

Physical Model to Describe the PARASOL Radiometric Trending

Definition, Adjustment, and Validation

Bertrand Fougnie

CNES

CALCON'13

Summary

- The PARASOL instrument & mission
- Evidences a of radiometric drift : mean + within fov
- Remider : calibration approaches
- Mean behavior
- Drift physical model
- Extrapolation to drift within fov
- Adjustment using DCC/RAY/DES
- Validation
- Conclusion

¢ cnes

The PARASOL Instrument

2000 km

POLDER instrument onboard PARASOL : Dec 04 to now... along-track Camera = wide fov optic + CCD matrix 1400 km 2D detector array 274x242 pixels RASOL cross-track Image fov : ±50° incident angle (i.e. ±60° viewing angle) Large swath: 2200 km for POLDER, 1400 km for Parasol Satellite Moderate resolution : about 6 km Multidirectionality : bidirectional + wide fov Multispectral and multi-polarisation zenith wheel Frontal lens \Rightarrow No on-board viewing calibration Aspherical angle Detector lens device Filter Spectral Band 765 865 1020 443 490565670 763 910Central wavelength (nm) 443.5490.9563.8669.9 762.9762.7863.7 907.11019.6Bandwidth (nm) 13.416.315.415.110.938.133.721.117.1Polarization yes yes ____ yes Saturation level (reflectance) 1.280.991.061.011.040.961.000.981.70CALCON'13 3

No onboard calibration device = in-flight characterization relies on vicarious technics

- based on natural targets
- characterization during the commissioning phase
- monitoring
- 1/Ageing \rightarrow decrease of the radiometric sensitivity detected
 - **Development of an operational correction based on DCC** (Fougnie et al., 2009) corrected but some limitations
- 2/Ageing \rightarrow differential variation inside the field-of-view

up to now not corrected

zenith

angle

No onboard calibration device = in-flight characterization relies on vicarious technics

- based on natural targets
- characterization during the commissioning phase
- monitoring
- 1/ Ageing \rightarrow decrease of the radiometric sensitivity detected
 - **Development of an operational correction based on DCC** (Fougnie et al., 2009) **corrected but some limitations**
- 2/ Ageing → differential variation inside the field-of-view

up to now not corrected

Calibration methods reminder

Absolute over Rayleigh scattering (Hagolle et al., 1999)

- Reference = Rayleigh scattering
- VIS bands + field-of-view coverage

■ Intercalibration over desert (Lachérade et al., 2013)

- Reference = one sensor (i.e. POLDER-1 or MODIS) or one date
- Pseudo-invariant site, geometrical matching + spectral interpolation

■ Interband over sunglint (Hagolle et al., 2004)

24	ality.	and the second
- 4	-	X

• Reference = one band (i.e. 765)

■ Interband over DCC (clouds) (Fougnie et al., 2009)

• Reference = one band (i.e. 765)

CALC

Intercalibration over Antarctica (Six et al., 2004)

- Reference = one sensor (i.e. POLDER-1 or MODIS) or one date
 - → All applied to PARASOL in Fougnie et al., 2007

...to improve the trending model and describe what happens

Simple Physical Model - band k

- 1 time constant Dk (= 1 ageing process)
- 1 amplitude Bk

 $\frac{Ak(t)}{Ak(to)} = \left[1 - Bk \times (1 - exp(-Dk \times t))\right]$

Very realistic up to 2011

- Dk initially estimated for each band
- Unique time constant D
 - Estimated for shortest wavelengths
 - Valid for other bands

 $\frac{Ak(t)}{Ak(to)} = \left[1 - Bk \times (1 - exp(-D \times t))\right]$

« Instrumental » time constant

 $D = 0.0006 \text{ day}^{-1} = 0.018 \text{ month}^{-1}$

→ estimate the amplitude Bk for all bands

cnes

Trending Physical Model

CALCON'13

Adjustment – Validation combining all methods

• 1 amplitude Bk

$$\frac{Ak(t)}{Ak(to)} = \left[1 - Bk \times (1 - exp(-D \times t))\right]$$

Calibration versus month

Adjustment – Validation combining all methods

• 1 amplitude Bk

$$\frac{Ak(t)}{Ak(to)} = \left[1 - Bk \times (1 - exp(-D \times t))\right]$$

Calibration versus month

Adjustment – Validation combining all methods

$$\frac{Ak(t)}{Ak(to)} = \left[1 - Bk \times (1 - exp(-D \times t))\right]$$

Trending Physical Model within FOV

Differential trending within the field-of-view

• Adopted model for the mean behavior :

$$\frac{Ak(t)}{Ak(to)} = \left[-Bk \times (1 - exp(-D \times t)) \right]$$

Same assumption for all viewing direction (I,p)

- same instrumental time constant D
- amplitude for every pixel (I,p)
- by definition : glpk(t0) = 1

 $glpk(t) = \left[-\beta lpk \times (1 - exp(-D \times t)) \right]$

- Very convenient to merge easily multiple methods and multiple dates (archive)
 - reference date = end of A-train period (end-2009)

$$glpk(tref) = \left[1 - \frac{(1 - exp(-D \times tref))}{(1 - exp(-D \times t))} \times (1 - glpk(t))\right]$$

cnes

CALCON'13

Drift within the FOV

Interband evolution over DCC for the entire FOV

- Assuming 765 is stable → to be verified
- spectral behavior

March 2011

Cross-calibration vs POLDER-1 → very good coverage of the entire field-of-view
the interband behavior from DCC is very nicely confirmed = validation

Desert are used to derivate NIR bands

• Cross-calibration vs POLDER-1 \rightarrow very good coverage of the entire field-of-view

- the interband behavior from DCC is very nicely confirmed = validation
- Desert are used to derivate NIR bands

Synergic calibration for the in field-of-view evolution

- Clouds suppose the reference band is stable (765nm)
- Desert (reference = POLDER1) suggest it is not the case
- + Rayleigh (absolute reference) confirm that for 80% of the coverage sufficient to generalize
- Confirmed also for most of other bands

Calibration result versus pixel on the CCD matrix

Band 490nm

The black hole from band 765nm

Interband over DCC (ref=765) Intercalibration over desert (ref=POL1) Absolute calibration over Rayleigh

Black hole – confirmed by Rayleigh \rightarrow Instrument-765 Bright banner – not confirmed \rightarrow method artefact

¢ cnes

Drift within the FOV

Final calibration of the field-of-view equivalent to December 2009 (glp)

- Interband contribution from DCC using NIR as reference
- Evolution of NIR band from Desert (vs POLDER-1)

• Final calibration of the field-of-view equivalent to Dec. 2009 – Vertical profile

Conclusion

- A decrease of the PARASOL radiometric sensitivity has been detected
 - mean decrease : roughly corrected on the operational processing
- This decrease is not homogeneous within the field-of-view
 - Variation within FOV : previously identified but uncorrected
- A physical model has been considered
- This very simple model describes the instrumental behavior
 - one single "instrument" time constant is sufficient
 - amplitudes have been adjusted considering a multiple methods approach
- Mean drift and calibration within FOV have been elaborated for all bands
- On-going end-of-life reprocessing for level-1
 - reprocessed 9-years archive will be available in 2014

Thank you for your attention !

If you want more : Back up slides \rightarrow

Calibration method reminder

Indicative classification

Method	Reference need	Spectral validity	Range of data	Temporal coverage	Field-of-view Coverage
Cross-calibration over Desert	one sensor	VIS/NIR/SWIR	good (20 sites)	permanent	subsampled (orbit track)
Absolute Calibration over Rayleigh	no	VIS	very good (6 large sites)	permanent	full except sunglint geo.
Interband Calibration over Sunglint	one band	VIS/NIR/SWIR	very good (6 large sites)	frequent	only sunglint geo
Interband Calibration over DCC	one band	VIS/NIR	very good (2 large sites)	permanent	full
Cross-calibration over Antarctica	one sensor	VIS/NIR	limited (4 sites)	limited (3 months)	subsampled (orbit track)

Adjustment – Validation combining all methods

• 1 amplitude Bk

$$\frac{Ak(t)}{Ak(to)} = \left[1 - Bk \times (1 - exp(-D \times t))\right]$$

CALCON'13

D=0,018

Adjustment – Validation combining all methods

• 1 amplitude Bk

$$\frac{Ak(t)}{Ak(to)} = \left[1 - Bk \times (1 - exp(-D \times t))\right]$$

Calibration versus month

Adjustment – Validation combining all methods

1 amplitude Bk

$$\frac{Ak(t)}{Ak(to)} = \left[1 - Bk \times (1 - exp(-D \times t))\right]$$

Calibration versus month

Consistency in

the « NIR »

Band 765nm

D=0,018

