
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

5-2011

Templates for Supporting Sequenced Temporal Semantics in Pig Templates for Supporting Sequenced Temporal Semantics in Pig

Latin Latin

Dhaval Deshpande
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Deshpande, Dhaval, "Templates for Supporting Sequenced Temporal Semantics in Pig Latin" (2011). All
Graduate Plan B and other Reports. 25.
https://digitalcommons.usu.edu/gradreports/25

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fgradreports%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/25?utm_source=digitalcommons.usu.edu%2Fgradreports%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

Templates for Supporting Sequenced Temporal Semantics in Pig Latin

by

Dhaval Deshpande

A report submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

_____________________ ___________________

Dr. Curtis Dyreson Dr. Stephen Clyde
Major Professor Committee Member

Dr. Stephen Allan
Committee Member

UTAH STATE UNIVERSITY
Logan, Utah

2011

Copyright © Dhaval Deshpande 2011

All Rights Reserved

ABSTRACT

Templates for Supporting Sequenced Temporal Semantics in Pig Latin

by

Dhaval Deshpande, Master of Science

Utah State University, 2010

Major Professor: Dr Curtis Dyreson
Department: Computer Science

 This report describes proposed templates for supporting sequenced temporal semantics in Pig

Latin, a dataflow language used primarily for the analysis of very large data sets. Sequence semantics

says that if we take a relation and divide it into smaller relations based on timestamps, while still

carrying out the regular Pig Latin program over it, the result should be the same as when carrying out

the temporal Pig Latin program over the original relation. In real time, the relations can be enormous,

and dividing such relations into smaller ones based on every possible timestamp creates an extremely

large number of smaller relations. Hence, we create temporal programs, which eliminates the need to

divide a relation into smaller relations and carry out additional operations over those smaller relations.

We look at each of the templates and discuss their functionality. One example of such a template is

temporal grouping, which provides an ability to group a set of tuples or a whole relation based on

timestamps. Using temporal grouping, a user can find the number of tuples that exist at a given point of

time. Another example is temporal coalescing, which allows a user to project multiple tuples and the

timestamps of their existence in the database. We compare the complexity of the templates with the

existing operations.

v

ACKNOWLEDGMENTS

 I would like to thank Dr. Curtis Dyreson for giving me the opportunity to be a part of this

project. His guidance and support have been invaluable. I owe my knowledge of databases to him. I

would like to thank my parents for their continuous support and encouragement ,without which this

project would not have been possible. Lastly, I would like to thank my friend Swathi Rajashekar for her

invaluable support and interest in my project.

Dhaval Deshpande

vi

TABLE OF CONTENTS

ABSTRACT... iii

ACKNOWLEDGMENTS .. v

LIST OF FIGURES ..

CHAPTER

1 INTRODUCTION .. 1

1.1 Sequenced Temporal Semantics in Pig Latin ... 2

2 TEMPLATES FOR TEMPORAL OPERATIONS IN PIG LATIN....................... 4

2.1 Coalesce .. 6
2.2 Cogroup... 8

2.2.1. Non Temporal Cogroup Result ... 9
2.2.2. Temporal Cogroup Result... 9

2.3 Cross Join.. 12

2.3.1. Non Temporal Cross Join Result on Sa and Sb.................................... 12
2.3.2. Temporal Cross Join Result on Sa and Sb.. 13

2.4 Distinct .. 15
2.4.1. Non Temporal Distinct Result on S .. 15
2.4.2. Temporal Distinct Result on S .. 15

2.5 Filter .. 16
2.6 Foreach.. 16
2.7 Full Outer Join .. 17

2.7.1. Non Temporal Full Outer Join Result on Sa and Sb 17
2.7.2. Partial Temporal Full Outer Join Result on Sa and Sb......................... 18
2.7.3. Expected Temporal Full Outer Join Result.. 18

2.8 Inner Join .. 21

2.8.1. Non Temporal Inner Join Result on Sa and Sb 21

vii

2.8.2. Temporal Inner Join Result on Sa and Sb .. 21

2.9 Left Outer Join .. 23

2.9.1. Non Temporal Left Outer Join Result on Sa and Sb 23
2.9.2. Temporal Left Outer Join Result on Sa and Sb 23
2.9.3. Expected Temporal Left Outer Join Result... 23

2.10 Right Outer Join .. 26

2.10.1. Non Temporal Right Outer Join Result on Sa and Sb 26
2.10.2. Temporal Right Outer Join Result on Sa and Sb.................................. 26
2.10.3. Expected Temporal Left Outer Join Result... 27

2.11 Sample .. 29
2.12 Split... 29
2.13 Temporal Group ... 30
2.14 Union .. 35

3 COMPLEXITY OF TEMPORAL PIG LATIN OPERATIONS.......................... 36

3.1 Hardware Specifications ... 36
3.2 Operating System Specification.. 36
3.3 Software Specification .. 36
3.4 Analysis... 39

4 SUMMARY AND FUTURE WORK .. 40

4.1 Future Work .. 40

REFERENCES ... 41
APPENDICES ..

Appendix A... 43
Appendix B ... 48

viii

LIST OF FIGURES

FIGURE 1. COALESCE PATTERN... 6

FIGURE 2. COGROUP PATTERN ... 10

FIGURE 3. CROSS JOIN PATTERN ... 14

FIGURE 4. FULL OUTER JOIN PATTERN.. 20

FIGURE 5. INNER JOIN PATTERN.. 22

FIGURE 6. LEFT OUTER JOIN PATTERN .. 25

FIGURE 7. RIGHT OUTER JOIN PATTERN .. 28

FIGURE 8. TEMPORAL GROUP PATTERN ... 31

FIGURE 9. GRAPH OF FILE SIZE VS EXECUTION TIME FOR
 TEMPORAL OPERATIONS ... 37

FIGURE 10. GRAPH OF FILE SIZE VS EXECUTION TIME FOR
 TEMPORAL CROSS OPERATION... 37

FIGURE 11. COMPLEXITY GRAPH .. 38

1

CHAPTER 1

INTRODUCTION

 Pig Latin is a dataflow language[3] used primarily for analyzing very large data sets [1] .

Because it allows storage and projection of the intermediate results, Pig Latin lends itself well to data

transformations like filter and group. Some of the key properties of Pig Latin are:

1. Ease of programming: Pig Latin makes trivial achieving parallel execution of simple,

"embarrassingly parallel" data analysis tasks. Complex tasks comprised of multiple interrelated

data transformations are explicitly encoded as data flow sequences, making them easy to write,

understand, and maintain.

2. Optimization opportunities: The way in which tasks are encoded in Pig Latin permits the

system to optimize their execution automatically, allowing the user to focus on semantics rather

than efficiency.

3. Extensibility: Users can create their own functions to do special-purpose processing.

 Pig Latin programs run in a distributed fashion on a cluster. For quick prototyping, Pig Latin

programs can also run in "local mode" without a cluster [2]. Below is a sample Pig program.

A = load 'input' using PigStorage('\t') as (name: chararray,begin: int, end: int);

R = FOREACH A generate name;

store R into 'output.txt' using PigStorage('\t');

 Here, A is the relation that contains the contents of the file “input”. “PigStorage('\t')” extracts

the data from the file delimited by tab. We next project the names from relation A and store them in an

intermediate relation R. Finally, we store R in a separate file.

2

 In this project we focus primarily on creating templates for supporting sequenced temporal

semantics in Pig Latin. Sequence semantics says that if we take a relation and divide it into smaller

relations based on timestamps, while still carrying out the regular Pig Latin program over it, the result

should be the same as when carrying out the temporal Pig Latin program over the original relation. In

real time, the relations can be enormous, and dividing such relation into smaller relation based on every

possible time stamp can creates an extremely large number of smaller relations. Hence, we create

temporal programs, which eliminates the need to divide a relation into smaller relations and carry out

additional operations over those smaller relations. The time stamps considered here are discrete

integers.

1.1 Sequenced Temporal Semantics in Pig Latin

 The templates for sequenced temporal operations created for this project enhance the

functionality of existing Pig Latin operations.

 Now, let’s examine the join operation in Pig Latin. The sample code below shows how a join

operation is carried out in Pig Latin.

A = LOAD '../file_1mb.txt' using PigStorage('\t') as (name: chararray, b: int, e: int);

B = LOAD '../file_1mb.txt' using PigStorage('\t') as (name1: chararray, b1: int, e1: int);

R = JOIN B by name1, A by name;

 The above Pig Latin program joins relation A with relation B by name. The temporal version of

a join operation does more than just the inner join by name. A temporal join first triggers the inner join

on two relations. It then projects only those timestamps of relation A whose start times are greater than

the start time of relation B and whose end times of relation A are less than the end time of relation B .

3

A = load '../file_1mb.txt' using PigStorage('\t') as (name: chararray, b: int, e: int);

B = load '../file_1mb.txt' using PigStorage('\t') as (name1: chararray, b1: int, e1: int);

R = JOIN B by name1, A by name;

R1 = FOREACH R generate name,name1,(b>b1?b:b1), (e<e1?e:e1);

R2 = FILTER R1 by b <= e;

R3 = DISTINCT R2;

 The above Pig Latin program gives the temporal version of a join operation in Pig Latin. The

program carries out a regular inner join in Pig Latin and stores it in an intermediate relation R. We then

project only the maximum of starting timestamps and minimum of ending timestamps from relation R,

which are basically the intersection of timestamps, and store this information in relation R1. We next

filter out the tuples in R1 whose begin time is less than or equal to end timestamps and store this

information in relation R2. Finally, we filter out duplicates from relation R2. 1.2 Outline of Report

 Chapter 2 looks at other temporal operations in Pig Latin and discusses them in detail. Chapter

3 compares the complexity of regular Pig Latin operations with that of the temporal Pig Latin

operations. We compare the complexity by plotting graphs. Chapter 4 provides a summary and the

future work for the project. Appendices A and B contain the code developed for implementation of the

proposed templates.

4

CHAPTER 2

TEMPLATES FOR TEMPORAL OPERATIONS IN PIG LATIN

 In the previous chapter, we look at how Pig Latin programs work, as well as some of its salient

features. We also highlighted the template for a temporal join operation. This chapter covers the other

temporal operations in Pig Latin. Definitions of the

temporal operations discussed herein follow:

• Coalesce.

Temporal coalescing helps a user to find at a tuple that has previously existed in the database.

• Cogroup.

The cogroup operation does an inner join between two relations and groups the tuples based on

a join key.

• Cross.

The cross operation carries out a cross join between two or more relations.

• Distinct.

The distinct operation removes any duplicate tuples from the relation.

• Filter.

The filter operation filters a relation based on the given criteria.

• Foreach.

The foreach operation is used to project the columns from a relation.

• Full outer join.

5

This operation carries out a regular full outer join between two relations.

• Inner join.

This operation carries out an inner join between two relations.

• Left outer join.

This operation carries out a left outer join between two relations.

• Right outer join.

This operation carries out a right outer join between two relations.

• Sample.

This operation projects random tuples from a relation based on certain probability.

• Split.

This operation splits a relation into two or more relations based on a certain criteria.

• Temporal group.

This operation provides an ability to group a set of tuples or a whole relation based on

timestamps.

• Union.

A union is used to merge two or more relations.

2.1 Coalesce

 Temporal coalescing helps a user to find a tuple that has previously existed in the database.

Take a look at Figure 1.

6

Figure 1. COALESCE PATTERN.

 Each node in the above figure is a relation with the start state of the relation S and the end state

of the relation X. At each step, the relation undergoes a transformation until it reaches state X, which is

the desired output. Let us look at the code below and compare it with the figure given above.

Sa = LOAD '../file_1mb.txt' using PigStorage('\t') as (name, st, et);

 The above code snippet tells the Pig Latin compiler to load the contents of a file into relation Sa.

Our relation has only three columns, name, start time, and end time. Relation Sa here is node Sa in

Figure 1. As shown in Figure 1, Sa undergoes a transformation to produce node A, which can be

verified by the code snippet below.

A = FOREACH Sa generate name, st,et;

Here, the foreach operation is used to project the out name, start time, and end time out of

relation Sa. We can see that step 2 of this operation is redundant since it generates the same data as in

X

B

A

Sa

GROUP

COALESCING FOR-EACH

AND

FOR-EACH

7

relation Sa. We need do this operation, however, because in real time tables can have lots of attributes,

and we need to project the out name, start time, and end time to carry out the coalesce operation.

 We then carry out a group operation on relation A. This operation groups the data in A by name

and generates new node B.

B = GROUP A by name;

 Now, we go through each group of B and carry out a coalesce operation on them. The coalesce

function takes the group of timestamps for a single group in B, returns the intended output ,and stores it

in relation X. Relation X now has all the timestamps at which a single tuple existed in database.

X = FOREACH B generate FLATTEN(myudfs.Coalesce(group,A)) as name;

 The user-defined function myudfs.Coalesce shown in the snippet above is the user-defined

function written in Java. We pass two arguments to this function. The first is the attribute by which the

columns were grouped, and the second argument is the collection of timestamps (bag) related to the

first argument. This is explained further by the example below.

a 1 6

a 2 8

b 0 3

a 9 11

Relation Sa

8

 In this example, we carry out a coalesce operation on relation Sa. As seen above, we first project

the out name, start time, and end time, and then we store this result in relation A. Next, we carry out the

group operation on relation A and store the result in relation B. The result produced by the group

operation contains the name by which it is grouped and the bag containing the tuples that fall into this

group. The sample output is shown below.

 (a, {(a,1,6), (a,2,8), (a,9,11)})

 (b, {(0,3)})

 We now carry out our user-defined function (UDF) myudfs.Coalesce on relation B. The

arguments passed to this function are the name and the bag of relation B. We store the output of the

coalesce function in relation X which contains the desired output as shown below.

 (a, {(1,8), (9,11)})

 (b, {0,3})

2.2 Cogroup

 a cogroup operation in Pig Latin carries out an inner join between two tables and groups the

resultant data by the join key. A temporal Cogroup also performs the same operation, but it takes the

timestamps into account as well. A temporal operation preserves the overlapping timestamps. Thus, a

temporal operation first performs the regular cogroup operation and then makes a series of operations

over this result to maintain the overlapping timestamps. The example below shows two sample

relations Sa and Sb. Both the relations have name, begin time, and end time as their tuples. The result of

a regular cogroup operation and the temporal cogroup operation are as shown below.

9

a 1 15

b 5 9

c 0 4

a 4 8

Relation Sb

2.2.1 Nontemporal Cogroup Result

 (a, { (a) , (a) } , { (a) , (a) })

 (b, { (b) } , { (b) })

 (c, { } , { (c) })

 (d, { (d) } , { })

 The first attribute here is the join key. The second attribute is a bag that contains all the tuples in

relation Sa, that come under a particular group. Similarly, the third attribute is also a bag containing the

satisfying tuples of Relation Sb.

2.2.2 Temporal Cogroup Result

 (a,a,1,6)

 (a,a,2,8)

 (a,a,4,6)

 (a,a,4,8)

10

 (d,,8,10)

 (,c,0,4)

 The above result shows that the temporal operation on the regular cogroup preserves the

overlapping timestamps. Figure 2 shows the pattern to create a temporal cogroup operation.

Figure 2. COGROUP PATTERN

 In Figure 2, there are two start states Sa and Sb. We perform a regular cogroup operation on

these, and the output is stored in relation A, as shown in the code below.

X

Sa

A

I

Sb

FOR-EACH

FILTER

DISTINCT

FILTER

J

F G

H

E

B C D

COGROUP

FILTER FILTER

FOR-EACH

FOR-EACH
FOR-EACH

FLATTEN
FLATTEN FLATTEN

UNION UNION

11

A = COGROUP Sa by name, Sb by name1;

 We then carry out three separate filter operations on relation A, based on any empty bags in Sa

or Sb and store the result in B, C, and D respectively, as shown.

B = FILTER A by IsEmpty(Sa);

C = FILTER A by IsEmpty(Sb);

D = FILTER A by not IsEmpty(Sa) and not IsEmpty(Sb);

 We again go through each tuple in relations B, C, and D and carry out a flatten operation over

those tuples. We then store the resultant data in relations E, F, and G, respectively. A flatten operation

works exactly the opposite of a group operation. Flatten is used to ungroup the grouped data.

E = FOREACH B generate FLATTEN(Sb);

F = FOREACH C generate FLATTEN(Sa);

G = FOREACH D generate FLATTEN(Sa), FLATTEN(Sb);

 We then go through each tuple of G, project out tuples, and store the resultant data in relation H.

This operation gives us the overlapping timestamps.

H = FOREACH G generate name,(b>b1?b:b1) as b, (e<e1?e:e1) as e;

 At this point, we want to remove any duplicate tuples that exist in the table. Hence, we do a

distinct operation on relation H to produce relation I.

12

I = DISTINCT H;

 We again carry out a filter operation on I to remove any of the tuples that have a begin time

greater than the end time, and we store the output in relation J.

J = FILTER I by b <= e;

 Finally, we do a union of relation E, F, and J to produce the desired relation X.

X = UNION E, F, J;

2.3 Cross Join

 A temporal cross join does the regular cross join on two relations and performs a series of

operations to preserve only the overlapping timestamps. The result of a nontemporal cross join and a

temporal cross join on the above two relations, Sa and Sb are shown in Sections 2.31 and 2.3.2 below.

Figure 3 shows the pattern to create a temporal cross join operation.

2.3.1 Nontemporal Cross Join Result on Sa and Sb

 (b, c)

 (b, a)

 (b, b)

 (a, c)

 (a, a)

13

 (a, b)

 (d, c)

 (d, a)

 (d, b)

2.3.2 Temporal Cross Join Result on Sa and Sb

 (a,a,1,6)

 (a,a,2,8)

 (a,a,4,6)

 (a,a,4,8)

 (a,b,5,6)

 (a,b,5,8)

 (a,c,1,4)

 (a,c,2,4)

 (b,a,1,3)

 (b,c,0,3)

 (d,a,8,8)

 (d,a,8,10)

 (d,b,8,9)

14

Figure 3. CROSS JOIN PATTERN

 As shown in Figure 3, we perform a regular cross join operation on two start states Sa and Sb,

and the output is stored in relation A. The code for the same is shown below.

A = CROSS Sa , Sb;

 We now iterate through all the tuples of relation A, and project out the maximum of start

timestamps and minimum of end timestamps. The output of this operation is stored in relation B. The

code to perform this process is shown below.

X

B

Sa

C

A

Sb
CROSS

FOR-EACH

FILTER

DISTINCT

15

B = FOREACH A generate name,name1,(b>b1?b:b1), (e<e1?e:e1);

 We then filter the tuples of relation B to eliminate any whose begin time is greater than the end

time and store the output in relation C.

C = FILTER B by b <= e;

 Finally, we remove any repeated tuples and store the final output in relation X.

X = DISTINCT C;

2.4 Distinct

 The distinct operation removes any repeated tuples in the relation. The temporal distinct

operation will be same as Coalesce operation because in coalesce operation we can find various

timestamps for the same tuple. For example consider relation S:

a

a

b

A = DISTINCT S;

2.4.1 Non Temporal Distinct Result on S

16

 When we carry out a regular distinct operation as shown above on relation S as shown above,

we get the following output.

 (a)

 (b)

2.4.2 Temporal Distinct Result on S

 But when we perform a temporal distinct or coalesce operation on relation Sa, as explained

previously, we get the following output.

 (a, {(1,8), (9,11)})

 (b, {0,3})

2.5 Filter

 A filter operation filters the tuples of a relation, based on any given criteria. Similar to the above

distinct operation, a temporal filter does not make any changes to the timestamps. Thus, like the

temporal filter operation, a regular filter operation remains the same.

A = FILTER Sa by name is not null;

 As an example, consider relation S shown below.

a 1

null 2

17

 When we perform a filter operation on S based on the condition that the name should not be null,

we see that the timestamps are not modified. Hence, the temporal operation is the same as the regular

filter operation. The output of filter operation is

 (a,1)

2.6 Foreach

 This operation iterates through all the tuples of a given relation. The foreach operation also does

not make any changes to the tuples and more precisely to the timestamps. Therefore, the temporal

foreach operation also remains the same as a regular operation. The foreach operation on a start state Sa

is shown below.

A = FOREACH Sa generate name,b,e;

 As an example, consider relation S.

a 1

b 2

 When we perform a foreach operation on S, we are basically projecting the columns from

relation S. As we can see, the timestamps are not modified here; hence, the temporal operation is the

same as the regular foreach operation. The output of the foreach operation is

 (a,1)

 (b,2)

18

2.7 Full Outer Join

A temporal full outer join does the regular full outer join on two relations and performs a series

of operations to preserve only the overlapping timestamps, that is the maximum of the start timestamps

and the minimum of the end timestamps. We perform a partial temporal full outer join. The results of a

nontemporal full outer join, partial temporal full outer join, and the expected temporal full outer join on

the above two relations, namely, Sa and Sb, are shown in Sections 2.7.1, 2.7.2, and 2.7.3 below.

2.7.1 Nontemporal Full Outer Join Result on Sa and Sb

 (a,a)

 (b, b)

 (,c)

 (d,)

2.7.2 Partial Temporal Full Outer Join Result on Sa and Sb

 (a,a,1,6)

 (a,a,2,8)

 (a,a,4,6)

 (a,a,4,8)

 (,c,0,4)

 (d,,8,10)

2.7.3 Expected Temporal Full Outer Join Result

19

 (a,1,6,a)

 (,6,15,a)

 (a,4,6,a)

 (a,1,4,)

 (,6,8,a)

 (a,2,8,a)

 (a,1,2,)

 (,8,15,a)

 (a,4,8,a)

 (a,2,4,)

 (b,0,3,)

 (,5,9,b)

 (,0,4,c)

 (d,8,10,)

 As seen from the above results, we have implemented a partial temporal full outer join. That is,

the result only contains those tuples in which both the tuples of the left table and the right table existed

together. The actual temporal full outer join should even include those timestamps in which only the

tuples of the left table existed but not the right table tuples and vice versa. As an example, one of the

tuples of a full outer join is

 (a,1,6,a,4,8)

20

 Our partial temporal full outer join produces only one tuple with overlapping timestamp, that is

 (a,4,6)

 The actual temporal full outer join should even include those tuples wherein only tuples of the

left table existed and those tuples wherein only tuples of the right table existed.

 Thus, the expected full outer join result for the above tuple is:

• (a,4,6,a) : Wherein tuples of both tables existed;

• (a,1,4,) : Wherein only tuples of the left table existed.

• (,6,8,a) : Wherein only tuples of the right table existed.

 Figure 4 shows the pattern to create a partial temporal full outer join operation. The actual and

complete full outer join is left for future work.

 Similar to a temporal cross join, we first perform a regular full outer join on the two start states

Sa and Sb and store the result in Relation A.

A = JOIN Sa by name FULL OUTER, Sb by name1;

X

B

C

FOR-EACH

FILTER

DISTINCT

FILTER

21

FIGURE 4 . FULL OUTER JOIN PATTERN

 A full outer join may result in some empty Sa bags or some empty Sb bags. If a tuple has empty

an Sa bag, we directly use Sb. Similarly if Sb bag is empty in a tuple, we use Sa. If both are not empty,

we perform further checks and operations to obtain the overlapping begin and end timestamps. The

code for this is as below.

B = FOREACH A generate ((b is null) ? name1 : name) as name,((b is null) ? b1 : ((b1
is not null) ? ((b > b1) ? b : b1) : b)) as b , ((b is null) ? e1 : ((b1 is not null) ? ((e < e1)
? e : e1) : e)) as e;

 We finally remove any repeated tuples, storing the result in relation C and perform a filter to

remove any invalid timestamps. The final output is then stored in relation X.

C = DISTINCT B;

X = FILTER C by b <= e;

2.8 Inner Join

Again, a temporal inner join does the work of a regular inner join on two relations and performs

a series of operations to preserve only the overlapping timestamps. The result of a nontemporal inner

join and a temporal inner join on the above two example relations, Sa and Sb, are shown below in

Sections 2.81 and 2.8.2. Figure 5 shows the series of operations performed on a regular inner join

to obtain a temporal inner join.

Sa

A

Sb

FULL OUTER

JOIN

22

2.8.1 Nontemporal Inner Join Result on Sa and Sb

 (a, a)

 (b, b)

2.8.2 Temporal Inner Join Result on Sa and Sb

 (a,a,1,6)

 (a,a,2,8)

 (a,a,4,6)

 (a,a,4,8)

X

B

Sa

C

A

Sb
INNER JOIN

FOR-EACH

FILTER

DISTINCT

FILTER

23

FIGURE 5. INNER JOIN PATTERN

 As done earlier, the first step is the regular operation. We perform a regular inner join on the two

start states Sa and Sb and store the result in Relation A.

A = JOIN Sa by name , Sb by name1;

 Now, we iterate through all the tuples in relation A, check for tuples with overlapping

timestamps, and store this result in relation B.

B = FOREACH A generate name,name1,(b>b1?b:b1), (e<e1?e:e1);

 We finally perform a filter on relation B to remove any invalid timestamps, storing the result in

relation C and removing any repeated tuples. The final output is then stored in relation X.

C = filter B by b <= e;

X = DISTINCT C;

 2.9 Left Outer Join

A temporal left outer join does a regular left outer join on two relations and performs a series of

operations to preserve only the overlapping timestamps. We perform a partial temporal left outer join.

The result of a nontemporal left outer join, partial temporal left outer join, and temporal left outer join

on the above two example relations, Sa and Sb, are shown in Sections 2.91, 2.9.2, and 2.9.3 below.

24

2.9.1 Nontemporal Left Outer Join Result on Sa and Sb

 (a, a)

 (b, b)

 (d,)

2.9.2 Partial Temporal Left Outer Join Result on Sa and Sb

 (a,a,1,6)

 (a,a,2,8)

 (a,a,4,6)

 (a,a,4,8)

 (d,,8,10)

2.9.3 Expected Temporal Left Outer Join Result

 (a,1,6,a)

 (a,4,6,a)

 (a,1,4,)

 (a,2,8,a)

 (a,1,2,)

 (a,4,8,a)

 (a,2,4,)

 (b,0,3,)

 (d,8,10,)

25

 We have implemented a partial temporal left outer join. That is, the result only contains those

tuples in which both the tuples of the left table and right table existed together. But the actual temporal

left outer join should also include those timestamps in which only the tuples of the left table existed. As

an example, one of the results of a left outer join is (a,1,6,a,4,8)

 Our partial temporal left outer join produces only one tuple with overlapping timestamps, that is

(a,4,6).

 The actual temporal left outer join should even include tuples in which only tuples of the left

table existed.

 Thus, the expected left outer join result for the above tuple is:

• (a,4,6,a) : Wherein tuples of both tables existed;

• (a,1,4,) : Wherein only tuples of the left table existed.

 Figure 6 shows the operations carried out on a regular left outer join to obtain the partial

temporal left outer join results. The expected temporal left outer join remains for future work.

X

B

C

DISTINCT

FILTER

26

FIGURE 6. LEFT OUTER JOIN PATTERN

 As described above, the first step is the regular operation. We perform a regular left outer join on

the two start states Sa and Sb and store the result in Relation A.

A = JOIN Sa by name LEFT OUTER, Sb by name1;

 A left outer join may result in some empty Sb bags, as can be seen from the above set of results

for a nontemporal left outer join. If a tuple has empty Sb bag, we directly use just Sa, but if Sb is not

empty, we perform further checks and operations to obtain the overlapping begin and end timestamps.

The code for this is below.

B = FOREACH A generate name,((b1 is null) ? b : ((b > b1) ? b : b1)) as b,((b1 is null)
? e : ((e < e1) ? e : e1)) as e;

 We finally remove any repeated tuples, storing the result in relation C and perform a filter on the

result to remove any invalid timestamps. The final output is then stored in relation X.

C = DISTINCT B;

X = FILTER C by b <= e;

Sa

A

Sb

LEFT OUTER

JOIN

FOR-EACH FILTER

27

2.10 RIGHT OUTER JOIN

The right outer join is similar to the left outer join. As in all other operations, the temporal right

join also performs a regular right outer join first. It then performs further operations to obtain the

temporal results for the same. We have implemented the partial temporal right outer join. The result of

a nontemporal right outer join, partial temporal right outer join, and temporal right outer join on the

above two example relations, Sa and Sb are shown in Sections 2.10.1, 2.10.2, and 2.10.3 below.

2.10.1 Nontemporal Right Outer Join Result on Sa and Sb

 (a, a)

 (b, b)

 (,c)

2.10.2 Temporal Right Outer Join Result on Sa and Sb

 (a,a,1,6)

 (a,a,2,8)

 (a,a,4,6)

 (a,a,4,8)

 (,c,0,4)

2.10.3 Expected Temporal Full Outer Join Result

 (a,1,6,a)

 (,6,15,a)

 (a,4,6,a)

28

 (,6,8,a)

 (a,2,8,a)

 (,8,15,a)

 (a,4,8,a)

 (,5,9,b)

 (,0,4,c)

 We have implemented a partial temporal right outer join, whose result only contains those tuples

in which the tuples of both the left table and the right table existed together. But the actual temporal

right outer join should even include those timestamps in which only the tuples of the right table existed.

As an example, one of the results of the right outer join is (a,1,6,a,4,8).

 Our partial temporal full outer join produces a single tuple with overlapping timestamps, that is

(a,4,6).

 The actual temporal full outer join should even include tuples in which only tuples of the left

table existed and also tuples in which only tuples of the right table existed.

Thus, the expected right outer join result for the above tuple is:

• (a,4,6,a) : Wherein tuples of both tables existed;

• (,6,8,a) : Wherein only tuples of the right table existed.

 Figure 7 shows the series of operations carried out on the regular right out join to obtain the

partial temporal right outer join results. The expected temporal right outer join remains for future work.

29

FIGURE 7. RIGHT OUTER JOIN PATTERN

 The first step being the regular operation, we perform a regular right outer join on the two start

states Sa and Sb and store the result in Relation A.

A = JOIN Sa by name RIGHT OUTER, Sb by name1;

 A right outer join may result in some empty Sa bags, as can be seen from the above set of results

for a nontemporal right outer join. If a tuple has empty Sa bag, we directly use Sb, but if Sa is not empty,

we perform further checks and operations to obtain the overlapping begin and end timestamps. The

code for this is below.

B = FOREACH A generate ((b is null) ? name1 : name) as name,((b is null) ? b1 : ((b >
b1) ? b : b1)) as b,((b is null) ? e1 : ((e < e1) ? e : e1)) as e;

X

B

Sa

C

A

Sb
RIGHT OUTER

JOIN

FOR-EACH

FILTER

DISTINCT

FILTER

30

 We finally remove any repeated tuples, storing the result in relation C and perform a filter on

this to remove any invalid timestamps. The final output is then stored in relation X.

C = DISTINCT B;

X = FILTER C by b <= e;

2.11 SAMPLE

 Sample operation projects out a random tuple from the relation, based on some given

probability. Since sample operation only projects a tuple and does not make any changes to the tuple

nor the timestamps, a temporal sample is the same as the regular sample operation. The code for the

sample is as follows.

A = SAMPLE Sa 0.5;

 As an example, consider the relation Sa. When we perform a sample operation on Sa , we get

the following output.

 (a,1,6)

2.12 SPLIT

 A split operation splits the given relation into as many relations as specified by a predetermined

criteria. This operation, as well, does not modify tuples or timestamps. Thus, the temporal split

operation is the same as the regular split operation. The instructions for a split on start state Sa is

below.

31

SPLIT Sa INTO X IF b<7, Y IF e==5, Z IF (b<6 OR b>6);

 As an example when we carry the above operation on Sa,, we get the following output.

• Relation X

 (a,1,6)

 (a,2,8)

 (b,0,3)

• Relation Y

 ()

• Relation Z

 (a,1,6)

 (a,2,8)

 (b,0,3)

 (a,9,11)

2.13 Temporal Group

 A temporal grouping allows a user to find all the tuples that existed at a given point of time. This

is a special operation and does not have a corresponding Pig Latin operation.

Figure 8 shows the series of steps for a temporal group operation.

32

FIGURE 8. TEMPORAL GROUP PATTERN

 Below are the steps to create a temporal group operation.

A = FOREACH Sa generate b as b1;

B = FOREACH A generate e as e1;

C = UNION A,B;

 We follow a similar approach to what we have been doing in previous sections. In order to find

various tuples at a single point t, we need to do a cross join of the relation Sa with the relation that

F

D

A

E

C

B

FILTER

DISTINCT

CROSS

 Sa

FOR-EACH FOR-EACH

UNION

FOR-EACH

G

X

GROUP

33

contains only begin and end timestamps. By doing this, we have access to all the tuples that are related

to time t.

D = CROSS Sa , C;

E = FILTER D by b1 <= e and b1 >= b;

 We then apply a strategy similar to a join to get the overlapping timestamps and filter out the

rest of the tuples. At this point in time, we need to project out only those columns in which we are

interested. Hence, we project the name, begin time, and the end time. We now have all the timestamps

and corresponding names that existed during that time.

F = FOREACH E generate name, b1;

G = DISTINCT F;

X = GROUP G by b1;

 Before we go ahead and group all those names by their corresponding timestamps, to make sure

there is not any data that is redundant or repeated, we carry out a distinct operation followed by a group

operation to get the intended output. Let us look at an example before we look at other temporal

operations.

 We carry out the temporal grouping on relation Sa. We first project out the start time and end

time for relation Sa and store them in relations A and B, respectively. We then carry out the cross

operation of Sa with a union of A and B and store the result in relation C. The output of relation C is

shown below.

 (a,2,8,0)

34

 (a,2,8,1)

 (a,2,8,6)

 (a,2,8,11)

 (a,2,8,8)

 (a,2,8,9)

 (a,2,8,2)

 (a,2,8,3)

 (a,1,6,0)

 (a,1,6,6)

 (a,1,6,1)

 (a,1,6,11)

 (a,1,6,8)

 (a,1,6,9)

 (a,1,6,2)

 (a,1,6,3)

 (a,9,11,0)

 (a,9,11,1)

 (a,9,11,6)

 (a,9,11,11)

35

 (a,9,11,8)

 (a,9,11,9)

 (a,9,11,2)

 (a,9,11,3)

 (b,0,3,0)

 (b,0,3,6)

 (b,0,3,1)

 (b,0,3,11)

 (b,0,3,8)

 (b,0,3,9)

 (b,0,3,2)

 (b,0,3,3)

 We then follow the same strategy to project the overlapping timestamps. We carry out the filter

operation over relation C and store the result in D. We next project the start time and the name from

relation D and store it in relation E. At this point, we want to remove any duplicates that exist in

relation E. Hence, we carry out the distinct operation and store the distinct tuples of relation E in

relation F. Finally, we group relation F by attribute b1 and store it in relation X. The output of relation

X is shown below.

 (0,{(b,0)})

 (1,{(a,1),(b,1)})

 (2,{(a,2),(b,2)})

36

 (3,{(a,3),(b,3)})

 (6,{(a,6)})

 (8,{(a,8)})

 (9,{(a,9)})

 (11,{(a,11)})

2.14 UNION

 A union operation appends the tuples of one relation to another relation. Suppose there are two

start states Sa and Sb. The union on Sa and Sb appends all the tuples of Sb to Sa. Aunion operation also

does not make any kind of changes to the timestamps; therefore, a temporal union operation is the same

as a regular union operation.

X = UNION Sa, Sb;

 As an example, when we carry out the above operation on Sa and Sb, we get the following output.

 (a,1,6)

 (a,2,8)

 (b,0,3)

 (a,9,11)

 (a,1,15)

 (b,5,9)

 (c,0,4)

 (a,4,8)

37

CHAPTER 3

COST OF TEMPORAL PIG LATIN OPERATIONS

 In the previous chapter, we look at templates for various temporal operations. In this chapter,

we compare the cost of temporal Pig Latin operations with the cost of regular Pig Latin operations.

3.1 Hardware Specifications

• Processor : Intel(R) Core(TM) i5 CPU M 450 @ 2.40GHz

• RAM : 6 GB

3.2 Operating System Specification

• Ubuntu 10.10

3.3 Software Specification

• JDK 1.6

• Pig 0.7.0

• Hadoop 0.20.2

 We take three files of sizes 10 KB, 100 KB and 1000 KB for our experiment and test all the

temporal operations with these files as input. The execution time taken for these operations are noted,

and a graph is plotted to show the temporal operation execution time and the slowdown of the temporal

operations as compared to the regular operations.

 Figure 9 shows this data for all of the temporal operations except the temporal cross operation.

Figure 10 shows this data for the temporal cross operation. The temporal cross operation was not tested

on a 1000KB file, as the time taken would have been prohibitively large.

38

FIGURE 9. GRAPH OF FILE SIZE VERSUS EXECUTION TIME FOR TEMPORAL

OPERATIONS

FIGURE 10. GRAPH OF FILE SIZE VS EXECUTION TIME FOR TEMPORAL CROSS

OPERATION

 Figure 11 shows a comparison of regular operations and temporal operations. Note the

slowdown of the temporal operations compared to the regular operations.

Time in

Secs

Time in

Secs

File Size

File Size

39

FIGURE 11. COMPLEXITY GRAPH

 The operations are performed on three different file sizes, 10KB, 100KB, and 1000KB. Firstly,

we perform regular operations, that is inner join, left outer join, right outer join, full outer join, cross

join, and cogroup on the three different file sizes, with one exception. The execution time for the cross

Join on 1000KB files are not performed, as the execution time would be prohibitively large. All

execution times are noted.

 We then perform temporal operations, that is temporal inner join, temporal left outer join,

temporal right outer join, temporal full outer join, temporal cross join and temporal cogroup on the

same files and note the execution time for the same.

 Now that we have the execution time for both regular and temporal operations, for each

operation we perform:

File Size

Slowdown

40

(Execution Time for Temporal Operation) / (Execution Time for Regular Operation). This gives us a

scalar for determining which is greater the execution time of a temporal operation or the execution time

of a regular operation.

3.4 Analysis

 Note in Figure 11 that temporal operations take more time than regular operations, since we

perform a series of operations on the regular version of the corresponding operation.

 As the file size increases, we can note that complexity for cross join significantly increases,

complexity for inner join, right outer join, full outer join, and cogroup almost all remain the same, and

the complexity for left outer join increases a small amount.

 Compared to the regular cogroup operation, the temporal cogroup operation execution takes

almost twice the time as a regular operation on all file sizes.

41

CHAPTER 4

SUMMARY AND FUTURE WORK

 Pig Latin is a dataflow language used primarily for analyzing very large data sets. It lends itself

well to data transformations like filter and group. It allows storage and projection of the intermediate

results, which can be very useful in achieving desired results.

 Presently, Pig Latin does not support temporal operations. For this project, we created templates

in order to support temporal operations in Pig Latin. These templates can be later added to Pig Latin

source code and could be used as built in operations.

4.1 Future Work

There are lot of enhancements that could be done in this area. Firstly, the templates for outer

joins are not complete as the results of outer join are only partial. Much research could be done in this

area to achieve more complete results. Secondly, the temporal grouping does not scale well for large

data sets. Hence, some improvements can be made in this direction, too.

 Finally, sequenced grouping is another area for potential improvements.

42

REFERENCES

[1] Hadoop. Apache Pig. Available at http://pig.apache.org/.

[2] Pig Wiki. Apache Pig Wiki. Available at http://wiki.apache.org/pig/.

[3] Turing Complete Pig. Available at http://wiki.apache.org/pig/TuringCompletePig

43

APPENDICES

44

APPENDIX A

COALESCE

S = LOAD '../file_1mb.txt' using PigStorage('\t') as (name, st, et);

A = FOREACH S generate name, st,et;

B = GROUP A by name;

X = FOREACH B generate FLATTEN(myudfs.Coalesce(group,A)) as name;

COGROUP

A = COGROUP Sa by name, Sb by name1;

B = FILTER A by IsEmpty(Sa);

C = FILTER A by IsEmpty(Sb);

D = FILTER A by not IsEmpty(Sa) and not IsEmpty(Sb);

E = FOREACH B generate FLATTEN(Sb);

F = FOREACH C generate FLATTEN(Sa);

G = FOREACH D generate FLATTEN(Sa), FLATTEN(Sb);

H = FOREACH G generate name,(b>b1?b:b1) as b, (e<e1?e:e1) as e;

I = DISTINCT H;

J = FILTER I by b <= e;

X = UNION E, F, J;

45

CROSS

A = CROSS Sa,Sb;

B = FOREACH A generate name,name1,(b>b1?b:b1), (e<e1?e:e1);

C = FILTER B by b <= e;

X = DISTINCT C;

DISTINCT

A = DISTINCT Sa;

FILTER

A = FILTER Sa by name is not null;

FOREACH

A = FOREACH Sa generate name,b,e;

46

FULL OUTER JOIN

A = JOIN Sa by name FULL OUTER, Sb by name1;

B = FOREACH A generate ((b is null) ? name1 : name) as name,((b is null) ? b1 : ((b1 is not

null) ? ((b > b1) ? b : b1) : b)) as b , ((b is null) ? e1 : ((b1 is not null) ? ((e < e1) ? e : e1) : e))

as e;

C = DISTINCT B;

X = FILTER C by b <= e;

INNER JOIN

A = JOIN Sa by name , Sb by name1;

B = FOREACH A generate name,name1,(b>b1?b:b1), (e<e1?e:e1);

C = filter B by b <= e;

X = DISTINCT C;

LEFT OUTER JOIN

A = JOIN Sa by name LEFT OUTER, Sb by name1;

B = FOREACH A generate name,((b1 is null) ? b : ((b > b1) ? b : b1)) as b,((b1 is null) ? e :
((e < e1) ? e : e1)) as e;

C = DISTINCT B;

X = FILTER C by b <= e;

47

RIGHT OUTER JOIN

A = JOIN Sa by name RIGHT OUTER, Sb by name1;

B = FOREACH A generate ((b is null) ? name1 : name) as name,((b is null) ? b1 : ((b >
b1) ? b : b1)) as b,((b is null) ? e1 : ((e < e1) ? e : e1)) as e;

C = DISTINCT B;

X = FILTER C by b <= e;

SAMPLE

A = SAMPLE Sa 0.5;

SPLIT

SPLIT Sa INTO X IF b<7, Y IF e==5, Z IF (b<6 OR b>6);

TEMPORAL GROUP

A = FOREACH Sa generate b as b1;

B = FOREACH Sa generate e as e1;

C = UNION A,B;

D = CROSS Sa , C;

E = FILTER D by b1 <= e and b1 >= b;

F = FOREACH E generate name, b1;

G = DISTINCT F;

48

X = GROUP G by b1;

UNION

X = UNION Sa, Sb;

49

APPENDIX B

Coalesce . java

package myudfs;

import java.io.*;

import java.util.*;

import org.apache.pig.EvalFunc;

import org.apache.pig.backend.executionengine.ExecException;

import org.apache.pig.data.Tuple;

import org.apache.pig.data.TupleFactory;

import org.apache.pig.impl.logicalLayer.schema.Schema;

import org.apache.pig.data.DataType;

import org.apache.pig.data.BagFactory;

import org.apache.pig.data.DataBag;

public class Coalesce extends EvalFunc<Tuple> {

 ArrayList<Integer> lower = new ArrayList<Integer>();

 ArrayList<Integer> higher = new ArrayList<Integer>();

 ArrayList<Tuple> result = new ArrayList<Tuple>();

50

 /*

 * First argument is key by which the data is grouped. In this case it is name

 * Second argument consist of a databag which has grouped tuples essentially array of (name,

start time, end time)

 */

 public Tuple exec(Tuple input) throws IOException {

 if (input == null || input.size() < 2) { // if input from pig doesnt have

 //two arguments that is group key and databag then it should return null

 return null;

 }

 try {

 Tuple output = TupleFactory.getInstance().newTuple(3);

 DataBag db = (DataBag) input.get(1); //gets the databag of a group which needs

to be processed

 Iterator it = db.iterator();

 while (it.hasNext()) {

 Tuple t = (Tuple) it.next();

 lower.add(Integer.parseInt(t.get(1).toString())); //adding the lower

timestamp to lower array list

51

 higher.add(Integer.parseInt(t.get(2).toString())); // adding higher

timestamp to higher array list

 }

 //sort according to lower

 sort();

 //make the groups and store it in results

 group();

 //iterate through results and add into db

 DataBag db1 = BagFactory.getInstance().newDefaultBag();

 Iterator it1 = result.iterator();

 while (it1.hasNext()) {

 Tuple t = (Tuple) it1.next();

 db1.add(t);

 }

 //clear lower and higher and result

 lower.clear();

 higher.clear();

 result.clear();

 output.set(0, input.get(0));

 output.set(1, db1);

52

 return output;

 } catch (Exception e) {

 System.err.println("Failed to process input; error - " + e.getMessage());

 return null;

 }

 }

 public Schema outputSchema(Schema input) {

 try {

 Schema tupleschema = new Schema();

 tupleschema.add(new

Schema.FieldSchema("group",DataType.CHARARRAY));

 ArrayList<Schema.FieldSchema> inner = new

ArrayList<Schema.FieldSchema>();

 inner.add(new Schema.FieldSchema("st", DataType.INTEGER));

 inner.add(new Schema.FieldSchema("et", DataType.INTEGER));

 Schema bagSchema = new Schema(inner);

 bagSchema.setTwoLevelAccessRequired(true);

 Schema.FieldSchema bagFs = new

Schema.FieldSchema("timestamps",bagSchema, DataType.BAG);

 tupleschema.add(bagFs);

53

 return new Schema(new Schema.FieldSchema (getSchemaName(this.getClass

() . getName () . toLowerCase () , input), tupleschema, DataType.BAG));

 } catch (Exception e) {

 return null;

 }

 }

 public void sort() {

 for (int i = 1; i <= lower.size(); i++) {

 for (int j = 0; j < lower.size() - 1; j++) {

 if (lower.get(j + 1) < lower.get(j)) {

 int temp = lower.get(j);

 lower.set(j, lower.get(j + 1));

 lower.set(j + 1, temp);

 int temp1 = higher.get(j);

 higher.set(j, higher.get(j + 1));

 higher.set(j + 1, temp1);

 }

 }

 }

 }

54

 //This function is responsible for grouping the tuples inside the databag and puts the result in

results array list

 public void group() throws ExecException {

 int current_lower = lower.get(0), current_higher = higher.get(0);

 for (int i = 1; i < lower.size(); i++) {

 if (current_higher >= lower.get(i)) {

 if (current_higher < higher.get(i)) {

 current_higher = higher.get(i);

 }

 } else {

 Tuple tobepushed = TupleFactory.getInstance().newTuple(2);

 tobepushed.set(0, current_lower);

 tobepushed.set(1, current_higher);

 result.add(tobepushed);

 current_lower = lower.get(i);

 current_higher = higher.get(i);

 }

 }

 Tuple tobepushed = TupleFactory.getInstance().newTuple(2);

 tobepushed.set(0, current_lower);

55

 tobepushed.set(1, current_higher);

 result.add(tobepushed);

 }

}

	Templates for Supporting Sequenced Temporal Semantics in Pig Latin
	Recommended Citation

	Microsoft Word - PlanB_Report_Apr21.doc

