
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Physics Capstone Projects Physics Student Research 

5-7-2016 

Complexity and Art Complexity and Art 

Jeffrey Jenkins 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/phys_capstoneproject 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Jenkins, Jeffrey, "Complexity and Art" (2016). Physics Capstone Projects. Paper 33. 
https://digitalcommons.usu.edu/phys_capstoneproject/33 

This Report is brought to you for free and open 
access by the Physics Student Research at 
DigitalCommons@USU. It has been accepted for 
inclusion in Physics Capstone Projects by an 
authorized administrator of DigitalCommons@USU. 
For more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/phys_capstoneproject
https://digitalcommons.usu.edu/physics_sr
https://digitalcommons.usu.edu/phys_capstoneproject?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/phys_capstoneproject/33?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Complexity and Art

Complexity and Art
Jeffrey Jenkins1

Utah State University Undergraduate

(Dated: 7 May 2016)

A python application was written with the purpose of facilitating the representation of data in both an audio
and visual manner. The representations are in the artistic forms of color field paintings and music. This
allows for the quick recognition of similarities and differences in the complexities of the data and art. Data
was created from musical pieces to give a reference of how closely the program could recreate art. They
were chosen from nursery rhymes and Mozart. Also data was generated from random white noise, 1/f, and
Brownian data sets. Comparing these data sets showed the greatest similarity between Nursery Rhymes and
Brownian motion, as well as between Mozart and 1/f data sets.

It is intended that the application become avail-
able to students who are beginning a study of
complexity. This project is meant to establish
that the application is indeed useful and the
broad relationship between the power spectrum
of a data set and it’s resemblance to music and
art. Future students should be able to compare
any data set to those generated from the three
most common power spectrums and approximate
the spectrum of their data and see aspects that
may resemble art.

I. APPLICATION DEVELOPMENT

Python was chosen as the program language in order
that students with MacOS and Windows would both have
access to the application. It was also desirable to use a
scripting language so that if a student wishes to modify
the program they just need to install Python, modify
the code and run the script using the local installation
of Python. While we wanted this functionality for those
familiar with Python we strongly desired a self contained
executable that requires no programming knowledge to
use.

In consideration of these requirements the modules
TKinter for the GUI and PyAudio for the audio, were
chosen because of their cross-platform compatibility.

The input data format needed to be flexible enough for
a wide variety of source data while being as simple as pos-
sible. It was determined to use integer and floating point
pairs separated by commas as the general format. This
gave enough flexibility to represent almost any music or
color field. The integer is used to map to a note or a color
respectively and the decimal number is the length of the
note or the width of the color box. Instead of entering
the data into the application GUI the data is expected
as a text file and only the file path using the location of
the app as the root folder is inputted to the GUI. This
allows for the application as well as all data to be located
in a single folder and can be moved or transferred with
no complications.

Finally in order to distribute the application as an ex-

ecutable instead of only a script the code needed to be
”frozen”. I chose to use cx Freeze for the Mac version and
py2exe for the windows version. The script in each case is
almost identical due to trying to use cross-platform mod-
ules as much as possible. The only difference is in how
the operating systems address files. So making the app
location the root location when inputting file addresses
to the GUI required OS specific code.

FIG. 1. Image of the running (Windows)application.

A. Future Development

Improvements to the application would include having
the ability to comment lines in the data files. Often the
title of the file is sufficient but more info on how the data
was obtained can only improve readability and record
keeping. I would also add an option for pausing at the
audio at the end of a line or not. The pause helps to
follow along between the audio and visual representation
but most music doesn’t have a pause for each line and
if the data was organized in lines arbitrarily not because
of something intrinsic in the data the pause puts a lot
of emphasis on something not directly in the data. Cur-



Complexity and Art 2

rently the user can provide a color file as an alternative
to the default color scheme but not an alternative notes
file. Adding this feature would allow the user to try dif-
ferent scales, add sharps or flats to match the music and
increase flexibility in general. Also I would include the
ability to change the speed the music is played at. This
would correspond to the existing ability to scale the color
field image so that more or less data is visible at once.
Currently too much adjusting has to happen manually in
the source file. It would be preferable to be able to adjust
these features in the GUI instead of the more permanent
way of adjusting values in the file for example making
the length of all of the notes twice as long. I also want to
consider an adjustment field that would allow the user to
adjust all of the notes by a fixed amount. For example in-
creasing the pitch of the entire piece by one note. These
features would increase the flexibility of the application
and speed up the process of adjusting the representation
without modifying the underlying data.

II. RANDOM DATA SET

The power spectrum is an important feature in many
data sets and applications. It comes from taking the
Fourier transform of the data, squaring it and doing a
curve of best fit to the amplitude coefficients graphed
against the frequency. Instead of performing this process
on many data sets until enough with similar curves of
best fit have been analyzed to understand the character-
istics of data with that type of power spectrum curves,
I artificially created data directly that would match a
specific power spectrum exactly. Three forms were ana-
lyzed. White noise where the power spectrum is flat (f0),
1/f which is typically characteristic of music, and Brow-
nian motion (1/f2). Music is typically near 1/f because
white noise feels too random and unpleasant and Brow-
nian changes too slowly so that it feels like scales. 1/f
is a balance of predictability. The technique for generat-
ing the data set is to sum 40 sine functions with equally
spaced frequencies. Assign their amplitudes according to
the power function of interest and generate a different
random phase for each of the 40 sine functions. Based
on the random phases many different data sets can be
created all with the same power spectrum.

Finally because there are finite defined colors and notes
instead of a continuum sampling frequency and a bucket
width have to be chosen. The bucket widths are chosen
by dividing the range of the output by the desired num-
ber of notes. Also for some peices I used the same tech-
nique to determine note lengths independently. While
the software accepts a continuum of values for the length
in imitation of music I mapped it to only 1/8, 1/4, 1/2
and whole notes.

The sampling frequency choice is less well understood
in this case the frequencies varied from 1 to 40 and every
tenth unit of ’time’ was the sample rate. The difficulty
comes in because of the self similarity between the dif-

FIG. 2. Example 1/f and 1/f2 data sets.

ferent power spectrums. If the white noise function is
rescaled to stretch the time axis then it appears more
like the 1/f function, and if the 1/f function is rescaled it
appears more like the Brownian function. So choosing a
sample frequency very large makes the data appear more
Brownian and a sample frequency very small makes the
data appear more white. I’m unsure how to quantify this
affect so a sample rate was chosen and it was verified that
data from the three distributions was distinguishable.

FIG. 3. Scale for generating the color field images.

FIG. 4. White noise generated image.

Figures 4, 5, and 6 show the differences between the
power distributions that generated them. The white
noise examples have significantly less repetition and ap-
pear more random in the colloquial sense. The Brownian
sets have the most repetition and rarely jumps more than



Complexity and Art 3

FIG. 5. 1/f generated images.

FIG. 6. Brownian motion generated images.

one or two colors on the scale, while the 1/f examples are
in between the two.

III. REPRESENTATIONS OF REAL DATA SETS.

A real world example of data that is expected to be
similar to white noise is the digits of PI. The digits are
truly random, there is no reason to expect digits to re-
main close to the previous digit. This expectation bears
out in the visual appearance of figure 8.

An important goal is to confirm the expectation that
music is 1/f. Now that characteristic examples of 1/f
have been analyzed, characteristic musical examples need
to be analyzed for comparison. I chose two pieces of
Mozart’s as well as two Nursery rhymes. I expected the

FIG. 7. Independent 1/f data sets used for the note pitch and
length.

FIG. 8. 100 digits of PI.

nursery rhymes to have more repetition but still have 1/f
appearance in each repetition but it actually resembles
the Brownian motion sets the most. In retrospect this is
not surprising that nursery rhymes or lullabies would be
more regular and predictable than other music. Mozart’s
pieces appear very similar to the when a 1/f distribution
is used for both the note pitch and length. When Mozart
had a series of shorter notes the pitch didn’t change very
much. This is not true for the randomly generated pieces
because the pitch and length are independently gener-
ated. Also music has the regularity of measures. This
can be seen in figures 11 and 12 as where a note ends
in the same place on every row. It appears as a vertical
break across multiple lines. Clearly that feature is not
present in the randomly generated sets. While the mea-
sures are very obvious in the visual representation it is



Complexity and Art 4

unnoticeable in audio form. The ability to see features
that are difficult to see in the other form is the principle
motivation for using both types of representation. Also
the music gives a very linear presentation from beginning
to end where the visual representation allows for observ-
ing the entire data set at once which can show large scale
features clearly. Random walks where something has a
%50 chance of going up or down is an alternative char-
acterization of Brownian motion. So I created data sets
from flipping coins and increasing or decreasing the pitch
for heads and tails respectively. Figure ??, generated us-
ing this method appears Brownian except for some overly
regular characteristics. The note never remains the same
and never jumps by more than a single note. Perhaps it
would appear more similar to the first characterization of
Brownian motion if the ’sampling rate’ were cut in half.
Then there would be a %50 chance of the note staying
the same and %25 chance of increasing or decreasing.

FIG. 9. Mary had a Little Lamb.

FIG. 10. Twinkle Twinkle Little Star.

IV. CONCLUSION

This supports the idea that most music has a 1/f power
spectrum. This is shown in the color field representa-
tion and in the audio representation that can’t be shown
in this format. The differences due to the regularity of
measures is less apparent in the audio format. Also as
might be expected children’s music is more regular and

FIG. 11. Mozart’s 23 Piano Concerto.

FIG. 12. Mozart’s 23 Piano Concerto.

greatly resembles Brownian motion. The application I
wrote was instrumental in making this analysis faster
and being able to do it in two very different formats.
While some deficiencies were noticed as I used the appli-
cation it is already a useful tool. After some additional
features are added it will be a truly robust tool that stu-
dents beginning in studying complexity will be able to
easily compare any data they collect with features found
in nature, art and music.



Complexity and Art 5

V. APPLICATION CODE

from tkinter import *

from tkinter import messagebox

import pyaudio

import wave

import sys

import math

import threading

class App(Frame):

CHUNK = 1024

play = True

def __init__(self, master=None):

Frame.__init__(self, master)

self.pack(ipadx=20)

#creates widgets and the variables that are

attached to the Entry widgets

self.createWidgets(master)

#I call getColors in initialization and in

’display’. This is because I want

#to load the default first and then if they

provide a valid file I’ll overwrite

default.

self.colorArray = self.getColors()

self.noteScale = self.getNotes()

def createWidgets(self, master):

self.filenameLabel = Label(master,

text="Enter data filename", anchor="w")

self.filenameLabel.pack(fill="x", padx = 10)

self.dataFileEntry = Entry(width=250,

selectborderwidth = 10)

self.dataFileEntry["relief"] = "groove"

self.dataFileEntry["bg"] = "#B0C4DE"

self.dataFileEntry.pack(padx = 10)

# here is the application variable

self.filename = StringVar()

# set it to some value

self.filename.set("mary.txt")

# tell the entry widget to watch this

variable

self.dataFileEntry["textvariable"] =

self.filename

self.colorLabel = Label(master, text="Enter

colors filename. To use default colors

enter \’default\’", anchor="w")

self.colorLabel.pack(fill="x", padx = 10)

self.colorFileEntry = Entry(width=250,

selectborderwidth = 10)

self.colorFileEntry["relief"] = "groove"

self.colorFileEntry["bg"] = "#B0C4DE"

self.colorFileEntry.pack(padx = 10)

# here is the application variable

self.colorfilename = StringVar()

# set it to some value

self.colorfilename.set("default")

# tell the entry widget to watch this

variable

self.colorFileEntry["textvariable"] =

self.colorfilename

#scale variable

self.scaleLabel = Label(master, text="Enter

scale factor", anchor="w")

self.scaleLabel.pack(fill="x", padx = 10)

self.scaleEntry = Entry(width=250,

selectborderwidth = 10)

self.scaleEntry["relief"] = "groove"

self.scaleEntry["bg"] = "#B0C4DE"

self.scaleEntry.pack(padx = 10)

# here is the application variable

self.scale = StringVar()

# set it to some value

self.scale.set(100)

# tell the entry widget to watch this

variable

self.scaleEntry["textvariable"] = self.scale

# I want to run display on ’Key-Return’ or

clicking ’done’

self.dataFileEntry.bind(’<Key-Return>’,

self.display)

self.colorFileEntry.bind(’<Key-Return>’,

self.display)

self.scaleEntry.bind(’<Key-Return>’,

self.display)

self.displaybutton = Button(master,

text="Display", command=self.display)

self.displaybutton.pack()

self.audiobutton = Button(master,

text="Play Audio",

command=self.playaudio)

self.audiobutton.pack()

self.paintingcanvas = Canvas(master,

width=100, height=1000)

myscrollbar=Scrollbar(self.paintingcanvas,

orient="vertical",

command=self.paintingcanvas.yview)

myscrollbar.pack(side="right", fill=Y)

self.paintingcanvas.pack(fill="both",padx=10,

side="left", expand=True)

def playaudio(self, event = None):

if(self.audiobutton["text"] == "Play

Audio"):

self.audiobutton["text"] = "Stop"

else:

self.play = False

self.audiobutton["text"] = "Play Audio"

return

self.play = True

playThread = soundThread(self, 1,

"playThread1")

playThread.start()

def display(self, event = None):

self.colorArray = self.getColors()

self.paintingcanvas.delete(ALL)

#Read datafile into double array

try:



Complexity and Art 6

file = open(self.filename.get(),

’r’)#’r’ means read-only mode

except:

messagebox.showwarning("Open

file","Cannot open this file:\n(%s)"

% self.filename.get())

return

matrix = []

for line in file:

matrix.append([[float(x) for x in

pair.split()] for pair in

line.split(",")])

#matrix.append([int(x) for x in

line.split()])

#Draw representation of Data

for list in matrix:

for pair in list:

print(pair)

print("\n")

x = y = 1 #because i don’t have an

iteration counter, I can’t do

#scaleNum=100

try:

scaleNum=abs(int(self.scale.get()))

except:

messagebox.showerror("Error","Enter only

integer values for the scale.")

size = 50*scaleNum/100 #something like:

i*size, j*size. That’s why x,y are in a

large scope.

maxCat = 0

for list in matrix:

for pair in list:

if not pair:

continue

self.paintingcanvas.create_rectangle(x,

y, x+size*pair[1], y+size,

fill=self.colorArray[int(pair[0])

%len(self.colorArray)],

outline="" if pair[0] ==0 else

"#000000")

x=x+size*pair[1]

maxCat=max(maxCat, pair[0])

x=1

y=y+size

if maxCat-1 > len(self.colorArray):

messagebox.showinfo("Color Info",

"Insufficient colors for all

categories. \n Some categories will

share colors.")

#This function returns an array with note

frequencies to map integers to notes

def getNotes(self):

notes = []

notes.append(1046.50)#C6

notes.append(1174.66)#D6

notes.append(1318.51)#E6

notes.append(1396.91)#F6

notes.append(1567.98)#G6

notes.append(1760)#A6

notes.append(1975.53)#B6

notes.append(2093)#C7

notes.append(2349.32)#D7

notes.append(2637.02)#E7

notes.append(2793.83)#F7

notes.append(3135.96)#G7

notes.append(3520)#A7

notes.append(3951.07)#B7

return notes

#this function assigns a color value to each

integer value we will

#be using as categories in our complexity

representation.

def getColors(self):

colors = []

try:

file = open(self.colorfilename.get(),

’r’)#’r’ means read-only mode

for line in file:

colors.append(line)

except:

if self.colorfilename.get() != "default":

messagebox.showwarning("Open

file","Cannot open this

file:\n(%s)\nUsing default

colors" % self.filename.get())

colors.append("")#0 transparent

colors.append("#FF0000")#1

colors.append("#FF7F00")#2

colors.append("#FFFF00")#3

colors.append("#00FF00")#4

colors.append("#009ACD")#5

colors.append("#0000FF")#6

colors.append("#4B0082")#7

colors.append("#8B00FF")#8

colors.append("#B452CD")#9

return colors

class soundThread (threading.Thread):

def __init__(self, master, threadID, name):

threading.Thread.__init__(self)

self.master = master

self.threadID = threadID

self.name = name

def run(self):

#Read datafile into double array

try:

file = open(self.master.filename.get(),

’r’)#’r’ means read-only mode

except:

messagebox.showwarning("Open

file","Cannot open this file:\n(%s)"

% self.master.filename.get())

return

matrix = []

for line in file:

matrix.append([[float(x) for x in

pair.split()] for pair in

line.split(",")])



Complexity and Art 7

RATE = 48000

p = pyaudio.PyAudio() #Maybe this shouldn’t

be in every call, it could be global

instead.

#open stream

stream = p.open( format =

p.get_format_from_width(1),

channels = 1,

rate = RATE,

output = True)

#write data

for list in matrix:

for pair in list:#pair is the note first

and then the duration, 1 = .5

seconds.

if not pair:

continue

if (self.master.play):

#int(RATE/2) makes each note half

a second.

freq = (self.master.

noteScale[int(pair[0])])

data = ’’.join([chr(int(

math.sin(x/((RATE/freq)/math.pi))

*127+128)) for x in

range(int(RATE/2*pair[1]))])

stream.write(data)

else :

self.master.play = True

stream.stop_stream()

stream.close()

p.terminate()

self.master.audiobutton["text"] =

"Play Audio"

return

data = ’’.join([chr(0) for x in

range(int(RATE/2))])

stream.write(data)#this puts a

half-second of silence at the end of

each row in the data.

stream.stop_stream()

stream.close()

p.terminate()

self.master.audiobutton["text"] = "Play

Audio"

# create the application

root = Tk()

myapp = App(master = root)

#

# here are method calls to the window manager class

#

myapp.master.title("Complexity App")

myapp.master.minsize(400, 250)

myapp.master.maxsize(root.winfo_screenwidth(),

root.winfo_screenheight())

# start the TK event loop

myapp.mainloop()


	Complexity and Art
	Recommended Citation

	tmp.1463503745.pdf.e_LFQ

