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Predicting the focus of cryogenically- cooled optical systems

Roy W. Esplin, Ronald J. Huppi
Stewart Radiance Laboratory, Utah State University, 1 DeAngelo Drive, Bedford, Massachusetts 01730

Louis R. Fantozzi
Diversified Optical Corporation, Research Optical Systems Division, P.O. Box 585, Farmingdale, NewYork 11735

Ronald A. Lange
Eaton Corporation, AIL Division, Walt Whitman Road, Melville, New York 11747

Abstract

Results of an experimental study to ascertain how well the focal -plane location of
cryogenically -cooled optical systems can be predicted are reported. These results
indicate that if the required low- temperature thermal expansion and index -of- refraction
data are available, the focal shift caused by cooling to cryogenic temperatures can be
accurately predicted by simply computing the shift in the paraxial focus. In this study,
the differences between the measured focal shifts and the computed shift in the paraxial
focus were less than the diffraction -limited depth -of -focus tolerance. The results of
this study also indicate that for off - the -shelf optical systems ray- tracing analysis may
not adequately predict the absolute location of the focal plane. Thus, the following
method of predicting the focal -plane location of a cryogenically- cooled optical system
is suggested: first measure the focal -plane location with the optics at room temperature,
and then add the computed paraxial focal shift to the measured location.

Introduction

If the temperature of an optical system is changed uniformily, the radii and thicknesses
of its optical elements change according to the linear expansion coefficient of the
material used to make each element and the indexes of refraction of its refractive elements
change.l Also, the spacings between its elements change according to the linear expansion
coefficient of the structural mounting material. These optical -parameter changes are
relatively large when an optical system is cooled from ambient to cryogenic temperatures,
since large temperature changes are involved. Because of these optical- parameter changes,
the focus of a typical cryogenically -cooled optical system will shift a significant
distance when cooled from ambient to its operating temperature. Compensation for this
focal shift can be made by experimentally adjusting the focus of the optical system.
However, it is difficult to adjust the focus of a cryogenically -cooled optical system
because of the low operating temperature and the insulating vacuum which typically
surrounds the optics. Therefore, it is very desirable to be able to accurately predict the
focus of cryogenically -cooled optical systems. This paper describes an experiment that was
conducted to ascertain how accurately the focal -plane location of a cryogenically -cooled
optical system can be predicted when the required thermal expansion and index -of- refraction
data are available in the literature.

Experiment Description

The focal -plane location of three plano- convex germanium lenses were measured at both
room temperature and at a temperature near that of liquid nitrogen, and the results were
compared to predicted values. All three lenses were made to the same optical prescription
using standard optical -shop practices; thicknesses were measured with a micrometer, and
radii were fit to a test plate whose radius was determined using an electronic spherometer.
Each lens was made from a different sample of germanium supplied by Eagle -Picher
Industries. Thus, these lenses are representative of what one can expect to get when
purchasing off - the -shelf lenses.

The experimental set up used to measure the focal -plane location is shown in Figure 1.
The lens under test was mounted on a cold finger in a vacuum cavity of a liquid- nitrogen
cooled dewar. This lens was illuminated by collimated infrared radiation from a helium -
neon laser emitting at 3.39 um. This radiation was chopped so that synchronous demodula-
tion techniques could be used to maximize the signal -to -noise ratio. The optical axis of
the test lens was aligned parallel to the collimated infrared beam by observing
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accurately predicted by simply computing the shift in the paraxial focus. In this study, 
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this study also indicate that for off-the-shelf optical systems ray-tracing analysis may 
not adequately predict the absolute location of the focal plane. Thus, the following 
method of predicting the focal-plane location of a cryogenically-cooled optical system 
is suggested: first measure the focal-plane location with the optics at room temperature, 
and then add the computed paraxial focal shift to the measured location.

Introduction

If the temperature of an optical system is changed uniformily, the radii and thicknesses 
of its optical elements change according to the linear expansion coefficient of the 
material used to make each element and the indexes of refraction of its refractive elements 
change.! Also, the spacings between its elements change according to the linear expansion 
coefficient of the structural mounting material. These optical-parameter changes are 
relatively large when an optical system is cooled from ambient to cryogenic temperatures, 
since large temperature changes are involved. Because of these optical-parameter changes, 
the focus of a typical cryogenically-cooled optical system will shift a significant 
distance when cooled from ambient to its operating temperature. Compensation for this 
focal shift can be made by experimentally adjusting the focus of the optical system. 
However, it is difficult to adjust the focus of a cryogenically-cooled optical system 
because of the low operating temperature and the insulating vacuum which typically 
surrounds the optics. Therefore, it is very desirable to be able to accurately predict the 
focus of cryogenically-cooled optical systems. This paper describes an experiment that was 
conducted to ascertain how accurately the focal-plane location of a cryogenically-cooled 
optical system can be predicted when the required thermal expansion and index-of-refraction 
data are available in the literature.

Experiment Description

The focal-plane location of three plano-convex germanium lenses were measured at both 
room temperature and at a temperature near that of liquid nitrogen, and the results were 
compared to predicted values. All three lenses were made to the same optical prescription 
using standard optical-shop practices; thicknesses were measured with a micrometer, and 
radii were fit to a test plate whose radius was determined using an electronic spherometer. 
Each lens was made from a different sample of germanium supplied by Eagle-Picher 
Industries. Thus, these lenses are representative of what one can expect to get when 
purchasing off-the-shelf lenses.

The experimental set up used to measure the focal-plane location is shown in Figure 1. 
The lens under test was mounted on a cold finger in a vacuum cavity of a liquid-nitrogen 
cooled dewar. This lens was illuminated by collimated infrared radiation from a helium- 
neon laser emitting at 3.39 ym. This radiation was chopped so that synchronous demodula 
tion techniques could be used to maximize the signal-to-noise ratio. The optical axis of 
the test lens was aligned parallel to the collimated infrared beam by observing
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Figure 1. Experimental set up used to measure focal -plane location.

reflections from the front surface of the lens produced by a visible laser coaligned with
the infrared laser. Collimated radiation entered the dewar through a calcium - fluoride
window, and after being converted to a convergent beam by the test lens, it exited through
another calcium - fluoride window. This convergent beam came to focus outside the dewar.
Two different methods were used to find the location of the focal plane. For the first
method a knife edge was mounted on an X -Y translation stage so that it could be moved
throughout the focal region, and for the second method a pinhole was similarly mounted on
an X -Y -Z translation stage. For both methods a detector was positioned beyond the focus so
that it collected all test rays not obstructed by either the knife edge or the pinhole.
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Figure 2. Knife -edge method of measuring
focal -plane location.

The knife -edge method of finding the focus
is illustrated in Figure 2. In this method,
the focus was found by using the following
iterative procedure. The knife edge was
inserted far enough into the infrared -
radiation cone so that a well- defined minimum
in the detector signal resulted when the
knife edge was translated back and forth
longitudinally, that is, parallel to the
optical axis. The longitudinal position was
then adjusted to the apparent minimum
position. Then the knife edge was moved
transversely until the detector signal was
ten percent of its unobstructed value. This
cycle of longitudinal and transverse adjust-
ments was repeated until no further improve-
ments could be made. Typically, only three
or four adjustment cycles were required.
The ten -percent criteria was selected instead
of some other value because it gave the best -
defined minimum. For the lenses tested in
the experiment, the knife -edge method was
repeatable to ±0.01 mm.

The pinhole method of finding the focus
consisted of maximizing the detector signal
by adjusting the position of a pinhole in
the infrared -radiation cone exiting the
dewar. The accuracy of this method was
maximized by using a pinhole approximately
the same size as the lens blur. With a 45 -um
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The knife-edge method of finding the focus 
is illustrated in Figure 2. In this method, 
the focus was found by using the following 
iterative procedure. The knife edge was 
inserted far enough into the infrared- 
radiation cone so that a well-defined minimum 
in the detector signal resulted when the 
knife edge was translated back and forth 
longitudinally, that is, parallel to the 
optical axis. The longitudinal position was 
then adjusted to the apparent minimum 
position. Then the knife edge was moved 
transversely until the detector signal was 
ten percent of its unobstructed value. This 
cycle of longitudinal and transverse adjust 
ments was repeated until no further improve 
ments could be made. Typically, only three 
or four adjustment cycles were required. 
The ten-percent criteria was selected instead 
of some other value because it gave the best- 
defined minimum. For the lenses tested in 
the experiment, the knife-edge method was 
repeatable to ±0.01 mm.

The pinhole method of finding the focus 
consisted of maximizing the detector signal 
by adjusting the position of a pinhole in 
the infrared-radiation cone exiting the 
dewar. The accuracy of this method was 
maximized by using a pinhole approximately 
the same size as the lens blur. With a 45-ym
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Figure 3. Test dewar.

pinhole this measurement procedure was
repeatable to better than ±0.01 mm.

A photograph of the liquid- nitrogen cooled
dewar used in the experiment is shown in
Figure 3. An extra pair of windows and a
test lens are shown in the foreground of this
photograph. The larger of the two retaining
rings that can be seen in the photograph
holds the entrance window; a similar retaining
ring on the opposite side of the dewar holds
the exit window. The small retaining ring on
the end of the dewar holds an observation
window that was used to see if cooling caused
a longitudinal change in the lens position.
A finely inscribed mark identifying the lens
location was observed through this window
with a microscope as the dewar was cooled.
When steady -state conditions were reached,
there was no measurable longitudinal shift
in the lens position. The estimated
accuracy of this measurement was 0.01 mm.
Of course, there was a large transverse

shift, but this shift had no effect on the accuracy of the focal -length measurements since
the entrance and exit windows were large enough so that the 25.4 -mm clear aperture of the
lens determined the beam size for both warm and cold conditions. A longitudinal shift
was prevented by mounting the lens on the axis of symmetry of the dewar. Indium gaskets
were used between the mounting surfaces of the lens and the cold finger to insure good
thermal contact. The cold steady -state temperature at the lens was 84 °K ( ±0.5 °K). This
temperature measurement was made using a calibrated diode as a sensor.

Table 1. Nominal optical parameters of germanium test lenses at 297 °K and 84 °K.

At
2970K

Index of Refraction

Radius (mm)

Thickness (mm)

4.0354

305.05

3.18

At
84°K

3.9625

304.77

3.17

The nominal optical parameters of the test lenses at 297 °K, room temperature, and at
84 °K are tabulated in Table 1. The refractive -index data for germanium was computed from
the data of Icenogle et aZ.2 As required for this experiment, the data given by Icenogle
et alt is absolute refractive index data, that is, the refractive index of germanium in a
vacuum. The index value for 297 °K was computed by first fitting the 297 °K data of
Icenogle et al. to the dispersion equation

where

n = A + BL + CL2 + DA 2 + Ea4 (1)

- 1 (2)

2 - 0.028

and A, B, C, D, and E were determined by a least- squares fit. Then the index value n was
computed from this equation for a equal to 3.39. The resulting index value was checked k y4
comparing it to the value computed using the values for A, B, C, D, and E given by Wolfe'
for germanium in 300 °K air. After corrçcting for air and the 3 °K temperature difference,
the two values differed by only 4 x l0-. This is within the accuracy limit of the data
since Icenogle et aZ.2 give the precision of their data as ±6 x 10 -4. The index value for
84 °K was computed by fitting the 94 °K data of Icenogle et aZ.2 to the same dispersion
equation, evaluating this equation with A equal to 3.39, and finally extrapolating the
result to 84 °K using a dn/dT of 1.5 x 10 -4. This dn/dT value was obtained by extrapolating
the An /AT vs. temperature data given by Icenogle et al.2 to 90 °K. The radius at 84 °K was
computed using the nominal radius at 297 °K and the linear -expansion data for germanium
given by Wolfe.3 Since the coefficient of linear expansion is not constant with tempera-
ture, the cold radius was computed recursively using 10 0K steps. The same procedure was
used to compute the thickness change caused by cooling.
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At 
297°K

At 
84°K

Index of Refraction 4 .0354 3.9625

Radius (mm) 

Thickness (mm)

305.05

3. 18

304.77

3.17

The nominal optical parameters of the test lenses at 297°K, room temperature, and at 
84°K are tabulated in Table 1. The refractive-index data for germanium was computed from 
the data of Icenogle et at. As required for this experiment, the data given by Icenogle 
et al"^ is absolute refractive index data, that is, the refractive index of germanium in a 
vacuum. The index value for 297°K was computed by first fitting the 297°K data of 
Icenogle et al. to the dispersion equation

n = A + BL + CI/ + DA Z + EA (1)

where

L = (2)

- 0.028

and A, B, C, D, and E were determined by a least-squares fit. Then the index value n was 
computed from this equation for A equal to 3.39. The resulting index value was checked by 
comparing it to the value computed using the values for A, B, C, D, and E given by Wolfe ' 
for germanium in 300°K air. After correcting for air and the 3°K temperature difference,
the two values differed by only 4 x 10

-4 This is within the accuracy limit of the data
since Icenogle et al. give the precision of their data as ±6 x 10

-4
The index value for

84°K was computed by fitting the 94°K data of Icenogle et al. to the same dispersion 
equation, evaluating this equation with A equal to 3.39, and finally extrapolating the 
result to 84°K using a dn/dT of 1.5 x 10""^. This dn/dT value was obtained by extrapolating 
the An/AT vs. temperature data given by Icenogle ei al. 2 to 90°K. The radius at 84°K was 
computed using the nominal radius at 297°K and the linear-expansion data for germanium 
given by Wolfe.-* Since the coefficient of linear expansion is not constant with tempera 
ture, the cold radius was computed recursively using 10°K steps. The same procedure was 
used to compute the thickness change caused by cooling.
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Figure 4. Optical system formed by test
lens and dewar windows.

The optical system formed by the test lens
and the entrance and exit dewar windows is
shown schematically in Figure 4. The focal
position of this optical system was measured
using each of the three test lenses at both
297 °K and 84 °K. This optical system was
analyzed using the optical -parameter values
tabulated in Table 2. Entrance- window data
is not included in this table because it had
no effect on the analysis. The windows were
at room temperature even when the lens was
at 84 °K. The refractive -index value for
calcium fluoride was computed using the
dispersion equation given by Wolfe.3 The
refractive index for air was computed using
the dispersion and temperature equations
given by Jamieson.' As can be seen from
Figure 4, the test lens was used in its
minimum aberration orientation; that is, the
flat side of the lens was towards the focus.

Table 2. Warm and cold optical -parameter values used for computations.

Lens at 297 °K

Index
Surface Radius of Distance Radius

No Material (mm) Refraction (mm) (mm)

Vacuum 1.0000

1* 305.05 304.77

Germanium 4.0354 3.18

2

Vacuum 1.0000 16.97

3

Calcium Fluoride 1.41493 3.23

4

Air 1.00026

25.4 -mm entrance aperture at surface 1.

Lens at 84 °K

Index
of Distance

Refraction (mm)

1.0000

3.9625 3.17

1.0000 16.97

1.41493 3.23

1.00026

Results

It was found that the focal shift caused by cooling could be predicted accurately by a
paraxial analysis; the shift predicted from a paraxial analysis was virtually the same as
that predicted from a ray- tracing analysis. The ray- tracing analysis predicted that
cooling would cause the minimum -blur position to shift 2.38 mm away from the lens. The
paraxial analysis predicted that the paraxial focus would shift 2.36 mm when the lens was
cooled. The measured focal shifts are tabulated in Table 3; the worst -case error in
these measurements is ±0.03 mm. As can be seen, the shift is relatively large. A simple
piezo -electric focusing adjustment could not compensate for a shift of this magnitude.
Since the nominal focal length was 100 mm, cooling the test lens causes the focal length
to increase more than 2 percent. The differences between the computed shift in the
paraxial focus and the measured shifts are tabulated in Table 4. The diffraction- limited
depth -of -focus tolerance for an f/4 optical system, the f /number of the experiment optics,
at a wavelength of 3.39 um is ±0.11 mm. As can be seen from Table 4, the difference
between the shift predicted by the paraxial analysis and the measured shift of all three
test lenses was less than the out -of -focus tolerance for a diffraction- limited optical
system.

It is interesting to note that the radius change and the index -of- refraction change
partially compensated each other; that is, the index change shifted the focus away from
the lens while the radius change shifted it towards the lens. However, the shift caused
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shown schematically in Figure 4. The focal 
position of this optical system was measured 
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the dispersion and temperature equations 
given by Jamieson.l As can be seen from 
Figure 4, the test lens was used in its 
minimum aberration orientation; that is, the 
flat side of the lens was towards the focus.

Table 2. Warm and cold optical-parameter values used for computations.

Surface 
No Material

Lens at 297°K

Index
Radius of Distance 
(mm) Refraction (mm)

Radius 
(mm)

Lens at 84°K

Index
of Distance 

Refraction (mm)

Vacuum

Germanium

305.05

1.0000

4.0354

304.77

3.18

1.0000

3.9625 3.17

Vacuum 1.0000 16.97 1.0000 16.97

Calcium Fluoride 1.41493 3.23 1.41493 3.23

Air 1.00026 1.00026

25.4-mm entrance aperture at surface 1.

Results

It was found that the focal shift caused by cooling could be predicted accurately by a 
paraxial analysis; the shift predicted from a paraxial analysis was virtually the same as 
that predicted from a ray-tracing analysis. The ray-tracing analysis predicted that 
cooling would cause the minimum-blur position to shift 2.38 mm away from the lens. The 
paraxial analysis predicted that the paraxial focus would shift 2.36 mm when the lens was 
cooled. The measured focal shifts are tabulated in Table 3; the worst-case error in 
these measurements is ±0.03 mm. As can be seen, the shift is relatively large. A simple 
piezo-electric focusing adjustment could not compensate for a shift of this magnitude. 
Since the nominal focal length was 100 mm, cooling the test lens causes the focal length 
to increase more than 2 percent. The differences between the computed shift in the 
paraxial focus and the measured shifts are tabulated in Table 4. The diffraction-limited 
depth-of-focus tolerance for an f/4 optical system, the f/number of the experiment optics, 
at a wavelength of 3.39 pm is ±0.11 mm. As can be seen from Table 4, the difference 
between the shift predicted by the paraxial analysis and the measured shift of all three 
test lenses was less than the out-of-focus tolerance for a diffraction-limited optical 
system.

It is interesting to note that the radius change and the index~of-refraction change 
partially compensated each other; that is, the index change shifted the focus away from 
the lens while the radius change shifted it towards the lens. However, the shift caused
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Table 3. Measured focal shifts caused by cooling test lenses.*

Lens Knife -Edge Pinhole
I.D. Method Method

Number (mm) (mm)

1

2

3

2.26

2.34

2.29

2.31

*
Focal shifts of 2.36 and 2.38 mm were predicted
by the paraxial and ray- tracing analysis,
respectively.

Table 4. Paraxial focus shift minus measured shifts.*

Lens Knife -Edge Pinhole
I.D. Method Method

Number (mm) (mm)

1

2

3

0.10

0.02

0.07

0.05

*The diffraction -limited depth -of -focus tolerance
is ±0.11 mm.

by the index change was 25 times greater than the shift caused by the radius change.

The focal shift caused by cooling was very accurately predicted, but the absolute loca-
tion of the focus was not accurately predicted even by the ray- tracing analysis. However,
the error in predicting the absolute position of the focus was essentially the same for
the lens warm as it was cold. The absolute location of the focus was ascertained by
measuring the distance between the flat surface of the test lens and the focus. Measure-
ments of this distance for test -lens temperatures of 297 °K and 84 0K are tabulated in
Table 5. The worst -case error in these measurements is ±0.1 mm; there is a 90- percent
probability that the measurement error is less than ±0.05 mm. The ray- tracing analysis
predicted that this distance would be 100.12 mm with the test lens at 297 0K and 102.50 mm
with the test lens at 84 °K. As can be seen, both the warm and cold measurements are
approximately one mm larger than their respective predicted values. A one -percent error
in the radius would account for this one -mm difference. A one -percent error in measuring
the radius of the test plate used to fabricate the lens is reasonable since this measure-
ment was made using a spherometer. For a spherometer that measures the sagittal height
over a 25 -mm diameter, a sagittal error of only 0.003 mm will cause a one -percent error
when measuring a 305 -mm radius.

Table 5. Measurements of the distance between the flat lens surface and the focus.*

Lens at 297 °K Lens at 84 °K

Lens Knife -Edge Pinhole Knife -Edge Pinhole
I.D. Method Method Method Method

Number (mm) (mm) (mm) (mm)

1 101.26 103.52

2 101.11 101.33 103.45 103.64

3 101.08 103.37

*
The ray- tracing analysis predicted distances of 100.12 and 102.50 mm at temperatures
of 297 °K and 84 °K, respectively.
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Table 3. Measured focal shifts caused by cooling test lenses.

Lens Knife-Edge Pinhole
I.D. Method Method

Number (mm) (mm)

1 2.26 ———

2 2.34 2.31

3_________________2.29_______________———
*
Focal shifts of 2.36 and 2.38 mm were predicted
by the paraxial and ray-tracing analysis, 
respectively. _____

Table 4. Paraxial focus shift minus measured shifts.

Lens 
I.D.

Number

1

2

3

Knife-Edge 
Method
(mm)

0.10

0.02

0.07

Pinhole 
Method
(mm)

———

0.05

———

*The diffraction-limited depth-of-focus tolerance 
is ±0.11 mm._________________________________

by the index change was 25 times greater than the shift caused by the radius change.

The focal shift caused by cooling was very accurately predicted, but the absolute loca 
tion of the focus was not accurately predicted even by the ray-tracing analysis. However, 
the error in predicting the absolute position of the focus was essentially the same for 
the lens warm as it was cold. The absolute location of the focus was ascertained by 
measuring the distance between the flat surface of the test lens and the focus. Measure 
ments of this distance for test-lens temperatures of 297°K and 84°K are tabulated in 
Table 5. The worst-case error in these measurements is ±0.1 mm; there is a 90-percent 
probability that the measurement error is less than ±0.05 mm. The ray-tracing analysis 
predicted that this distance would be 100.12 mm with the test lens at 297°K and 102.50 mm 
with the test lens at 84°K. As can be seen, both the warm and cold measurements are 
approximately one mm larger than their respective predicted values. A one-percent error 
in the radius would account for this one-mm difference. A one-percent error in measuring 
the radius of the test plate used to fabricate the lens is reasonable since this measure 
ment was made using a spherometer. For a spherometer that measures the sagittal height 
over a 25-mm diameter, a sagittal error of only 0.003 mm will cause a one-percent error 
when measuring a 305-mm radius.

Table 5. Measurements of the distance between the flat lens surface and the focus.

Lens at 297°K Lens at 84°K

Lens 
I.D.

Number

1

2

3

Knif e-Edge 
Method
(mm)

101.26

101.11

101.08

Pinhole 
Method
(mm)

———

101.33

———

Knife-Edge 
Method
(mm)

103.52

103.45

103.37

Pinhole 
Method
(mm)

———

103.64

———

*
The ray-tracing analysis predicted distances of 100.12 and 102.50 mm at temperatures
of 297°K and 84°K, respectively.
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PREDICTING THE FOCUS OF CRYOGENICALLY -COOLED OPTICAL SYSTEMS

Summary and Conclusions

The focal shift caused by cooling was predicted very accurately, but the absolute
location of the focal plane was not. The computed shift in the paraxial focus was
virtually equal to the shift in the minimum -blur position predicted by the ray- tracing
analysis. The error in predicting the focal shift was less than the diffraction -limited
depth -of -focus tolerance. However, the error in predicting the absolute location of the
focus was nine times greater than this tolerance. An error of only one percent in the
value used for the lens radius would account for this error in predicting the absolute
location of the focus. Lens -radius errors of this magnitude are to be expected with
standard optical -shop practices. The results of this experiment suggest that the focus of
any cryogenically -cooled optical system for which low- temperature thermal expansion and
index -of- refraction data are available can be accurately predicted by first measuring the
focal location with the optics at room temperature and then adding the computed shift in
the paraxial focus to the measured location.
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The focal shift caused by cooling was predicted very accurately, but the absolute 
location of the focal plane was not. The computed shift in the paraxial focus was 
virtually equal to the shift in the minimum-blur position predicted by the ray-tracing 
analysis. The error in predicting the focal shift was less than the diffraction-limited 
depth-of-focus tolerance. However, the error in predicting the absolute location of the 
focus was nine times greater than this tolerance. An error of only one percent in the 
value used for the lens radius would account for this error in predicting the absolute 
location of the focus. Lens-radius errors of this magnitude are to be expected with 
standard optical-shop practices. The results of this experiment suggest that the focus of 
any cryogenically-cooled optical system for which low-temperature thermal expansion and 
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focal location with the optics at room temperature and then adding the computed shift in 
the paraxial focus to the measured location.
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