.  Morphotype 

and frequency of phytolith production differed between native and introduced grass 

species.  At least half of the forbs had common phytolith production and most generated 

the common dicotyledon morphotypes such as silicified epidermal cells and hairs.  

Several morphotypes in native and introduced forbs were unique for the genus and 

species within the reference collection.  There was very little phytolith production in the 

woody species we examined.  We found no identifiable phytolith assemblage for pinyon-

juniper woodlands in the Great Basin.  These results will be useful for future research 

regarding historical ecology, palaeoecology, palaeoclimatology and ethnobotany.    
 

1Coauthored by Lesley R. Morris, Fred A. Baker, and Ronald J. Ryel. 
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Introduction 

Phytolith analysis is an increasingly popular tool for revealing historic vegetation 

patterns and human uses across the fields of historical ecology, palaeoecology, 

palaeoethnobotany and archaeology (Meunier and Colin, 2001).  Phytoliths are silica 

casts of plant cells created within living vegetation that can remain in sediments long 

after the living tissue has decayed (Rovner, 1971).  Phytolith analysis is limited by a lack 

of catalogued phytoliths and a need to relate historic soil phytolith assemblages to 

modern day analogues (Fredlund, 2001; Piperno, 2006) particularly in North America 

(Blinnikov, 2005).  Researchers often have to assemble a reference collection for an area 

prior to defining research questions.  Previous research in the US has described phytoliths 

at the community level in ponderosa pine forests (Kerns, 2001) and at the regional level 

in the Pacific Northwest (Blinnikov, 2005).  However, there are no described reference 

collections from two of the Great Basin region’s most dominant community types – 

sagebrush steppe and pinyon-juniper woodlands.  Soil phytolith research in these more 

arid areas is very important because few lakes are available for sedimentary analysis.  

Investigations into the potential for soil phytolith analysis to inform historic ecology and 

palaeoecology are currently underway in the Great Basin (Morris et al., in press). 

While some species described in previous studies overlap with the flora of the 

Great Basin, no one has systematically examined and catalogued phytoliths of this 

region’s forbs and introduced species.  Phytolith morphotypes from introduced species 

may provide a key to interpreting the stratigraphy in the soil because the timeframe of 

their introduction is known.  For instance, common phytolith morphotypes in the invasive 
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cheatgrass (Bromus tectorum) were noted as possible evidence of  the arrival of the 

Euro-American settlers (Blinnikov et al., 2002; Blinnikov, 2005).  Blinnikov (2005) 

analyzed and described 38 species (12 trees, 6 shrubs, 17 grasses, and 3 forbs).  Forbs 

have been particularly overlooked in most cataloguing efforts.  Furthermore, most of the 

regional studies and reports on dicotyledons have focused solely on the leaf material and 

have not explored phytolith production in wood (Bozarth, 1992; Kerns, 2001; Blinnikov, 

2005). Notable exceptions to this have come from studies involving the Pinaceae family 

and other coniferous trees (Klein and Geis, 1978; Kerns, 2001).  Here, we report upon the 

phytolith production and morphotypes of common Great Basin native and introduced 

species found in two wide spread ecosystem types – pinyon juniper woodlands and 

sagebrush-steppe. 

 
Study area 

There are several ways in which the Great Basin boundary can be defined 

including hydrographically, physiographically, and even culturally (Grayson, 1993).  

However, since this paper focuses on plant communities, it is most appropriately defined 

by the floristic boundary (Figure 4-1).  Most of the Great Basin ecosystems are within the 

rain shadow of the Sierra Nevada Mountains in western Nevada and eastern California, 

which depletes the moisture from Pacific storms (Beatley, 1975).  The Great Basin is 

known as a “cold” desert because the majority of its precipitation comes in the form of 

winter snow (MacMahon, 1988).  Two major ecosystem types within the floristic Great 

Basin are the sagebrush steppe and pinyon-juniper woodlands.   
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The sagebrush steppe is the largest of the North American temperate semi-

desert types (West, 1983).  The ecosystem gets its name from the historically equal 

dominance of shrubs from the genus Artemisia and various species of bunchgrasses 

(West, 1983).  Sagebrush steppe occurs in areas with precipitation varying from 150-400 

mm (Flaschka et al., 1987).  Around 60% of this precipitation arrives as snow from 

winter storms generated in the Pacific Oceans (Miller et al., 1994).  European settlement 

into this portion of the interior western US did not begin until the 1860s (Miller et al., 

1994).  European settlement introduced livestock grazing, agriculture development and 

many exotic plant species to the region (Miller et al., 1994).   

There are estimates of between 43 and 100 million acres of pinyon-juniper 

woodland in the southwestern United States (Tueller et al., 1979).  Nearly 17.6 million 

acres of this ecosystem type occur in the Great Basin alone (West et al., 1998).  In 

general, these woodlands are found in areas with 203-508 mm of annual precipitation 

(West et al., 1975). The major tree species in the Great Basin pinyon-juniper woodlands 

are Pinus monophylla (single leaf pinyon) and Juniperus osteosperma (Utah juniper). The 

understory species are highly variable across the region and can be found in adjacent 

forests, shrub steppes or grasslands (West et al., 1975). 

 
Methods 

We created a reference collection of 143 plant species representing native and 

introduced Great Basin flora from southern Idaho and northern Utah.  Of the 143 plants, 

68 introduced species and 75 native species were processed.  We catalogued:  96 forbs; 

33 grasses, sedges and rushes; and 14 tree and shrub species.  The collection spans 40 
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families.  There were 46 native forbs, 16 native grasses, 2 native rushes, 1 native 

sedge, and 10 native tree and shrub species.  There were 50 introduced forbs, 14 

introduced grasses, and 4 introduced tree species.  

Phytoliths were extracted from the reference plants using dry-ashing techniques 

(Pearsall, 2000; Kerns, 2001).  The plant material was divided into leaf, stem and 

seed/flower portions for analysis unless impractical.  All forb and grass material was 

washed using deionized water and dried overnight.  It was then weighed and placed into 

crucibles for dry-ashing.  Forb and grass material was ashed in a muffle furnace at 450° C 

for 4-5 hours.  Woody material from trees and shrubs was separated into leaf (needle), 

stem and seed/flowering parts.  In addition, some tree bark material was examined 

separately.  The stems and bark were washed in a sonic bath for ½ hour, air-dried 

overnight, weighed, placed in crucibles and then ashed in the muffle furnace for 5-6 

hours at 450° C.   

Phytolith morphotypes are redundant across many taxa within the Poaceae 

(Rovner, 1971).  Therefore, procedures to identify phytolith types and their type 

frequencies within grasses are often used (Kerns, 2001; Carnelli et al., 2004; Blinnikov, 

2005).  These frequencies are usually expressed as a percentage of the total number of 

phytoliths counted on a slide.  Following the methods of Blinnikov (2005) and Kerns 

(2001) we conducted cell counts of at least 100 morphotypes in the native and introduced 

grasses.  We only counted disarticulated cells that were intact and recognizable, with the 

exception of broken hair bases.  We did not include the distal portions of a broken hair.  

Since the most common morphotypes in our species assemblage were different than 

either Blinnikov (2005) or Kerns (2001), we included some different morphotypes than in 
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either previous study.  However, we attempted to use common types and the modified 

classification system from Blinnikov (2005) as much as possible for comparison because 

his study had the most species overlap with ours.  Finally, our type frequency analysis 

was conducted on the leaf and culm material only and, in most cases, inflorescences were 

examined separately.  At least one photo for each counted morphotype is included in 

Plates II and V. 

We employed the descriptive index developed by Wallis (2003) to estimate and 

rank phytolith production among the species in our reference collection.  Slides of the 

material were viewed under 100-400x magnification and rated under the following four 

categories:  

1) Non-producer (NP) – no phytoliths observed in any field of view 

2) Trace (T) – a small number of phytoliths observed on the entire slide,     

     with none in most fields    

3) Common (C) – a small number of phytoliths observed in the majority of  

     fields 

4) Abundant (A) – a large number of phytoliths observed in the majority    

    of fields 

We only described the phytoliths in detail that were from common or abundant 

producing species (Wallis, 2003).  When possible, we described phytolith morphotypes 

using the International Code for Phytolith Nomenclature (Madella et al., 2005).  

Identification of plant species in the reference collection was confirmed by the 

Intermountain Herbarium at Utah State University where the plant specimens and ashed 
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material are housed.  Photographs of all the phytolith morphotypes from the complete 

reference collection may also be viewed on line (Morris, 2008). 

 
Results and discussion 

Out of the 143 species examined in this collection, only 6 had different abundance 

classes for leaf and stem material.  All of these species were trees and shrubs.  Of the 137 

remaining species, 51% were non-producers or only trace producers of phytoliths, 24% 

were common, and 25% were abundant producers.  The production indexes for all 

species are summarized in Tables 4-1 and 4-2.  

Dicotyledons are known to produce at least nine distinct morphotypes (Bozarth, 

1992).  Most of these nine morphotypes were observed in both native and introduced 

forbs from the collection.  Typical dicotyledon morphotypes include: silicification of the 

epidermal cells, known as polyhedral epidermal (Plate I, o) and jigsaw or anticlinal 

epidermal (Plate I, p), mesophyll (Plate IV, a), vascular tissues (e.g. tracheids) (Plate III, 

c), various hairs and hair bases (Bozarth, 1992; Plates I and IV).  All of these 

dicotyledonous morphotypes are considered less useful than other types of phytoliths 

because they are redundant across taxonomic groups and typically do not preserve well in 

sediments (Piperno, 2006).  However, dicotyledonous species are often neglected and 

many forbs have not been catalogued (Carnelli et al., 2004).  Furthermore, groups of 

epidermal cells (called silica skeletons) have been extracted from modern soil sediments 

(Blinnikov, 2005) and in some archeological contexts (Albert and Weiner, 2000).  We 

found a number of silica skeletons and hairs that we believe have unique characteristics 
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which may further aid researchers in understanding which taxa these morphotypes 

represent.   

Woody species have received a little more attention than forbs in phytoliths 

studies.  Several studies have examined the common families of trees and shrubs in the 

Great Basin including the Pinaceae, Cupressaceae, Asteraceae, and Rosaceae (Klein and 

Geis, 1978; Kerns, 2001; Blinnikov, 2005).  Bozarth (1992) looked at 20 woody species; 

however, he only examined their leaves.  In these, he found silicified epidermal cells 

similar to those in herbaceous dicotyledons.  A few have looked specifically at the woody 

stems of several plant families (Scurfield et al., 1974; Kondo et al., 1994; Albert and 

Weiner, 2001).  The Pinaceae, in particular, has received more attention in the literature 

because several species produce unique morphotypes (Klein and Geis, 1978; Kerns, 

2001; Blinnikov, 2005).  Several of our woody tree and shrub species have not been 

previously examined, and we also looked at the seeds, cones, and flowering parts.  We 

did not find abundant silicification in our woody reference collection.  However, many of 

the trees and shrubs produced calcium oxalate crystals.  These calcium phytoliths are less 

likely to be recovered from natural and archaeological sediments because they are 

susceptible to dissolution in acids used in extractions (Coil et al., 2003).  Therefore, we 

only describe them briefly for the woody species.        

 
Native forbs 

Of the 46 native forbs, 48% were only trace or non-producers of phytoliths while 

52% of them were common producers (Table 4-1).  There were no native forbs rated as 

abundant.  The 24 species rated as common producers came from 9 different families: 
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Asteraceae, Boraginaceae, Brassicaceae, Euphorbiaceae, Polemoniaceae, 

Ranunculaceae, Rubiaceae, Scrophulariaceae, and Solonaceae.  

 
Asteraceae   

Eleven of the 15 native species of Asteraceae examined were common producers 

of phytoliths:  Achillea millefolium, Artemisia ludoviciana, Balsamorhiza sagittata, 

Erigeron divergens, Erigeron pumilus, Grindelia squarrosa, Haplopappus acaulis, 

Helianthus annuus, Iva axillaris, Iva xanthifolia, and Xanthium strumarium.  They 

commonly produced hairs, polyhedral epidermal sheets and tracheids.  All of these 

species formed segmented hairs that were reported to be characteristic of the family 

(Bozarth, 1992) except Achillea millefolium and Grindelia squarrosa.  

Achillea millefolium is a perennial forb found on both dry and mesic sites (Shaw, 

1989).  It is an important and resistant forage species for cattle and game species, and it 

recovers well on highly disturbed sites (Monsen et al., 2004).  Achillea millefolium made 

the majority of its phytoliths in the leaves, while the stem was not highly silicified.  Leaf 

phytoliths included acicular psilate unsegmented hairs (Plate I, a) and anticlinal 

epidermal sheets.  We also observed striations on some of these anticlinal epidermal cells 

(Plate I, b).  

Artemisia ludoviciana is an herbaceous aromatic perennial reaching up to 69 cm 

near riparian areas or in dry and rocky sites in the sagebrush steppe (USDA, 2007).  It is 

considered an important ethnobotanical herb (USDA, 2007).  Artemisia ludoviciana was 

reported to produce anticlinal epidermal sheets (Bozarth, 1992) and we observed 

striations on them as well (Plate I, c).  This species also produced tracheids.  
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Balsamorhiza sagittata is a broadleaf perennial with a woody taproot.  It is an 

important forage species for native grazers like deer and elk as well as cattle and sheep 

(Monsen et al., 2004).  Balsamorhiza sagittata was previously described by Bozarth 

(1992) and Blinnikov (2005).  We observed that the previously described segmented 

hairs were most common in the leaf and flowering head portions of the plant.  The hairs 

appeared to be thinly silicified and they tended to break and disfigure during processing 

(Plate I, i).  This species also produced many tracheids.  

Two species in the Erigeron genus were both common producers of phytoliths.  

They are both low growing biennial herbs that favor moist places and partial shade 

(USDA, 2007).  Erigeron divergens and Erigeron pumilus both generate very long (over 

500 microns) acicular psilate segmented hairs (up to 4 smooth segments) in the leaf and 

stem (Plate I, d).  The flower/seed portion contained several trachiary elements.   

Although Grindelia squarrosa is a native species, it spreads along roadsides and 

disturbed areas and is sometimes considered an invasive weed (Young and Clements, 

2005).  Grindelia squarrosa had some very weakly silicified epidermal sheets and some 

acute acicular psilate unicellular hairs on the leaves (Plate I, f).  In addition, we observed 

some weak silicification around cells in the stem that made half moon to circular shapes 

(Plate I, e).  The seed head produced mostly charcoal but also had some trachiary 

elements.   

Haplopappus acaulis is a perennial herbaceous species (sometimes considered a 

subshrub) that grows in dry open habitats (USDA, 2007).  Haplopappus acaulis had 

some thinly silicified acicular psilate segmented hairs with very rounded or inflated 
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looking segments (Plate I, g).  It also made a quite unique bifid hair base with 

striations along the sides (Plate I, h).  

Helianthus annuus is a common sunflower that is widely distributed and can be 

found on disturbed sites (Shaw, 1989). The leaves and flowering head of Helianthus 

annuus were dominated by short segmented hairs that were heavily darkened by the 

processing and are covered with granulate processes.  The stem produced a few hairs and 

some tracheids.  Bozarth (1992) reported that this species also produced silicified 

polyhedral epidermal sheets and irregularly perforated opaque platelets in the achenes.  

Our flowering head may not have contained any developed seeds because we did not 

observe this type in our specimen.  

Two species within the genus Iva were common producers.  While Iva axillaris is 

perennial and Iva xanthifolia is an annual, both species are considered weedy and are 

common along roadsides and disturbed areas (Shaw, 1989).  Both Iva axillaris and Iva 

xanthifolia are dominated by acicular psilate segmented hairs with and without bases still 

attached.  They also both contained a few weakly silicified epidermal sheets. 

Xanthium strumarium is considered to be of “questionable origin” (Shaw, 1989) 

by some botanists because there is debate over whether it is a native to North America or 

not.  It is now commonly considered a noxious weed because its seedlings are poisonous 

to livestock and its seeds (cockleburs) infest wool and hair of animals (USDA, 2007).  

Xanthium strumarium leaves formed conical psilate segmented hairs with 3 rounded 

portions that occurred with and with out bases attached (Plate I, q) and polyhedral 

epidermal cells.  The hairs on the stems were also segmented with 3-4 sections but were 

longer and had no bases attached.  The seed had extremely weakly silicified epidermal 
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portions and some hairs similar to the stem.  Bozarth (1992) described silicified 

polyhedral epidermal cells and regularly perforated opaque cells in this species.  He also 

described the hairs as having a rounded or oval shaped bases and a short apex (Bozarth, 

1992).  

 
Boraginaceae 

All three native species of Boraginaceae (Hackelia patens, Lithospermum 

ruderale and Mertensia oblongifolia) in the collection were common producers of 

phytoliths.  The phytolith production was mostly of unsegmented (or unicellular) hairs.  

This family only rarely produces segmented hairs (Bozarth, 1992).  The hairs vary in 

length and ornamentation, but are always unicellular with round hair bases that often 

remain attached.  Hackelia patens produced conical psilate hairs varying in length from 

196 to almost 1000 microns with and without bases attached (Plate I, k and l).  In 

Lithospermum ruderale, on the other hand, there were long (from 150 to over 700 

microns) conical granulated hairs.  These species are both common perennial forbs in 

sagebrush on dry open sites (Shaw, 1989).  Mertensia oblongifolia was also dominated 

by conical psilate hairs (from 100 to 500 microns) with and without the hair bases 

attached.  This perennial species is commonly found in sagebrush and pinyon juniper 

woodlands (Shaw, 1989). 

 
Brassicaceae   

There was only one native Brassicaceae, Erysimum asperum, in the collection.  

This species is a perennial forb common on open rocky sites (Shaw, 1989).  It was a 

common producer of phytoliths due to the dominance of fusiform (Plate 1, j) and 
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bifurcated (y-shaped) hairs.  These hairs have been described as medifixed and 

trifixed depending upon how they attach to the leaf surface (Khalik, 2005).  This species 

produced fusiform tuberculate unicellular hairs that attached to the surface of the plant at 

the center (medifixed) and bifurcated tuberculate unicellular hairs that also attached at the 

center point (trifixed). 

  
Euphorbiaceae   

The only native Euphorbiaceae in the collection, Chamaesyce maculata, was also 

a common phytolith producer.  This species is common among disturbed sites and is said 

to be a native but qualified as “probably a native of eastern North America” by Shaw (p. 

152, 1989).  We did not observe any hairs in Chamaesyce maculata.  Instead, the 

common phytoliths were anticlinal epidermal sheets (some blackened from the 

processing) as well as long celled polyhedral epidermal sheets and several tracheids.  

 
Polemoniaceae 

 Both native species of Polemoniaceae in the collection were common phytolith 

producers.  They were also both in the genus Phlox. Phlox hoodii is a low-growing 

cushion like plant with very sharp tipped leaves that is found in open dry sites with 

sagebrush (Shaw, 1989).  The tips of the leaves contained highly silicified cells.  This 

species also has what could be characterized as anticlinal papillate epidermal cells.  We 

observed similar phytoliths in Phlox longifolia.  This herbaceous perennial forb has an 

upright growth form and occurs on dry open sites.  In Phlox longifolia, we observed 

rectangular papillate striate epidermal cells (Plate I, t).  They were somewhat similar to 

the papillae observed in Bromus, but could be distinguished by the anticlinal cells or the 
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striations from either Phlox.  We did not observe any similar phytoliths produced in 

this collection and these may be unique phytolith morphotypes for this genus.  

 
Ranunculaceae 

We sampled one native species in this family, Delphinium nuttallianum.  

Delphinium nuttallianum is a notable forb in both ecosystem types because it is 

poisonous to livestock (Whitson et al., 2000).  It was found to be a common producer of 

epidermal and tracheid phytoliths.  The anticlinal epidermal sheets appeared thinly 

silicified, however, each cell disarticulated individually (Plate I, n).  This disarticulation 

was quite different from most epidermal silicified sheets that usually only break as 

smaller and smaller groups of cells.  In addition, the charcoal or burned structures of this 

species created honeycombed shapes that were not entirely opaque.   

 
Rubiaceae 

 The one native species of Rubiaceae, Galium aparine, was also a common 

producer of phytoliths.  Although a native, this annual species is considered an 

agricultural pest because it creates difficulty in harvesting hay and because its bristly 

seeds cling to clothes and animal fur (Whitson et al., 2000).  This species generated 

abrupt conical psilate hairs with hair base cells attached (Plate I, s) as well as anticlinal 

epidermal sheets.  

 
Scrophulariaceae 

 We examined four native species of Scrophulariaceae, but only three were 

common producers of phytoliths:  Castilleja angustifolia, Castilleja flava and Collinsia 
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parviflora. Castilleja angustifolia and Castilleja flava are semiparasitic perennials of 

sagebrush (Shaw, 1989).  Castilleja angustifolia created long acicular granulate 

segmented hairs (3 sections) with and without bases still attached (Plate I, m).  In 

addition, its polyhedral epidermal sheets were often darkened from the processing into 

blackened polyhedral epidermal sheets that were very weakly silicified.  Castilleja flava 

also made long segmented hairs that were both psilate and granulate.  All of the hairs 

were thinly silicified and curled or bent from the heat of processing.  This species also 

produced extremely weakly silicified epidermal sheets with oblong cells.  Collinsia 

parviflora is a diminutive annual herb that is most prolific in an early wet spring in the 

sagebrush steppe (personal observation).  It produced long narrow acicular psilate 

unicellular hairs with out any hair base cells attached and weakly silicified anticlinal 

epidermal cells.  

 
Solonaceae  

We examined one native Solonaceae, Physalis longifolia, and found it to be a 

common phytolith producer.  This plant is also considered a “native weed” (Shaw, 1989) 

because it is a native of North America but “naturalized” to its current distribution across 

the US West (USDA, 2007).  It is a striking plant commonly called “Chinese lantern” 

because the inflated calyx that covers the berry looks like a paper lantern.  The leaves of 

this species produced common epidermal or mesophyll structures.  The stem contained an 

interesting suborbicular phytolith of unknown origin that seemed to be thinly silicified 

(Plate I, r).  In addition, the stem created well silicified polyhedral epidermal sheets that 

were darkened from the processing and had roughened surfaces.   
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Native grasses, rushes, and sedges 

All 16 of the native grasses, one scouring rush and one native sedge (95%) were 

abundant phytolith producers (Table 4-1).  Juncus balticus was the only rush examined in 

this collection and it was a non-producer (5%).  The results of our type frequency 

analysis were similar for most of the species that were analyzed in previous studies 

(Table 4-3).  Most of the variability can probably be explained by the type of 

morphotypes counted and the preparation of plant material.  Our morphotype descriptions 

and frequency results for the abundant producers are discussed below.  

Achnatherum hymenoides, Hesperostipa comata, and Achnatherum nevadense are 

all species from the Stipeae tribe within the Poaceae.  As such, they form the 

recognizable bilobate shape with a trapezoidal bottom known as the “stipa type” 

(Fredlund and Tieszen, 1994).  Achnatherum hymenoides produced the most of this 

morphotype (39%) among these dominant native species (Plate II, a-b).  Achnatherum 

hymenoides is one of the most common grasses in the arid and semiarid western US 

where it is highly palatable to livestock, and its seeds are an important food source for 

wildlife (Monsen et al., 2004).  It was also a staple food for American Indians (USDA, 

2007).  It is generally found on drier sites, but can occupy more mesic zones as well 

(Monsen et al., 2004).  

Hesperostipa comata generated fewer stipa types (8%) and more of the short cells 

known as rondels.  As with Blinnikov (2005), we found frequencies over 30% for 

production of horned rondels (32%) by Hesperostipa comata (Plate II, f).  Hesperostipa 

comata is a widely distributed cool season bunchgrass in the western US.  It is highly 
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sensitive to overgrazing and is said to be the “first species to disappear from native 

pastures and range sites” under such conditions (Monsen et al., 2004, p. 418).  

The common stipa type was rather thin in cross sectional view in Achnatherum 

nevadense (Plate II, d) and it produced more thin, weakly lobed pieces (47% other) than 

true stipa types (15%) (Plate II, e).  Achnatherum nevadense is found in seven western 

states in the US in sagebrush and open woodlands (USDA, 2007).  

Phytolith morphologies in the Carex genus have a wide variation even among the 

sedge cones that characterize the family Cyperaceae (Ollendorf, 1992).  Carex 

nebrascensis produced many of the well known sedge cone morphotypes including 

rounded psilate and rounded apex with satellites as individuals and in platelets, and 

angular psilate and pointed apex without satellites in platelets and as individuals 

(Ollendorf, 1992).  Some of the platelets take on a bilobate appearance in top view, but 

are easily distinguished from any grass morphotype by rotation to the cross sectional 

profile (Plate II, aa).  Although not the diagnostic form for this family or genus, this 

species also produced elongated and rectangular forms similar to Carex that were 

described by Blinnikov (2005).  In Carex nebrascensis, these elongated rectangular forms 

have many processes along the longest edge and are irregular at the ends (Plate II, bb).  

There were also unicellular hairs without bases that were similar to the ones found in the 

Poaceae.   

The morphotypes in Distichlis stricta were heavily dominated by saddles (91%) 

and just a few long indented cells (6%).  It did not appear to produce any of the bilobate 

morphotypes.  Distichlis stricta is a dominant grass species in lower-elevation desert 

shrub communities where it can form pure stands in saline soils.  It is not a preferred 
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forage species for cattle (Monsen et al., 2004).  This species is one of the five native 

C4 grasses we examined in this collection.   

The morphotypes in the genus Elymus did not group together.  The morphotypes 

of Elymus elymoides were made up of almost equal proportions of long wavy types 

(14%) (Plate II, g), deeply indented long cells (17%) round hair bases (14%) (e.g. Plate 

II, c) and other shapes consisting of round bottomed rondels (13%) (Plate II, h).  We 

noted a large number of hairs in our sample; however, since they were broken, only the 

hair bases were counted.  Blinnikov (2005) also remarked upon the high percentage of 

hairs in this species and he believed they may be a good indicator of the species presence 

in sediments.  The waves were very shallow in this species compared to others such as 

Festuca idahoensis (Plate II, n).  This loosely caespitose perennial species is often an 

early successional species on overgrazed and disturbed sites and is a common understory 

grass in sagebrush steppe (Monsen et al., 2004).   

Elymus lanceolatus, on the other hand, was distinguishable by its high percentage 

of rondels including keeled (45%) (Plate II, i), horned (24%) and pyramidal (13%) (Plate 

II, j).  Elymus lanceolatus is a cool season perennial bunchgrass that is often regarded as 

a disturbance tolerant species because it recovers quickly and flourishes in sagebrush and 

pinyon-juniper woodland communities after fire (Monsen et al., 2004).   

Echinochloa muricata was dominated by the bilobate (39%) and cross forms 

(20%) commonly found in the C4 grasses.  These bilobates are easily distinguished from 

the native stipa type by their well defined shaft and the difference in their in cross 

sectional profile (Plate II, u-x).  This plant, along with the taxonomically very similar 

Echinochloa crus-galli, have been controversial species for the genus because they are 
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difficult to distinguish and there are both native and “adventive populations” in North 

America (Gould et al., 1972).  Echinochloa muricata var. microstachya is the most 

common of its genus found in the American West (Gould et al., 1972) and it could either 

be a native relict or possibly introduced with Europeans where it is found today 

(Barkworth, 2007; Piep, 2007).  Today, Echinochloa muricata is a widely distributed C4 

grass throughout the lower 48 states and is generally found in wet areas (USDA, 2007).   

Equisetum laevigatum was the only species of rush examined in the Equisetaceae 

family.  This species produced the genus diagnostic stomata and the epidermal cells with 

granulate surfaces and “elevated projections along the edges” (Plate II, cc) (Piperno, 

2006).  In addition, there were many cylindrical bilobate and polylobate verrucate 

epidermal morphotypes that were distinguishable from those in the grasses by the 

verrucate surfaces (Plate II, dd).   

Half of the morphotypes in Festuca idahoensis were long wavy plates (50%) 

(Plate II, n).  Although it produced a fair amount of keeled rondels (18%) as well, the 

long wavy plates appeared to be the most important indicator morphotype for this species 

in our dataset.  Our results differed from Blinnikov’s (2005) assessment of morphotypes 

in this species.  He found a much higher frequency of horned rondels and he believed 

they distinguished this species from its codominant in sagebrush steppe, 

Pseudoroegnaria spicata.  Festuca idahoensis is an important perennial bunchgrass in the 

both ecosystems, particularly as a forage species for wildlife and livestock.  In lower 

elevations, it can be restricted to more mesic sites (Monsen et al., 2004). 
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Hordeum brachyantherum was dominated by long deeply indented cells 

(33%) (Plate II, o) and keeled rondels (31%).  This cool season perennial bunchgrass is 

best adapted to moist sites (USDA, 2007). 

Leymus cinereus was dominated by the long deeply indented (18%) and long 

indented cells (21%) (Plate II, k).  We found that it also generated a fair amount of 

oblong knobby hair bases (15%) (Plate II, l) and keeled rondels (17%).  Blinnikov (2005) 

considered Leymus cinereus to be difficult to distinguish from other closely related 

Agropyron grasses.  This is the largest of the native cool season bunchgrasses. It can be 

found mixed in mixed communities, in pure stands and in areas that receive runoff water, 

such as roadsides and washes (Monsen et al. 2004).  

Muhlenbergia richardsonis also produced mostly saddle morphotypes (37%) and 

few long cells.  Other morphotypes made up 21% of the count.  These shapes included 

cells that looked very similar to those found in Carex species (Plate II, aa).  In 

Muhlenbergia richardsonis these cells were rounded to sinuous platelets with processes 

and multiple (usually two) psilate apices (Plate II, s).  Muhlenbergia richardsonis is a C4 

grass commonly found in wet areas in the western US (USDA, 2007).   

There were two Poa secunda subspecies examined in this study, Poa secunda ssp. 

juncifolia and Poa secunda ssp. secunda.  Both Poa secunda are small, densely tufted 

cool season perennials that are highly resistant to grazing and trampling (Monsen et al., 

2004).  Both of these species contained a high percentage of long smooth cells (14-22%) 

(e.g. Plate V, k).  Keeled rondels dominated in the subspecies secunda.  We observed that 

the rondels in the subspecies juncifolia were not well formed and were difficult to 

identify.  Many of them ended up in the category “other” and could have also been 
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included as short wavy types that Blinnikov (2005) found dominated the Poa species 

in his study.  Poa secunda ssp. secunda other shapes also included several irregularly 

shaped short cells and several (11 total) prickles (Plate II, q).  The relatively high 

percentage of papillae cells (Plate II, r) is probably due to the fact that this subspecies 

was processed as a whole rather than separated into leaf and culm material.   

Pseudoroegnaria spicata is one of the most important, productive and palatable 

grasses in sagebrush and pinyon-juniper communities.  It is very sensitive to the 

overgrazing and is lost from many sites due to poor grazing management (Monsen et al., 

2004).  We found Pseudoroegnaria spicata generated mostly long wavy plates (15%), 

long smooth cells (22%) and square based hairs (18%).  We observed nearly equal 

proportions of pyramidal (10%) and keeled (9%) rondels.  Our results differed from 

Blinnikov’s (2005) frequencies for this species.  He observed more pyramidal rondels 

and less long wavy and smooth cells.  Again, this difference may be because we counted 

a similar but not exactly the same set of morphotypes in our frequency analysis.  

The morphotypes in Sporobolus airoides contained nearly even frequencies of 

saddles (12%), long indented cells (12%) and pyramidal rondels (14%).  The majority of 

its shapes were considered to be in the other category (33%).  These other shapes were 

bilobates without a long shaft that appeared very square and were thick in cross section 

(Plate II, t).  Sporobolus airoides is a C4 grass that can be found in higher elevations, but 

develops pure stands in lower elevation, moist and alkaline sites (Monsen et al., 2004). 

Sporobolus cryptandrus, on the other hand, was dominated by saddle types (84%) 

(Plate II, y) and produced more typical bilobates (9%) (Plate II, z) and very few rondels 

at all (2%).  This species is a component of many communities, including sagebrush 
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steppe and pinyon-juniper woodlands.  This C4 grass often invades disturbed sites and 

is grazing tolerant due to low desirability by livestock, late development and a protected 

root crown (Monsen et al., 2004). 

 

Native trees and shrubs 

There were 10 native trees and shrubs examined.  The plant material was divided 

into leaves, stem, seed/flowering portion and bark (when available).  None of these 

species were considered abundant producers of phytoliths.  None of the bark, seeds, 

cones or flowering parts examined for these 10 species produced any phytoliths other 

than calcium phytoliths.  In several cases, the leaf and stem material had different 

abundance classes.  The vast majority of the woody species’ material (79%) was 

categorized as trace to non-producers of phytoliths.  The common producers made up 

21% of the material.  The only families with common phytolith producing plant material 

were Asteraceae and Rosaceae.  The common producers, Prunus virginiana and Rosa 

woodsii, were from leaf material (Table 4-1).  There was only one shrub, Artemisia 

tridentata, where stem material could be ranked as common.  Most of the native trees and 

shrubs produced calcium oxalate (CaOx) crystals that we have not seen described 

previously for these species.  Calcium oxalate crystals were not present in any of the 

Juniperus plant material, however, Pinus monophylla and Cercocarpus ledifolius both 

produced abundant blocky, prismatic and elongate rectangular styloid forms (Plate III) 

(Franceschi and Nakata, 2005).   
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Asteraceae   

We examined two shrub species in the Asteraceae and only the stem of Artemisia 

tridentata can be considered a common producer of phytoliths.  While the leaf material 

produced a few blocky shapes as well, the stem of this species created a common small 

blocky form usually <20 microns in length (Plate III, a).  Blinnikov (2005) first described 

this blocky form in Artemisia tridentata and found it was a good indicator of sagebrush 

steppe in modern soils from the Columbia Basin.  Artemisia tridentata is the dominant 

shrub species in the sagebrush steppe ecosystem type.  

 
Rosaceae 

Of the four species of native trees and shrubs examined in this family, only two, 

Prunus virginiana (tree) and Rosa woodsii (shrub) had material that commonly produced 

phytoliths.  Both of these species are found in the moist sites, canyons and along streams 

(Shaw, 1989).  Prunus virginiana leaves produced a silicified anticlinal epidermal cells 

(Plate III, f) and tracheids (e.g. Plate III, c).  In addition, it produced rhombohedral 

calcium oxalate crystals (Plate III, g-h) that were unique among the species in this 

collection (Franceschi and Nakata, 2005).   

 
Introduced forbs 

Of the 50 introduced forbs in the collection, 78% were either non-producers or 

produced only trace amounts of phytoliths, and 22% were common to abundant 

producers (Table 4-2).  The trace producers formed mostly very weak epidermal silica 

and some tracheids.  The only two species rated as abundant producers were both from 
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the Brassicaceae family.  The nine common producers were from five families: 

Asteraceae, Boraginaceae, Brassicaceae, Cucurbitaceae, and Ranunculaceae. 

 
Asteraceae 

Acroptilon repens formed what Bozarth (1992) described as honeycomb 

assemblages from clusters of the mesophyll cells (Plate IV, a), tracheids and silicified 

polyhedral epidermal shapes (Plate IV, b).  Acroptilon repens was first introduced from 

Turkestan into Canada in the early 1900’s in contaminated alfalfa seed (Watson, 1980).  

By 1985, it was reported in 21 out of the lower 48 states, prevalent in Canada, and could 

be found on every continent, except Antarctica (Maddox et al., 1985).  It is currently 

found in 27 states in the US excluding some in the eastern and southern regions of the 

country (USDA, 2007).  It is known to have been collected within the Great Basin state 

of Idaho as early as 1926 (Rice, 2007).  

Cirsium vulgare formed several interesting phytoliths within the leaf and stem 

while the seed contained mostly blackened hairs.  The tips of the leaf contained highly 

silicified polyhedral epidermal sheets (Plate IV, f) that disarticulated into separate cells 

(Plate IV, g) rather than only breaking together as smaller and smaller groups.  It also 

produced cylindric psilate phytoliths of unknown origin, some with lanceolate tips.  In 

the Pacific Northwest, Cirsium vulgare was first collected in the state of Washington in 

1883 and was in Idaho by 1911 (Rice, 2007).  It can now be found in all 50 US states 

(USDA, 2007).  

Lactuca serriola formed polyhedral epidermal cells with some processes at the 

tips of the leaves.  The stems produced a number of conical psilate prickles that were 
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unique to this species in the collection (Plate IV, d).  The prickles disarticulated well, 

and had a rounded apex and concave base (Plate IV, e).  There were no other phytolith 

morphotypes like this one in the collection and, therefore, it could represent a unique 

morphotype for this introduced species in the region.  Lactuca serriola is a native of the 

Mediterranean and Central Asia and was first collected in North America in 

Massachusetts in 1863 (Weaver and Downs, 2003).  It was in the western state of 

Montana by 1881 and collected in Idaho by 1897 (Rice, 2007).  Its current distribution 

includes all 49 US states excluding only Alaska (USDA, 2007).  

The leaf of the Tragopogon dubius was one of the few that contained silicified 

stomata cells.  In addition, the leaves produced unique epidermal cells with irregular 

sinuated processes (Plate IV, j-k), polyhedral epidermal sheets and silicified mesophyll 

cells.  Tragopogon dubius was used as food by early European settlers, and is believed to 

have escaped from cultivation (Clements et al., 1999).  It is a common weed on roadsides 

and waste sites (Whitson et al., 2000).  It was collected in Wyoming in 1900 and in Idaho 

in 1941 (Rice, 2007).  It is currently found in 46 US states excluding the South (USDA, 

2007).  

 
Boraginaceae 

Two species of Boraginaceae were common producers of phytoliths:  Asperugo 

procumbens and Myosotis micrantha. Asperugo procumbens produced conical psilate 

unicellular hairs that separated easily from the hair bases (Plate IV, o).  Some hairs were 

curved; however, that could be from the heat of the muffle furnace in processing.  They 

also produced tracheids and some weakly silicified anticlinal epidermal cells (Bozarth, 
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1992).  Asperugo procumbens was first collected on the ballast grounds of 

Philadelphia, Pennsylvania in 1877 (Martindale, 1877).  In 1878, it was observed on 

newly constructed wharves in New York Harbor (Brown, 1878) where it was also 

believed to have been introduced from ballast water (Britton and Hollick, 1885).  It was 

first collected in the western coastal state of Washington in 1897 and found in Idaho by 

1938 (Rice, 2007).  It is now found in 24 mostly western and northern states in the union 

(USDA, 2007). 

Myosotis micrantha formed long conical granulate hairs with and without bases 

still attached (Plate IV, l-m).  It produced polyhedral as well as anticlinal epidermal cells 

with squared edges (Plate IV, n).  In the Pacific Northwest, it was first collected in 

Washington in 1880 and was found in Idaho by 1926 (Rice, 2007).  Myosotis micrantha 

is also currently found in 24 northern and western states (USDA, 2007).  

 
Brassicaceae 

Two species of Brassicaceae, Alyssum desertorum and Capsella bursa-pastoris, 

produced abundant silica phytoliths.  Alyssum desertorum produced an abundant amount 

of very large stellate granulate hairs (Morris et al., in press).  Capsella bursa-pastoris 

produced an abundant amount of hairs including some similar to the stellate granulate 

hairs found in Alyssum desertorum.  However, the stellate granulate hairs found in 

Alyssum desertorum typically had more than four arms, and most were dendriform (Plate 

IV, s).  Capsella bursa-pastoris also generated a number of hairs that have been 

described as branched hairs, medifixed and simple hairs (Khalik, 2005).  The branched 

hairs rise from a base and split into three or four arms while the medifixed hairs are 
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affixed to the plant in the center, lay flat with the surface of the leaf, and have two 

(fusiform granulate hair) or three arms (bifurcated granulate hair) (Khalik, 2005).  The 

hairs on both of these species were granulate to tuberculate.  All of these hairs were 

relatively large, ranging from 100-500 microns in length.   

The fusiform and bifurcated granulate hairs of the Capsella bursa-pastoris (Plate 

IV, p-r) were similar to the native Brassica, Erysimum asperum.  However, the stellate 

granulate hairs from both introduced Brassicas were not observed in the native Brassicas 

from this family.  This stellate granulate hair could be a unique indicator for these 

introduced mustards.  Furthermore, Alyssum desertorum is a more widespread invasive 

plant in wildlands, while Capsella bursa-pastoris is more metropolitan and agricultural.  

Therefore, the stellate dendriform granulate hair morphotypes in a wildland setting could 

be even further indication of the species Alyssum desertorum.  Finally, care should be 

used to interpret the usefulness of these morphotypes to indicate the introduced species 

based upon potential of other Brassica species to produce similar hairs and what can be 

expected in the flora of a particular study area.  For example, several species, such as 

Draba argyraea and Draba aurea, generate some stellate like hairs, but the plants are 

usually found in alpine and subalpine areas (Hitchcock et al., 1969).  Draba densifolia, 

on the other hand, contains some stellate hairs and can be found in middle elevations 

(Hitchcock et al., 1969).  

There is little known about the introduction and spread of Alyssum desertorum 

(Young and Clements, 2005) except that, in the Pacific Northwest, it was first collected 

in Montana 1933, and first collected in Idaho in 1940 (Rice, 2007).  Its current 

distribution spreads across 12, mostly western, US states (USDA, 2007).  Capsella bursa-
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pastoris, however, has a more rich history.  There is genetic evidence for multiple 

introductions into North America.  Populations from central California resemble 

populations from Spain, while populations from the rest of the United States are more 

similar to those from temperate regions in Europe (Neuffer and Hurka, 1999).  The 

earliest report of Capsella bursa-pastoris in the US was from New England in 1663 

(Crosby, 2000).  It was later reported as a contaminant in agricultural seed in Delaware in 

1889 (Mack and Erneberg, 2002).  In the northwestern US, it was first collected in 

Oregon in 1880, and in Idaho in 1895 (Rice, 2007).  It is now found in all 50 states in the 

US (USDA, 2007).  

 
Cucurbitaceae  

Only one species in the Cucurbitaceae was examined in this study.  Bryonia alba 

produced acicular psilate segmented hairs with 3-4 sections, with and without hair base 

cells still attached.  The hairs appeared to be deformed by the high temperatures during 

processing (Plate IV, h).  This species also generated an interesting charcoal or blackened 

structure (Plate IV, i).  There is genetic evidence for multiple introductions of Bryonia 

alba because of its use as a medicinal and ornamental plant (Novak and Mack, 1995).  It 

is known to have been sold as an ornamental in Massachusetts (1860-1867), New York 

(1870-1899) and Illinois (1899) (Mack, 1991).  It was not collected in the Pacific 

Northwest until it was found in Montana in 1953; much later than many of the other 

introduced species (Rice, 2007).  However, this invasive herbaceous vine made up for its 

late introduction with a rapid growth rate that gained it the moniker, “kudzu of the Pacific 
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Northwest” (Stannard, 2002).  Its current distribution now includes the states of 

Oregon, Washington, Idaho and Utah (USDA, 2007).  

 
Ranunculaceae 

Ceratocephala testiculata formed cylindrical granulated hairs (Plate IV, c) with 

no hair base cells and extremely weakly silicified polyhedron epidermal cells.  

Ceratocephala testiculata was first collected in the US near Salt Lake City, Utah in 1932 

(Buchanan et al., 1978).  It was collected in Oregon in 1935, and in Idaho as early as 

1940 (Rice, 2007).  It is now found in 14 northern and western states in the US (USDA, 

2007).  

 
Introduced grasses 

As would be expected from the literature and from the results of the native 

grasses, all 14 introduced Poaceae species were abundant phytolith producers (Table 4-

3).  Many of the introduced grass species produced morphotypes that were not redundant 

with the native Poaceae in this region.  Blinnikov et al. (2002) noted that the appearance 

of typical Bromus tectorum phytoliths near the surface of his sediments could be an 

indication of the era of European settlement.  He also used this widespread invasive 

species in his study of sagebrush steppe (Blinnikov, 2005).  We found similar frequency 

types for Bromus tectorum in our analysis (Table 4-4).  In addition, several of the 

introduced species to this region are C4 grasses.  The morphotype differences between C4 

and C3 grasses have been known for some time, and used for understanding shifts in 

dominance of these grasses worldwide (Kaufman et al., 1985; Twiss, 1992; Fredlund and 

Tieszen, 1994).  Northern portions of the Great Basin floristic region, which includes the 
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sagebrush steppe, have a relatively low percentage of C4 grasses (Teeri and Stowe, 

1976).  In his study of phytoliths in the Pacific Northwest, Blinnikov (2005) noted that 

the only bilobate morphotypes in his collection were from the stipa type and the rare 

occurrence of a C4  Aristida longiseta.  Similarly, the sagebrush steppe region in our study 

is composed mostly of native C3 grasses.  We believe the distinctive C4 morphotypes and 

the differences in frequency types of the introduced grasses may be useful indicators of 

climatic and vegetation changes, historical land uses and as time markers in the soil 

profile since their timeframe of introduction is known.   

Agropyron desertorum contained equal percentages of long indented cells (22%) 

(Plate V, b) and long deeply indented cells (22%) (Plate V, a).  Its rondels were also 

equally pyramidal as well as keeled (11%).  It produced the most square based hairs 

(12%) (Plate V, e) of the introduced species, but only 2% of the oblong knobby hair base 

form (Plate V, c).  The “other” morphotypes (11%) were mostly blocky forms with 

tuberculate processes (Plate V, d).  Agropyron desertorum was widely planted in the 

Great Basin to increase forage production beginning after World War II (West, 1983).  It 

is well adapted to the cold desert sagebrush steppe, and can establish well in plantings 

and in disturbed sites (Monsen et al., 2004).  

Three species of introduced Bromus were examined in study, Bromus inermis, 

Bromus japonicus and Bromus tectorum.  None of these species produced very many 

rondels of any kind (0-2%).  Bromus inermis was processed whole and, therefore, was 

dominated (71%) by the papillae cells (e.g. Plate V, g) from the inflorescence this genus 

was known for producing (Blinnikov, 2005).  Bromus inermis was introduced from 

Europe and extensively seeded to restore overgrazed rangelands (Monsen et al., 2004).  It 
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was recommended and used for planting in southern Idaho (Hull, 1973).  It now 

occurs throughout North America, and in 47 US states (USDA, 2007).   

Bromus japonicus produced mostly long wavy cells (47%) and long smooth cells 

(26%) (Plate V, k).  The waves on this species, however, were shallow and had mostly 

squared ends (Plate V, f).  Bromus japonicus is a weed on rangelands and in hayfields 

(Whitson et al., 2000).  It was first collected in Pacific Northwest in Washington state in 

1903, and was collected in Idaho in 1913 (Rice, 2007).  It now occurs throughout the 

lower 48 states (USDA, 2007).  

Bromus tectorum phytoliths were made up of long wavy cells with variable ends 

(Plate V, j), long smooth cells, round based hairs (Plate V, h), and papillae (Plate V, g) in 

almost equal proportions (18-19%).  The papillae percentage was high even though the 

inflorescences were processed separately.  Blinnikov (2005) found very similar 

production in his study, except he reported a higher percentage of pyramidal rondels.  

Bromus tectorum was first collected in North America in Pennsylvania in 1790 (Vallient 

et al., 2007) and was found in Provo, Utah in 1894 (Knapp, 1996).  It is considered a 

problem plant in both degraded rangelands and in winter wheat (Morrow and Stahlman, 

1984).  It is currently distributed throughout all 50 states (USDA, 2007).  

Cynodon dactylon stands out from the other introduced (and native) species due to 

its production of bulliform cells (4%) (Plate V, l) and the predominance of the saddles 

(57%) (Plate V, m).  The bilobate in this C4 grass was distinguishable because of its well 

defined shaft in comparison to the native stipa type counterpart.  This species is a 

common crop and turf weed that is believed to be introduced from Africa (Whitson et al., 
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2000).  It was first collected in the state of Washington in 1897, and in Idaho 1937 

(Rice, 2007).  It is currently found in 41 US states (USDA, 2007).  

Dactylis glomerata was recognizable by its high percentage of long wavy plate 

cells (45%).  Although described similarly to those in the Bromus and even some native 

species, they were, in fact, recognizably different.  The long wavy cells in this species 

had extremely rounded, deeply formed multiple waves (Plate V, p) and were trapezoidal 

in cross sectional view (Plate V, q).  Some were unevenly lobed on both sides.  Dactylis 

glomerata was first collected in the Pacific Northwestern state of Washington in 1882, 

and in Idaho by 1890 (Rice, 2007).  Introduced as a hay and pasture grass, multiple 

varieties have been bred (Monsen et al., 2004).  It was highly recommended and useful 

for planting in southern Idaho (Hull, 1973).  It is now distributed in all 50 US states 

(USDA, 2007).  

Echinochloa crus-galli was dominated by bilobate (59%) (Plate V, n) and cross 

like (18%) morphotypes (Plate V, o).  As mentioned above, the identity and nativity of 

this species has often been confused with Echinochloa muricata (Gould et al., 1972).  

Today, Echinochloa crus-galli is considered a common weed of irrigated and cultivated 

areas (Whitson et al., 2000), and is found in every state in the US, except Alaska (USDA, 

2007).  

Elytrigia repens generated mostly long deeply indented cells (23%), keeled 

rondels (25%) and pyramidal rondels (13%).  Some of these long deeply indented types 

had one straight edge.  This species is a common crop, pasture and rangeland weed in 

moist soils (Whitson et al., 2000).  It was first collected in the Pacific Northwest state of 
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Washington in 1882, and was in Idaho by 1901 (Rice, 2007).  It is now distributed 

throughout 44 states excluding the South (USDA, 2007).  

Eragrostis cilianensis was also recognizable from its production of saddles 

(41%), bilobates (23%) and bulliform cells (1%).  Even though bulliforms were a small 

percentage in the overall production in Eragrostis cilianensis and Cynodon dactylon, 

there were no other cells like them observed in any of the native C3 grasses in this 

collection.  This C4 grass species is a common agricultural weed (Whitson et al., 2000).  

It was first collected in Pacific Northwest in Montana in 1887, and was collected in Idaho 

in 1911 (Rice, 2007).  It is now widely distributed in every US state, except Alaska 

(USDA, 2007).  

Phleum pratense also produced predominantly long deeply indented types (26%), 

papillae (32%) (Plate V, s), and keeled rondels (16%).  We observed that this species was 

weakly silicified overall with the exception of the rondels and papillae.  The long deeply 

indented types were very thin with squared-off waves that tended to stay together as 

sheets or break at the squared-off top of the waves together.  In addition, this species 

formed a number of opaque pieces of variable form.  The most recognizable of this 

opaque form was a rounded piece with a hole in the center (Plate V, r).  This species was 

recommended for planting in southern Idaho (Hull, 1973), and was introduced for hay 

and forage production on ranges with wet sites (Monsen et al., 2004).  It now occurs in all 

50 US states (USDA, 2007).  

Poa bulbosa produced mostly long wavy cells (23%), long smooth cells (34%) 

and long deeply indented types (17%).  There were very few rondels (4-8%).  We 

observed that the long smooth cells in this species were relatively large and long with 
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pitted edges (Plate V, t).  Poa bulbosa was first collected in the Pacific Northwest 

state of Oregon in 1901, and was in Idaho by 1928 (Rice, 2007).  It was also one of the 

many species recommended for planting to increase forage in southern Idaho (Hull, 

1973).  It is now in 42 states in the US (USDA, 2007).  

Poa pratensis stood out from the other introduced grasses by it high production of 

both horned (23%) (Plate V, u) and keeled (19%) rondel types.  We noted that the long 

wavy types in this species had many waves (9-10) with mostly squared ends.  As with the 

other native Poa examined in this study, they created quite a few long smooth cells 

(16%).  Poa pratensis was one of the earliest (1685) grass species deliberately introduced 

to the US, but it was restricted to wet, cool areas (Monsen et al., 2004).  It is extremely 

tolerant of grazing and can be used as an indicator of overgrazing (Monsen et al., 2004).  

The first collection of Poa pratensis in the Pacific Northwest was in the state of 

Washington in 1876. It was first collected in Idaho in 1892 (Rice, 2007).  Its current 

distribution includes all 50 US states (USDA, 2007).  

Secale cereale was the highest producer of rondels in this collection including 

keeled (46%) (Plate V, v), pyramidal (8%) and horned (5%).  Otherwise, there was very 

little difference in phytolith frequency.  This species of ryegrass escaped cultivation to 

become a serious problem for wheat producers and on rangelands (Whitson et al., 2000).  

In the Pacific Northwest, it was first collected in Washington in 1897, where it is now 

listed as a state noxious weed (Rice, 2007; USDA, 2007).  It was first collected in Idaho 

in 1941 (Rice, 2007).  Secale cereale is now widespread through 48 states (USDA, 2007).  

Setaria viridis made the most bilobates (50%) in this collection of all the 

introduced grasses.  The bilobate shape (Plate V, x) and its frequency are enough to 
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distinguish it from the native grasses in this region.  This C4 grass is a common crop 

weed (Whitson et al., 2000), and is widely distributed in the lower 48 US states (USDA, 

2007).  It was first collected in the Pacific Northwest in Montana in 1887, and then in 

Idaho in 1912 (Rice, 2007). 

 
Introduced trees 

We examined four introduced tree species from four families for this study.  None 

of the species produced abundant phytoliths.  In several species, the leaf and stem 

material were different abundance classes.  Phytoliths were common only in leaf 

material.  Most of the introduced woody species’ plant material (60%) classified as trace 

to non-producers of phytoliths.  The common producers made up 40% of the material, 

and it was all from leaves.  The only families with common producing leaf material were 

Salicaceae and Ulmaceae.  Most of the woody introduced species formed calcium oxalate 

crystals. One species, Elaeagnus angustifolia, formed raphid calcium oxalate crystals 

worth noting (Plate III) (Franceschi and Nakata, 2005).     

 
Salicaceae 

The leaves from the introduced tree species in this family, Populus alba, 

contained silicified polyhedral epidermal sheets (Plate III, b) and tracheids (Plate III, c).  

This species was introduced to North America as early as 1748 as an ornamental tree 

(USDA, 2007).   
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Ulmaceae 

We examined one species of introduced Ulmaceae, Ulmus pumila.  The stems were non-

producers and only the leaves generated common phytoliths.  The leaf contained 

polyhedral epidermal sheets and abrupt conical psilate hairs with striations on their bases 

(Plate III, e).  This tree was introduced to the US in the 1860s as a popular windbreak and 

shelter for homes (USDA, 2007). 

 
Conclusion 

We found many Great Basin native and introduced species that produced common 

or abundant phytoliths.  In addition, we found that there are many useful phytoliths in the 

under evaluated forb group.  The most common forb phytoliths we observed were hairs, 

hair base cells and anticlinal/polyhedral epidermal sheets.  Although these phytoliths 

have been considered less useful due to poor preservation, they have been recovered from 

a variety of modern sediments (Blinnikov, 2005).  Also, hairs and hair bases from plants 

introduced in the last century may be better preserved in sediments over this shorter 

timeframe.  Several silicified epidermal cells were unique in comparison to the other 

plants in this collection.  Again, recognition of these unique types could be useful for a 

number of questions in the realm of historical ecology, palaeoecology, palaeoethnobotany 

and archaeology.  For example, the conical psilate prickles generated in Lactuca serriola 

could be a useful indicator of recent sediments and disturbance factors in an ecological 

context.  They could also provide information for ethnobotanical and archeological 

studies since Lactuca serriola was introduced so early to North America and was used by 

Native Americans (Vestal, 1952).  We believe the description of all of these morphotypes 
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will aid in the understanding of vegetation change and plant use if they are found in 

natural sediments or archeological contexts.      

Our analysis of native and introduced grasses showed important differences in 

both morphotypes and production frequency.  We have described here a number of 

morphotype differences between native and introduced species of grasses that should be 

useful indicators of more recent soils (approximately 100 years), and as a way to 

understand historic land use practices, such as agricultural development and grazing.  Our 

morphotype findings are consistent with the literature and lend support to the idea of 

using differences in morphotypes between C3 and C4 grasses as an important way to 

study vegetation change.  In addition, our production frequency analysis demonstrated 

several differences between native and introduced grasses that may be useful in 

vegetation histories.  For example, introduced grasses in our collection produced fewer 

rondels than most of the native grasses.  This difference is especially pronounced when 

dominance on the landscape and habitat are considered.  Many areas that were once 

occupied by natives like Elymus lanceolatus and Hesperostipa comata are now 

susceptible to invasion by the introduced Bromus tectorum and Agropyron desertorum.  

Analysis based on frequency types of rondels between these groups of grasses could 

reflect this type of grassland species conversion.   

We did not find a great deal of silicification in our collection of woody and tree 

species.  However, the amorphous silica found in several of the tree species should be 

examined with scanning electron images in situ in the wood as others have done 

(Scurfield et al., 1974; Klein and Geis, 1978; Carnelli et al., 2004).  There were several 

forbs and grasses with identifiable morphotypes that are associated with pinyon- juniper 
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woodlands.  However, we did not identify any unique silica input from the two 

dominant tree species in this system.  Therefore, there is apparently is no clear phytolith 

assemblage for pinyon-juniper woodlands in the Great Basin.  Other plant communities 

also lack a diverse and recognizable phytolith assemblage.  Two common US Mojave 

Desert plant communities, creosote-bursage scrub and Joshua tree woodlands apparently 

do not generate a characteristic phytolith assemblage (Lawlor, 1995; Piperno, 2006).  It 

may be, therefore, that the lack of phytolith production demonstrated by comparisons of 

extraction weights between these woodlands and shrub-steppe or grasslands would be a 

better way to differentiate these plant communities.  This type of analysis by phytolith 

mass has been used to differentiate between forests and prairie vegetation (Kalisz and 

Boettcher, 1990). 

This study represents a first step in cataloguing phytoliths of the thousands of 

species found in the Great Basin Desert region.  Many plants in this collection produce 

phytoliths and several species have potentially unique forms.  While our study focused 

upon the aerial portions of herbaceous plants, underground portions of these plants 

should also be examined in future research.  It was previously believed that the 

underground plant portions did not produce many useful phytolith types, but some recent 

work in rhizomes and tubers has shown otherwise (Piperno, 2006).  We sampled one bulb 

from Calochortus nuttallii, but found no phytoliths.  The native and introduced Great 

Basin flora deserve more study, and this cataloguing effort should continue.          
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Table 4-1  List of all native species examined in this study. For Production Index 
(P.I.), NP = nonproducer, T = trace, C = common, and A = abundant.  
Family   Common Name  Scientific Name _______P. I.                         

Grasses, Rushes and Sedges 

Cyperaceae  Nebraska sedge  Carex nebrascensis  A 
Equisetaceae  Scouring rush   Equisetum laevigatum  A 
Juncaceae  Northern rush   Juncus balticus  NP  
Poaceae  Indian ricegrass  Achnatherum hymenoides A 

Nevada needlegrass  Achnatherum nevadense A 
Saltgrass   Distichlis stricta  A 
Rough barnyardgrass  Echinochloa muricata  A 
Squirreltail   Elymus elymoides  A 
Thickspike wheatgrass Elymus lanceolatus  A 
Idaho fescue   Festuca idahoensis  A 
Needle and thread grass Hesperostipa comata  A 
Meadow barley  Hordeum brachyantherum A 
Great Basin wildrye  Leymus cinereus  A 
Mat muhly   Muhlenbergia richardsonis A 

   Sandberg bluegrass2  Poa secunda ssp. juncifolia A 
   Sandberg bluegrass  Poa secunda ssp. secunda A 

Bluebunch wheatgrass Pseudoroegneria spicata A 
Sand dropseed   Sporobolus cryptandrus A 
Alkalai sacaton  Sporobolus airoides  A 

Forbs 

Amaranthaceae Prostrate pigweed  Amaranthus blitoides  T 
Apiaceae  Narrowleaf lomatium   Lomatium triternatum  T 
Asteraceae  Yarrow   Achillea millefolium  C 

Mountain dandelion  Agoseris glauca   T 
Pussy toes   Antennaria microphylla NP 
Western mugwort  Artemisia ludoviciana  C 
Arrowleaf balsamroot  Balsamorhiza sagittata C  
Dusty maiden   Chaenactis douglasii  T 
Spreading fleabane  Erigeron divergens  C  
Low Fleabane   Erigeron pumilus  C 
Sawtooth gumweed  Grindelia squarrosa  C 

   Broom snakeweed  Gutierrezia sarothrae  T 
   Stemless goldenweed  Haplopappus acaulis  C 
   Annual sunflower  Helianthus annuus  C 
   Poverty sumpweed  Iva axillaris   C 
   Marshelder   Iva xanthifolia   C 
   Hoary aster   Machaeranthera canescens T 
   Cockleburr   Xanthium strumarium  C 
Brassicaceae   Wall flower   Erysimum asperum  C      
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Table 4-1 Continued  

Family   Common Name  Scientific Name  P.I.       
Forbs Continued 

Boraginaceae   Spotted forget-me-not  Hackelia patens  C 
   Stoneseed   Lithospermum ruderale C  

Sagebrush bluebell  Mertensia oblongifolia C  
Euphorbiaceae  Prostrate spurge  Chamaesyce maculata C 
Fabaceae  Beckwith milkvetch  Astragalus beckwithii  T 
   Wild licorice   Glycyrrhiza lepidota  T 

Silver lupine   Lupinus argenteus  T 
Lilliaceae  Wild onion    Allium brandegei  T 
   Sego lily   Calochortus nuttallii  T 

Death camus   Zigadenus paniculatus NP  
Linaceae  Flax    Linum lewisii   T 
Malvaceae  Gooseberry-leaf mallow Sphaeralcea grossulariifolia T 
Onagraceae  Willowweed   Epilobium brachycarpum NP 
Plantaginaceae Broadleaf plantain  Plantago major  T 
Polemoniaceae Carpet phlox   Phlox hoodii   C 
   Longleaf phlox  Phlox longifolia  C 
Polygonaceae  Whorled buckwheat  Eriogonum heracleoides T 

Slender buckwheat  Eriogonum microthecum T 
Cushion buckwheat  Eriogonum ovalifolium  T 

Ranunculaceae Larkspur   Delphinium nuttallianum C 
Rubiaceae  Bedstraw catchweed  Galium aparine  C 
Santalaceae  Bastard toadflax  Comandra umbellata  T 
Scrophulariaceae Desert paintbrush  Castilleja angustifolia  C 
   Yellow paintbrush  Castilleja flava  C 

Blue-eyed Mary  Collinsia parviflora  C 
Matroot penstemon  Penstemon radicosus  T 

Solonaceae  Wright groundcherry  Physalis longifolia  C 

Trees/Shrubs 

Asteraceae  Big sagebrush   Artemisia tridentata   T/C* 
Rabbit brush   Chrysothamnus viscidiflorus T 

Caprifoliaceae  Snowberry   Symphoricarpos oreophilus NP 
Cupressaceae  Utah juniper   Juniperus osteosperma NP 
Pinaceae  Pinyon pine   Pinus monophylla  T 
Rosaceae  Mountain mahogany  Cercocarpus ledifolius T 

Chokecherry   Prunus virginiana  C/T 
Antelope bitterbrush  Purshia tridentata  T/NP 
Wild rose   Rosa woodsii   C/NP  

Salicaceae  Yellow willow   Salix lutea    NP  
*  Dual abundance classes are expressed as leaf/stem 
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Table 4-2  List of all introduced species examined in this study. For Production Index  
(P.I.), NP = nonproducer, T = trace, C = common, and A = abundant. 

Family   Common Name  Scientific Name  P.I.                         
Grasses 

Poaceae  Crested wheatgrass  Agropyron desertorum A 
   Smooth brome   Bromus inermis  A 
   Japanese brome  Bromus japonicus  A 

Cheatgrass   Bromus tectorum  A 
   Orchardgrass   Dactylis glomerata  A 
   Barnyardgrass   Echinochloa crus-galli A 
   Quackgrass   Elytrigia repens  A 
   Timothygrass   Phleum pratense  A 
   Bulbous bluegrass  Poa bulbosa   A 

Kentucky bluegrass  Poa pratensis   A 
Bermuda grass   Cynodon dactylon  A 
Stinkgrass   Eragrostis cilianensis  A 
Feral rye   Secale cereale   A 
Green foxtail   Setaria viridis   A 

Forbs 

Amaranthaceae Tumble pigweed  Amaranthus albus  T 
   Redroot pigweed  Amaranthus retroflexus T 
Asteraceae  Russian knapweed  Acroptilon repens  T 
   Ragweed   Ambrosia artemisiifolia C 
   Musk thistle   Carduus nutans  T 
   Chicory   Cichorium intybus  T 

Canada thistle   Cirsium arvense  T  
Bull thistle   Cirsium vulgare  C 
Prickly lettuce   Lactuca serriola  C 
Scotch thistle   Onopordum acanthium T 
Dandelion   Taraxacum officinale  T 
Yellow salsify   Tragopogon dubius  C 

Boraginaceae   Catchweed   Asperugo procumbens  C 
   Forget-me-not   Myosotis micrantha  C 
Brassicaceae  Desert Alyssum  Alyssum desertorum   A 

Shepard's purse  Capsella bursa-pastoris A  
Hoary cress   Cardaria draba  T 
Purple mustard  Chorispora tenella  T 
Flixweed tansy mustard Descurainia sophia  C 
Dyers woad   Isatis tinctoria   T 
Clasping pepperweed  Lepidium perfoliatum  NP 
Tumble mustard  Sisymbrium altissimum T  

Chenopodiaceae Lambsquarter   Chenopodium album  NP 
   Halogeton   Halogeton glomeratus  T  
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Table 4-2 Continued  
Family   Common Name  Scientific Name  P.I.                         

Forbs Continued 

Chenopodiaceae  Kochia    Kochia scoparia  T 
Russian thistle   Salsola iberica  NP 

Convolvulaceae Field bindweed  Convolvulus arvensis  T 
Cucurbitaceae  White bryony   Bryonia alba   C 
Dipsacaceae  Common teasel  Dipsacus sylvestris  NP 
Euphorbiaceae  Blue spurge   Euphorbia myrsinites  T 
Fabaceae  Goats rue   Galega officinalis  NP 
   Black medic   Medicago lupulina  NP 
   White sweetclover  Melilotus albus  T 

Sweet clover   Melilotus officinalis  T 
Geraniaceae  Redstem fillaree  Erodium cicutarium  T 
Lamiaceae  White horehound  Marrubium vulgare  NP 
   Catnip    Nepeta cataria   T 
Malvaceae  Common mallow  Malva neglecta  T 
Oxalidaceae  Yellow woodsorrel  Oxalis corniculata  NP 
Plantaginaceae Narrowleaf plantain  Plantago lanceolata  NP 
Polygonaceae  Prostrate knotweed  Polygonum aviculare  NP 
   Curly dock   Rumex crispus   T  
Portulaceae  Common purselane  Portulaca oleracea  NP 
Ranunculaceae Bur buttercup   Ceratocephala testiculata C 
Scrophulariaceae Common mullein  Verbascum thapsus  T 

Speedwell   Veronica biloba  T  
Solonaceae  Black henbane   Hyoscyamus niger  NP 
   Bitter nightshade  Solanum dulcamara  T 
   Hairy nightshade  Solanum sarrachoides  T  
Zygophylaceae Puncturevine   Tribulus terrestris  T 
 

Trees and shrubs 
 
Eleaegnaceae  Russian olive   Elaeagnus angustifolia NP 
Salicaceae  White poplar   Populus alba   T/C* 
Tamaricaceae  Saltcedar   Tamarix chinensis  NP 
Ulmaceae  Siberian elm   Ulmus pumila   NP/C  
* Dual abundance classes expressed as leaf/stem 
 
 
 
 
 
 
 
 



Table 4-3  Production frequency (in percent) of phytolith morphotypes found in common native Great Basin grasses.  
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Achnatherum hymenoides 0 0 39 1 0 28 1 1 5 1 8 0 0 0 1 1 10 1 136 
Achnatherum nevadense 0 0 15 13 1 4 0 0 1 1 1 0 3 1 0 0 0 47 165 
Elymus elymoides  0 0 0 6 14 9 17 2 4 1 14 0 0 1 14 6 0 13 112 
Elymus lanceolatus 0 0 0 0 0 6 1 6 1 1 2 0 0 0 13 45 24 3 120 
Hesperostipa comata 0 0 8 0 0 3 3 1 0 0 5 1 16 2 11 12 32 2 130 
Leymus cinereus 0 0 0 0 0 6 18 21 1 0 8 0 15 0 9 17 0 4 156 
Poa secunda ssp. juncifolia 0 0 0 2 6 20 6 13 1 6 1 3 0 0 8 7 4 25 109 
Poa secunda ssp. secunda 0 0 0 5 1 14 5 9 1 0 11 0 0 15 4 21 0 14 111 
Pseudoroegneria spicata 0 0 0 2 15 22 1 11 0 18 4 1 0 0 10 9 0 8 123 
Festuca idahoensis 0 0 0 0 50 10 15 3 1 0 0 0 1 0 0 18 3 0 120 
Hordeum brachyantherum 0 0 0 0 5 7 33 0 2 0 11 0 2 0 4 31 5 0 132 
Distichlis stricta 91 0 0 0 0 0 0 6 1 0 0 0 1 0 0 0 0 0 109 
Muhlenbergia richardsonis 37 0 0 0 0 4 5 4 0 0 0 0 0 0 4 4 0 21 112 
Sporobolus cryptandrus 84 9 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 118 
Sporobolus airoides 12 1 0 0 0 1 0 12 0 0 1 6 0 0 0 14 5 33 138 
Echinochloa muricata 0 39 0 10 0 8 5 5 0 0 0 0 0 0 1 0 0 12 117 
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Table 4-4  Production frequency (in percent) of phytolith morphotypes found in common introduced Great Basin grasses.  
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Agropyron desertorum 0 0 0 0 0 0 0 0 22 22 0 12 2 0 2 0 0 10 11 1 11 139 
Bromus inermis 0 0 0 0 0 0 0 6 1 0 0 1 3 0 0 0 71 2 2 1 14 126 
Bromus japonicus 0 0 0 0 0 1 47 26 0 2 1 0 3 2 2 0 0 1 2 0 7 124 
Bromus tectorum 0 0 0 0 0 0 18 18 9 1 1 1 19 0 0 0 19 1 2 0 10 136 
Dactylis glomerata 0 0 0 0 4 7 45 18 2 2 0 0 0 1 0 0 0 2 5 0 15 130 
Echinochloa crus-galli 0 0 59 18 0 11 0 3 0 8 0 0 0 0 0 0 0 2 0 0 0 111 
Elytrigia repens 0 0 0 0 0 0 0 7 23 10 3 0 8 4 6 0 0 13 25 0 0 126 
Phleum pratense 0 0 0 0 0 0 0 1 26 14 1 0 0 0 0 0 32 3 16 0 7 107 
Poa bulbosa 0 0 1 0 0 3 23 34 17 4 2 0 1 4 0 0 0 8 4 0 0 113 
Poa pratensis 0 0 0 0 0 1 7 16 13 0 1 0 6 2 0 0 0 2 19 23 8 119 
Cynodon dactylon 4 57 10 0 0 0 0 1 6 10 2 0 0 0 0 8 0 1 2 0 1 104 
Eragrostis cilianensis 1 41 23 2 0 0 0 0 16 11 0 0 0 2 0 4 0 0 0 0 0 105 
Secale cereale 0 0 0 0 0 0 3 11 7 8 4 1 6 1 0 0 0 8 46 5 2 119 
Setaria viridis 0 0 50 2 0 0 0 5 15 13 2 2 4 5 0 0 2 1 0 0 0 112 
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Figure 4-1  Map of the western portion of the United States showing the Great Basin  
Floristic Region. 
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Plate I.  Light micrographs of native forb morphotypes.  Some of these images have 

been altered using a graphics program to enhance their features and size.  (a) Achillea 

millefolium acicular psilate unsegmented hair with hair base cells (b) Achillea millefolium 

anticlinal epidermal with striations (c) Artemisia ludoviciana anticlinal epidermal cells 

with striations (d) Erigeron pumilus acicular psilate segmented hairs (e) Grindelia 

squarrosa unknown origin (f) Grindelia squarrosa acute acicular psilate unicellular hair 

with base (g) Haplopappus acaulis acicular psilate segmented hair (h) Haplopappus 

acaulis bifid striate hair base (i) Balsamorhiza sagittata acicular psilate segmented 

contorted hair (j) Erysimum asperum fusiform tuberculate unicellular hair (k) Hackelia 

patens conical psilate unicellular hair (l) Hackelia patens conical psilate unicellular hair 

(m) Castilleja angustifolia long acicular granulate segmented hair with base (n) 

Delphinium nuttallianum disarticulated anticlinal epidermal cell (o) Physalis longifolia 

polyhedral epidermal cells (p) Artemisia ludoviciana anticlinal epidermal cells (q) 

Xanthium strumarium conical rounded psilate segmented hair with base (r) Physalis 

longifolia suborbicular form of unknown origin (s) Galium aparine abrupt conical psilate 

unicellular hair with base (t) Phlox longifolia rectangular papillate striate epidermal cells. 
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Plate I.  Light micrographs of native forb morphotypes. 
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Plate II.  Light micrographs of native grass morphotypes.  Some of these images have 

been altered using a graphics program to enhance their features and size.  (a) 

Achnatherum hymenoides stipa type in top view (b) Achnatherum hymenoides stipa type 

in cross sectional view (c) Achnatherum hymenoides round based hair (d) Achnatherum 

nevadense stipa type in top view (e) Achnatherum nevadense thin weakly lobed type in 

top view (f) Hesperostipa comata horned rondel in cross sectional view (g) Elymus 

elymoides long wavy plate (h) Elymus elymoides round bottomed rondel (i) Elymus 

lanceolatus keeled rondel (j) Elymus lanceolatus pyramidal rondel (k) Leymus cinereus 

long indented (l) Leymus cinereus oblong knobby hair (m) Festuca idahoensis keeled (n) 

Festuca idahoensis long wavy (o) Hordeum brachyantherum long deeply indented (p) 

Poa secunda long wavy plate (q) Poa secunda prickle (r) Poa secunda papillae (s) 

Muhlenbergia richardsonis sinuous platelets with two psilate apices in cross sectional 

view (t) Sporobolus airoides bilobate in top view (u) Echinochloa muricata bilobate in 

top view (v) Echinochloa muricata bilobate cross sectional view (w) Echinochloa 

muricata plate wavy short in top view (x) Echinochloa muricata plate wavy short in cross 

sectional view (y) Sporobolus cryptandrus saddle in top view (z) Sporobolus cryptandrus 

bilobate in top view (aa) Carex nebrascensis angular psilate pointed apex without 

satellites in platelets in cross sectional view (bb) Carex nebrascensis elongated 

rectangular with irregular ends  (cc) Equisetum laevigatum epidermal cells with elevated 

projections on edges, stomata and cylindrical polylobate verrucate cells in situ (dd) 

Equisetum laevigatum disarticulated cylindrical polylobate verrucate in cross sectional 

view.     
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Plate II.  Light micrographs of native grass morphotypes. 
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Plate III.  Light micrographs of native and introduced tree and shrub morphotypes.  

Some of these images have been altered using a graphics program to enhance their 

features and size.  (a) Artemisia tridentata blocky (b) Populus alba polyhedral epidermal 

(c) Populus alba tracheid (d) Rosa woodsii polyhedral epidermal (e) Ulmus pumila hair 

base with striations (f) Prunus virginiana anticlinal epidermal (g) Prunus virginiana 

rhombohedral CaOx crystals (h) Prunus virginiana rhombohedral CaOx crystals (i) 

Cercocarpus ledifolius blocky and rectangular CaOx crystals (j) Pinus monophylla 

blocky CaOx crystals (k) Elaeagnus angustifolia raphide CaOx crystals  
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Plate IV.  Light micrographs of introduced forb morphotypes.  Some of these images 

have been altered using a graphics program to enhance their features and size. (a) 

Acroptilon repens mesophyll cells  (b) Acroptilon repens epidermal cells (c) 

Ceratocephala testiculata cylindrical granulate segmented hair with no base (d) Lactuca 

serriola conical psilate prickles (e) Lactuca serriola conical psilate prickle (f) Cirsium 

vulgare polyhedral epidermal cells (g) Cirsium vulgare disarticulated polyhedral 

epidermal cell  (h) Bryonia alba acicular psilate segmented hair without base (i) Bryonia 

alba charcoal (j) Tragopogon dubius epidermal cells with irregularly sinuated processes 

(k) Tragopogon dubius epidermal cells with irregular sinuated processes (l) Myosotis 

micrantha long conical granulate unicellular hair with base (m) detail of Myosotis 

micrantha granulated hair surface (n) Myosotis micrantha anticlinal epidermal cells with 

squared edges (o) Asperugo procumbens conical psilate unicellular hair detached from 

base (p) Capsella bursa-pastoris stellate tuberculate hair (q) Capsella bursa-pastoris 

bifurcated granulate hairs (r) detail of Capsella bursa-pastoris tuberculate hair surface (s) 

Alyssum desertorum stellate dendriform granulate hair.  
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Plate IV.  Light micrographs of introduced forb morphotypes. 
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Plate V.  Light micrographs of introduced grass morphotypes.  Some of these images 

have been altered using a graphics program to enhance their features and size. (a) 

Agropyron desertorum long deeply indented morphotype (b) Agropyron desertorum long 

cell indented (c) Agropyron desertorum oblong knobby hair (d) Agropyron desertorum 

cubic tuberculate  (e) Agropyron desertorum square-based hair (f) Bromus japonicus 

plate wavy long (g) Bromus tectorum papillae (h) Bromus tectorum round-based hair (i) 

Bromus tectorum dendritic (j) Bromus tectorum long wavy plate variable ends (k) 

Bromus japonicus long cell smooth (l) Cynodon dactylon bulliform cell (m) Cynodon 

dactylon saddle (n) Echinochloa crus-galli bilobate (o) Echinochloa crus-galli cross (p) 

Dactylis glomerata long wavy plate deeply lobed in top view (q) Dactylis glomerata long 

wavy plate in cross sectional view (r) Phleum pretense opaque pieces (s) Phleum 

pretense papillae (t) Poa bulbosa long cell smooth with perforated edges (u) Poa 

pratensis horned rondel (v) Secale cereale keeled rondel  (w) Setaria viridis bilobate (x) 

Setaria viridis bilobates and cross types.  
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Plate V.  Light micrographs of introduced grass morphotypes.
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CHAPTER 5 

DEVELOPING AN APPROACH FOR USING THE SOIL PHYTOLITH RECORD TO 

INFER VEGETATION AND DISTURBANCE REGIME CHANGES  

OVER THE PAST 200 YEARS1 

 
Abstract 

Historical ecology is a field of research that seeks to explain how ecosystem 

change is manifest upon the landscape over time.  This interdisciplinary synthesis of 

information draws from the human and the biological archive.  Historical ecology helps 

characterize reference conditions and the historic range of variability in ecosystem 

structure that is useful in understanding ecosystem dynamics and function, provides input 

to resource managers, and guides restoration efforts.  The methods in historical ecology 

cover a wide range of temporal and spatial scales.  However, the evidence for time scales 

of less than 200 years is largely limited to the human archive and dendrochronology.  

Additional approaches for this more recent time period could provide important 

information for understanding the vegetation changes in the past 200 years especially 

where dendrochronology is not applicable.  This research seeks to expand the biological 

evidence for inferring vegetation and disturbance regime changes in the Western United 

States since settlement in the 1800s by developing an approach that combines the human 

archive and soil phytolith analysis.  We examined the human archive for vegetation and 

disturbance regimes change in the City of Rocks National Reserve, Idaho, US.  In 

addition, we examined the phytoliths of native and introduced species in the area and 

looked at how well the soil phytolith record reflects recent wildfires.  Our results indicate 
 

1 Coauthored by Lesley R. Morris, Neil E. West, Fred A. Baker, Helga Van Miegroet, and Ronald J. Ryel. 
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that this combination of history and soil phytolith analysis will be a useful approach 

for inferring vegetation and disturbance change in ecological histories.  

 
Introduction 

Across the Intermountain West of the United States, land management agencies 

are struggling with the issues of landscape change.  In the Great Basin region, woody 

species are reported to be increasing in dominance at the expense of the grass and 

herbaceous understory in both sagebrush steppe (Miller et al., 1994) and pinyon-juniper 

woodlands (West and Young, 2000). Changes in ecosystem function, such as water 

relations (Ryel et al. 2003, 2004; Brown et al., 2005; Ponton et al., 2006), may also be 

affected.  Invasive plant species, such as annual grasses, are further altering landscape 

dynamics (Miller et al., 1994) and many question the causes of what seem to be 

increasingly frequent and devastating wildfires (Miller and Tausch, 2001).  Land 

managers often seek information about the past to understand how to manage for the 

future (Swetnam et al., 1999).  In addition, knowledge of past plant community 

assemblages and historic dynamics are important for ecologists in studying ecosystem 

function.  

Historical ecology is an emerging and interdisciplinary field of study that seeks to 

describe and explain the changes and processes that have created current landscapes 

through a synthesis of information derived from human records and biological data 

(Russell, 1997).  The resulting ecological histories of landscapes provide an 

understanding of historic conditions, the range of variability and “reference conditions” 

that are particularly useful in restoration efforts (Egan and Howell, 2001) and for setting 
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management priorities and goals (Swetnam et al., 1999).  Historical ecology requires 

synthesis of information from the human and biological archives.  The human archive 

records historic conditions within written, oral and photographic sources.  The biological 

archive is the record of historic conditions contained within the natural environment and 

is investigated through dendrochronology, packrat middens, palynology and soil 

phytolith analysis.  The methods in historical ecology cover a wide range of temporal and 

spatial scales.  However, the methods for time scales less than 200 years are largely 

limited to the human archive and some dendrochronological evidence that may be subject 

to human bias, limited in spatial extent or inappropriate for non-forested systems.  

The goal of this research was to develop an approach that expands the biological 

evidence for inferring vegetation and disturbance regime change within the past 200 

years by exploring ways in which the combination of the human archive and soil 

phytolith analysis can address these issues.  We examined this combination of human and 

biological evidence at a site in the western US with a rich human archive by addressing 

three broad questions:  (1) How have the vegetation and the disturbance regimes in the 

study area changed within the past 200 years? (2) Are there characteristic phytolith types 

for dominant Great Basin native and introduced flora? (3) How well does the soil 

phytolith record reflect recent wildland fire?  Using the results from these three questions, 

we present an evaluation of the potential for this approach to provide additional 

biological evidence in historical ecology for more recent time scales. 
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The need for expanding the methodology  

The human archive can be very useful for illustrating changes in historic 

conditions over time.  Use of written, oral and photographic evidence often reveals 

amazing changes and their potential causes.  For example, historic records from the 

General Land Office surveys that laid out the township and range boundaries 

systematically across the western US in the mid 1800s is a rich source of vegetation 

description (Galatowitsch, 1990).  Oral histories reveal land and resource uses that were 

otherwise unrecorded or poorly understood.  Finally, photographic evidence offers some 

of the clearest evidence for exactly what the land looked like at a particular point in time.  

Each of these sources, however, has limitations.  Both written and oral documentation are 

subject to a cultural filter or bias (Edmonds, 2001; Swetnam et al., 1999).  For example, 

often only vegetation and wildlife that are of economic value are described.  

Photographic evidence is also subject to bias because people record what is of interest at 

a particular time.  Photographs are also spatially limited (Swetnam et al., 1999).  Efforts 

to counteract these limitations by examining the biological archive are constrained by the 

available methodology.  Dendrochronology is the most widely employed tool, but it is 

largely limited to forested systems.  Examining pollen or phytoliths deposited in lakes is 

of limited use in the drier regions of the Intermountain West.  In addition, lake sediments 

represent regional rather than local patterns.   

Part of the problem with using biological evidence in the recent past is the lack of 

a sufficient dating technique. Paleoecological evidence of historic vegetation is well 

developed for much of the West including the Great Basin (Grayson, 1993).  The 

biological evidence from the deep past from dendroecology, packrat middens, palynology 



 187
and phytoliths is corroborated by the use of radio carbon dating.  Use of this 

biological evidence for determining more recent vegetation change, however, has been 

limited by the fact that radio carbon dating is less exact for the past 400 years (Rhode, 

2001).  Several relatively new methods involving the use of lead (210Pb) and Cesium 

(137Cs) have been used for dating sediments within the past 150 years from lakes and 

wetlands (Slate and Stevenson, 2000).  These chronological methods, however, have not 

been developed for terrestrial soils.  As a result, there are gaps in methods and biological 

evidence for reconstructing vegetation change in the more recent past from terrestrial 

soils.  Understanding the changes during this time period is an important scientific task 

because it would reveal pre-settlement conditions, effects of the “Little Ice Age” and 

novel land uses brought by the European settlers in the western US (Rhode, 2001).    

Soil phytolith analysis also needs further development. Phytolith analysis is 

limited by a lack of catalogued phytoliths and a need to relate historic soil phytolith 

assemblages to modern day analogs (Fredlund, 2001; Piperno, 1988; Piperno, 2006) 

particularly in North America (Blinnikov, 2005).  Phytoliths have been catalogued at the 

community level in ponderosa pine forests (Kerns, 2001a) and at the regional level in the 

Pacific Northwest (Blinnikov, 2005).  While some species described in these studies 

overlap with the Great Basin, there is no full examination of this region’s most dominant 

species.  In addition, no one has examined and catalogued phytoliths of this region’s 

introduced species.  Phytolith morphotypes from introduced species may provide a key to 

interpreting the stratigraphy in the soil because the timeframe of their introduction is 

known.  For instance, phytolith morphotypes common in the invasive cheatgrass (Bromus 

tectorum) were considered as evidence of “the arrival of the Euro-American settlers” 
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(Blinnikov et al., 2002; Blinnikov 2005).  Kealhofer (1996) applied agricultural weed 

phytoliths in her study of human and environmental interactions in Thailand.  However, 

no one has further explored the potential morphotypes or applications of introduced 

species to provide time context in the soil stratigraphy in the US.  Such an application 

would open up the field of phytolith analysis to interpretation of the more recent past.  In 

addition, it would aide in identifying areas with disturbances to the soil profile from 

animal burrows or frost heaving that may have mixed the phytolith record. 

A lack of fire scars creates difficulty in inferring fire regimes in pinyon-juniper 

and sagebrush steppe ecosystems (Baker and Shinneman, 2004; Mensing et al., 2006).  

Pinyon-juniper woodlands provide only limited fire scar records because most of the trees 

are killed by fire (Miller and Tausch, 2001).  Thus, it is uncertain whether low severity 

fires were really a part of this system, if fire maintained open woodlands, or if stand 

replacing fires prevented woodlands from encroaching down slope (Baker and 

Shinneman, 2004).  Therefore, dendrochronology alone does not provide a full picture of 

the fire in these systems.   

Phytoliths have been used to infer historic fires in several studies outside of the 

US including Thailand (Kealhofer, 1996), Panama (Piperno, 1994), South Africa (Schiegl 

et al., 2004), and Canada (Boyd, 2002).  Discoloration or darkening occurs during 

occlusion of carbon or oxidation of the phytoliths during a fire (Parr, 2006).  In addition, 

fire darkens the silica aggregates (amorphous silica substances) found in wood ash 

(Schiegl et al., 2004).  By comparing the percent of light versus dark phytoliths, or 

Burned Phytolith Index (BPI), in surface and buried A horizons, Boyd (2002) inferred 
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higher fire frequency in Holocene grasslands than in the present.  This method has not 

been tested in a modern day analogue study or in a wildland context in the US.   

 
Regional setting 
 
 
Study area 
 

The City of Rocks National Reserve (CIRO) contains approximately 5,800 ha of 

the northern Great Basin Desert Region in south central Idaho in the western US (Figure 

5-1).  The elevation ranges from 1,646 meters in the valley floors to 2,702 meters on 

Graham Peak (Daugherty, 1988).  The vegetation includes sagebrush steppe, pinyon-

juniper woodlands, mountain mahogany chaparral, and limber pine forest with riparian 

habitat traversing all of these zones.  There are approximately 75 to 95 frost free days 

(Soil Conservation Service, 1994).  The mean annual precipitation is 276 mm (Morris, 

2006a).  Temperatures in this region can be highly variable.  The annual mean 

temperature is 9° C with extremes of 41° C and -33° C (Morris, 2006a).  The 

Northwestern Shoshoni Native Americans historically used the area for fall pinyon nut 

harvesting and hunting prior to European settlement (Chance, 1989).  The CIRO contains 

segments of both the California Trail and the Salt Lake Alternate route from the era of 

overland emigration (1843-1869) in the US (HRA, 1996).  Homesteads and dryland 

farming were active in CIRO until the droughts of the 1920s when failing springs and 

crops forced many settlers off the land (HRA, 1996).  These historic uses provide a rich 

human archive for examining historical environmental conditions. 
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Materials and methods 

This project required two phases.  The first phase involved gathering information 

from the human archive by collecting and examining written and oral documentation of 

historic conditions.  The second phase involved examining the biological archive by 

looking at the  phytoliths generated by the local flora and combining history with 

phytolith analysis.  

 
The human archive 
 

Information regarding historic conditions was collected from archival sources, 

emigrant diaries, oral histories, fire records and historic photography.  A comprehensive 

review of archival documents was undertaken to collect any available information 

concerning historic environmental conditions within the CIRO and the surrounding area.  

Existing oral histories were gathered and more than 30 interviews were conducted with 

longtime residents of the area. Discussion focused upon what the participant remembered 

or had been told about the historic environmental conditions within the CIRO.  A 

collection of 100 emigrant diaries were examined for references to vegetation, fauna, fire 

and climatic conditions of the area.  More than 100 historic photos of the CIRO were also 

collected and more than 60 of these photos were retaken from the same vantage point (re-

photography).   

A fire history of the CIRO was compiled and mapped from existing studies and 

historic fire reports from land management agencies.  Previously digitized fire history 

records were obtained from the US Department of Agriculture Forest Service and the US 

Department of Interior Bureau of Land Management.  Information was also gathered 
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concerning fire from archival documents searches, emigrant diaries, oral histories and 

historical photographs.  When historical fire reports or records contained maps of fires, 

they were digitized on screen.  A digital map of all such fires was created in 

ArcView/GIS 3.3. (ESRI, Redlands, CA, USA).   

 
The biological archive 
 
 
Characteristic phytoliths of Great Basin  
native and introduced flora 

A modern reference collection was made of extant plants from the study area and 

region.  Identification of the plants to species will be confirmed by and housed at the 

Intermountain Herbarium at Utah State University.  Phytoliths from these plants were 

extracted using modified dry ashing techniques outlined in Pearsall (2000) and Kerns 

(2001a).  Portions of the plant (e.g. leaf, stem and seed) were washed in deionized water 

to remove soil and dust particles, dried at 70° C for one hour to remove excess water and 

then heated to 450° C for five hours in a muffle furnace.  The remaining ash was placed 

in vials and coded to its respective plant species.  A small amount of the ash from each 

plant was mounted on microscopic slides in Canada Balsam oil and sealed with clear 

fingernail polish.  Each slide was examined using an Olympus BH-2 phase contrast 

microscope with microphotograph capability.  Phytoliths are described and classified 

using the International Code for Phytolith Nomenclature (Madella et al., 2005).  In 

addition to examining the different parts of the plant (e.g. leaves, stems and seeds) we 

also examined the galls formed on Juniperus osteosperma for identifiable phytoliths.  

This was done assuming that a novel form of tissue may produce a novel morphotype.   
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Soil sampling and phytolith extraction 

Six soil sampling sites were located using the mapped historical information 

gathered from the human archive.  In addition to fires, historical land uses such as 

homesteads, dryland farming, and range improvement projects were digitized onto a map 

of the study area using ArcView/GIS to ensure that sample locations have had a relatively 

stable soil profile during the time frame of interest (e.g. untilled).  Sampling locations 

included areas that were known to have burned in 2000 (three sites) and were known to 

have not burned in the last 100 years (three sites).  Soil surface samples were collected 

from these sites in May and June, 2006.  

Phytoliths were extracted from the soils using modified wet oxidation and heavy 

liquid flotation methods (Blinnikov, 1994; Pearsall, 2000).  Approximately 5 g of soil 

was obtained through a #270 (52 μm) sieve and organics were digested using a heated 

70% nitric acid bath for at least one hour.  Defloculation was carried out using a 5% 

solution of sodium hexametaphosphate.  A heavy liquid flotation with sodium 

polytungstate at 2.3 g/cm3 density was used to remove phytoliths from the remaining 

material.  The entire supernatant was decanted and phytoliths were sunk by adding 

distilled water at a ratio of three to one and centrifuging.  This material was then washed, 

poured into vials and dried for twenty four hours at 65-80° C.  

   
Phytolith counting  

The dried phytolith material was mixed well inside the vials to ensure 

homogeneity within each sample.  Using a dissecting needle, a small sample of the 

phytolith material was tapped onto a microscope slide.  One drop of Canada Balsam oil 
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was added and mixed well using the same dissecting needle.  After the mixed liquid 

spread across the entire cover slip, the slides were examined under a microscope.  One 

hundred phytoliths were counted under 400x magnification from the center left and then 

center right of each slide for a total count of 200.  The percentage of dark versus clear 

phytoliths and soil aggregates per 100 counted were averaged to generate the BPI for 

each sample site.  The BPI here included all dark phytoliths and dark soil aggregates, a 

divergence from Boyd (2002) who only counted long cells from grasses.  

 
Results 

 
Historical vegetation and disturbance changes  

The evidence from the human archive revealed several important changes in the 

vegetation and disturbance regimes of the CIRO since settlement.  First, overall plant 

diversity in the valleys has decreased.  The most striking evidence of this decline can be 

found in historic photographs.  The earliest photo of the CIRO was taken in 1868 by 

Timothy O’Sullivan as part of the King Survey of the 40th parallel in the western US 

(US-NARA, 1868).  These images show that the valley floor once supported multiple 

species of grasses, forbs and shrubs.  Compared to a repeat photo from today, these same 

sites now consist of mainly sagebrush and crested wheatgrass.  The change in the valley 

vegetation was likely due to the overlapping impacts of heavy livestock grazing in the 

late 1800s, land clearing during the dry-farming boom of the early 1900s, and cultivation 

of crested wheatgrass (Agropyron desertorum) after World War II in an effort to increase 

forage production, and multiple periods of drought.  
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Second, woody species have increased throughout the entire study area.  

Descriptions from emigrant diaries and the field notes from the General Land Office 

surveys report that the pinyon-juniper woodlands have moved further down slope than 

they were in the past.  In addition, oral histories and historical photos confirm that the 

both the woodlands and the forests have much higher tree density and cover than they did 

in the past.  These same records show that sagebrush density and cover also increased in 

the valleys.  In most areas, the rise in woody vegetation has come at the expense of native 

grasses and forbs.  Causes for this increase in woody vegetation potentially include fire 

suppression policies in the last 100 years, heavy livestock grazing, multiple periods of 

drought, overall temperature increase and precipitation decrease and plant competition.    

Finally, there has been an increase in the number and cover of non-native plant 

species in the study area.  The human archive reveals that non-native plants were 

introduced to the CIRO both intentionally and unintentionally.  Agricultural development 

and livestock grazing are both primary sources of introduction because of accompanying 

land disturbance for cultivation, seed and feed contamination, and seed spread on fur and 

dung of livestock.  The spread of several of these introduced plant species has also been 

aided by recent fires in the area (e.g. Bromus tectorum).  The fire regimes for the 

sagebrush steppe and pinyon-juniper woodlands have likely been altered by federal land 

agency fire suppression policies.  In addition, fires have increased in both the size and 

intensity over the past 100 years.  This is likely due to a combination of the fuel loads 

that accompany increasing density of woody species and climate change.  Additional 

results from the human archive review and fire history are included in Morris (2006a, b). 
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Characteristic phytoliths of Great Basin  
native and introduced flora 
 

Sixty five common Great Basin species from 22 different families have been dry-

ashed and examined under the microscope.  This reference collection consisted of:  10 

grass species, 10 tree and shrub species (Table 5-1) and 45 forbs (Table 5-2).  Of these, 

22 were introduced species.  Almost all of the species examined demonstrated at least 

some silicification.  Most of phytoliths were partially darkened from the burning in the 

muffle furnace.  Consistent with the literature, the grasses formed the most phytoliths and 

many recognizable phytolith morphotypes.  One of the ten processed grasses, 

Achnatherum hymenoides, formed a bilobate (or stipa-type) phytolith.  Two others, 

Acnatherum nevadensis and Hesperostipa comata, formed trapeziform polylobates.  

Trees and shrubs formed cubic, parallelpipedal, and globular morphotypes.  There was no 

unique phytolith formed in the gall tissue of J. osteosperma.  

Several unique and potentially diagnostic phytoliths were discovered among the 

forbs.  The most spectacular of these came from Alyssum desertorum, an introduced 

annual mustard that has spread across the western US.  The leaves, stems and seeds of 

this species are covered with stellate granulate hairs that make recognizable phytoliths 

(Figure 5-2).  These stellate granulate hairs range from 250-500 μm and are quite large in 

comparison to other phytoliths.  No similar hairs were found on any of the other mustards 

or other forbs examined.  It is possible, therefore, that this very interesting shape could 

provide a diagnostic morphotypes for the species (at least in this study area).  In addition, 

there were several other species that produced distinct hairs and hair bases.  For example, 

Erigeron divergens produced large (200-500 μm) segmented hairs with three and 
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sometimes more sections (Figure 5-3a). Mertensia oblongifolia makes many ovate 

irregular hair bases and acicular psilate hair cells (Figure 5-3b).    

 
Modern day fire analogs  

Darkened phytoliths and silica aggregates appear to reflect recent wildland fires.  

On average, the three sites that had burned in 2000 (“burned sites”) had a 38% BPI while 

the three sites that had not burned within the last 100 years (“unburned sites”) had a 17% 

BPI (Figure5-4).  The BPI varied from 30% to 49% at burned sites (Figure 5-4).  At 

unburned sites, the BPI ranged between 10% to 22% (Figure 5-4).   

 
Discussion 

 
Historical vegetation and disturbance changes  

In the two-phase research design applied here, the first step necessarily informed 

the second.  The human archive provided information about change and disturbance that 

was useful for determining sampling sites and ensuring that these locations have had a 

relatively stable soil profile during the time frame of interest (e.g. untilled land).  In 

addition, the human archive revealed vegetation changes that can be used to further test 

combinations of history and soil phytolith analysis.  For example, frequency diagrams 

can be created to test the sensitivity of the soil phytolith stratigraphy to record such 

events over the past 200 years using the morphotypes of native grasses, non-native 

species and woody vegetation described here.  The relative frequency of introduced 

species phytolith morphotypes should decrease with depth in the soil profile.  Conversely, 

the relative frequency of grass and forb phytolith morphotypes should increase while 
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woody morphotypes decrease with depth in the soil profile as a reflection of higher 

grass cover and diversity in the past.  Kerns (2001b) found higher frequencies of grass 

morphotypes in subsurface samples from species that were not common in her plots in 

the present.  This suggests that the phytolith record may in fact be sensitive enough to 

record changes such as those found here.     

Soil phytolith analysis has the potential to provide much needed biological 

evidence in historical ecology for the more recent past.  Its sensitivity as a record for the 

past 200 years can be tested by sampling in locations where vegetation change is known 

to have occurred based on human records.  Similarly, the combination of historical 

information and dendrochronology can be used to test whether soil phytolith analysis can 

provide useful insight into the occurrence of fire in pinyon-juniper woodlands and 

sagebrush steppe.  The site at the CIRO is an excellent location for developing these 

sensitivity tests.  The CIRO has a very long and well recorded history from European 

emigration and settlement in the mid-1800s to present.  After recognizing the known 

historic changes within the phytolith record, soil phytolith analysis can be expanded in 

future research to help understand historic changes that were not identified in the human 

archive.   

 
Characteristic phytoliths in Great Basin 
native and introduced flora 
 

This examination of potential characteristic phytoliths has begun to fill the need for a 

catalogue of morphotypes in the native and introduced flora of the Great Basin.  The 

stellate hair found in the Alyssum desertorum is a potential diagnostic phytolith for this 

species in the study area.  According to Khalik (2005), this particular form of trichome is 
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only found in the genera Alyssum, Anastatica, Eremobium, and in the species Maresia 

nana, and Morettia canescens.  None of these other genera or species is present in the 

study area (John, 1995).  Alyssum desertorum was introduced nearly a century ago and 

has apparently experienced a population and range explosion in the last few decades 

(Young and Clements, 2005).  The unique stellate granulate hair from this species did not 

show up in any of the surface samples used for the modern day fire study.  However, its 

size would have precluded it from inclusion due to sieving process used in this work.  

Typically, phytoliths range in size from 50-200 microns (Pearsall, 2000).  The relatively 

large hairs from the other forbs were not found in the surface soil samples presumably for 

the same reasons.  More exploration using an adapted methodology for larger phytoliths 

(up to 500 microns) is needed to determine if this unique phytolith will be useful within 

the soil phytolith assemblage.   

The bilobate and trapeziform polylobate phytoliths found in the grasses will be 

useful for addressing hypotheses about vegetation change in the study area.  Both of these 

native grasses have reportedly decreased over time due to livestock grazing pressure and 

replacement by non-native species (Morris, 2006a).  In addition, the hair morphotypes 

associated with forbs of the sagebrush steppe may also be useful for tracking vegetation 

changes.  The morphotypes from woody species may also by useful for tracking shrub 

and woodland encroachment into the valleys of the study area.  Further testing on the 

woody morphotypes described here will be useful to determine if they are silica rather 

than calcium oxalate phytoliths.  Silica phytoliths are better preserved in soils and would 

provide a longer record.  Woody species have been reported to make useful cubic, 



 199
parallelpipedal, and globular morphotypes in other studies (Albert et al., 2001, 2003; 

Kondo et al., 1994; Piperno, 2006).   

 
Modern day fire analogues 
 

These results indicate that darkening in phytoliths and silica aggregates reflect 

modern fires and, therefore, may be a useful tool for identifying historic fires within the 

soil profile in this region.  However, since the BPI of both burned and unburned sites is 

still relatively close, more areas need to be examined to assess the reliability of this 

index.  There is relatively little known about the area of vegetation that the soil phytolith 

assemblage represents, however, some have estimated that it incorporates about one 

hectare of plant phytolith inputs (Blinnikov et al., 2002).  It is possible that the relatively 

close range in BPI between sites is due to area of phytolith re-distribution and the 

inability of a site to retain all its microfossils.  For example, a recently burned site has 

greater potential for wind and water bourne soil erosion because of the sudden loss of 

vegetation.  An unburned site nearby may contain a relatively higher BPI because 

phytoliths were deposited there during the fire event and were retained more readily in 

the soils by the stability offered from resident vegetation.  In addition, the heat intensity, 

size of the fire, windspeed, and topography will all impact the size of fire particulates and 

the distance they can travel (Komarek et al., 1973).  White ashed materials may fall 

closer to the ground after short distances because they are not “aerodynamic” but 

charcoal particulates have been observed over one-half mile from a fire (Komarek et al., 

1973).   
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Conclusion 

This research seeks to fill the gap in biological evidence for inferring vegetation 

and disturbance regime change over the past 200 years by developing an approach that 

combines the human archive evidence with the soil phytolith record to address these 

issues.  Our examination of the human archive demonstrated that the vegetation and 

disturbance regimes have changed significantly during the period of study and that this 

knowledge will be useful for testing the sensitivity of the soil phytolith record to reflect 

these changes.  Our results also demonstrate that there are potentially diagnostic 

phytoliths in introduced species (such as Alyssum desertorum) that may be useful as time 

markers for recent soil profiles.  In addition, morphotypes from the native grasses and 

woody species will be useful in testing for vegetation changes in the study area due to 

changing disturbance regimes (e.g. livestock grazing), cultivation and competition from 

invasive plants.  The results from the modern day fire analogues show that a BPI which 

includes darkened phytoliths and soil aggregates can distinguish between areas that 

burned recently and those that have not burned in at least 100 years.  Developing this 

approach for expanding biological evidence will be beneficial for understanding 

sagebrush steppe and pinyon-juniper woodlands, two widespread and highly threatened 

systems in the Intermountain West of the US (West, 1983, 1999).  The approach can be 

adapted to examine a variety of questions about vegetation and disturbance regime 

change in other systems as well. 
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Table 5-1  Common Grasses, Trees and Shrubs of the Great Basin analyzed for 
phytoliths.  
____________________________________________________________________________________________________________ 
Family     Common Name  Scientific Name                            

Grasses 

Poaceae   Indian ricegrass   Achnatherum hymenoides 
    Needlegrass   Achnatherum nevadensis  

Needle and thread grass  Hesperostipa comata 
+Bulbous bluegrass  Poa bulbosa 
+Crested wheatgrass  Agropyron desertorum 
+Cheat grass   Bromus tectorum 
Kentucky bluegrass  Poa pratensis 
Bluebunch wheatgrass  Pseudoregneria spicatum 
Great Basin wild rye  Leymus cinerus  
Squirrel tail    Elymus elymoides 

 
Trees/Shrubs 

 
Asteraceae   Rabbit brush   Chrysothamnus viscidiflorus 
    Big sagebrush   Artemisia tridentata    
Caryophyllaceae  Snowberry   Symphoricarpos oreophilus 
Cupressaceae   Utah juniper   Juniperus osteosperma 
Rosaceae   Chokecherry   Prunus virginiana  
    Mountain mahogany  Cercocarpus ledifolius   

Antelope bitterbrush  Purshia tridentata 
Wild rose   Rosa woodsii  

Salicaceae   Yellow Willow   Salix lutea   
Pinaceae   Pinyon pine   Pinus monophylla 
______________________________________________________________________________  
+ non-native/introduced 
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Table 5-2  Common Forbs of the Great Basin analyzed for phytoliths. 
___________________________________________________________________________________________________________ 
Family     Common Name  Scientific Name                            
Apiaceae   Narrowleaf lomatium   Lomatium triternatum 
Asteraceae   +Dandelion   Taraxacum officinale 
    +Yellow salsify   Tragopogon dubius 
    Arrowleaf balsamroot  Balsamorhiza sagittata 

Sawtooth gumweed  Grindelia squarrosa   
 Yarrow    Achillea millefolium  

Mountain dandelion  Agoseris glauca  
    White aster   Erigeron plumilus   
    Spreading fleabane  Erigeron divergens 

+Canada thistle   Cirsium arvense  
    Dusty maiden   Chaenactis douglasii  
    Hoary aster   Machaeranthera canescens 
    Pussytoes    Antennaria microphylla  
Brassicaceae   +Clasping pepperweed  Lepidium perfoliatum  
    +Tumble mustard  Sisymbrium altissimum 
    +Purple mustard  Chorispora tenella 

+Desert Alyssum  Alyssum desertorum  
 +Flixweed tansy mustard Descurainea sophia  

    Wall flower   Erysimum asperum 
    +*Dyerswoad   Isatis tinctoria 
Boraginaceae    Spotted forget-me-not  Hackelia patans 
    +Forget-me-not   Myosotis micrantha 
    +Catchweed   Asperugo procumbens  
    Sagebrush bluebell  Mertensia oblongifolia  
    Stoneseed   Lithospermum ruderale  
Chenopodiaceae  +Russian thistle   Salsola iberica  
Convolulaceae   +Field bindweed  Convolvulus arvensis   
Fabaceae   Silver lupine   Lupinus argenteus 
    +Sweet clover   Melilotus officinalis 
    Beckwith milkvetch  Astragulus beckwithii 
Lilliaceae   Wild onion    Allium brandegei 
    Death camus   Zigadenus paniculatus  
Linaceae   Flax    Linum lewisii  
Plantaginaceae   +Plantago   Plantago lanceolata 
Polygonaceae   Cushion buckwheat  Eriogonum ovalifolium 
    Buckwheat     Erioginum sp.  
Polemoniaceae   Carpet phlox   Phlox hoodii   
    Longleaf phlox   Phlox longifolia  
Malvaceae   Gooseberry-leaf mallow  Sphaeralcea grossulariifolia 
Ranunculaceae   +Bur buttercup   Ceratocephalus testiculatus 
    Larkspur   Delphinium sp. 
Scrophulariaceae  Blue-eyed Mary   Collinsia parviflora 
    Yellow paintbrush  Castilleja flava 
    +Speedwell   Veronica biloba   
Solonaceae   +Black henbane   Hyoscyamus niger  
______________________________________________________________________________  
+ non-native/introduced    *not found in the study area
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Figure 5-1  Map of the western United States showing the Great Basin ecoregion 
boundaries and the location of the City of Rocks National Reserve in southern Idaho.   
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a   b 
Figure 5-2  Phytoliths from Alyssum desertorum a) magnification 400x b) magnification 
20x, bar is 20μm.  
 
 
 
 
 
 
 
 

a   b 
Figure 5-3  Phytoliths from a) Erigeron divergens, 400x and b) Mertensia oblongifolia, 
400x. 
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Figure 5-4  Results from the Burned Phytolith Index analysis.  The bars represent 
standard error.   
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CHAPTER 6 

CAN SOIL PHYTOLITH ANALYSIS AND CHARCOAL BE USED AS 

INDICATORS OF HISTORIC FIRE IN THE PINYON-JUNIPER AND  

SAGEBRUSH STEPPE ECOSYSTEM TYPES OF THE  

GREAT BASIN DESERT REGION, USA?1 

 
Abstract 

Wildland fire intensity and area are increasing across the Intermountain West, 

USA in a variety of ecosystem types including the pinyon-juniper woodlands and 

sagebrush steppe of the Great Basin Desert region.  Unfortunately, we do not know if 

there were historic analogues for these high intensity stand replacing fires due to the lack 

of fire scars that record evidence of them.  Soil charcoal and phytolith analysis have been 

successfully employed in other regions to garner information about fire regimes through 

the Holocene.  We studied the utility and taphonomy of these methodologies in terrestrial 

soils in our region.  Our results illustrated the difficulty of defining a clear taphonomy for 

phytoliths and microscopic charcoal in terrestrial sediments after a fire.  However, the 

soils in these ecosystem types seem to be well stratified and contain both burned 

phytoliths and microscopic charcoal for examination.  Soil-charcoal and phytolith 

analysis can be used to examine questions about historical fires in these two ecosystems 

of the Great Basin Desert region.    

 
1 Coauthored by Lesley R. Morris, Ronald J. Ryel, and Neil E. West. 
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Introduction 

Across the Intermountain West of the United States, wildfires are believed to be 

increasing in size and intensity, attributed to historic land uses and climate (Westerling et 

al., 2006).  The ecosystem types of the Great Basin Desert region have not escaped this 

pattern.  Both pinyon juniper woodlands and the sagebrush steppe have experienced a 

great deal of fire in recent decades (Miller and Tausch, 2001; Mensing et al., 2006).  It is 

unclear if these high severity fires were a part of the historic fire regime in this system 

(Baker and Shinneman, 2004).  In addition to the size of these fires, the introduced annual 

grass Bromus tectorum has played a role in increasing the fire frequency, especially in the 

sagebrush steppe (Whisenant, 1990).  Scientists and land managers need an historical 

context for fires in order to better understand them and make meaningful policy decisions 

(Gavin et al., 2007).  

Our understanding of the historic fire regimes in these two common ecosystem 

types of the Great Basin Desert region comes largely from indirect dendrochronological 

evidence of associated tree species (Miller and Rose, 1999; Miller and Tausch, 2001).  

Pinyon-juniper woodlands provide variable fire scar records because most of the trees are 

killed by fire (Miller and Tausch, 2001).  This has raised questions about whether low 

severity fires were really a part of this system, if fire maintained open woodlands, or if 

stand replacing fires prevented woodlands from encroaching down slope (Baker and 

Shinneman, 2004).  Similarly, fire in sagebrush steppe most often replaces the entire 

stand (Mensing et al., 2006).  Our understanding of fire regimes (Swetnam and Baisan, 

1995) and the methods for inferring them in pinyon-juniper and sagebrush steppe need 
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further development due to lack of sufficient fire scars (Baker and Shinneman, 2004; 

Mensing et al., 2006). 

Sedimentary charcoal analysis has been used as a proxy for the study of historic 

fire regimes in a number of ecosystems where dendrochronological evidence may be 

limited and to extend the reference conditions beyond the life span of trees (Gavin et al., 

2007).  Lacustrine sediments are the most common sources for charcoal analysis, and 

soil-charcoal is still a relatively new technique (Berg and Anderson, 2006).  Several 

studies using soil-charcoal have been conducted in coastal temperate rain forest regions 

of Canada (Lertzman et al., 2002; Gavin et al., 2003; Sanborn et al., 2006) Alaska (Berg 

and Anderson, 2006), in the northern ponderosa pine forests of the Western US in Idaho 

(Meyer and Pierce, 2003; Pierce et al., 2004), the northern French Alps (Carcaillet, 1998) 

and in the Central Amazon Basin (Piperno and Becker, 1996).  For the most part, these 

soil-charcoal studies have investigated macroscopic charcoal (>400 μm) in charcoal rich 

layers of the stratum and have used carbon dating of individual pieces of charcoal.  This 

technique has not been examined in terrestrial soils from either the pinyon-juniper 

woodland or the sagebrush steppe ecosystems.   

Phytoliths have been used to infer historic fires in several studies outside of the 

United States including Thailand (Kealhofer, 1996), Panama (Piperno, 1994), Brazil 

(Piperno and Becker, 1996) and Canada (Boyd 2002).  Phytoliths can be darkened on the 

surface or by carbon inclusions that fill the cell as a result of fire (Boyd, 2002; Parr, 

2006; Piperno, 2006).  Phytoliths are often paired with charcoal and analyzed from 

samples of lacustrine sediments (Piperno, 1994, 2006).  There are some, however, who 

have combined these methods in terrestrial soil sediments with success (Piperno and 
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Becker, 1996; Boyd, 2002). Piperno and Becker (1996) found soil phytolith analysis 

was a useful tool in the humid tropics.  Boyd (2002) inferred higher fire frequency in 

Holocene grasslands by testing surface and buried A horizons.  He compared the ratio of 

clear versus darkened phytoliths, or a Burned Phytolith Index (BPI).   

Only one study has examined this BPI methodology using a modern day analogue 

in a wildland context in the United States (Morris et al., in press).  This study indicated 

that darkened phytoliths could be useful indicators of fire in pinyon-juniper woodlands 

and sagebrush steppe.  While a body of literature addresses the distances and sizes of 

charcoal fragments for understanding regional versus local fire in lacustrine sediments 

(Clark and Hussey, 1996; Whitlock and Millspaugh, 1996) and some work has been done 

in soil sediments (Clark et al., 1998; Ohlson and Tryterud, 2000; Eckmeier et al., 2007), 

the taphonomy of phytoliths is still largely unknown.  Albert et al. (2006) conducted one 

of the few taphonomic studies of phytoliths by comparing production in extant plants and 

preservation rates in differing soil types.  They did not, however, include fire effects in 

their examination or model (Albert et al., 2006).  More work with microscopic charcoal 

and phytolith modern analogues is needed to better understand and interpret these fire 

proxy data in natural ecosystems in North America (Piperno, 2006).  

In this study we explore the utility and taphonomy of these methodologies in 

terrestrial soils from pinyon-juniper woodlands and sagebrush steppe.  We examined 

three questions: 1) Can soil charcoal and burned phytoliths be found in historic terrestrial 

sediments in these ecosystems?  2) How do soil charcoal and the darkened phytolith 

percentages vary with distance and depth from a known fire? 3) Can a known historic fire 

be detected within the soil stratigraphy on the site?  
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Study area 

Our study area was located in the City of Rocks National Reserve in southcentral 

Idaho in the western US.  This 5,800 ha Reserve sits at the northern edge of the Great 

Basin Desert region and contains both pinyon-juniper woodlands and sagebrush steppe.  

Elevations range from 1,646 m to 2,702 m (Daugherty, 1988).  The Great Basin is known 

as a “cold desert” because it receives most of its precipitation as snow from winter storms 

(MacMahon, 1988).  The Reserve averages 276 mm of precipitation a year with average 

temperatures of 9° C.  However, temperature can be highly variable in this area with 

extremes from 41° C to -33° C (Morris, 2006a).  The soils in the study area are classified 

as clayey-skeletal, montmorillonitic, frigid Typic and Lithic Argixerolls.  The parent 

material is the alluvium and residuum of mica, schist and quartzite.  The sampling sites 

were from three different soil mapping units including: Birchcreek-Itca complex, the Itca-

Birchcreek complex and Poisonhol very stony loam (SCS, 1994).   

 
Site selection 

The City of Rocks has seen similar patterns of increasing size and intensity of 

wildfires as the rest of the Intermountain West (Morris, 2006b).  Using a fire history for 

the City of Rocks National Reserve, we selected sampling sites that had burned in 1999 

and 2000 (“burned sites”) and sites that had not burned within the last 100 years 

(“unburned sites”) (Morris, 2006b).  A 2000 fire was the most recent and largest in the 

Reserve’s recorded history (Morris, 2006b).  The fire started by lightning in August of 

2000, consumed 7,125 ha and burned for five days before it was controlled.  This wildfire 

started in Utah, moved north into Idaho and into the City of Rocks where it blackened 
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846 ha (Morris, 2006b).  It was driven by a strong wind from the South and was 

finally contained within the Reserve through the use of backfiring and bulldozing fire 

breaks (BLM, 2000).  Knowledge of this prevailing south wind was used in our selection 

of sites with an increasing northward distance from this fire.  

We used a total of nine sites in this study:  three burned sites (Sites A, B, C), one 

“safe site” of unburned vegetation within the 2000 fire boundary (Site I), and five other 

unburned sites (Sites D, E, F, G, and H) (Figure 6-1).  Previously published Burned 

Phytolith Index (BPI) data from surface samples at five of our sites (Sites A, B,C, D, and 

H) are included in our analysis to show the variation across the landscape and within sites 

(Morris et al., in press).  In 2006 and 2007, we collected soil cores from five sites (A, E, 

F, G, and H) at 10 to 20 cm in total depth.  The soil cores were divided into 

approximately 1cm increments for analysis.   

We conducted a pilot carbon dating study on several soil cores in our study area 

in 2006 to determine which segments to use for analysis.  The pilot study revealed 

information regarding the depth to which different sites should be cored in order to reach 

sediments that were not mostly “modern” carbon (>95% 1950 carbon ratios).  Some sites 

were modern only to approximately 5 cm in depth and others were modern all the way to 

10 cm in depth.  Therefore, we cored only to 10 cm at some locations and to 20 cm at 

others based on pilot carbon dating. Each sampling site is discussed in more detail below.  

Since the sampling locations for the previously published data (Morris et al., in press) 

were not described in detail before, we have included that information as well.   
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Sampling sites 

Of the nine sites, A, B, C were located in burned areas (Morris, 2006b) (Figure 6-

1).  Site A was formerly a pinyon-juniper invaded sagebrush steppe area that burned in 

1999.  It was in a broad valley with a south facing aspect on an 8° slope.  Our soil core at 

this location was at least 22 cm deep and we processed three segments for our analysis: 

the surface (0-1 cm), 14-15 cm, and 19-20 cm.  We collected only surface samples from 

Sites B and C in the area that burned in the fall of 2000.  Site B was formerly a pinyon-

juniper woodland with a north facing aspect on a 10° slope. Site C was also formerly a 

pinyon-juniper woodland with a south facing aspect on a 10° slope.  We collected surface 

samples from the safe site (a remnant of unburned pinyon-juniper) (Site I).  Site I was 

sampled under a juniper tree on a 15° slope with a north facing aspect.   

Site D was an unburned area in a pinyon-juniper woodland across a canyon about 

402 m from the northern edge of the 2000 fire.  It had a south facing aspect on an 

approximately 10° slope.  We collected and processed only soil surface samples from this 

site. 

Sites E through G were areas that had not burned in the last 100 years, but, from 

photo interpretation (Figure 6-2), we believe burned over 150 years ago (“historic burn 

sites”) (Morris, 2006a, b).  Site E was located very near the top of the ridge on this 

historic burn site with a 25° slope and a northwest aspect.  It was about 2.8 km from the 

northern edge of the 2000 fire.  We collected a soil core from this location to a depth of 

10 cm and we processed three segments: 0-1 cm, 4-5 cm, and 9-10 cm.  The site was 

dominated by old growth pinyon pine.  Site F was at a slightly lower elevation on that 

ridge, with a 60° slope and a north facing aspect within pinyon-juniper cover.  It was 
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about 3.2 km from the edge of the 2000 fire.  Our soil core at this site was 15 cm deep 

and we processed three segments: 0-1 cm, 4-5 cm, and 9-10 cm.  Site G was lower in 

elevation where juniper begins to dominate over the pinyon pine on a 30° slope and a 

north facing aspect.  It was about 4.0 km from the northern boundary of the 2000 fire.  

Our soil core at this location was 13 cm deep and we processed three segments: 0-1 cm, 

4-5 cm, and 9-10 cm.      

Site H represents two datasets in our analysis.  We included BPI data from 

previous study conducted on surface samples collected at Site H within a pinyon-juniper 

community with a south facing aspect on a 10° slope about 4.8 km from the 2000 fire 

boundary.  We also collected a soil core in a nearby sagebrush steppe community at about 

4.8 km from the 2000 fire with a south facing aspect on a 5° slope.  The soil core was 

approximately 13 cm deep and we processed two segments: 0-1 cm and 9-10 cm.  This 

site had not burned in at least 100 years (Morris, 2006b).   

 
Methods 

 
Soil extractions 

Both microscopic charcoal and phytoliths were extracted from the soil samples 

using a modified wet oxidation and heavy liquid flotation technique (Blinnikov, 1994; 

Pearsall, 2000).  Microscopic charcoal and phytoliths have a similar specific density and 

can be extracted together using the standard methods for phytoliths (Piperno, 2006).  The 

surface samples and soil core segments were ground with a mortar and pestle to ensure 

homogeneity and sifted through a 250 µm sieve.  Acid digestion of organic material was 

carried out with a heated 70% HNO3 solution for one hour using 2 g of sieved soil from 
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the core segments and surface samples.  We dispersed clays with a 5% solution of 

sodium hexametaphosphate.  Our heavy liquid for density separation was sodium 

polytungstate (2.3g cm -3).  The extractant was placed in a vial and dried at 80° C for 1-2 

days.   

We radiocarbon dated five core segments in this study from Sites A, E, and H.  

We assumed the dates for Site F and Site G would be similar to those for Site E.  The 

soils for radiocarbon dating were also ground with a mortar and pestle, sifted through a 

250 µm sieve, weighed (between 3 to 5 g per sample), placed in glass vials and sent to 

the National Ocean Sciences AMS labs (NOSAMS) at the Woods Hole Oceanographic 

Institution for carbon dating.  We did not observe any macroscopic charcoal pieces within 

the soil cores that could be sent for dating.  

 
Counting procedures 

For the charcoal analysis, we used a dissecting needle to place a very small 

amount (<0.0015g) of the extracted sample onto a slide.  As with the phytolith analysis, a 

small portion of Canada Balsam oil was added to the slide, mixed well and then covered 

with a slip and sealed down using clear fingernail polish.  The entire slide was 

systematically examined under 100x magnification using a BH-2 Olympus microscope.  

Starting at the top left hand corner of the slide, we counted all charcoal pieces on the 

entire slide.  We identified charcoal as pieces that were opaque and angular or irregularly 

shaped (Clark, 1988; Piperno and Jones, 2003).  To see if there were any interactions 

between distance from the fire and size of charcoal pieces, we counted three different size 

classifications: small (5-56 μm), medium (56-120 μm), and large (≥120 μm).  A “local 
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fire” should be indicated by anything greater than 125 μm (Gardner and Whitlock, 

2001).  The final charcoal counts were expressed as total abundance (the number per 1 g 

of soil) by calculating up from the counts per weight of each slide sample.    

Slides for counting phytoliths were made with the same methods as the charcoal 

except they were not weighed.  We used modified counting procedures similar to those 

developed by Boyd (2002).  We counted one hundred phytoliths under 400x 

magnification from the center top and center bottom of each slide for a total count of 200 

per slide.  The percentage of dark and light phytoliths per 100 count were averaged to 

generate the Burned Phytolith Index (BPI) for each sample.  We included only clear or 

darkened recognizable phytoliths in our BPI counts.  Boyd (2002) only used long cells 

from grasses and we used averaged percentages rather than ratios.   

 
Pattern analysis  

The BPI and charcoals counts were used to examine our three research questions.  

Our first two questions related to the existence and spatial distribution of phytoliths and 

microscopic charcoal in the soil.  We predicted that both the charcoal abundance and the 

BPI would decrease in the surface samples with increasing distance from the fire in 2000.  

At burned Site A, we predicted that both the charcoal abundance and the BPI would 

decrease from the surface with depth to reflect the recent fires and lack of fire in the past.  

Our prediction for the unburned site H was that the charcoal abundance and the BPI 

would remain relatively constant with depth since it had not burned in at least 100 years.  

We predicted the BPI at the unburned safe site (Site I) would be at least as high or even 

higher than the burned sites for two reasons; because of its proximity to the fire and 
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because less erosion was expected in a place that retained vegetation cover.  Our third 

question addressed whether a known historic fire could be detected within the soil 

stratigraphy and was examined on sites E though G on the historic burn.  We 

hypothesized that there would be an identifiable increase in both the charcoal abundance 

and the BPI with depth in the soil profile that would reflect the historic wildfire.  

 
Results 

 
Charcoal analysis 

The carbon dating results showed that the soils at our sites were well stratified 

(Table 6-1).  In other words, we can assume from these dates that the younger soils are 

above the older soils in our cores.   

No microscopic charcoal was observed in the large category, while only 51 pieces 

were medium, and 1,922 were small in the total 2,063 pieces of charcoal counted across 

all samples.  Therefore, we did not continue to analyze charcoal size and used only the 

total counts for each sample.  The charcoal abundances followed only part of our 

prediction.  Charcoal in surface samples was most abundant on the burn site, but 

decreased dramatically and remained fairly consistent from 2.8 km to 4.8 km away from 

the edge of the burn (Figure 6-3).  Charcoal abundances with depth followed our 

predictions fairly well at the burned versus unburned sites.  The charcoal abundance 

decreased dramatically with depth to reflect the recent fire at Site A and remained fairly 

constant with depth at the unburned site H (Figure 6-4).  At the depths we analyzed (0-1 

cm, 4-5 cm, and 9-10 cm) on the historic burn sites (Site E, F, and G), we did not detect 

an increase in charcoal abundance that would indicate the historic fire at these sites.  In 
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fact, the charcoal abundance remained relatively consistent within these depths at all 

three of the historic burn sites (Figure 6-5).  

 
Burned phytolith analysis 

Our BPI results followed fairly well with our prediction for change over distance 

from the recent fires.  In general, the BPI of the surface samples decreased with distance 

from the recent fire (Figure 6-6).  However, when compared with previously published 

data from surface samples, unburned sites appeared to have a greater amount of 

variability in BPI than did the burned sites.  Previous data from Site A (35%) was almost 

exactly the same as the current BPI (36%).  Burned sites in general ranged from 30% to 

49% BPI with an average of 38% (n=4).  The safe site, Site I, had a very low BPI of only 

1%.  Unburned sites, on the other hand, exhibited a great deal of variability.  The highest 

BPI (20%) was from the pinyon-juniper woodland area at Site H.  Our BPI from the 

sagebrush steppe community at this same site was only 3%.  In addition, two samples 

from Site D, the closest unburned site to the recent fires, had a BPI of 0% and 10%.  The 

BPI on all unburned sites ranged from 0% to 20% and averaged 6% (n=7).   

The BPI analysis with depth only followed one of our predictions.  The 

comparisons of burned Site A and unburned Site H met our expectation.  The BPI, in 

fact, decreased between the surface and two depth samples (14-15 cm and 19-20 cm) at 

Site A and remained fairly constant between the surface and 9-10 cm in depth at Site H 

(Figure 6-7).  However, on the historic burn (Sites E, F, and G), the BPI was low and 

remained relatively constant between the surface and the two depths (4-5 cm and 9-10 

cm) for all three sites.  We had expected to find an increase in the BPI between the 
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surface and/or 4-5 cm level and the 9-10 cm depth that would relate to the historic fire 

(Figure 6-8). 

   
Discussion 

 
Charcoal with distance and depth 

Charcoal was most abundant at the location of the modern fire and decreased by 

0.4 km from the edge of the burn.  Clark et al. (1998) found in an experimental burn that 

the charcoal loads declined abruptly at the burn edge and then remained rather constant to 

distances of 1.0 km from their intense crown fire.  Ohlson and Tryterud (2000) found a 

similar trend of abrupt decrease in their experimental burn.  Our charcoal abundance 

followed this pattern over distances from 0.4 km to 4.8 km from the edge of the 2000 fire.  

We found no differentiation in size of charcoal with increasing distances from the recent 

fires as has been found in lacustrine sediments (Whitlock and Millspaugh, 1996).  Our 

lack of size differentiation in the charcoal with distance from the fire sites could be a 

methodological issue created by grinding the sections with a mortar and pestle.  

However, we did not observe any macroscopic charcoal prior to this step, in the sieve or 

during soil core collection in the field.    

Very little is known about the transportation and incorporation of charcoal into 

soil sediments following a fire (Ohlson and Tryterud, 2000; Eckmeier et al., 2007).  

There is good evidence, however, for fragmentation and movement down through the 

mineral horizons (Preston and Schmidt, 2006).  Piperno and Becker (1996) concluded 

that, in the tropics, the phytoliths were substantially older than the charcoal and that those 

occurring at the same stratigraphic level cannot be assumed to be the same age.  
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Caracaillet (2001) found that individual pieces of charcoal were not well stratified in 

alpine and subalpine soils but that charcoal concentrations were.  He concluded that, in 

the Alps, charcoal particles can migrate through the profile to about 100 cm in less than 

500 years (Caracaillet, 2001).  Our radiocarbon dates were on bulk soil sediments and we 

do not know the exact age of the charcoal or the phytoliths within the soil matrix.  

However, it is interesting to note that the charcoal counts at depth did not differ much 

from counts at the surface in modern samples unless the site burned.  Charcoal abundance 

was also similar in soil samples close in age.  Future research should focus on analysis of 

soils exposed to fires of known dates to assess how charcoal is incorporated into the soil 

stratigraphy. 

 
BPI with distance and depth 

The range of our BPIs fall within the range reported for burned areas in other 

studies.  Piperno (1994) reported burned phytolith percentages (burnt/sum of all grass 

phytoliths) as peaking at 35%.  Similarly, Kealhofer (1996) reported burned phytolith 

percentages in Thailand from 5-29%.  Both studies were using lacustrine sediments cores.  

Boyd’s (2002) terrestrial surface samples had an average of 8.2% with the last known fire 

in the area being in the late 1940s.  The buried sediment layer with substantial 

macroscopic charcoal that he used for comparison had a BPI of 73%.  His study revealed 

peaks from 60-70% in the BPI with depth and declines all the way to 10% for the 

uppermost soil layer.  The only other study from our region found that, on average, 

burned sites had a higher BPI (38%, n = 3) than unburned sites (17%, n = 3) (Morris et 

al., in press).  The BPI at our unburned sites was generally lower than reported by Morris 
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et al. (in press), which may be due to the difference in counting procedures.  The 

study by Morris et al. (in press) included soil aggregates, while in this study we counted 

recognizable phytoliths.  When combining results from both studies, surface samples 

from burned sites had an average 38% BPI (n=4) while unburned sites (n=7) averaged a 

6% BPI.  Our BPIs might vary from other studies because of vegetation type, topography, 

climate, and sediment type.  For example, Boyd (2002), who worked in grasslands and 

counted grass phytoliths, had the highest BPIs.  None of our sampling sites were in 

grasslands.    

Our BPI for Site I on the safe site within the 2000 fire was surprising.  Ohlson and 

Tryterud (2000) conducted an experimental fire to assess the distribution of large 

charcoal (500-2,000 μm and >2,000 μm) and found that the presence of charcoal was a 

good indicator of local fire while the absence had to be interpreted more carefully.  Even 

within their experimental fire, some 38 of their 280 traps inside the burn contained no 

particles >500 μm.  Many of the traps without charcoal were located in an area where 

there was a combination of low fuel loads, low charcoal producing fuels (e.g. grasses), 

and lower fire intensity.  This may also be the case with our safe site where the majority 

of vegetation that burned around it produced few phytoliths.  A recent study of phytolith 

production in Great Basin species has shown that pinyon pine (Pinus monophylla) and 

juniper (Juniperus osteosperma) form only trace amounts or no phytoliths at all (Chapter 

4).    

Because this is the first attempt to use BPI as an indicator of historic fires in these 

ecosystem types and soils, it is unclear what the threshold BPI should be to indicate an 

historic fire.  Our results on modern fires and distances from them indicated that 
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characteristic BPI of a burn would be around 38%.  No site had greater than 30% BPI 

at any depth. However, we cannot conclude that fire was absent during the time periods 

that these samples represent because, similar to other studies using charcoal, lower BPIs 

are actually more difficult to interpret.  For example, our safe site within the fire had one 

of the lowest BPIs in the study.  Also, our interpretations are limited because we do not 

know about the affects of time on this measure. For example, perhaps the BPI of a burned 

site decreases over time due to post depositional forces on the soil, such as wind and 

water.  There are also issues of inheritance associated with the phytoliths.  There were 

several fires in our study area over the last approximately 100 years (Figure 6-1) (Morris, 

2006b).  Each of them could have contributed to the BPI at our unburned sites as well, 

not just the 1999 and 2000 fires.  Future research using BPI on soil profiles at burned 

sites of varying known ages would be useful.  

The BPI of these sites prior to the 1999 and 2000 fires is also unknown.  The BPI 

could be created by the deposition of burned vegetation onto the soils during the fire, by 

the charring of the phytoliths on the soil surface during the fire, or both.  Sites with an 

accumulation of duff versus those without it could char more phytoliths within the 

mineral soil layer due to high heat.  Temperatures at the ground surface in sagebrush fires 

can reach peaks of 150-500° C with sustained heating for 5-10 minutes at >100° C and 

10-15 minutes at >200° C (Buenger, 2003).  In pinyon-juniper woodland fires, ground 

surface temperatures can peak at 700-800° C with sustained heating at 200-400° C for 

more than an hour (Buenger, 2003).  Large amounts of litter and duff can contribute to 

deeper soil temperatures up to 94° C (Klopatek et al., 1988).   
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Finally, the BPI may also be dependent upon grass cover at the time of the 

fire.  Charcoal is generated mostly by woody species while phytoliths in these two 

systems are mostly from the grasses and some of the herbaceous understory (Chapter 4).  

Junipers are known to decrease understory vegetation as the cover increases in these 

woodlands (West, 1991, 1999).  Most of the fires in this study area occur in late summer 

and fall when livestock and wildlife have grazed over the grasses for the season (Morris, 

2006b).  Therefore, there may simply not be the enough grasses at the time of the fire to 

contribute to large numbers of phytoliths carried on the wind, but they may be present in 

the mineral soil.  Therefore, they might char on site and not be as likely to disperse in the 

smoke and wind during the fire.   

 
The historic burn site 

We did not find a clear indication of the historic fire in our old burn site samples.  

It could be that the spike in BPI and charcoal on the historic burn site was simply not 

detected because we sampled modern core segments.  Our pilot study dating results 

indicated that depths of around 9-10 cm could be approximately 190 ± 25 14C years 

before present.  Therefore, we dated and analyzed core segments at 4-5 cm and 9-10 cm.   

However, the carbon dates of these segments were modern.  We believe this fire occurred 

over 150 years ago (Morris, 2006b).  Given that the soils in our study area have shown to 

be well stratified in this study, there is good reason to believe that the core segments 

between the surface and 4-5 cm and from 4-5 cm to 9-10 cm in depth are also modern.  

Perhaps the charcoal and BPI signal for this fire was deeper in the soil profile than we 

sampled.  Being on a slope, it is likely that there are buried A horizons deeper in the 
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profile or that much of the soils following the fire in our photo (Figure 6-2) were 

eroded away.  Also, the soils at this site could be mixed enough to result in a modern 

date.  Finally, it is also possible that there was no fire at this site even though it appears 

there was one in the past from the photo.  Given the ability of the phytolith record to 

reflect recent fires on lower degree slopes and the presence of both charcoal and burned 

phytoliths in very old soils, we believe that the method is sound, but it should be tested in 

a more stable location in future research.   

 
Conclusion 

We have documented that both charcoal and burned phytoliths are present in 

terrestrial soils dated as old as the late Holocene.  We worked with both proxies in a 

modern analogue study to examine changes in their abundance with distance from 

modern fires and with depth at sites of modern fires.  Our results show that burned 

phytoliths and charcoal in terrestrial sediments are potential sources for interpreting 

historic fires in sagebrush steppe and pinyon-juniper woodlands.  Both of these important 

biological proxies were found in sediments dating back to the late Holocene.  Information 

regarding fire from this time period, commonly known as the Little Ice Age, can be 

important for understanding the historic range of variability of these systems.  This is the 

first attempt to examine these proxies in terrestrial sediments in this region.  Our results 

illustrate the difficulty of defining a clear taphonomy for phytoliths and charcoal in 

terrestrial sediments after a fire in these two ecosystems.  There are many unanswered 

questions left to explore in future research.  However, this study does indicate that 

charcoal and phytolith analysis have the potential for use in examining questions related 
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to historical fires in pinyon-juniper and sagebrush steppe ecosystems of the Great 

Basin Desert region.    
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Table 6-1  Results from carbon dating segments from soil cores at Sites A, E, and H.

Site Depth Radiocarbon 
Age 

Calibrated Calendar Age  
(1 Sigma Ranges) 

Calibrated Calendar 
Age (2 Sigma Ranges) 

Site A 14-15cm 695 ± 30 Cal AD 1274-1298 
Cal AD 1372-1378 

Cal AD 1264-1310 
Cal AD 1360-1387 

 19-20cm 905  ± 35 Cal AD 1044-1098 
Cal AD 1119-1142 
Cal AD 1147-1174 

Cal AD 1037-1209 

Site E 4-5cm >Modern   
 9-10cm >Modern   
Site H 9-10cm 410  ± 35 Cal AD 1439-1491 

Cal AD 1603-1611 
Cal AD 1429-1522 
Cal AD 1573-1628 
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Figure 6-1  City of Rocks National Reserve showing all mapped fires in study area over 
the last approximately 100 years (modified from Morris, 2006b). A, B, C, indicate burned 
site locations from fires in 1999 and 2000.  I indicates location of the safe site within the 
2000 burn. D-H indicate unburned site locations.  
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Figure 6-2  Photo of City of Rocks National Reserve taken in 1868.  The old fire scar is 
on the distant slope in the right center background.  The approximate locations of the 
historic burn sites (Site E, F, and G) are indicated with arrows.  (Photo by Timothy 
O’Sullivan, 1868, Courtesy of the National Archives and Records Administration) 
 



 237

0

2

4

6

8

10

12

14

Increasing Distance From Fire

C
ha

rc
oa

l #
/g

ra
m

 s
oi

l (
10

6 )
Site A
Site E
Site F
Site G
Site H

 
Figure 6-3  Charcoal abundance (number of charcoal x 106 per 1 gram of soil)  
shown with increasing distance from burned Site A.  Distances of Site E through  
H range from 2.8 km to 4.8 km from the boundary of the 2000 fire.   
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Figure 6-4  Charcoal abundance (number of charcoal x 106 per 1 gram of soil) by depth at 
a recently burned (Site A) and unburned site (Site H).    
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Figure 6-5  Charcoal abundance (number of charcoal x 106 per 1 gram of soil)  
by depth at the historic burn sites (Sites E-G) that burned over 150 years ago. 
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Figure 6-6  Burned Phytolith Index (BPI) with increasing distance from the 2000 fire.  
Distances from the nearest edge of the 2000 fire ranged from 0.4 km (Site D) to 4.8 km 
(Site H). Checkered bars are previously published data (Morris et al., in press).  A, B, and 
C burned in 1999 and 2000.  Sites D-H had not burned in at least the last 100 years.  I is 
the “safe” site of unburned vegetation within the 2000 burn area. A, D, and H are 
repeated because they were sampled twice.  Previously published data from Site H (with 
checkered bar) was collected in pinyon-juniper site and the second sample from Site H 
(solid bar) was collected in sagebrush steppe.   
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Figure 6-7  Burned Phytolith Index (BPI) percentages by depth at a burned site (Site A) 
and unburned site (Site H). 
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Figure 6-8  Burned Phytolith Index (BPI) percentages by depth at the historic burn sites 
(Sites E-G). 
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CHAPTER 7 
 

TESTING SOIL PHYTOLITH ANALYSIS AS A TOOL TO UNDERSTAND 

VEGETATION CHANGE IN THE SAGEBRUSH STEPPE AND  

PINYON-JUNIPER WOODLANDS OF THE  

GREAT BASIN DESERT REGION1 

 
Abstract 

Phytolith analysis has been increasing in popularity over the past few decades.  

Most of the research with this important paleoecological tool has been done in lacustrine 

sediments, but these sites are limited in arid systems.  Better development of biological 

proxy methods are needed to understand changes in more arid ecosystems over the recent 

past.  Our objective in this study was to examine the utility of soil phytolith analysis to 

reflect vegetation changes over the past 200 years, from the end of the Little Ice Age to 

present.  The sensitivity of phytoliths to record vegetation changes for this time period 

was tested by sampling in locations where vegetation changes were known to have 

occurred based on human records.  This is the first study to examine the use of soil 

phytoliths in a continuous core sampling method in these ecosystem types.  We found 

that these soils can be stable and well stratified enough to record changes in the 

vegetation on unburned, low sloped and uncultivated areas.  We recommend combining 

site history with a multiple core sampling approach.  Soil phytolith analysis has the 

potential to provide much needed biological proxy data for this time period in the Great 

Basin Desert region.  

 
1 Coauthored by Lesley R. Morris, Ronald J. Ryel, and Neil E. West. 
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Introduction 

Phytolith analysis is becoming an increasingly popular method for determining 

historic vegetation (Piperno, 2006).  Phytoliths are structures formed in plants through 

deposition and accumulation of silica within and around cell walls (Rovner, 1971; 

Fredlund, 2001).  They are released from plants into sediments through death and decay 

of plant material where they have been recovered from as early as the Eocene 

(Stromberg, 2004).  These microfossils are most often used along side pollen analysis 

from lacustrine sediments.  However, phytoliths preserve better in terrestrial sediments 

than pollen grains which are more stable in anaerobic conditions (Golyeva, 2001).  This 

is particularly important for arid and semi-arid environments where lacustrine evidence is 

not as common (Fredlund, 2001).  In addition, biological proxies for the more recent past 

(less than 200 years) are largely limited to the human archive and some 

dendrochronological evidence (Egan and Howell, 2001) which can be subject to human 

bias, limited in spatial extent or not appropriate for non-forested systems (Swetnam et al., 

1999).  Better development of biological proxy methods is needed to understand changes 

in more arid ecosystems over the recent past.  Soil phytolith analysis has the potential to 

provide this much needed biological evidence.  

Several studies have used the phytolith record from natural terrestrial sediments 

across a variety of regions from the Amazon basin (Piperno and Becker, 1996) to the 

Rhone valley in France (Delhon et al., 2003).  In North America, soil sediments have 

been used for phytolith studies from the northern prairies of Canada (Boyd, 2002) and in 

the United States’ Columbia Basin in the northwest (Blinnikov et al., 2002), the northern 

Rocky Mountains between Montana and Idaho (Stromberg, 2004), the Great Plains 
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(Kurmann, 1985; Fredlund and Tieszen, 1997; Stromberg, 2004) and the deserts of 

southwest US in Utah (Fisher et al., 1995).  In each of these studies, one or more buried 

soil horizons is used as a comparison.  Research examining changes in the continuous 

soil stratigraphy with phytoliths is much more limited.  Blinnikov (1994) employed this 

technique in studies of alpine soils.  He sampled every 2 cm to a depth of 10 cm and then 

every 5 cm to a total depth of 25-40 cm into the lower limit of the soil B horizon.  He was 

able to infer changes in the vegetation for the last half of the Holocene and could 

reportedly detect the phytolith signal of a severe grazing period in the last several 

hundred years.  Similarly, Kerns (2001) examined changes between surface (0-2 cm) and 

subsurface (2-7 cm) soils of the ponderosa pine forests in the southern Rocky Mountains 

of Arizona.   

Diagnostic phytolith morphotypes have been reported at varying taxonomic 

levels.  For example, there are diagnostic phytoliths at the genus (Klein and Geis, 1978) 

and even species level (Kerns, 2001) within the family Pinaceae.  However, there need 

not be a diagnostic form for each taxa for the method to be useful (Piperno, 2006).  For 

example, frequency analysis of morphotypes found in the extant vegetation are often 

compared to each other as a way of determining which type or set of morphotypes 

provide a signal for a species, community or even a climate regime (Kerns, 2001; 

Carnelli et al., 2004; Blinnikov, 2005).  Furthermore, since many tree species do not 

produce diagnostic forms or many phytoliths overall, previous studies have used the mass 

or percent weight of extracted silica as a proxy for forb dominated vegetation (Kalisz and 

Boettcher, 1990) versus forest cover in the past or changes in grasslands over time 

(Fisher et al., 1987).  In areas where conifers or other forest species generate 
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recognizable phytolith morphotypes, relative abundance has been used (Blinnikov et 

al., 2002).  Blinnikov (2005) identified a blocky phytolith morphotype useful for 

signaling Artemisia and, therefore, sagebrush steppe ecosystems.   

Recent analysis by Morris et al. (see Chapter 4) of the phytolith production and 

morphotype frequencies in native and introduced species of the Great Basin has 

demonstrated that pinyon-juniper woodlands do not have a recognizable phytolith 

assemblage due to the lack of production by the dominant woody species, Pinus 

monophylla (pinyon pine) and Juniperus osteosperma (Utah juniper).  Their work 

suggested that extraction weights may be a more appropriate method for differentiating 

between these woodlands and grasslands or sagebrush steppe communities.  In addition, 

this study demonstrated important differences in morphotype production frequency 

between native and introduced grass species as well as within these groups.  In particular, 

the most common introduced grass species in their study area produced almost half the 

frequency of rondel morphotypes as native grass species (Chapter 4).     

Our objective in this study was to examine the utility of soil phytolith analysis to 

reflect vegetation changes over the period of about 200 years in two common ecosystem 

types of the Great Basin, sagebrush steppe and pinyon-juniper woodlands.  The 

sensitivity of phytoliths as a record for the more recent past can be tested by sampling in 

locations where vegetation changes are known to have occurred based on human records.  

Results from previous environmental history work in our study area (Chapter 3) show 

that over the past two centuries, the vegetation has changed in two major ways.  First, 

there are more woody species including denser sagebrush and increased cover and 

density of pinyon and juniper as these woodlands have encroached down slope and into 
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the valleys.  Second, there has been an overall loss of native grasses and an increase 

in introduced grasses, particularly Bromus tectorum (cheatgrass) and Agropyron 

desertorum (crested wheatgrass) (Morris, 2006a).  These known changes are used to test 

the sensitivity of the soil phytolith stratigraphy to record such events.  We employed both 

a multi-core approach and detailed core analysis to examine three questions.  

1) Do extraction weights from soils reflect the reduction of grasses over time with 

an increase in woody vegetation either from sagebrush or pinyon-juniper 

woodlands across the landscape?   

2) Do the relative abundances of total rondels from soil sediments reflect the 

change over time to dominance of introduced grasses over native grasses across 

the landscape? 

3) Do phytolith assemblages change over time at a fine scale (1 cm increments) in 

continuous sampling analysis of cores?    

We hypothesized that the extraction weights would be less in the surface segments due to 

the historic reduction of grasses with high phytolith production being replaced by woody 

species with very low phytolith production.  In addition, we predicted that total rondel 

percentages would be less in the surface segments than in deeper segments within 

multiple cores due to the increasing dominance of introduced grasses.  Finally, we 

hypothesized that the overall phytolith assemblage would change with depth over time 

along continuous sampling of 1 cm segments in a core and reflect known vegetation 

changes. 
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Study area 

 
City of Rocks National Reserve 

The City of Rocks National Reserve (CIRO) contains approximately 5,800 ha of 

the Great Basin Desert Region in the Albion Mountains of southern Idaho.  The elevation 

reaches from 1,646 m in the valley to 2,702 m on Graham Peak (Daugherty, 1988).  The 

vegetation includes sagebrush steppe in the valleys and pinyon-juniper woodlands along 

the slopes and lower mountains with mountain mahogany chaparral and limber pine 

forest at the highest elevations.  The sagebrush steppe is the largest of the North 

American temperate semi-desert types (West, 1983).  The ecosystem gets its name from 

the historically equal dominance of shrubs from the genus Artemisia and various species 

of bunchgrasses (West, 1983).  The major tree species in the Great Basin pinyon-juniper 

woodlands are P. monophylla and J. osteosperma.  The understory species are highly 

variable across the region but are usually made up of the flora found in adjacent forests, 

shrub steppes or grasslands (West et al., 1975; West, 1999). 

Precipitation trends in the Great Basin generally show a marked pattern of winter 

maximum and summer minimum due to winter storms that develop off the Pacific coast 

(Miller et al., 1994; WRCC, 2006).  The City of Rocks, however, is part of the eastern 

portion of Idaho that shows maximum monthly amounts in summer and minimums in the 

winter due to moisture from storms originating from the south in the Gulf of Mexico and 

the Caribbean region (WRCC, 2006).  The average total monthly precipitation peaks 

during the months of April, May and June (Morris, 2006a).  This increased proportion of 

April-September precipitation in the eastern portion of the sagebrush steppe region has 
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been used to explain the predominance of grass species in some areas (Stoddart, 

1941).  The mean annual precipitation is 276 mm (Morris, 2006a).  Temperatures can be 

highly variable in this region.  The annual mean temperatures at the site range from  41° 

C to -33° C with average temperatures of 9° C (Morris, 2006a).   

CIRO has a very long and well recorded history from European emigration and 

settlement in the mid 1800s to present.  The City of Rocks contains segments of two 

important routes of the California Trail from the era of overland emigration in the USA 

from the 1840s to the 1870s (HRA, 1996).  CIRO has also been an important area for 

livestock grazing and homesteading.  Commercial herds of sheep and cattle were trailed 

through the City of Rocks beginning in the 1850s (Little, 1994).  The area was first used 

as a home base for a livestock grazing in the late 1860s (Little, 1994; HRA, 1996).  By 

the late 1880s several large livestock operations from Nevada and Utah were grazing 

cattle through the Reserve and surrounding lands (Little, 1994).  Extremely harsh winters 

and droughts in the 1890s devastated the cattle barons (Young and Sparks, 2002).  After 

that, most of the livestock grazing in the area was from more local farms and ranches 

which supplemented livestock with hay or grain in the winter.  The first homesteader 

arrived within the City of Rocks in 1882, but homesteading and dry land farming were 

most active in the CIRO from 1909 to 1920.  Again, droughts in the 1920s and into the 

1930s drove many out of business and the settlers began to move away, reportedly due to 

failing springs and other water sources (HRA, 1996).  In the 1950s, there was a push to 

increase forage production in the most productive sagebrush steppe areas that were left 

fallow since the dry farming era and devastated from droughts and overgrazing.  This 

meant clearing the land once again and drill seeding with the introduced forage grass, 
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Agropyron desertorum.  More details concerning the environmental history of the 

study area are available in Morris (2006a) and Chapter 3.  

European exploration and settlement of the American West coincided with the 

end of the period known as the Little Ice Age.  The Little Ice Age was a generally cool 

period in the Northern Hemisphere from approximately 1300-1850 AD (Millar and 

Woolfenden, 1999; Miller and Tausch, 2001).  Though the difference in average 

temperature was only estimated to be 1° C, it had marked impacts upon ecosystems in 

North American, Europe and other parts of the globe (Roberts, 1998).  The Little Ice Age 

was the wettest and coolest period of the Late Holocene (Miller and Tausch, 2001).  

Since then, the general trend has been one of continual warming and aridity in the much 

of the Great Basin region (Miller and Wigand, 1994; Miller and Tausch, 2001).  Because 

this climatic shift coincided with the arrival of European settlers and the introduction of 

new disturbances from agricultural development, livestock grazing and invasive plant 

species, it is difficult to tease apart the so called “natural” climatic shifts in vegetation 

from those driven by human influence (Millar and Woolfenden, 1999).  Whatever the 

mechanism, the changes in the vegetation have been very distinct over this time period 

making the CIRO an excellent location for testing the sensitivity of the soil phytolith 

record.  

 
Site descriptions 

An understanding of the history and land uses in the study area was crucial for 

developing hypotheses to be tested as well as determining sampling sites that have had a 

relatively stable soil profile over the time period of interest (e.g. unplowed sites).  The 
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widespread history of dry farming in the early 1900s and seeding projects later in the 

1950s left very few valley locations that were potentially stable enough for sampling.  Six 

soil sampling sites were located using the mapped historical information gathered from 

the human archive (Morris, 2006a, b).  At each site, the following information was 

collected: GPS coordinates, slope, aspect, recently burned/unburned in the last 100 years, 

community type, and characterization of the present vegetation.  The present character of 

the vegetation (percent cover) was assessed using point line transect method for shrub 

steppe and understory vegetation and line intercept method for woodlands (Bonham, 

1989).   

The soils in the study area are classified as clayey-skeletal, montmorillonitic, 

frigid Typic and Lithic Argixerolls.  The parent material is the alluvium and residuum of 

mica, schist and quartzite.  The pH ranges from 6.6-7.3 at all sampling locations.  The 

sampling sites were from three different soil mapping units that included: Birchcreek-Itca 

complex, the Itca-Birchcreek-Rock outcrop complex and Poisonhol very stony loam 

(SCS, 1994).  The Birchcreak-Itca complex soils are a mix of moderately deep to shallow 

well drained very stony loams on north-facing mountainsides with potential natural plant 

communities of P. monophylla, J. osteosperma, Artemisia tridentata ssp. vaseyana 

(mountain big sagebrush) and Pseudoroegnaria spicata (bluebunch wheatgrass).  The 

Itca-Birchcreek-Rock outcrop complex is composed of shallow to moderately deep well 

drained soils on south-facing mountainsides with potential natural vegetation of P. 

monophylla, J. osteosperma, A. tridentata ssp. vaseyana, P. spicata and Festuca 

idahoensis (Idaho fescue).  The Poisonhol very stony loam units are typically moderately 

deep and well drained soils with a potential natural vegetation of A. tridentata ssp. 
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vaseyana and P. spicata (SCS, 1994).  Each sampling location is described in detail 

below.   

Site 1A was in a pinyon-juniper woodland within the Itca-Birchcreek-Rock 

outcrop complex with a south facing aspect on a 10° slope.  The site had not burned in at 

least 100 years (Morris, 2006b).  Total cover of the woodland was 47% with J. 

osteosperma making up 34% and P. monophylla was the remaining 13%.  The understory 

cover was 38% grasses, 4% forbs, 9% shrubs and 49% bare ground.  The dominant 

grasses remaining in the understory were Poa secunda (Sandberg bluegrass) and Poa 

pratensis (Kentucky bluegrass).   

Site 1B was in a sagebrush steppe community with a south facing aspect on a 5° 

slope.  The site had not burned in at least 100 years (Morris, 2006b).  This was the only 

sampling location in the Poisonhol very stony loam unit.  Total cover of the vegetation on 

site was 22% grasses, 6% forbs, 51% shrub and 21% bare ground.  While dominated by 

the shrub, A. tridentata, the grasses at this site included Hesperostipa comata (needle and 

thread grass), P. secunda and B. tectorum.  

Site 2 was in a pinyon juniper community within the Birchcreak-Itca complex a 

north facing aspect on a 2° slope.  The site had not burned in at least 100 years (Morris, 

2006b).  Total cover of the woodland was 56% with 18% of the cover from J. 

osteosperma and 38% from P. monophylla.  The understory cover was 27% grass, 29% 

forb, 13% shrub and 31% bare ground.  This site had a substantial number of forbs in the 

understory in comparison to the other sites such as Mertensia oblongifolia (sagebrush 

bluebell), Phlox longifolia (longleaf phlox), and Taraxacum officinale (dandelion).  The 

dominant grass was P. secunda.   
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Site 3 was in a burned pinyon-juniper woodland within the Itca-Birchcreek-

Rock outcrop complex with a south facing aspect on an 8° slope.  This site burned in 

1999 (Morris, 2006b).  Total cover of the former woodland could not be calculated as 

there were only scattered standing dead trees.  The current cover at the site was 48% 

grasses, 23% forbs, 13% shrubs and 16% bare ground.  Both forb and grass cover was 

dominated by introduced species such as Alyssum desertorum (desert alyssum) and 

Descurainea sophia (flixweed tansy mustard) as well as the introduced grass, B. 

tectorum.   

Site 4 was formerly a pinyon-juniper woodland within the Birchcreak-Itca 

complex on a north facing aspect with a 10° slope.  The site burned in 2000 and the 

previous woodland cover was unknown (Morris, 2006b).  The current cover of the 

understory vegetation consisted of 38% grasses, 43% forbs, 6% shrubs and 13% bare 

ground.  This site had a relatively diverse forb community in comparison to other sites.  

However, up to 29% of forb cover was from the introduced Alyssum desertorum.  The 

introduced B. tectorum was the dominant grass and the shrub component was mainly the 

fire resistant Chrysothamnus viscidiflorus (rabbit brush).  

Site 5 was formerly a pinyon-juniper woodland within the Itca-Birchcreek-Rock 

outcrop complex a south facing aspect on a 10° slope.  The site burned in 2000 and the 

previous cover for the woodland was unknown (Morris, 2006b).  The current cover of the 

understory vegetation consisted of 51% grass, 26% forbs, 1% shrubs and 22% bare 

ground.  Although relatively high in grasses and forbs, this site was dominated by 

introduced and weedy species.  The majority of grasses at this site were the introduced B. 
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tectorum and the site’s forbs were mainly introduced mustards, Alyssum desertorum 

and Sisymbrium altissimum (tumble mustard).    

 
Methods 

 
Soil sampling  

Soil sampling began in June 2006 and continued through October of 2007.  At 

least two soil cores from the A horizon of the soil (approximately 10 to 20 cm in depth) 

were collected from each of the sites as near to vegetation transect tape as practical.  

Distance between cores was no more than 10 m and care was taken to core in locations 

that did not appear to be recently disturbed by burrowing animals.  The soil cores were 

divided into approximately 1 cm increments.  Given the relatively short time period of 

interest, we believed the small increments should better reflect changes in phytolith 

assemblage.  We did not assume a constant rate of soil development over that time.  The 

1 cm increment was the smallest stable section that could be effectively obtained from the 

soil cores. Depths should be considered relative to each core rather than absolute because 

some compaction occurred during the sampling. 

   
Carbon dating  

One of the first assumptions we had to address was if the soils in our study area 

were stable and well stratified enough to examine questions of vegetation change over the 

period of interest. We conducted a carbon dating pilot study in 2006 on our initial soil 

cores.  A set of four samples from two depths (5 cm and 10 cm) in two cores representing 

the two watersheds in the study area were sent to the National Ocean Sciences 
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Accelerator Mass Spectrometry Facility (Woods Hole, MA, USA) for radiocarbon 

dating.  Carbon dating samples were prepared by grinding the core segment with a mortar 

and pestle, removing coarse material through a 250 μm sieve, weighing out between 3 to 

5 grams of soil for each sample, and placing it in a labeled glass vial.  

The results were useful indicators for locating the appropriate depth in our cores 

that would potentially represent our time period of interest.  An additional set of eight 

samples were then sent to the same facility for radiocarbon dating.  This additional 

radiocarbon dating was used to determine which soil segments to process and how to 

frame the time period of interest between the present and the Little Ice Age within our 

cores.    

 
Extraction of phytoliths from soils 

Phytoliths were extracted from soil core segments in the laboratory.  We selected 

segments of the cores for processing based upon the carbon dating results so that surface 

segments could be compared with those from the Little Ice Age first.  We then selected 

one site in each watershed in the study area that demonstrated overall site stability and 

that had more than one carbon date available to frame the timeline in the core for detailed 

processing of each 1 cm segment.  

The phytoliths were extracted using a modified standard wet oxidation and heavy 

liquid flotation methods outlined by previous researchers (Blinnikov, 1994; Pearsall, 

2000).  Acid digestion of organic material was carried out with a heated 70% HNO3 

solution for one hour on 2 g of soil sifted through a 250 μm sieve.  We dispersed clays 

with a 5% solution of sodium hexametaphosphate.  Our heavy liquid for density 
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separation was sodium polytungstate (2.3 g cm-3).  The extractant was placed in a 

vial, dried at 80° C for 1-2 days.  The extractant was stored dry in the vial. 

The extracted material was weighed and recorded to four decimal points.  Percent 

weight was determined by dividing the final extracted weight by the dry soil weight (2 g) 

and multiplying by 100 for each segment.  The extractant weights are not solely from 

phytolith mass.  The extractant includes some microscopic mica, quartz sand and 

charcoal because these materials have similar specific densities as phytoliths and float out 

with phytoliths during the extraction process (Piperno, 2006).  The extractant also 

includes whole and broken portions of diatoms and sponge spicules that are also 

constructed of silica and, therefore, come out with the same density fraction as phytoliths.  

Some researchers have adjusted for the impurities in their sample weights by estimating 

the percentage of other material and subtracting that from the overall extractant weight 

(Evett et al., 2007).  We did not apply any “correction estimations” to the extractant 

weights because we felt these could introduce error that could obscure the overall pattern 

revealed by the total weights.  This pattern and reasoning are covered more thoroughly in 

the results and discussion sections.    

We used multiple cores from all six sites in the extraction weight analysis.  Part of 

the reason we sampled three recently burned (since 1999) areas and three unburned (in 

the last 100 years) areas was to make sure that extraction weights were not influenced by 

the one time massive deposition event during recent fires.  Even though the sites that had 

burned were formerly pinyon-juniper woodlands which do not generate phytoliths, we 

wanted to see if the microscopic charcoal generated or phytolith deposition from all 

remaining grasses on the site during the fire would influence the weight.   
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Phytolith identification and counting 

Identification of morphotypes used in this study was based on a reference 

collection of 143 species of common Great Basin native and introduced plants (Chapter 

4).  That study examined the relative frequencies of phytolith morphotypes in common 

native and introduced species of grasses (Table 7-1).  Their frequency analysis showed 

that introduced grasses produced nearly half (15%) of the total rondel frequency 

compared to native grasses (28%).  They also reported on the typical phytolith types 

found in forbs, shrubs and trees.  Some common forms in forbs included hairs, hairbases, 

and silicified epidermal sheets.  These forms are typically not well preserved in sediments 

(Piperno, 2006) although they have been recovered from soils in sagebrush steppe sites in 

the Columbia Basin by Blinnikov (2005).  The dominant trees in our study site, pinyon 

and juniper do not produce identifiable phytoliths (Chapter 4).  However, as mentioned 

previously, Artemisia tridentata, a very common shrub in our study area produces a 

recognizable “blocky” form (Blinnikov, 2005; Plate 7-1.n).  Even so, grass phytoliths 

usually dominate phytolith counts even in sagebrush steppe sites (Blinnikov, 2005).  

“Stipa types” (Plate 7-1a) have a bilobate shape in top view with a trapezoidal bottom in 

cross section and are produced in the grasses from the Stipeae tribe (Fredlund and 

Tieszen, 1994; Blinnikov, 2005).  Morris et al. (see Chapter 4) also noted that the long 

wavy plate morphotype in F. idahoensis usually had deep lobes (Plate 7-1.c). 

Therefore, based upon previous morphotype frequency work in the Great Basin 

(Chapter 4) and the Columbia Basin sagebrush steppe ecosystem type (Blinnikov, 2005), 

we counted fourteen morphotypes that we believed would be useful for identifying 
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changes in the grass community, changes from native to introduced grass species, and 

representation of  Artemisia (Plate 7-1).  The nomenclature used for the fourteen 

morphotypes in this analysis follows the work of Morris et al. (see Chapter 4) and of 

Blinnikov (2005) who examined phytolith morphotypes in the nearby Columbia Basin.  

Their descriptions according to the International Code for Phytolith Nomenclature 1.0 

were provided in Blinnikov (2005) and are not repeated here.    

The morphotype differences between C4 and C3 grasses have been known for 

some time and used for understanding shifts in dominance of these grasses worldwide 

(Kaufman et al., 1985; Twiss, 1992; Fredlund and Tieszen, 1994).  Most of the grass 

species in the study area are cool season bunch grasses with a C3 photosynthetic pathway.  

Of the 66 grass species known to exist in the study area (John, 1995), only 5 are C4 

grasses. One of those is the introduced Echinochloa crus-galli (John, 1995) which has 

had a controversial grouping with the native Echinochloa muricata in the past (Gould et 

al., 1972) (Chapter 4).  The only native C4 grasses in the study area were:  Distichlis 

spicata, Muhlenbergia richardsonis, Sporobolus aeroides and Sporobolus cryptandrus.  

None of our sampling sites contained these species presently or were typical sites where 

they would have occurred in the potential natural vegetation.  We believe, therefore, that 

finding distinctive C4 morphotypes (e.g. bilobates) may be useful indicators of introduced 

grasses, vegetation change, historical land uses and as time markers in the soil profile 

since their timeframe of introduction is known (Chapter 4).  We scanned our slides for 

these types but did not include them in the sum. 

A small standard amount of the soil phytolith extract was suspended in Canada 

Balsam oil to enable three dimensional viewing, placed under a cover slip and sealed 
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with clear fingernail polish for morphotype counting (Pearsall, 2000) using an 

Olympus BH-2 microscope.  Typically, phytolith analysts count between 200 to 300 

particles per slide (Piperno, 2006).  We counted at least 200 phytoliths at 400x 

magnification by beginning at the left hand corner and working systematically down, 

across and up on each slide.  We included the fourteen recognizable morphotypes in the 

total sum (Plate 7-1).  We completed a full scan of the slides at 100x magnification to 

note any other morphotypes though they were not included in the sum (e.g. C4 bilobates 

and forb hairs). We did not include phytoliths that were broken or partially dissolved so 

that the primary characteristic of identification could not be found.  The level of 

dissolution was noted for each core.  

We used the four sites (Sites 1B, Site 3, Site 4, and Site 5) that were dominated by 

introduced species (particularly B. tectorum) to test for the increase of rondels in older 

segments as a signal for native grass domination of the site in the past.  We used the cores 

from Site 1A and at Site 3 for detailed analysis.  These cores were selected for analysis 

because they were located on sites that appeared to be stable and well stratified.  In 

addition, they shared several key characteristics such as soil type, slope, aspect, potential 

natural vegetation and recent invasion by pinyon-juniper woodlands.  Both of these sites 

were also located in areas very near the historic overland emigration trail system and, 

therefore, shared similar grazing histories throughout the modern period (Morris, 2006a).  

One potentially important difference for phytolith composition was the current 

dominance of Poa species (with a moderately high total rondel frequency) at Site 1A and 

the current dominance of B. tectorum (with minimal total rondel frequency) at Site 3.  

The counting procedures and morphotypes were the same for both sets of analysis but 
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only the total percent rondel count is reported for the Sites 1B, Site 3, Site 4, and Site 

5.  The entire phytolith assemblage is reported for the detailed analysis in Sites 1A and 

Site 3.   

 
Results 

 
Carbon dating  

Our carbon dating results demonstrated that the soils in these pinyon-juniper 

woodlands and sagebrush sites were well stratified and relatively stable over the period of 

interest (Table 7-2).  In other words, based on these results we can assume that the 

youngest soils were on top and the oldest soils were below.  A date of “>modern” was 

assigned by the lab to samples with at least 95% of the radiocarbon concentrations from 

calendar year 1950 to present.  Kerns et al. (2001) referred to her surface samples as 

“modern” and her subsurface samples, that were also mostly modern carbon, as “pre-

modern” to reflect the assumption of younger soils on top even if they were both 

“>modern.”  This language seems appropriate for our results as well.  We will, therefore, 

refer to the surface of the core (0-1 cm) as “modern” and the subsurface sections 

including the >modern dated segment as “pre-modern.”  All of the other radiocarbon 

dates fell within the Little Ice Age (250 ± 35 to 905 ± 35 14C years B.P.).  We can then 

frame our time period of interest between modern, pre-modern and Little Ice Age soil 

segments within the cores. 
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Extraction weights  

The overall pattern across our multiple cores demonstrated a reduction in 

extraction weights in the modern core segments compared to the Little Ice Age segments.  

Both cores from each of the six sites were processed with the exception of Site 2 where 

one of the cores was found to be mislabeled.  Therefore, a total of 11 cores with 32 core 

segments were processed.  Twenty four of the segments were from 1 cm increments and 

eight of the segments came from 3-5 cm increments in the deepest part of the core.    

There was variation in extraction weight between the sites as well as within sites 

from unburned (Figure 7-1) and burned sites (Figure 7-2).  The burned areas tended to 

have more among site and within site variation as is shown in the differences in 

extraction weights at all three sites (3, 4, and 5).  Site 5 had the most variation between 

cores.  Even so, the modern segments had lower extraction weights than the Little Ice 

Age and deeper segments in 5 out of the 6 cores from burned sites.  Only the first core 

from Site 5 was essentially unchanged in extraction weight between modern, Little Ice 

Age, and deeper segments.  The unburned sites, on the other hand, had more consistent 

extraction weight patterns across and within sites.  Typically, the lowest extraction 

percentage was in the modern segment, and it increased with depth to the dated Little Ice 

Age and deeper segments.  The reduction in percent extractant weight was almost half of 

the highest weight in the oldest segments at most unburned sites. 

 
Total rondel counts 

The results from phytolith analysis of the total rondel counts were consistent with 

our prediction at only two of the four sites dominated by B. tectorum (Figure 7-3).  Site 
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1B and Site 3 both showed a marked reduction in total rondel percentage in the 

modern segments compared to the Little Ice Age segments.  In fact, total rondel 

percentages were reduced by nearly half at these two sites.  Site 4 and Site 5, on the other 

hand, were not consistent with our prediction. The total rondel percentages at these sites 

were essentially unchanged between the modern and Little Ice Age segments. 

 
Detailed core analysis 

Detailed analysis of each centimeter segment between the dated portions of the 

two cores from Site 1A and Site 3 revealed additional information about extraction 

weights.  The extraction weights at Site 1A varied throughout the core from 6-16% 

(Figure 7-4).  There were two segments in the core where the extractant weights peaked: 

at 16-17cm (16%) and 12-13 cm (15%).  The pattern seemed to follow our prediction that 

extraction weight would reflect the overall decrease in grasses at the site over time 

because the extraction weights dropped by nearly half from the 14-15 cm segment (370 ± 

25 14C years B.P.) to the modern surface sample.  By the beginning of the pre-modern 

segments (9-10 cm), the extractant weights had not gone below their historic range.  

However, the weights showed a steady decline through the sampled pre-modern segments 

beginning in the 8-9 cm segment (10%) and into the modern segment (6%).     

The detailed analysis between these two cores also revealed additional 

information regarding total rondel counts and the soil phytolith assemblages.  The total 

rondel percentages varied throughout the core in Site 1A (Table 7-3 and Figure 7-5).  

Total rondel percentages throughout the core ranged from 20% to 31%.  The highest 

values for total rondels (25-31%) were in the four deepest segments (13-14 cm to 16-17 
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cm).  Total rondel percentages declined abruptly between the 13-14 cm (31%) 

segment and the 12-13 cm segment (21%).  The total rondel counts for the segments from 

the 12-13 cm and the 10-11 cm segment remained at lower percentages (20-22%) than 

the deepest four segments.  Similarly, the pre-modern segments (9-10 cm to 4-5 cm) 

remained at percentages (20-24%) that were lower than the deepest segments.  Site 5 and 

Site 1A were on similar soils with the same aspect and the same slope.  The total rondel 

percentage at Site 1A from the 9-10 cm to 12-14 cm segments ranged from 20-22% 

where Site 5 at the 9-10 cm segment (250 ± 50 14C years B.P.) had 20% total rondels.     

The soil phytolith assemblage at Site 1A also changed through each segment 

within the core and over time.  Grass phytoliths dominate the record with blocky forms 

from Artemisia making up 1-7% of the total sum.  The blocky forms of Artemisia 

fluctuated in the Little Ice Age segments (12-17 cm) from 1-4% and then dropped 

abruptly between 13-14 cm segment (6%) and the 12-13 cm segment (2%).  The blocky 

forms increase just as abruptly back to 7% by the 11-12 cm segment and then remain 

consistent at 6% into the pre-modern and modern segments.  As with the total rondel 

percentages, there were changes in the representation of several key morphotypes that 

began to shift between the 12-13 cm and 13-14 cm depths.  It was here that the stipa type 

peaked, going from 1% to 4%, the wavy plates with deep lobes dropped from 12% to 5% 

and remained low, long wavy plates increased from 18% to 25%, keeled rondels 

decreased from 17% to 2%, horned rondels dropped from 9% to 6% and pyramidal 

rondels increased from 5% to 12%.  Finally, it is at this 12-13 cm depth that the blocky 

morphotypes drop to a low of 2% and then quickly jump and maintain a higher level 

through to the modern segment.  The long wavy plate with deep lobes, indicative of F. 
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idahoensis, was relatively more abundant in the deeper portions of the core (7-13%) 

and declined into the pre-modern segments.  The long indented cells and keeled rondels 

also increased throughout the pre-modern segments from 10% to 16%.  We observed a 

great deal of dissolution and breakage of the phytoliths in this core beginning with the 

surface segment and progressing through the core.   

Site 3 also had variable extractant weights throughout the entire core (Figure 7-4).  

The extractant weights ranged from 8-25%.  Extractant weights were the same between 

the modern surface segment and the 14-15 cm segment (695 ± 30 14C years B.P.).  

However, the oldest segment at 19-20 cm (950 ± 35 14C years B.P.) had nearly twice as 

much extractant weight (14%) than the modern surface segment (8%).  The oldest 

segments did not have the greatest extraction weights in the core, and this pattern did not 

appear to support our prediction that the lowest extraction weights would be in the 

modern samples and the highest in the Little Ice Age segments.  However, it does still 

appear to follow our prediction of loss of grasses at the site with pinyon-juniper 

woodland encroachment in the more recent sediments.  In fact, the extractant weight 

peaked at the 11-12 cm segment (25%) and then declined again in the next segment 

(16%) and through the pre-modern segment (9-10 cm).  The extraction weights dropped 

by nearly half between the oldest segment (19-20cm) (14%) and the modern surface (8%) 

and between the pre-modern segment (16%) to the modern surface (8%).  This was 

similar to patterns in the multiple core weight analysis.    

Site 3 also appeared to support our prediction regarding the reduction in total 

rondel percentages at sites that were dominated by the introduced species of grass, B. 

tectorum (Table 7-4 and Figure 7-6).  Total rondel counts in this core ranged from 13% to 
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30%.  The total rondel percentages were highest (27-30%) in the deepest three 

segments including the Little Ice Age segment (695 ± 30 14C years B.P.).  Total rondel 

percentages declined from 30% to 23% between the 12-13 cm and 11-12 cm segments.  

They remained fairly consistent (23-26%) between 11-12 cm segment and the pre-

modern segment at 9-10 cm.  Then, they decreased by nearly half from the pre-modern 

segment (26%) to the modern surface segment (13%).  Total rondel percentages declined 

by similar amounts across the different cores from Site 3 at the same depth (Figure 7-3 

and Table 7-4).  The detailed core total rondel percentage went from 27% at the 14-15 cm 

segment to 13% in the modern surface segment while the 14-15 cm segment from the 

multiple core study went from 19% to 12% in the modern surface segment.        

The overall soil phytolith assemblage also changed over time throughout the core 

at Site 3. Grass phytoliths dominated the record with the blocky forms of Artemisia 

making up 3-8% of the total sum.  Similar to the results in Site 1A, representation of 

several key morphotypes began to shift between the 11-12 cm and 12-13 cm segments.  It 

was here that the stipa types reached a peak from 5% to 9%, keeled rondels declined 16% 

to 9%, and horned rondels increased slightly from 8% to 10% followed by a decline in 

the pre-modern and modern segments.  Pyramidal rondels and wavy plate with deep lobes 

did not change as much as in Site 1A.  In this core, the wavy plates with deep lobes were 

generally lower (6-8%) throughout all segments. However, like Site 1A, between the 11-

12 and 12-13 cm segments, the total rondel percentage dropped by nearly 10% and 

blocky types for Artemisia also reached a low.  The blocky types then jump to 8% in the 

pre-modern segment and drop again to 4% in the modern surface segment.  Stipa types 

began declining into the pre-modern segment. Pyramidal rondels, keeled rondels and 
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horned rondels all declined from the pre-modern to modern segment.  The phytoliths 

in this core become progressively broken and weathered with depth in the core.  

We did not encounter any of the phytoliths typically associated with native or 

introduced forb species in the Great Basin (Chapter 4) including hairs, hair bases, and 

silicified epidermal cells in the detailed cores.  Nor did we see any of papillae that were 

dominant in the frequency analysis.  We observed the hairs of the introduced Alyssum 

desertorum (Chapter 4) in surface samples from Site 3 used in multiple core analysis.  

We also encountered two bilobate morphotypes that appeared to be from introduced C4 

grasses at the surface of Site 3 and at Site 1A in segment 12-13 cm.  Other hairs (e.g. 

square-based and oblong knobby hairs) that were common in the frequency analysis were 

encountered and included in the sum.  However, there were not any interpretable patterns 

associated with these hairs that we could detect.  

 
Discussion 

 
Extraction weights   

The results from our extraction weight analysis appeared to support our prediction 

that increases in woody vegetation over grasses would be reflected in extraction weight 

due to limited production of phytoliths in the woody species.  The extraction weights 

from the multiple core study showed decreases of nearly 50% in weight from the surface 

to the Little Ice Age layers at most sagebrush sites and those recently dominated by 

pinyon-juniper woodland.  Since most of our sampling locations were in areas where 

pinyon-juniper woodlands had recently encroached and dominated the site, more 

sampling should be done to examine extraction weights and sagebrush cover.  However, 
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the decrease in extraction weights seemed to be strongly linked to the recent increase 

in pinyon-juniper woodlands.  Evidence for this claim comes from the multiple core 

results as well as connections with extraction weight coupled with the information from 

the detailed core analysis.  

The extraction weights in the detailed core at Site 1A reached maximum in the 

segments where the blocky phytoliths indicating Artemisia were the lowest percent of the 

sum.  As Artemisia representation increased, the extraction weight actually decreased.  

This would be expected if the increased in woody vegetation was replacing the grasses.  

However, the extraction weights continue to decrease even though the Artemisia 

percentages did not change in the pre-modern and modern segments of the core.  What 

was likely represented in this pre-modern and modern timeframe was increasing cover 

and density of the pinyon-juniper woodlands as well as increased grazing pressure 

(Morris, 2006a).  

Likewise, the detailed core analysis at Site 3 showed a similar connection with 

pinyon-juniper woodland density.  The extraction weight in the core at Site 3 also peaked 

at the time in which Artemisia representation was the lowest in the sum.  The extraction 

weights continually decreased with increasing Artemisia representation, but the lowest 

extraction weight does not correspond with the highest percentage of sagebrush.  In 

addition, the extraction weights and the Artemisia representation currently match the 

Little Ice Age segment (695 ± 30 14C years B.P.). However, the extraction weights 

followed the same pattern as Site 1A and decreased over time in the pre-modern to 

modern segments.  Again, this change seems to correspond to an increase in pinyon-

juniper woodland cover and increasing livestock grazing pressure (Morris, 2006a). 
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Increasing pinyon and juniper cover is known to suppress understory vegetation 

including sagebrush (Everett et al., 1983; West, 1991, 1999).  Suppression comes not 

only from above ground cover and duff accumulation but also from dominance of the soil 

resources by the roots of J. osteosperma (Everett et al., 1983; West, 1991, 1999).    

The pattern of extraction weights is consistent with increasing pinyon-juniper 

woodland cover in the recent past.  However, more information is still needed to interpret 

the fluctuating extraction weight patterns in the deepest portions of both cores.  Although 

they may appear to represent alternating pinyon-juniper woodland and grass domination 

at the sites, there is no evidence to support woodland encroachment during the Little Ice 

Age.  In fact, woodland densities over the past approximately 200 years are generally 

three times greater than they were at the end of the Little Ice Age (Tausch, 1999).  

Expansions of these woodlands in the just the last 130 years exceed anything that is 

found in other proxy records (e.g. woodrat middens and pollen) in the last 5,000 years 

(Miller and Wigand, 1994; Tausch, 1999).  Since there are no recognizable phytoliths for 

P. monophylla or J. osteosperma, we cannot demonstrate that these were the cause of 

fluctuation in weight.  Connections to other biological proxy records are needed for more 

interpretation in this matter.  

Our extraction weights were higher than the “corrected” percent weights reported 

in other studies (Fisher et al., 1987; Kerns et al., 2001; Evett et al., 2007).  The soils in 

the City of Rocks are formed on granitic parent material containing mica, schist and 

quartzite that come out in the same density fraction as biogenic silica.  We did not use 

counts or percent cover of impurity estimations as others have done because we did not 

want to introduce a potential estimation error into the data.  Our uncorrected extraction 
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weights matched the ratios reported in other studies even if not their “corrected” 

values (Fisher et al., 1987; Fredlund and Tieszen, 1997).  For example, Fisher et al. 

(1987) reported corrected mean percent weights in their forested sites (0.53 ± 0.035 se) 

that were half of those in their prairie sites (1.05 ± 0.018 se).  Although there are 

variations in soils types, deposition variables and preservation rates across ecosystem 

types, this was the closest analogue to our study using weight analysis.  Furthermore, we 

examined the potential for a one time deposition event of fire to increase extraction 

weights.  We found that fire did not increase extraction weights, and that microscopic 

charcoal impurities were not overshadowing the weights.  Therefore, we believe that the 

higher values of our weights showed the influence of the soil parent material and that the 

ratios of our extractant weights were consistent with those reported in the literature.  

 
Total rondel percents 

We predicted that total rondel percentages would be less in the surface segments 

than in older subsurface segments across the multiple cores due to the increased 

dominance of introduced grasses.  The relative abundances of total rondels do reflect the 

change in dominance from native to introduced grasses over time if the soils have been 

relatively stable.  This pattern was especially pronounced at sites that were presently 

dominated by the invasive grass B. tectorum.  This change was evident at two sites in the 

multiple core study.  Total rondel percentages in the surface segments at Site 1B and Site 

3 were nearly half those in the older, deeper segments.  This change coincides with the 

frequency analysis of rondel production between native and introduced grasses showing 

native production is nearly twice that of introduced grasses.  However, the pattern did not 
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hold for the other two sites.  We believe that the surface soil segments at Site 4 and 

Site 5 experienced erosion and mixing following the recent fire in 2000.  The variation of 

the extraction weights between cores and the lack of variation in total rondel counts 

support this conclusion.  The similarity of total rondel counts at similar depths across the 

cores at Site 5 and Site 1A suggested that only the surface sediments mixed and the 

deeper portions remained stable.   

The pattern of reduction in total rondel percentages was evident in the detailed 

core analysis as well.  In the core used for detailed analysis at Site 3, the total rondel 

count decreased by 50% from the pre-modern segment to modern surface segment and 

was also nearly half of the total rondel percentages in all the deeper (and older) segments.  

Declines in total rondel percentages were also similar in the different cores from Site 3.  

The total rondel percentage declined in the detailed core at Site 1A but not as much as at 

sites dominated by B. tectorum.  This was probably due to the fact that Site 1A is 

currently dominated by Poa species which also tend to produce moderately high 

percentages of rondels.  

We observed that areas with the greatest cover of Agropyron desertorum had been 

seeded in the past (unpublished data).  Since we had to sample from untilled areas, we did 

not directly test changes in total rondel percentages under dominance of this species.  

Even so, this and other species of introduced grass in the study area could influence the 

phytolith record through wind transport and livestock dung.  This grass, as well as the 

other common introduced species will spread easily in these ecosystem types, but none 

has been as widespread dominant an invader as the B. tectorum (Bradley and Mustard, 
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2005).  Bromus tectorum was the most common invasive grass species on sites with 

no cultivation (Morris, 2006a).   

 
Evidence of vegetation change in the 
detailed core analysis  
 

The detailed analysis of soil cores by one centimeter segments demonstrated that 

phytolith assemblages changed over time at a very fine scale with continuous sampling.  

These phytolith assemblages also appeared to be linked to known vegetation changes and 

they shared commonalities across cores.   

The phytolith assemblages at Site 1A changed from the bottom of the core, 

representing the Little Ice Age (~ 500 cal. years B.P.), to the pre-modern and modern 

segments.  The phytolith assemblages from approximately 13-17 cm in depth were 

consistent with what would be expected during generally cooler and wetter conditions of 

this time period.  For example, the total rondel percentages were the highest we found 

(25-31%).  Blinnikov (2002) reported that total rondel percentages in the Columbia Basin 

in the range of 30% were indicative of F. idahoensis, and also implied cooler, wetter 

conditions.  The long wavy plates with deep lobes, also indicative of F. idahoensis, were 

also relatively more abundant in these deeper portions of the core.  Finally, keeled 

rondels, also produced with relatively high frequency in F. idahoensis, were relatively 

high in the deeper portions of the core.  

There was an apparent shift in the phytolith assemblage between the 12-13 cm 

and 13-14 cm segments at Site 1A where Artemisia blocky forms, deeply lobed (Festuca) 

morphotypes, keeled and horned rondels, and the total rondel percentage all decreased 

while the stipa types increased.  This shift suggests a drying period at the site (Blinnikov 
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et al., 2002).  The morphotypes for both Festuca (e.g. long wavy with deep lobes and 

keeled rondels) and Stipeae tribe grasses (A. hymenoides, A. nevadense and H. comata) 

declined after this segment. Long wavy plate morphotypes began to increase around the 

same time that the Festuca deep lobed wavy plates dropped.  This could reflect an 

increase in the P. spicata at the site as it is also a common producer of this morphotypes. 

Festuca idahoensis is commonly replaced by P. spicata and Stipeae grasses when 

moisture decreases or there is strong grazing pressure (USDA, 2007).    

Grass composition also changes in the pre-modern to modern segments.  The stipa 

types peaked at 12-13 cm segment then decrease steadily into pre-modern and modern 

portions.  Coincident with the decrease in Stipeae grasses were the indications of an 

increasing contribution of the Poa species from long indented cells and keeled rondels.  

This loss of the Stipeae grasses is consistent with what is known about both grazing 

pressure and increasing pinyon-juniper cover at the site.  While Stipeae grasses (e.g. H. 

comata and A. hymenoides) and Poa species are all palatable to livestock, P. secunda is 

more resistant to grazing, trampling, and increasing cover and duff from of pinyon-

juniper woodlands (Everett et al., 1983; Monsen et al., 2004). Poa species now dominate 

grass cover under the canopy at this site.  

The phytolith assemblages at Site 3 also changed from the bottom of the core, 

representing the Little Ice Age (~ 700 cal. years B.P.) to the pre-modern and modern 

segments.  In this core, the bottom three segments from 12-15 cm also seemed to reflect 

the generally cooler and wetter climate during the Little Ice Age.  As in Site 1A, the total 

rondel percentage were much higher in these segments and were within the 30% range 

that Blinnikov (2002) said represented Festuca dominated, cooler and wetter sites.  The 
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wavy plate with deep lobes, typical of F. idahoensis, remained fairly consistent in this 

core. Dissolution and breakage may have played a role here.  The deep lobes on this 

morphotype can be broken or worn down.  The deepest segments in this core were older 

and had a great deal of breakage and dissolution.  However, the keeled rondel 

morphotypes, also produced in high frequency in this grass were highest in these lower 

sections of the core.   

Similar to the core in Site 1A, there was an apparent shift in the phytolith 

assemblage that occurs between two segments.  In Site 3, this shift occurred between the 

11-12 cm and the 12-13 cm segments.  As was observed at Site 1A, there was a drop in 

the total rondel percentage, keeled rondels and the Artemisia blocky types between these 

depths.  In addition, the stipa types increased sharply.  Horned rondels, also produced 

with great frequency in Stipeae grasses, began to rise.  Again, this shift suggested a 

change to a drier climate at the site around this time.  This could represent the end of the 

Little Ice Age.   

Vegetation also changed in the time represented by the pre-modern segment and 

modern segments.  After the spike in representation of the stipa type and horned rondels 

indicative of the Stipeae grasses, these types declined over time into the pre-modern 

segment.  Across the same segments, the representation of the Artemisia blocky form 

increased.  This pattern appeared to reflect the known increase in sagebrush cover, loss of 

native grasses, and then encroachment of pinyon-juniper onto the site.  These changes 

could be from increasing grazing pressure, drought and encroachment of the pinyon-

juniper woodland.  The decline by 50% in the representation of the total rondels seemed 
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to support the increasing dominance of the invasive B. tectorum at the site.  Unlike 

Site 1A, this site burned in 1999 and was dominated by invasive grasses and forbs.  

Our interpretations of the changes in these phytolith assemblages were similar to 

other findings from soil sediments.  Blinnikov (1994) was the only study that we are 

aware of in which fine scale continuous sampling (0-2 cm segments to 15-30 cm total 

depth) of natural soil sediments was used to examine vegetation change.  His study was 

conducted in alpine soils of the Northwestern Caucasus, Russia (Blinnikov, 1994).  He 

also found that the soil phytolith assemblages changed over time with fine scale 

continuous sampling.  Increases in the morphotype associated with Nardus stricta in the 

upper segments, a grass typically avoided by sheep, was interpreted to reflect historic 

overgrazing.  Kerns et al. (2001) found changes the phytolith assemblage between 

surface segments (0-2 cm) they called “modern” and subsurface segments (2-7 cm) they 

called “premodern”.  They observed a decrease from surface to subsurface samples in a 

crenate morphotype (similar to our wavy types) that were typical of two native grasses, 

Koeleria macrantha and Bromus ciliatus.  Because these grasses are palatable forage 

species, they suggested that the decrease could be related to excessive grazing.  In 

addition, these researchers pointed to the negative impacts of duff buildup under forest 

canopies to grass production as a related cause.  Their findings and explanations are 

consistent with ours.  

 
Effectiveness of phytolith morphotypes in  
the detailed core analysis  

Some of the morphotypes that made up a substantial portion of the frequency 

analysis were not useful in interpreting the soil phytolith assemblage.  Although the 
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different types of grass hairs appeared to be important indicators for different native 

and introduced species in the frequency analysis, their patterns within the soil were not 

useful.  For example, the oblong knobby hair was produced with great frequency by H. 

comata, but its representation within the sums did not fit with any of the other patterns 

demonstrated throughout the cores.  Likewise, pyramidal rondels were not a useful 

indication of vegetation change.  Long deeply indented cells that can be prevalent in the 

Triticeae tribe of grasses (e.g. Hordeum brachyantherum and Elymus elymoides and 

Agropyron desertorum) were negligible and not used in our interpretation.   

Other researchers have pointed to morphotypes such as papillae (Blinnikov et al., 

2002) or long hairs (Fisher et al., 1995) as indicative of the introduced grass species B. 

tectorum. Our frequency analysis also showed highest frequencies of papillae in Bromus.   

Fisher et al. (1995) reported significant decreases between surface samples and buried 

horizons in the long hair morphotypes as a sign of current dominance of this invasive 

grass.  Blinnikov et al. (2002) also recovered hairs, hair bases and epidermal sheets 

typical of herbaceous plants from modern soils, loess, and paleosols.  We did not count 

any papillae, long hairs or epidermal sheets in our samples.  We observed hairs in our 

sediments but very few of the types found in herbaceous plants in our reference collection 

(Chapter 4).  Our use of a 250 μm sieve should not have excluded all of them from our 

slides and our methods of extraction and counting closely followed Blinnikov et al. 

(2002).  Perhaps differences in preservation rates in the soil types between our study sites 

were a factor in the absences of these phytoliths in our samples.  Dissolution and 

breakage of the phytoliths seemed high in both cores, especially at the surface of the 

younger segments in Site 1A.  It may also be more effective to separate the silt and sand 
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fractions as others do in forested systems to help increase counts of large, rare 

morphotypes like hairs (Piperno, 2006). 

We did observe several of the bilobate morphotypes associated with introduced 

C4 grasses at two sites at different depths.  At Site 3, they were observed in the surface 

segments as would be expected if these morphotypes were an indication of introduced 

species.  They were also observed at Site 1A in the 12-13 cm segment where the overall 

phytolith assemblage begins to shift and the extraction weight peaks.  This observation 

could represent the beginning of overland emigration in the area or the introduction of 

livestock.  Both could have transported C4 grass morphotypes in dung, mud, fur, boots 

and the like.  However, this is purely speculation at this point and should be explored in 

further sampling. 

 
Evaluation of the method 

In general, our results indicated that soils in pinyon-juniper woodlands and 

sagebrush steppe can be stable and stratified well enough to reflect changes in vegetation 

over time using soil phytolith analysis.  This seemed to be the case for both the historic 

period (~200 years) and the Little Ice Age.  However, an understanding of the site history 

was crucial for choosing a site sampling selection and interpretation with this method 

because many areas containing these ecosystem types have been plowed historically 

(Chapter 3).  As can be seen from the variations in extraction weight between cores at 

burned sites and the insensitivity of total rondel percentages, areas that have not burned 

recently may be preferable sampling locations.  This is particularly true if the analysis 

will include portions of the pre-modern soils because there could be more mixing from 
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erosion in the upper segments associated with the fire.  We did not do any additional 

sampling between the pre-modern and modern surface segments at Site 3 because of this.    

Our results also showed the importance of using multiple cores.  This type of 

analysis helped locate more stable sites and provided more rigor for the interpretation as 

comparisons could be made within sites and across them.  For example, comparing 

multiple cores helps rule out the potential interference of the pattern from current or 

historic animal burrows.  It would be useful to test for a few known changes in the 

vegetation as we have done here before embarking on detailed core analysis.  Also, our 

pilot study for carbon dating from several different cores was very useful for narrowing 

down the portions of the cores for further dating and analysis.  The detailed core analysis 

of continuous segments in 1 cm increments was most useful for conducting detailed 

vegetation change studies.  Clearly, there was more to be learned from the transitions in 

between the Little Ice Age, pre-modern and modern segments than 2-3 samples per core 

could provide.    

 
Conclusion 

This is the first study to examine the use of soil phytoliths in a continuous core 

sampling method in these ecosystem types.  We found that these soils can be stable and 

well stratified enough to record changes in the vegetation if the sampling is done with 

care to find unburned sites with gentle slopes outside of cultivated areas.  The utility of 

soil phytolith analysis was tested by looking for known vegetation changes in the soil 

stratigraphy such as increased cover of woody species like sagebrush and pinyon-juniper 

woodlands.  Extraction weights tracked increases in pinyon-juniper woodland cover and 
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density in the recent past.  Phytolith assemblages in the soil stratigraphy also reflected 

increasing dominance of invasive grass species like B. tectorum.  Finally, detailed 

analysis at a fine scale of extraction (1 cm increments) revealed shifts in soil phytolith 

assemblages that suggested connections to changes in climate, vegetation and land uses 

from the Little Ice Age to present.  Soil phytolith analysis appears to hold promise as a 

biological proxy for understanding historic and prehistoric environmental conditions, and 

it deserves further exploration and research.  

We interpreted our phytolith assemblages from the detailed cores using frequency 

analysis of phytolith production in extant plants and from modern analogues in the 

literature that relate assemblages to present vegetation in reference areas.  Future research 

should seek more information about historic plant communities in these ecosystem types 

through modern analogue studies of reference areas.  Reference sites for this type of 

modern analogue study were not available in the City of Rocks, particularly in the valleys 

where a great deal of historic soil disturbance occurred with dry farming and forage 

seeding in the past.  Based on our findings, soil phytolith analysis is a useful biological 

proxy for examining vegetation changes since European settlement as well as into the 

Little Ice Age.  More work should be done combining the human archive and soil 

phytolith analysis as modern analogue studies from within the Great Basin region to 

explore its utility.  
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Table 7-1 Morphotype frequencies of the ten native and introduced grasses in CIRO. Frequencies are expressed as a percent of total 
counted.  
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Native Grass  es 27                   
Achnatherum hymenoides 0 0 39 1 0 28 1 1 5 1 8 0 0 1 1 10 13 1 136 
Achnatherum nevadense 0 0 15 13 1 4 0 0 1 1 1 3 1 0 0 0 0 47 165 
Hesperostipa comata 0 0 8 0 0 3 3 1 0 0 5 16 2 11 12 32 55 2 130 
Elymus lanceolatus 0 0 0 0 0 6 1 6 1 1 2 0 0 13 45 24 82 3 120 
Poa secunda ssp. juncifolia 0 0 0 2 6 20 6 13 1 6 1 0 0 8 7 4 18 25 109 
Poa secunda ssp. secunda 0 0 0 5 1 14 5 9 1 0 11 0 15 4 21 0 24 14 111 
Pseudoroegneria spicata 0 0 0 2 15 22 1 11 0 18 4 0 0 10 9 0 19 8 123 
Festuca idahoensis 0 0 0 0 50 10 15 3 1 0 0 1 0 0 18 3 20 0 120 
Hordeum brachyantherum 0 0 0 0 5 7 33 0 2 0 11 2 0 4 31 5 40 0 132 
Elymus elymoides  0 0 0 6 14 9 17 2 4 1 14 0 1 14 6 0 20 13 112 
Leymus cinereus 0 0 0 0 0 6 18 21 1 0 8 15 0 9 17 0 25 4 156 
                    
Introduced Grass  es 15                   
Agropyron desertorum 0 0 0 0 0 0 22 22 0 12 2 2 0 10 11 1 22 11 139 
Bromus inermis 0 0 0 0 0 6 1 0 0 1 3 0 71 2 2 1 4 14 126 
Bromus japonicus 0 0 0 1 47 26 0 2 1 0 3 2 0 1 2 0 3 7 124 
Bromus tectorum 0 0 0 0 18 18 9 1 1 1 19 0 19 1 2 0 3 10 136 
Dactylis glomerata 0 0 4 7 45 18 2 2 0 0 0 0 0 2 5 0 7 15 130 
Echinochloa crus-galli 59 18 0 11 0 3 0 8 0 0 0 0 0 2 0 0 1 0 111 
Elytrigia repens 0 0 0 0 0 7 23 10 3 0 8 6 0 13 25 0 37 0 126 
Phleum pratense 0 0 0 0 0 1 26 14 1 0 0 0 32 3 16 0 19 7 107 
Poa bulbosa 1 0 0 3 23 34 17 4 2 0 1 0 0 8 4 0 12 0 113 
Poa pratensis 0 0 0 1 7 16 13 0 1 0 6 0 0 2 19 23 44 8 119 



Table 7-2  Results of radiocarbon dating.  Dates are from bulk sediments soil cores segments at all sites. Calibration of calendar ages 
from Stuiver, M., Reimer, P. J., and Reimer, R. W. 2005. CALIB 5.0. (http://calib.qub.ac.uk/calib/). * Data from pilot study cores.  

 
Site Depth Radiocarbon Age Calibrated Calendar Age  

(1 Sigma Ranges) 
Calibrated Calendar Age 
(2 Sigma Ranges) 

Site 1A 9-10cm > Modern   
 14-15cm 370 ± 25 Cal AD 1458-1515 

Cal AD 1598-1617 
Cal AD 1449-1524 
Cal AD 1558-1631 

Site 1B 9-10cm 410  ± 35 Cal AD 1439-1491 
Cal AD 1603-1611 

Cal AD 1429-1522 
Cal AD 1573-1628 

Site 2 4-5cm * >Modern   
 9-10 cm  510 ± 30 Cal AD 1410-1435 Cal AD 1328-1341 

Cal AD 1395-1445 
Site 3 4-5 cm*  > Modern   
 9-10cm*  > Modern   
 14-15cm 695 ± 30 Cal AD 1274-1298 

Cal AD 1372-1378 
Cal AD 1264-1310 
Cal AD 1360-1387 

 19-20cm 905  ± 35 Cal AD 1044-1098 
Cal AD 1119-1142 
Cal AD 1147-1174 

Cal AD 1037-1209 

Site 4 9-10cm 540 ± 30 Cal AD 1329-1340 
Cal AD 1396-1426 

Cal AD 1317-1354 
Cal AD 1389-1437 

Site 5 9-10cm 250 ± 35 Cal AD 1529-1547 
Cal AD 1634-1688 
Cal AD 1781-1798 
 

Cal AD 1519-1593 
Cal AD 1619-1681 
Cal AD 1738-1753 
Cal AD 1762-1802 
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Table 7-3  Detailed core analysis results from Site 1A. Relative abundance of phytolith morphotypes expressed as a percent of the 
grass total for grass morphotypes. Relative abundance of the blocky morphotype (Artemisia) expressed as a percent of the sum.  

  

Se
gm

en
t A

ge
 

D
ep

th
 in

 c
en

tim
et

er
s 

E
xt

ra
ct

io
n 

w
ei

gh
t 

St
ip

a 
ty

pe
 

Pl
at

e 
w

av
y 

sh
or

t 

Pl
at

e 
w

av
y 

de
ep

 lo
be

s 

Pl
at

e 
w

av
y 

lo
ng

 

L
on

g 
ce

ll 
sm

oo
th

 

L
on

g 
de

ep
ly

 in
de

nt
ed

 

L
on

g 
ce

ll 
in

de
nt

ed
 

Sq
ua

re
-b

as
ed

 h
ai

r 

R
ou

nd
-b

as
ed

 h
ai

r 

O
bl

on
g 

kn
ob

by
 h

ai
r 

Py
ra

m
id

al
 r

on
de

l 

K
ee

le
d 

ro
nd

el
 

H
or

ne
d 

ro
nd

el
 

T
ot

al
 r

on
de

l 

B
lo

ck
y 

(A
rt

em
is

ia
)  

G
ra

ss
 T

ot
al

 

Su
m

 

Modern 0-1cm 6 1 4 5 18 23 2 16 3 2 4 10 10 3 23 6 215 228
 4-5cm 8 0 3 3 27 25 1 14 1 4 1 10 8 1 20 6 205 219
 8-9cm 10 3 4 3 20 28 0 12 2 3 1 6 12 6 24 6 212 226
Pre-Modern 9-10cm 11 2 2 3 27 31 0 10 0 3 1 15 5 2 22 6 213 227
 10-11cm 11 3 1 4 26 29 0 8 1 4 1 9 10 4 22 5 216 227
 11-12cm 11 3 4 7 22 26 0 13 1 2 1 9 7 4 20 7 216 233
 12-13cm 15 4 4 5 26 26 0 8 2 2 1 12 2 6 21 2 204 209
 13-14cm 12 1 3 12 25 18 0 7 0 1 0 5 17 9 31 6 204 217
370 ± 25 14-15cm 11 3 7 13 18 19 0 10 1 3 0 6 10 9 25 4 211 220
 15-16cm 10 2 3 13 14 23 0 9 0 2 0 11 11 9 31 1 203 206
 16-17cm 16 2 2 7 18 24 1 10 1 4 1 9 14 7 30 2 221 226
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Table 7-4  Detailed core analysis results from Site 3.  Relative abundance of phytolith morphotypes expressed as a percent of the grass 
total for grass morphotypes.  Relative abundance of the blocky morphotype (Artemisia) expressed as a percent of the sum.  See Table 
7-2 and text for details on segment ages.  Extraction weights are expressed as percents of total sample weight (2 g).  
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Modern 0-1cm 8 2 2 6 33 26 0 11 2 2 3 3 7 3 13 4 214 222
Pre-Modern 9-10cm 16 2 2 6 22 29 0 10 2 2 0 8 9 8 26 8 202 220
 10-11cm 16 8 1 8 20 24 1 10 0 3 1 3 10 11 24 5 225 238
 11-12cm 25 9 3 8 18 23 0 10 1 4 1 5 9 10 23 3 222 228
 12-13cm 17 5 2 7 18 24 0 7 2 2 0 6 16 8 30 4 228 237
 13-14cm 17 4 1 8 25 24 0 5 2 1 1 8 12 8 28 5 212 222
695 ± 30 14-15cm 8 5 3 8 16 24 0 12 0 3 0 7 10 9 27 4 229 238
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Figure 7-1  Percent extraction weights for unburned sites.  Primary core and replicate 
core for sites that had not burned in at least 100 years (Morris, 2006b).  The first core for 
Site 2 was destroyed during mishandling in the laboratory.  Radiocarbon dates in years 
before present are presented parenthetically when available.   
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(250 ± 35) 

Figure 7-2  Percent extraction weights for burned sites. Primary and replicate cores are 
from sites that burned in 1999 and 2000 (Morris, 2006b).  Radiocarbon dates in 
radiocarbon years before present are presented parenthetically where available.    
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Figure 7-3  Percent rondels at four sites that were dominated by the introduced grass, 
Bromus tectorum.  The information is expressed as all rondels counted, divided by the 
sum of all grass morphotypes multiplied by 100 to give percent rondels.  Dates in 
radiocarbon years before present are presented parenthetically when available. 
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Figure 7-4  Percent extraction weights for detailed analysis cores.  Site 1A is in a pinyon-
juniper woodland and Site 3 is in a former pinyon juniper woodland that burned in 1999 
and is now dominated by introduced grasses and forbs.  Segment ages are provided 
parenthetically where available.    
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Figure 7-5  Phytolith percent diagram for detailed core at Site 1A.   
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Figure 7-6  Phytolith percent diagram for detailed core at Site 3.   

 

294



 295

Plate 7-1  Morphotypes used in phytolith assemblage analysis; (a) stipa type (b) plate 

wavy short (c) plate wavy deep lobes (d) plate wavy long (e) long cell smooth (f) long 

deeply indented (g) long cell indented (h) square-based hair (i) round-based hair (j) 

oblong knobby hair (k) pyramidal rondel (l) keeled rondel (m) horned rondel (n) blocky  
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CHAPTER 8 

 
CONCLUSIONS AND FUTURE RESEARCH 

 
 
Conclusions 

There were two interconnected objectives for this dissertation research.  The first 

was to reconstruct an ecological history of the City of Rocks National Reserve from the 

period of overland emigration to present, approximately the last 200 years.  The second 

objective was to explore the utility of soil phytolith analysis for inferring vegetation and 

disturbance regime change over the past 200 years by testing its sensitivity to record 

known changes.  These objectives were addressed by examining the human archive for 

evidence of ecological change, particularly in vegetation.  Then, using these known 

changes, I developed hypotheses and tested if the soil phytolith stratigraphy recorded 

them.  The results demonstrated that the multiple land use changes, coupled with changes 

in climate and fire have resulted in vegetation that is different in many ways from what it 

was approximately 200 years ago.  Soil phytolith analysis appears to hold promise as a 

biological proxy for understanding historic and prehistoric environmental conditions and 

fire histories.  By testing for and finding a pattern suggesting the similarity to the changes 

from the human archive, biological data was added to support the claims summarized by 

historical documents.  

In addition to the findings from each of the four general questions that we 

addressed to meet the objectives, there is another important conclusion that can by drawn 

from the culmination of this work.   Much of the historic land use impacts are still visible 

on the landscape.  Based on this, we can assume that the influence of those historic land 
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uses have had lasting impacts that deserve deeper consideration.  These land uses are 

the stage upon which the dynamics of competition, facilitation, plant soil interactions or 

other mechanisms are acting.  Therefore, in addition to demonstrating how important it is 

to consider the multiple causes of change, the ecological history at the City of Rocks 

National Reserve demonstrated very clearly that land use history should be included in all 

projects seeking to understand ecological dynamics, conservation, preservation, or 

restoration.  The history of an area influences every part of the ecosystem and cannot be 

separated from it if we seek knowledge of its function for management or theory.  History 

is important for management actions directed at the landscape as well as the people who 

visit it.  In fact, interpretative programs for the public regarding the dynamics of 

ecosystems and the legacies of all types of land uses are the most immediate application 

of this study and others like it.    

Of course, there are limitations to the soil phytolith analysis methods explored in 

this dissertation, such as location and sampling.  Interpretation of the soil phytolith record 

in these chapters was linked to known changes in vegetation and modern analogue 

studies.  Until more work has been done to refine the interpretation of the soil 

assemblages, this method is limited to areas with a rich human archive.  Even with 

carbon dating, the human archive was essential in locating areas with a relatively stable 

soil profile.  It is also limited to the sagebrush steppe and pinyon-juniper woodlands.  

Continuous sampling has not been tested in other ecosystem types and there is reason to 

believe that it may not be portable.  For example, grassland soils have faster soil turnover 

and development and more soil fauna than these more arid systems.  In addition, the fires 

that sweep across grasslands happen more frequently and have a higher transportation 
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potential.  Therefore, buried A horizon comparison may be a better method in 

grasslands rather than the continuous sampling developed here.   

Continuous sampling and multiple core soil phytolith analysis is also limited by 

sampling issues.  Soil cores with stable one centimeter segments are difficult to obtain in 

the field.  Once the cores are collected, the segments have to be radiocarbon dated.  

Dating each segment in a core is cost prohibitive, so only a selected number of segments 

can be used.  If the soil cores were not deep enough or the soils too mixed to represent the 

timeframe of interest, that sampling site can be lost from the study.  Sample size is also 

limited by the processing and counting time in the laboratory.  It typically took a whole 

day to extract the phytoliths from two samples and 1-2 days to dry.  Counting the 

phytoliths and/or charcoal required an average of 2 hours per slide.  Similarities in 

extraction weight were the quickest way to determine if the cores from the same site were 

usable in this study.  However, counting phytoliths and comparing assemblages for 

patterns is the best (and most time consuming) way to decide if the soil stratigraphy has 

been stable over the period of interest.  Past and present soil disturbance is by far the 

greatest limitation to interpretation.           

 
Future research 

Even with the limitations discussed above, I believe the methods developed here 

hold great promise.  There is, of course much more work that can and should be done in 

this regard.  I have briefly outlined some ideas here in three areas that I think should be 

explored next: modern analogue studies, multi-proxy data combinations, and fire history 

chronosequences.   



 299
Both the multiple core and detailed core analysis presented in this dissertation 

suggest that the soils in these two ecosystem types can be stable and well stratified 

enough to explore more questions about vegetation change over the past 200 years as 

well as into the Little Ice Age.  Our interpretations were aided by the modern analogue 

studies completed by researchers in other regions of the American West.  However, there 

are differences between the Columbia Basin and the Great Basin ecosystems soils, plant 

communities and climate.  Therefore, modern analogue studies comparing current 

vegetation to soil phytolith assemblages directly under them would be very useful for 

better interpretation of the historic assemblages that are recovered in the Great Basin.  In 

addition, these modern analogues could be investigated with various climate variables 

using ordination analysis.    

Another area of future research that would add strength to the ability to interpret 

soil phytolith assemblages would be through multi-proxy combinations.  Phytoliths have 

been successfully paired with pollen studies and microscopic charcoal in lacustrine 

sediments.  There are fairly protected sampling locations around caves and rock outcrops 

where all three proxies (phytoliths, pollen and microscopic charcoal) could be combined 

to provide a more complete picture of vegetation change and the impacts of fire and 

humans.  Soil phytolith analysis could also be coupled with packrat midden analysis.  

Packrat middens are known to provide good historical and palaeecological data about the 

presence and absence of tree species (like pinyon and juniper) that phytoliths will are not 

be able to offer.    

Finally, the potential is there for more development and understanding of burned 

phytoliths and microscopic charcoal in terrestrial sediments.  Our modern analogue study 
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showed recognizable differences between burned and unburned sites.  It would be 

useful to carry through with these modern analogue and taphonomy studies at a number 

of locations where there were known fires to see if the signal of the historic fire is visible 

in the soil profile.  With varying dates since the last fire, it would also be useful to 

examine how long that signal is recognizable in the soil profile.  More work should be 

done to explore fire and taphonomy of phytoliths with fire at sites with low slopes and 

relatively stable soils.  

 
Significance of this research 

The work presented in this dissertation demonstrates how important and revealing 

the human archive is for understanding ecosystem change and function.  In addition, my 

work is the first time that soil phytolith analysis has been tested and employed as a 

method for inferring vegetation and disturbance regime changes in these ecosystem types, 

in continuous sampling of soil sediments and over this time scale.  The applications of the 

human and biological archive methods developed in this research will be beneficial for 

understanding sagebrush steppe and pinyon-juniper woodlands, two widespread and 

highly threatened systems in the Intermountain West.  They can be adapted to examine a 

variety of questions in other systems in future research.  Therefore, this research 

contributes significantly to the advancement of the methods in historical ecology and the 

field of ecology as a whole. 
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