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ABSTRACT 

Templates for Supporting Sequenced Temporal Semantics in Pig Latin 

by 

Dhaval Deshpande, Master of Science 

Utah State University, 2010 

Major Professor: Dr Curtis Dyreson 
Department: Computer Science 
 

 This report describes proposed templates for supporting sequenced temporal semantics in Pig 

Latin, a dataflow language used primarily for the analysis of very large data sets.  Sequence semantics 

says that if we take a relation and divide it into smaller relations based on timestamps, while still 

carrying out the regular Pig Latin program over it, the result should be the same as when carrying out 

the temporal Pig Latin program over the original relation. In real time, the relations can be enormous, 

and dividing such relations into smaller ones based on every possible timestamp creates an extremely 

large number of smaller relations. Hence, we create temporal programs, which eliminates the need to 

divide a relation into smaller relations and carry out additional operations over those smaller relations. 

We look at each of the templates and discuss their functionality. One example of such a template is 

temporal grouping, which provides an ability to group a set of tuples or a whole relation based on 



 

 

timestamps. Using temporal grouping, a user can find the number of tuples that exist at a given point of 

time. Another example is temporal coalescing, which allows a user to project multiple tuples and the 

timestamps of their existence in the database. We compare the complexity of the templates with the 

existing operations.
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CHAPTER 1   

INTRODUCTION 

 Pig Latin is a dataflow language[3] used primarily for analyzing very large data sets [1] . 

Because it allows storage and projection of the intermediate results, Pig Latin lends itself well to data 

transformations like filter and group. Some of the key properties of Pig Latin are: 

1. Ease of programming: Pig Latin makes trivial achieving parallel execution of simple, 

"embarrassingly parallel" data analysis tasks. Complex tasks comprised of multiple interrelated 

data transformations are explicitly encoded as data flow sequences, making them easy to write, 

understand, and maintain. 

2. Optimization opportunities: The way in which tasks are encoded in Pig Latin permits the 

system to optimize their execution automatically, allowing the user to focus on semantics rather 

than efficiency. 

3. Extensibility: Users can create their own functions to do special-purpose processing. 

 Pig Latin programs run in a distributed fashion on a cluster. For quick prototyping, Pig Latin 

programs can also run in "local mode" without a cluster [2]. Below is a sample Pig program. 

A = load 'input' using PigStorage('\t') as (name: chararray,begin: int, end: int); 
 
R = FOREACH A generate name; 
 
store R into 'output.txt' using PigStorage('\t'); 

 

 Here, A is the relation that contains the contents of the file “input”.  “PigStorage('\t')” extracts 

the data from the file delimited by tab. We next project the names from relation A and store them in an 

intermediate relation R. Finally, we store R in a separate file. 
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 In this project we focus primarily on creating templates for supporting sequenced temporal 

semantics in Pig Latin.  Sequence semantics says that if we take a relation and divide it into smaller 

relations based on timestamps, while still carrying out the regular Pig Latin program over it, the result 

should be the same as when carrying out the temporal Pig Latin program over the original relation. In 

real time, the relations can be enormous, and dividing such relation into smaller relation based on every 

possible time stamp can creates an extremely large number of smaller relations. Hence, we create 

temporal programs, which eliminates the need to divide a relation into smaller relations and carry out 

additional operations over those smaller relations. The time stamps considered here are discrete 

integers. 

1.1 Sequenced Temporal Semantics in Pig Latin 

 The templates for sequenced temporal operations created for this project enhance the 

functionality of existing Pig Latin operations.   

 Now, let’s examine the join operation in Pig Latin. The sample code below shows how a join 

operation is carried out in Pig Latin. 

A = LOAD '../file_1mb.txt' using PigStorage('\t') as (name: chararray, b: int, e: int); 
 
B = LOAD '../file_1mb.txt' using PigStorage('\t') as (name1: chararray, b1: int, e1: int); 
 
R = JOIN B by name1, A by name; 

 

 The above Pig Latin program joins relation A with relation B by name. The temporal version of 

a join operation does more than just the inner join by name. A temporal join first triggers the inner join 

on two relations. It then projects only those timestamps of relation A whose start times are greater than 

the start time of relation B and whose end times of relation A are less than the end time of relation B .   
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A = load '../file_1mb.txt' using PigStorage('\t') as (name: chararray, b: int, e: int); 
 
B = load '../file_1mb.txt' using PigStorage('\t') as (name1: chararray, b1: int, e1: int); 
 
R = JOIN B by name1, A by name; 
 
R1 = FOREACH R generate name,name1,(b>b1?b:b1), (e<e1?e:e1); 
 
R2 = FILTER R1 by b <= e;  
 
R3 = DISTINCT R2; 
 

 The above Pig Latin program gives the temporal version of a join operation in Pig Latin. The 

program carries out a regular inner join in Pig Latin and stores it in an intermediate relation R. We then 

project only the maximum of starting timestamps and minimum of ending timestamps from relation R, 

which are basically the intersection of  timestamps, and store this information in relation R1. We next 

filter out the tuples in R1 whose begin time is less than or equal to end timestamps and store this 

information in relation R2. Finally, we filter out duplicates from relation R2. 1.2 Outline of Report 

 Chapter 2 looks at other temporal operations in Pig Latin and discusses them in detail. Chapter 

3 compares the complexity of regular Pig Latin operations with that of the temporal Pig Latin 

operations. We compare the complexity by plotting graphs. Chapter 4 provides a summary and the 

future work for the project. Appendices A and B contain the code developed for implementation of the 

proposed templates.  

 



4 

 

CHAPTER 2 

TEMPLATES FOR TEMPORAL OPERATIONS IN PIG LATIN 

 In the previous chapter, we look at how Pig Latin programs work, as well as some of its salient 

features. We also highlighted the template for a temporal join operation. This chapter covers the other 

temporal operations in Pig Latin. Definitions of the  

temporal operations discussed herein follow: 

• Coalesce.  

Temporal coalescing helps a user to find at a tuple that has previously existed in the database. 

• Cogroup. 

The cogroup operation does an inner join between two relations and groups the tuples based on 

a join key. 

• Cross.  

The cross operation carries out a cross join between two or more relations. 

• Distinct.  

The distinct operation removes any duplicate tuples from the relation. 

• Filter.  

The filter operation filters a relation based on the given criteria. 

• Foreach.  

The foreach operation is used to project the columns from a relation. 

• Full outer join.  
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This operation carries out a regular full outer join between two relations. 

• Inner join.  

This operation carries out an inner join between two relations. 

• Left outer join.  

This operation carries out a left outer join between two relations. 

• Right outer join.  

This operation carries out a right outer join between two relations. 

• Sample.  

This operation projects random tuples from a relation based on certain probability. 

• Split.  

This operation splits a relation into two or more relations based on a certain criteria. 

• Temporal group.  

This operation provides an ability to group a set of tuples or a whole relation based on 

timestamps. 

• Union.  

A union is used to merge two or more relations. 

2.1 Coalesce 

 Temporal coalescing helps a user to find a tuple that has previously existed in the database. 

Take a look at Figure 1. 
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Figure 1. COALESCE PATTERN. 

 Each node in the above figure is a relation with the start state of the relation S and the end state 

of the relation X. At each step, the relation undergoes a transformation until it reaches state X, which is 

the desired output. Let us look at the code below and compare it with the figure given above. 

Sa = LOAD '../file_1mb.txt' using PigStorage('\t') as (name, st, et); 

 

 The above code snippet tells the Pig Latin compiler to load the contents of a file into relation Sa. 

Our relation has only three columns, name, start time, and end time. Relation Sa here is node Sa in 

Figure 1. As shown in Figure 1, Sa undergoes a transformation to produce node A, which can be 

verified by the code snippet below. 

A = FOREACH Sa generate name, st,et; 

   

Here, the foreach operation is used to project the out name, start time, and end time out of 

relation Sa. We can see that step 2 of this operation is redundant since it generates the same data as in 

X 

B 

A 

Sa 

GROUP 

COALESCING FOR-EACH 

AND 

FOR-EACH 
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relation Sa. We need do this operation, however, because in real time tables can have lots of attributes, 

and we need to project the out name, start time, and end time to carry out the coalesce operation.  

 We then carry out a group operation on relation A. This operation groups the data in A by name 

and generates new node B. 

B = GROUP A by name; 

 

 Now, we go through each group of B and carry out a coalesce operation on them. The coalesce 

function takes the group of timestamps for a single group in B, returns the intended output ,and stores it 

in relation X. Relation X now has all the timestamps at which a single tuple existed in database. 

X = FOREACH B generate FLATTEN(myudfs.Coalesce(group,A)) as name; 

 

 The user-defined function myudfs.Coalesce shown in the snippet above is the user-defined 

function written in Java. We pass two arguments to this function. The first is the attribute by which the 

columns were grouped, and the second argument is the collection of timestamps (bag) related to the 

first argument. This is explained further by the example below. 

a 1 6 

a 2 8 

b 0 3 

a 9 11 

Relation Sa 
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 In this example, we carry out a coalesce operation on relation Sa. As seen above, we first project 

the out name, start time, and end time, and then we store this result in relation A. Next, we carry out the 

group operation on relation A and store the result in relation B. The result produced by the group 

operation contains the name by which it is grouped and the bag containing the tuples that fall into this 

group. The sample output is shown below. 

      (a, {(a,1,6), (a,2,8), (a,9,11)}) 

      (b, {(0,3)})  

 We now carry out our user-defined function (UDF) myudfs.Coalesce on relation B. The 

arguments passed to this function are the name and the bag of relation B.  We store the output of the 

coalesce function in relation X which contains the desired output as shown below. 

      (a, {(1,8), (9,11)}) 

      (b, {0,3}) 

2.2 Cogroup 

 a cogroup operation in Pig Latin carries out an inner join between two tables and groups the 

resultant data by the join key. A temporal Cogroup also performs the same operation, but it takes the 

timestamps into account as well. A temporal operation preserves the overlapping timestamps. Thus, a 

temporal operation first performs the regular cogroup operation and then makes a series of operations 

over this result to  maintain the overlapping timestamps. The example below shows two sample 

relations Sa and Sb. Both the relations have name, begin time, and end time as their tuples. The result of 

a regular cogroup operation and the temporal cogroup operation are as shown below.         
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a 1 15 

b 5 9 

c 0 4 

a 4 8 

Relation Sb 

2.2.1 Nontemporal Cogroup Result 

   (a, { (a) , (a) }   ,   { (a) , (a) })  

   (b, { (b) }                ,    { (b) }) 

   (c, {      }                ,    { (c) }) 

   (d, { (d) }               ,    {      })       

 The first attribute here is the join key. The second attribute is a bag that contains all the tuples in 

relation Sa, that come under a particular group. Similarly, the third attribute is also a bag containing the 

satisfying tuples of Relation Sb. 

2.2.2 Temporal Cogroup Result 

      (a,a,1,6) 

      (a,a,2,8) 

      (a,a,4,6) 

      (a,a,4,8)  
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      (d,,8,10) 

      (,c,0,4) 

 The above result shows that the temporal operation on the regular cogroup preserves the 

overlapping timestamps.  Figure 2 shows the pattern to create a temporal cogroup operation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. COGROUP PATTERN 

 

  In Figure 2, there are two start states Sa and Sb. We perform a regular cogroup operation on 

these, and  the output is stored in relation A, as shown in the code below. 

X 

Sa 

A 

I 

Sb 

FOR-EACH 

FILTER 

DISTINCT 

FILTER 

J 

F G 

H 

E 

B C D 

COGROUP 

FILTER FILTER 

FOR-EACH 

FOR-EACH 
FOR-EACH 

FLATTEN 
FLATTEN FLATTEN 

UNION UNION 
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A = COGROUP Sa by name, Sb by name1; 

 

  We then carry out three separate filter operations on relation A, based on any empty bags in Sa 

or Sb and store the result in B, C, and D respectively, as shown.   

B = FILTER A by IsEmpty(Sa); 
 
C = FILTER A by IsEmpty(Sb); 
 
D = FILTER A by not IsEmpty(Sa) and not IsEmpty(Sb); 
 

  We again go through each tuple in relations B, C, and D and carry out a flatten operation over 

those tuples. We then store the resultant data in relations E, F, and G, respectively. A flatten operation 

works exactly the opposite of a group operation. Flatten is used to ungroup the grouped data.  

E = FOREACH B generate FLATTEN(Sb); 
 
F = FOREACH C generate FLATTEN(Sa); 

G = FOREACH D generate FLATTEN(Sa), FLATTEN(Sb); 

 

  We then go through each tuple of G, project out tuples, and store the resultant data in relation H. 

This operation gives us the overlapping timestamps. 

H = FOREACH G generate name,(b>b1?b:b1) as b, (e<e1?e:e1) as e; 

 

  At this point, we want to remove any duplicate tuples that exist in the table. Hence, we do a 

distinct operation on relation H to produce relation I.  
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I = DISTINCT H; 

 

 

  We again carry out a filter operation on I to remove any of the tuples that have a begin time 

greater than the end time, and we store the output in relation J.  

J = FILTER I by b <= e; 

 

  Finally, we do a union of relation E, F, and J to produce the desired relation X.    

X = UNION E, F, J; 

 

2.3 Cross Join 

 A temporal cross join does the regular cross join on two relations and performs a series of 

operations to preserve only the overlapping timestamps. The result of a nontemporal cross join and a 

temporal cross join on the above two relations, Sa and Sb are shown in Sections 2.31 and 2.3.2 below. 

Figure 3 shows the pattern to create a temporal cross join operation. 

2.3.1 Nontemporal Cross Join Result on Sa and Sb 

     (b, c) 

     (b, a) 

     (b, b )  

     (a, c) 

     (a, a) 
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     (a, b) 

     (d, c) 

     (d, a) 

     (d, b) 

2.3.2 Temporal Cross Join Result on Sa and Sb  

     (a,a,1,6) 

     (a,a,2,8) 

     (a,a,4,6) 

     (a,a,4,8)  

     (a,b,5,6) 

     (a,b,5,8) 

     (a,c,1,4) 

     (a,c,2,4) 

     (b,a,1,3) 

     (b,c,0,3) 

     (d,a,8,8) 

     (d,a,8,10) 

     (d,b,8,9) 
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Figure 3. CROSS JOIN PATTERN 

 As shown in Figure 3, we perform a regular cross join operation on two start states Sa and Sb, 

and the output is stored in relation A. The code for the same is shown below. 

A = CROSS Sa , Sb; 

 

 We now iterate through all the tuples of relation A, and project out the maximum of start 

timestamps and minimum of end timestamps. The output of this operation is stored in relation B. The 

code to perform this process is shown below. 

X 

B 

Sa 

C 

A 

Sb 
CROSS 

FOR-EACH 

FILTER 

DISTINCT 
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B = FOREACH A generate name,name1,(b>b1?b:b1), (e<e1?e:e1); 

 

 We then filter the tuples of relation B to eliminate any whose  begin time is greater than the end 

time and store the output in relation C.  

C = FILTER B by b <= e; 

 

 Finally, we remove any repeated tuples and store the final output in relation X. 

X = DISTINCT C; 

2.4 Distinct 

 The distinct operation removes any repeated tuples in the relation. The temporal distinct 

operation will be same as Coalesce operation because in coalesce operation we can find various 

timestamps for the same tuple. For example consider relation S: 

a 

a 

b 

 

A = DISTINCT S; 

 

2.4.1 Non Temporal Distinct Result on S 
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 When we carry out a regular distinct operation  as shown above on relation S as shown above, 

we get the following output. 

       (a) 

       (b) 

2.4.2  Temporal Distinct Result on S 

 But when we perform a temporal distinct or  coalesce operation on relation Sa, as explained 

previously, we get the following output. 

      (a, {(1,8), (9,11)}) 

      (b, {0,3}) 

2.5 Filter 

 A filter operation filters the tuples of a relation, based on any given criteria. Similar to the above 

distinct operation, a temporal filter does not make any changes to the timestamps. Thus, like the 

temporal filter operation, a regular filter operation remains the same. 

A = FILTER Sa by name is not null; 

 

 As an example,  consider relation S shown below. 

a 1 

null 2 
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 When we perform a filter operation on S based on the condition that the name should not be null, 

we see that the timestamps are not modified. Hence, the temporal operation is the same as the regular 

filter operation. The output of filter operation is  

       (a,1) 

2.6 Foreach 

 This operation iterates through all the tuples of a given relation. The foreach operation also does 

not make any changes to the tuples and more precisely to the timestamps. Therefore, the temporal 

foreach operation also remains the same as a regular operation. The foreach operation on a start state Sa 

is shown below. 

A = FOREACH Sa generate name,b,e; 

 

 As an example, consider relation S. 

a 1 

b 2 

  

 When we perform a foreach operation on S, we are basically projecting the columns from 

relation S. As we can see, the timestamps are not modified here; hence, the temporal operation is the 

same as the regular foreach operation. The output of the foreach operation is  

       (a,1) 

       (b,2) 
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2.7 Full Outer Join 

A temporal full outer join does the regular full outer join on two relations and performs a series 

of operations to preserve only the overlapping timestamps, that is the maximum of the start timestamps 

and the minimum of the end timestamps. We perform a partial temporal full outer join. The results of a 

nontemporal full outer join, partial temporal full outer join, and the expected temporal full outer join on 

the above two relations, namely, Sa and Sb, are shown in Sections 2.7.1, 2.7.2, and 2.7.3 below. 

2.7.1 Nontemporal Full Outer Join Result on Sa and  Sb 

       (a,a) 

       (b, b) 

       ( ,c) 

       (d, ) 

 

2.7.2 Partial Temporal Full Outer Join Result on Sa and Sb  

       (a,a,1,6) 

       (a,a,2,8) 

       (a,a,4,6) 

       (a,a,4,8) 

       (,c,0,4) 

       (d,,8,10)        

 

2.7.3 Expected Temporal Full Outer Join Result 
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       (a,1,6,a) 

       (,6,15,a) 

       (a,4,6,a) 

       (a,1,4,) 

       (,6,8,a) 

       (a,2,8,a) 

       (a,1,2,) 

       (,8,15,a) 

       (a,4,8,a) 

       (a,2,4, ) 

       (b,0,3,) 

       (,5,9,b) 

       (,0,4,c) 

       (d,8,10,) 

 As seen from the above results, we have implemented a partial temporal full outer join. That is, 

the result only contains those tuples in which both the tuples of the left table and the right table existed 

together. The actual temporal full outer join should even include those timestamps in which only the 

tuples of the left table existed but not the right table tuples and vice versa. As an example, one of the 

tuples of a full outer join is    

      (a,1,6,a,4,8) 
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 Our partial temporal full outer join produces only one tuple with overlapping timestamp, that is  

      (a,4,6) 

 The actual temporal full outer join should even include those tuples wherein only tuples of the 

left table existed and those tuples wherein only tuples of the right table existed. 

 Thus, the expected full outer join result for the above tuple is: 

• (a,4,6,a) : Wherein tuples of both tables existed; 

• (a,1,4, ) : Wherein only tuples of the left table existed. 

• ( ,6,8,a) : Wherein only tuples of the right table existed. 

 Figure 4 shows the pattern to create a partial temporal full outer join operation. The actual and 

complete full outer join is left for future work. 

  Similar to a temporal cross join, we first perform a regular full outer join on the two start states 

Sa and Sb and store the result in Relation A.   

A = JOIN Sa by name FULL OUTER, Sb by name1; 

 

 

 

 

 

 

 

 

X 

B 

C 

FOR-EACH 

FILTER 

DISTINCT 

FILTER 
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FIGURE 4 . FULL OUTER JOIN PATTERN 

 A full outer join may result in some empty Sa bags or some empty Sb bags. If a tuple has empty 

an Sa bag, we directly use Sb. Similarly if Sb bag is empty in a tuple, we use Sa.  If both are not empty, 

we perform further checks and operations to obtain the overlapping begin and end timestamps. The 

code for this is as below. 

B = FOREACH A generate ((b is null) ? name1 : name) as name,((b is null) ? b1 : ((b1 
is not null) ? ((b > b1) ? b : b1) : b)) as b , ((b is null) ? e1 : ((b1 is not null) ? ((e < e1) 
? e : e1) : e)) as e; 
 

 We finally remove any repeated tuples, storing the result in relation C and perform a filter to 

remove any invalid timestamps. The final output is then stored in relation X. 

C = DISTINCT B; 
 
X = FILTER C by b <= e; 
 

2.8 Inner Join 

Again, a temporal inner join does the work of a regular inner join on two relations and performs 

a series of operations to preserve only the overlapping timestamps. The result of a nontemporal inner 

join and a temporal inner join on the above two example relations, Sa and Sb, are shown below in 

Sections 2.81 and 2.8.2.  Figure 5 shows the series of operations performed on a regular inner join 

to obtain a temporal inner join. 

Sa 

A 

Sb 

FULL OUTER 

JOIN 
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2.8.1 Nontemporal Inner Join Result on Sa and  Sb 

       (a, a) 

       (b, b) 

2.8.2 Temporal Inner Join Result on Sa and  Sb 

       (a,a,1,6) 

       (a,a,2,8) 

       (a,a,4,6) 

       (a,a,4,8) 
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FIGURE 5.  INNER JOIN PATTERN 

 As done earlier, the first step is the regular operation. We perform a regular inner join on the two 

start states Sa and Sb and store the result in Relation A.   

A = JOIN Sa by name , Sb by name1; 

 

 Now, we iterate through all the tuples in relation A, check for tuples with overlapping 

timestamps, and store this result in relation B. 

B = FOREACH A generate name,name1,(b>b1?b:b1), (e<e1?e:e1); 

 

 We finally perform a filter on relation B to remove any invalid timestamps, storing the result in 

relation C and removing any repeated tuples. The final output is then stored in relation X. 

C = filter B by b <= e;  

X = DISTINCT C; 

 

 2.9 Left Outer Join 

A temporal left outer join does a regular left outer join on two relations and performs a series of 

operations to preserve only the overlapping timestamps. We perform a partial temporal left outer join. 

The result of a nontemporal left outer  join, partial temporal left outer join, and temporal left outer join 

on the above two example relations, Sa and Sb, are shown in Sections 2.91, 2.9.2, and 2.9.3 below. 
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2.9.1 Nontemporal Left Outer Join Result on Sa and  Sb 

       (a, a) 

       (b, b) 

       (d, ) 

2.9.2 Partial Temporal Left Outer Join Result on Sa and  Sb 

       (a,a,1,6) 

       (a,a,2,8) 

       (a,a,4,6) 

       (a,a,4,8) 

       (d,,8,10) 

2.9.3 Expected Temporal Left Outer Join Result 

       (a,1,6,a) 

       (a,4,6,a) 

       (a,1,4, ) 

       (a,2,8,a) 

       (a,1,2, ) 

       (a,4,8,a) 

       (a,2,4, ) 

       (b,0,3,) 

       (d,8,10,) 
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 We have implemented a partial temporal left outer join. That is, the result only contains those 

tuples in which both the tuples of the left table and right table existed together. But the actual temporal 

left outer join should also include those timestamps in which only the tuples of the left table existed. As 

an example, one of the results of a left outer join is (a,1,6,a,4,8) 

 Our partial temporal left outer join produces only one tuple with overlapping timestamps, that is 

(a,4,6). 

 The actual temporal left outer join should even include tuples in which only tuples of the left 

table existed. 

 Thus, the expected left outer join result for the above tuple is: 

• (a,4,6,a) : Wherein tuples of both tables existed; 

• (a,1,4, ) : Wherein only tuples of the left table existed. 

 Figure 6 shows the operations carried out on a regular left outer join to obtain the partial 

temporal left outer join results. The expected temporal left outer join remains for future work. 
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FIGURE 6. LEFT OUTER JOIN PATTERN 

 As described above, the first step is the regular operation. We perform a regular left outer join on 

the two start states Sa and Sb and store the result in Relation A.   

A = JOIN Sa by name LEFT OUTER, Sb by name1; 

 

 A left outer join may result in some empty Sb bags, as can be seen from the above set of results 

for a nontemporal left outer join. If a tuple has empty Sb bag, we directly use just Sa, but if Sb is not 

empty, we perform further checks and operations to obtain the overlapping begin and end timestamps. 

The code for this is below. 

B = FOREACH A generate name,((b1 is null) ? b : ((b > b1) ? b : b1)) as b,((b1 is null) 
? e : ((e < e1) ? e : e1)) as e; 
 

 We finally remove any repeated tuples, storing the result in relation C and perform a filter on the 

result to remove any invalid timestamps. The final output is then stored in relation X. 

C = DISTINCT B; 
 
X = FILTER C by b <= e; 
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2.10 RIGHT OUTER JOIN 

The right outer join is similar to the left outer join. As in all other operations, the temporal right 

join also performs a regular right outer join first. It then performs further operations to obtain the 

temporal results for the same. We have implemented the partial temporal right outer join. The result of 

a nontemporal right outer  join, partial temporal right outer join, and temporal right outer join on the 

above two example relations, Sa and Sb are shown in Sections 2.10.1, 2.10.2, and 2.10.3 below. 

2.10.1 Nontemporal Right Outer  Join Result on Sa and  Sb 

       (a, a) 

       (b, b) 

       ( ,c) 

2.10.2 Temporal Right Outer Join Result on Sa and  Sb 

       (a,a,1,6) 

       (a,a,2,8) 

       (a,a,4,6) 

       (a,a,4,8) 

       (,c,0,4) 

2.10.3 Expected Temporal Full Outer Join Result 

       (a,1,6,a) 

       ( ,6,15,a) 

       (a,4,6,a) 
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       ( ,6,8,a) 

       (a,2,8,a) 

       ( ,8,15,a) 

       (a,4,8,a) 

       ( ,5,9,b) 

       ( ,0,4,c) 

 We have implemented a partial temporal right outer join, whose result only contains those tuples 

in which the tuples of both the left table and the right table existed together. But the actual temporal 

right outer join should even include those timestamps in which only the tuples of the right table existed. 

As an example, one of the results of the right outer join is (a,1,6,a,4,8). 

 Our partial temporal full outer join produces a single tuple with overlapping timestamps, that is 

(a,4,6). 

 The actual temporal full outer join should even include tuples in which only tuples of the left 

table existed and also tuples in which only tuples of the right table existed. 

Thus, the expected right outer join result for the above tuple is: 

• (a,4,6,a) : Wherein tuples of both tables existed; 

• ( ,6,8,a) : Wherein only tuples of the right table existed. 

 Figure 7 shows the series of operations carried out on the regular right out join to obtain the 

partial temporal right outer join results. The expected temporal right outer join remains for future work. 
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FIGURE 7. RIGHT OUTER JOIN PATTERN 

 The first step being the regular operation, we perform a regular right outer join on the two start 

states Sa and Sb and store the result in Relation A.   

A = JOIN Sa by name RIGHT OUTER, Sb by name1; 

 

 A right outer join may result in some empty Sa bags, as can be seen from the above set of results 

for a nontemporal right outer join. If a tuple has empty Sa bag, we directly use Sb, but if Sa is not empty, 

we perform further checks and operations to obtain the overlapping begin and end timestamps. The 

code for this is below. 

 

B = FOREACH A generate ((b is null) ? name1 : name) as name,((b is null) ? b1 : ((b > 
b1) ? b : b1)) as b,((b is null) ? e1 : ((e < e1) ? e : e1)) as e; 
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 We finally remove any repeated tuples, storing the result in relation C and perform a filter on 

this to remove any invalid timestamps. The final output is then stored in relation X. 

C = DISTINCT B; 
 
X = FILTER C by b <= e; 
 

2.11 SAMPLE 

 Sample operation projects out a random tuple from the relation, based on some given 

probability. Since sample operation only projects a tuple and does not make any changes to the tuple 

nor the timestamps, a temporal sample is the same as the regular sample operation. The code for the 

sample is as follows. 

A = SAMPLE Sa 0.5; 

 

 As an example, consider the relation  Sa. When we perform a sample operation on  Sa , we get 

the following output. 

       (a,1,6) 

2.12 SPLIT 

 A split operation splits the given relation into as many relations as specified by a predetermined 

criteria. This operation, as well, does not modify tuples or timestamps. Thus, the temporal  split 

operation is  the same as the regular split operation. The instructions for a split on start state Sa is 

below. 
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SPLIT Sa INTO X IF b<7, Y IF e==5, Z IF (b<6 OR b>6); 

 

 As an example when we carry the above operation on Sa,, we get the following output. 

• Relation X 

       (a,1,6) 

       (a,2,8) 

       (b,0,3) 

• Relation Y 

       ( ) 

• Relation Z 

       (a,1,6) 

       (a,2,8) 

       (b,0,3) 

       (a,9,11) 

2.13 Temporal Group 

 A temporal grouping allows a user to find all the tuples that existed at a given point of time. This 

is a special operation and does not have a corresponding Pig Latin operation.  

Figure 8 shows the series of steps for a temporal group operation. 
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FIGURE 8. TEMPORAL GROUP PATTERN 

 Below are the steps to create a temporal group operation.  

A = FOREACH Sa generate b as b1;  
 
B = FOREACH A generate e as e1;  
 
C = UNION A,B;  
 

 

 We follow a similar approach to what we have been doing in previous sections.  In order to find 

various tuples at a single point t, we need to do a cross join of the relation Sa with the relation that 
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contains only begin and end timestamps. By doing this, we have access to all the tuples that are related 

to time t. 

D = CROSS Sa , C;  
 
E = FILTER D by b1 <= e and b1 >= b; 
 

 We then apply a strategy similar to a join to get the overlapping timestamps and filter out the 

rest of the tuples. At this point in time, we need to project out only those columns in which we are 

interested. Hence, we project the name, begin time, and the end time. We now have all the timestamps 

and corresponding names that existed during that time.  

F = FOREACH E generate name, b1;  
 
G = DISTINCT F;   
 
X = GROUP G by b1; 
 

 Before we go ahead and group all those names by their corresponding timestamps, to make sure 

there is not any data that is redundant or repeated, we carry out a distinct operation followed by a group 

operation to get the intended output. Let us look at an example before we look at other temporal 

operations. 

 We carry out the temporal grouping on relation Sa. We first project out the start time and end 

time for relation Sa  and store them in relations A and B, respectively. We then carry out the cross 

operation of Sa  with a union of A and B and store the result in relation C. The output of relation C is 

shown below. 

       (a,2,8,0) 
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       (a,2,8,1) 

       (a,2,8,6) 

       (a,2,8,11) 

       (a,2,8,8) 

       (a,2,8,9) 

       (a,2,8,2) 

       (a,2,8,3) 

       (a,1,6,0) 

       (a,1,6,6) 

       (a,1,6,1) 

       (a,1,6,11) 

       (a,1,6,8) 

       (a,1,6,9) 

       (a,1,6,2) 

       (a,1,6,3) 

       (a,9,11,0) 

       (a,9,11,1) 

       (a,9,11,6) 

       (a,9,11,11) 
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       (a,9,11,8) 

       (a,9,11,9) 

       (a,9,11,2) 

       (a,9,11,3) 

       (b,0,3,0) 

       (b,0,3,6) 

       (b,0,3,1) 

       (b,0,3,11) 

       (b,0,3,8) 

       (b,0,3,9) 

       (b,0,3,2) 

       (b,0,3,3) 

 We then follow the same strategy to project the overlapping timestamps. We carry out the filter 

operation over relation C and store the result in D. We next project the start time and the name from 

relation D and store it in relation E. At this point, we want to remove any duplicates that exist in 

relation E. Hence, we carry out the distinct operation and store the distinct tuples of relation E in 

relation F. Finally, we group relation F by attribute b1 and store it in relation X. The output of relation 

X is shown below. 

       (0,{(b,0)}) 

       (1,{(a,1),(b,1)}) 

       (2,{(a,2),(b,2)}) 
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       (3,{(a,3),(b,3)}) 

       (6,{(a,6)}) 

       (8,{(a,8)}) 

       (9,{(a,9)}) 

       (11,{(a,11)}) 

2.14 UNION 

 A union operation appends the tuples of one relation to another relation. Suppose there are two 

start states Sa and Sb. The union on Sa and Sb appends all the tuples of Sb to Sa. Aunion operation also 

does not make any kind of changes to the timestamps; therefore, a temporal union operation is the same 

as a regular union operation.  

X = UNION Sa, Sb; 

 

 As an example, when we carry out the above operation on  Sa and  Sb, we get the following output. 

      (a,1,6) 

       (a,2,8) 

       (b,0,3) 

      (a,9,11) 

      (a,1,15) 

      (b,5,9) 

      (c,0,4) 

      (a,4,8) 
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CHAPTER 3  

COST OF TEMPORAL PIG LATIN OPERATIONS 

 In the previous chapter, we look at templates for various temporal operations. In this chapter, 

we compare the cost of temporal Pig Latin operations with the cost of regular Pig Latin operations. 

3.1 Hardware Specifications  

• Processor : Intel(R) Core(TM) i5 CPU    M 450  @ 2.40GHz 

• RAM : 6 GB 

3.2 Operating System Specification  

• Ubuntu 10.10 

3.3 Software Specification  

• JDK 1.6 

• Pig 0.7.0 

• Hadoop 0.20.2 

 We take three files of sizes 10 KB, 100 KB and 1000 KB for our experiment and test all the 

temporal operations with these files as input. The execution time taken for these operations are noted, 

and a graph is plotted to show the temporal operation execution time and the slowdown of the temporal 

operations as compared to the regular operations. 

 Figure 9 shows this data for all of the temporal operations except the temporal cross operation. 

Figure 10 shows this data for the temporal cross operation. The temporal cross operation was not tested 

on a 1000KB file, as the time taken would have been prohibitively large. 



38 

 

 

 

 

 

 

 

  

FIGURE 9. GRAPH OF FILE SIZE VERSUS EXECUTION TIME FOR TEMPORAL 

OPERATIONS 

 

 

 

 

 

 

FIGURE 10. GRAPH OF FILE SIZE VS EXECUTION TIME FOR TEMPORAL CROSS 

OPERATION 

 Figure 11 shows a comparison of regular operations and temporal operations. Note the 

slowdown of the temporal operations compared to the regular operations. 
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FIGURE 11. COMPLEXITY GRAPH 

 The operations are performed on three different file sizes, 10KB, 100KB, and 1000KB. Firstly, 

we perform regular operations, that is inner join, left outer join, right outer join, full outer join, cross 

join, and cogroup on the three different file sizes, with one exception. The execution time for the cross 

Join on 1000KB files are not performed, as the execution time would be prohibitively large. All 

execution times are noted. 

 We then perform temporal operations, that is temporal inner join, temporal left outer join, 

temporal right outer join, temporal full outer join, temporal cross join and temporal cogroup on the 

same files and note the execution time for the same. 

 Now that we have the execution time for both regular and temporal operations, for each 

operation we perform: 

  

File Size 

Slowdown 
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(Execution Time for Temporal Operation) /  (Execution Time for Regular Operation). This gives us a 

scalar for determining which is greater the execution time of a temporal operation or the execution time 

of a regular operation.  

3.4 Analysis 

 Note in Figure 11 that temporal operations take more time than regular operations, since we 

perform a series of operations on the regular version of the corresponding operation.  

 As the file size increases, we can note that complexity for cross join significantly increases, 

complexity for inner join, right outer join, full outer join, and cogroup almost all remain the same, and 

the complexity for left outer join increases a small amount. 

 Compared to the regular cogroup operation, the temporal cogroup operation execution takes 

almost twice the time as a regular operation on all file sizes. 
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CHAPTER 4  

SUMMARY AND FUTURE WORK 

 Pig Latin is a dataflow language used primarily for analyzing very large data sets. It lends itself 

well to data transformations like filter and group. It allows storage and projection of the intermediate 

results, which can be very useful in achieving desired results. 

 Presently, Pig Latin does not support temporal operations. For this project, we created templates 

in order to support temporal operations in Pig Latin. These templates can be later added to Pig Latin 

source code and could be used as built in operations. 

 

4.1 Future Work  

There are lot of enhancements that could be done in this area. Firstly, the templates for outer 

joins are not complete as the results of outer join are only partial. Much research could be done in this 

area to achieve more complete results. Secondly, the temporal grouping does not scale well for large 

data sets. Hence, some improvements can be made in this direction, too.  

 Finally, sequenced grouping is another area for potential improvements.  
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APPENDIX A 

COALESCE 

S = LOAD '../file_1mb.txt' using PigStorage('\t') as (name, st, et); 
 
A = FOREACH S generate name, st,et; 
 
B = GROUP A by name; 
 
X = FOREACH B generate FLATTEN(myudfs.Coalesce(group,A)) as name; 
 

COGROUP 

A = COGROUP Sa by name, Sb by name1; 
 
B = FILTER A by IsEmpty(Sa); 
 
C = FILTER A by IsEmpty(Sb); 
 
D = FILTER A by not IsEmpty(Sa) and not IsEmpty(Sb); 
 
E = FOREACH B generate FLATTEN(Sb); 
 
F = FOREACH C generate FLATTEN(Sa); 
 
G = FOREACH D generate FLATTEN(Sa), FLATTEN(Sb); 
 
H = FOREACH G generate name,(b>b1?b:b1) as b, (e<e1?e:e1) as e; 
 
I = DISTINCT H; 
 
J = FILTER I by b <= e; 
 
X = UNION E, F, J; 
 

 

 



45 

 

CROSS 

A = CROSS Sa,Sb; 
 
B = FOREACH A generate name,name1,(b>b1?b:b1), (e<e1?e:e1); 
 
C = FILTER B by b <= e; 
 
X = DISTINCT C; 
 

DISTINCT 

A = DISTINCT Sa; 

 

FILTER 

A = FILTER Sa by name is not null; 

 

FOREACH 

A = FOREACH Sa generate name,b,e; 

 



46 

 

FULL OUTER JOIN 

A = JOIN Sa by name FULL OUTER, Sb by name1; 

B = FOREACH A generate ((b is null) ? name1 : name) as name,((b is null) ? b1 : ((b1 is not 

null) ? ((b > b1) ? b : b1) : b)) as b , ((b is null) ? e1 : ((b1 is not null) ? ((e < e1) ? e : e1) : e)) 

as e; 

C = DISTINCT B; 

X = FILTER C by b <= e; 

 

INNER JOIN 

A = JOIN Sa by name , Sb by name1; 
 
B = FOREACH A generate name,name1,(b>b1?b:b1), (e<e1?e:e1); 
 
C = filter B by b <= e;  
 
X = DISTINCT C; 
 

LEFT OUTER JOIN 

A = JOIN Sa by name LEFT OUTER, Sb by name1; 
 
B = FOREACH A generate name,((b1 is null) ? b : ((b > b1) ? b : b1)) as b,((b1 is null) ? e : 
((e < e1) ? e : e1)) as e; 
 
C = DISTINCT B; 
 
X = FILTER C by b <= e; 
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RIGHT OUTER JOIN 

A = JOIN Sa by name RIGHT OUTER, Sb by name1; 
 
B = FOREACH A generate ((b is null) ? name1 : name) as name,((b is null) ? b1 : ((b > 
b1) ? b : b1)) as b,((b is null) ? e1 : ((e < e1) ? e : e1)) as e; 
 
C = DISTINCT B; 
 
X = FILTER C by b <= e; 
 

SAMPLE 

A = SAMPLE Sa 0.5; 

 

SPLIT 

SPLIT Sa INTO X IF b<7, Y IF e==5, Z IF (b<6 OR b>6); 

 

TEMPORAL GROUP 

A = FOREACH Sa generate b as b1;  
 
B = FOREACH Sa generate e as e1;  
 
C = UNION A,B;  
 
D = CROSS Sa , C;  
 
E = FILTER D by b1 <= e and b1 >= b; 
 
F = FOREACH E generate name, b1;  
 
G = DISTINCT F;   
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X = GROUP G by b1; 

UNION 

X = UNION Sa, Sb; 
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APPENDIX B 

Coalesce . java 

package myudfs; 

 

import java.io.*; 

import java.util.*; 

import org.apache.pig.EvalFunc; 

import org.apache.pig.backend.executionengine.ExecException; 

import org.apache.pig.data.Tuple; 

import org.apache.pig.data.TupleFactory; 

import org.apache.pig.impl.logicalLayer.schema.Schema; 

import org.apache.pig.data.DataType; 

import org.apache.pig.data.BagFactory; 

import org.apache.pig.data.DataBag; 

 

public class Coalesce extends EvalFunc<Tuple> { 

 ArrayList<Integer> lower = new ArrayList<Integer>(); 

 ArrayList<Integer> higher = new ArrayList<Integer>(); 

 ArrayList<Tuple> result = new ArrayList<Tuple>(); 
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 /* 

  * First argument is key by which the data is grouped. In this case it is name 

  * Second argument consist of a databag which has grouped tuples essentially array of (name, 

start time, end time) 

  */ 

 public Tuple exec(Tuple input) throws IOException { 

  if (input == null || input.size() < 2) { // if input from pig doesnt have 

      //two arguments that is group key and databag then it should return null 

   return null; 

  } 

  try { 

   Tuple output = TupleFactory.getInstance().newTuple(3); 

   DataBag db = (DataBag) input.get(1); //gets the databag of a group which needs 

to be processed 

   Iterator it = db.iterator(); 

   while (it.hasNext()) { 

    Tuple t = (Tuple) it.next(); 

    lower.add(Integer.parseInt(t.get(1).toString())); //adding the lower 

timestamp to lower array list 
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    higher.add(Integer.parseInt(t.get(2).toString())); // adding higher 

timestamp to higher array list 

   } 

   //sort according to lower 

   sort(); 

   //make the groups and store it in results 

   group(); 

   //iterate through results and add into db 

   DataBag db1 = BagFactory.getInstance().newDefaultBag(); 

   Iterator it1 = result.iterator(); 

   while (it1.hasNext()) { 

    Tuple t = (Tuple) it1.next(); 

    db1.add(t); 

   } 

   //clear lower and higher and result 

   lower.clear(); 

   higher.clear(); 

   result.clear(); 

   output.set(0, input.get(0)); 

   output.set(1, db1); 
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   return output; 

  } catch (Exception e) { 

   System.err.println("Failed to process input; error - " + e.getMessage()); 

   return null; 

  } 

 } 

 public Schema outputSchema(Schema input) { 

  try { 

   Schema tupleschema = new Schema(); 

   tupleschema.add(new 

Schema.FieldSchema("group",DataType.CHARARRAY)); 

   ArrayList<Schema.FieldSchema> inner = new 

ArrayList<Schema.FieldSchema>(); 

   inner.add(new Schema.FieldSchema("st", DataType.INTEGER)); 

       inner.add(new Schema.FieldSchema("et", DataType.INTEGER)); 

   Schema bagSchema = new Schema(inner); 

   bagSchema.setTwoLevelAccessRequired(true); 

   Schema.FieldSchema bagFs = new 

Schema.FieldSchema("timestamps",bagSchema, DataType.BAG); 

   tupleschema.add(bagFs); 
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   return new Schema( new Schema.FieldSchema ( getSchemaName(  this.getClass 

() . getName () . toLowerCase () , input ), tupleschema, DataType.BAG)); 

  } catch (Exception e) { 

   return null; 

  } 

 } 

 public void sort() { 

  for (int i = 1; i <= lower.size(); i++) { 

   for (int j = 0; j < lower.size() - 1; j++) { 

    if (lower.get(j + 1) < lower.get(j)) { 

     int temp = lower.get(j); 

     lower.set(j, lower.get(j + 1)); 

     lower.set(j + 1, temp); 

     int temp1 = higher.get(j); 

     higher.set(j, higher.get(j + 1)); 

     higher.set(j + 1, temp1); 

    } 

   } 

  } 

 } 
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 //This function is responsible for grouping the tuples inside the databag and puts the result in 

results array list 

 public void group() throws ExecException { 

  int current_lower = lower.get(0), current_higher = higher.get(0); 

  for (int i = 1; i < lower.size(); i++) { 

   if (current_higher >= lower.get(i)) { 

    if (current_higher < higher.get(i)) { 

     current_higher = higher.get(i); 

    } 

   } else { 

    Tuple tobepushed = TupleFactory.getInstance().newTuple(2); 

    tobepushed.set(0, current_lower); 

    tobepushed.set(1, current_higher); 

    result.add(tobepushed); 

    current_lower = lower.get(i); 

    current_higher = higher.get(i); 

   } 

  } 

  Tuple tobepushed = TupleFactory.getInstance().newTuple(2); 

  tobepushed.set(0, current_lower); 
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  tobepushed.set(1, current_higher); 

  result.add(tobepushed); 

 } 

} 
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