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An investigation of the velocity field over rippled sand bottom 

B. Stachurska1, R. Staroszczyk1

1 Institute of Hydro-Engineering, Polish Academy of Sciences, 

Gdansk, Poland  

E-mail: b.stachurska@ibwpan.gda.pl

ABSTRACT 

Ripples at a sandy seabed are the consequence of the oscillatory movement of water particles. The ripples are 

the reason for the increase of the bed roughness of the bottom becoming an important factor in the sediment 

transport process. Better understanding of the processes taking place in the near-bottom flow field will allow an 

accurate description of the mechanism of the sediment transport. An experimental investigation of the velocity 

field over rippled sand bottom has been carried out in a wave flume of the Institute of Hydro-Engineering of the 

Polish Academy of Sciences in Gdansk. Measurements were performed using the technique of Particle Image 

Velocimetry. The velocity fields of the sandy sediment were measured in the region immediately over the flume 

bottom coated by sand ripples. The results obtained describe the instantaneous velocity fields of sediment 

particles along vertical and horizontal profiles at different spatial locations and at different phases of the 

oscillatory flow induced by free-surface water wave propagation. It has been demonstrated that the Particle 

Image Velocimetry technique of measuring the movement of sediment particles at the bottom proximity has 

proven as a reliable and sufficiently accurate method. The experimental data obtained will enable the validation 

of a numerical model which is currently developed.  

Keywords: Sediment movement, sand ripples, velocity field, PIV method 

1. INTRODUCTION

The study of the velocity field over rippled sand bed is fundamentally important for understanding sediment 

transport processes. The roughness of the bed increases as the ripples develop, which affects the near-bed water 

flows. Near-bed velocities of water particles depend on various factors, such a surface wave height, wave period 

or wave length. Consequently, the morphology of the seabed depends on the hydrodynamics of both water and 

sediment. The velocity fields can be calculated from theory or by numerical modelling, but obviously these 

methods should be based on the results from experiments and in situ observations.  

In the literature on the subject there are descriptions of many experiments that have been carried out on water 

wave-generated sand ripples. One of the first was that conducted by Bagnold (1946), in which trays of sediment 

were oscillated in still water. Bagnold studied the variability of the geometry of sand ripples, and observed that 

the length of the ripples depends on the magnitude of the oscillation amplitude of water particles in close 

proximity to the bottom. The first important field research concerning ripples geometry was presented by Inman 

and Bowen (1962). Further extensive research on ripples geometry was conducted by Mogridge and Kamphuis 

(1972), Sleath (1975), Pruszak (1978) and Miller and Komar (1980). Boundary roughness of sandy beds was 

studied by Grant and Madsen (1982). These authors found that the bed roughness parameter is a function of the 

shear stress at the boundary. Sato, Mimura and Watanabe (1984) investigated experimentally the characteristics 

of the oscillatory boundary layer flow above rippled beds. These authors concluded that the velocity of the 

oscillatory boundary layer above the rippled bed is strongly influenced by vortices formed near the slopes of 

ripples. A very thorough experimental investigation of the mechanism of vortex generation and ejection from 

the ripple surfaces was carried out by van der Werf et al. (2007). They made detailed measurements of sediment 

particle velocities near bottom ripples in a series of experiments carried out in an oscillatory flow tunnel. Their 

results showed that the geometry of sand ripples gives rise to the formation of convective cells in the near-bed 

flows, resulting in a significant increase in the sediment particle velocities compared to those in free stream 

flows over flat beds. These authors also gave detailed insights into the mechanism of sand particle pick-up and 

the process of sediment transport in oscillatory flows.   

The above experimental results by van der Werf et al. (2007) have been obtained by making use of a PIV 

(Particle Image Velocimetry) technique. This technique is based on the analysis of images of tracer particles 

seeded in water and observed within a thin sheet of fluid lit by laser light (Willert and Gharib 1991). The PIV 
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method, commonly used for over two decades for making measurements in one-phase fluid flows, can still be 

treated as a relatively new experimental tool for two-phase fluid flows, such as the flows of sediments 

suspended in water. This situation is due to some technical difficulties encountered in the implementation of the 

PIV technique in the case of two-phase flows, and due to problems with proper interpretation of measurement 

results. One of the first successful attempts to use the PIV method in experiments involving the motion of sandy 

sediments caused by water wave propagation belongs to Ahmed and Sato (2001). These authors investigated the 

dynamics of the bottom boundary layer and used the PIV technique to measure the volume flux of sand 

transported in sheet flow under asymmetric oscillations. Based on the measured velocity and sand concentration, 

the net volume flux was calculated. In another paper by Van der Werf et al. (2008) two different sediment 

models were tested and validated against the PIV velocity and sediment concentration measurements above full 

scale-ripples in regular oscillatory flow. Yang, Wang and Liu (2011) presented a method which enables 

simultaneous determination of the velocity fields of both phases in sediment transport problems by using the 

PIV with fluorescent tracer particles. Umeyama (2012), in turn, focused on surface waves propagating in water 

of finite depth and used the PIV technique to measure the water particle velocities and trajectories.  

 

From among the above papers reporting the use of the PIV method for measuring sediment particle motion in 

water, only two (Ahmed and Sato 2001 and Umeyama 2012) were concerned with flows induced by free-surface 

gravitational waves propagating over a sandy bed. Hence, there is a need of further experimental investigation 

of the sediment transport phenomena in water due to surface wave propagation in order to enhance our 

understanding of fundamental mechanisms involved. The present work is an attempt in this direction. Another 

motivation of this work was to gather detailed experimental data sets that could be used to validate a numerical 

model (based on the Smoothed Particle Hydrodynamics method) which is currently developed by the authors.  

The paper focuses on the measurements of instantaneous velocity fields of both sandy sediment particles near a 

rippled bed, and of water particles higher above the bed. In Section 2 experiments conducted in a wave flume 

with the use of the PIV technique are described. In Section 3 the results obtained and the data analysis are 

presented. Section 4 is devoted to the calculations of the thickness of the bottom boundary layer, based on the 

PIV data. Finally, in Section 5 some conclusions are presented.  

2. EXPERIMENTAL SETUP AND DATA POST-PROCESSING 

Experiments were carried out in a wave flume of the Institute of Hydro-Engineering of the Polish Academy of 

Sciences (IBW PAN) in Gdansk, Poland. The wave flume is 64 m long, 0.6 m wide and 1.4 m deep. Water 

waves were generated by a programmable piston-type wave maker. For the purpose of the experiments 

described here, part of the wave flume (of a length 6.07 m) was isolated from the rest of the flume. In this 

selected flume section, a container (cuvette) with sand was placed at 2 m downstream of the wave paddle (see 

Fig. 1).The sand was taken from a beach at a village of Sobieszewo (part of the Gdansk agglomeration). The 

median diameter of the sand grains was determined during a sieve analysis and was established to be equal to 

d50 = 0.257 mm.  

 
Fig. 1. Experimental setup.  

 

The average water depth during the measurements was h = 0.3 m. Changes in the water free surface elevation 

were measured by a system of three wave gauges placed in the middle of the measurement area. The 

measurements were recorded with a sampling frequency of 100 Hz. In order to measure sand and water particle 



 

velocities, a PIV system was applied. The PIV technique evaluates the instantaneous velocities through 

recording and analysing, at successive instances of time, positions of small tracer particles that are suspended in 

the fluid.  

 

The main objective of the experiments was to determine the instantaneous velocity field in the near-bottom 

region. The main point of interest was to identify the velocity and direction of sand particles moving over 

rippled sandy bottom. During the PIV measurements, the laser light sheet was emitted from above the free 

surface of water in the flume. For recording successive images of sediment particle distributions, a high-

definition digital video camera was used. The PIV system was supplied by Dantec Dynamic, and a FlowSense 

EO 4M camera was used during the measurements. In this system, the inter-frame time is 200 ns, and the sensor 

resolution is 2048 px  2048 px. In our first experiments the water in the flume was seeded with glass hollow 

spheres. However, it turned out that the suspended sand grains in near-bed region acted as the seeding agent. 

The PIV post-processing was carried out by using the PIVlab1.4 software (Thielicke and Stamhuis 2014). 

  

In the measurements, surface waves with a period of T = 1.5 s and a height of H = 0.1 m were used. Before 

starting the PIV measurements, water waves were generated for approximately 30 min, so as to achieve a state 

of equilibrium of bed forms. The resulting ripples had a height of approximately 1.7 cm and a length of 

approximately 7 cm. 
 

 
 

Fig. 2. Typical PIV image. 

 

By analysing images (Fig. 2) recorded by the PIV camera, plots showing the instantaneous velocity field of sand 

particles were generated. The analysis of these data allowed the determination of the vertical and horizontal 

velocity profiles of the sand particles in the near-bed region.  

3. VERTICAL AND HORIZONTAL VELOCITY PROFILES ABOVE THE 

RIPPLES 

From the PIV experimental data, both the vertical and horizontal instantaneous velocity profiles were 

determined. Vertical velocity profiles were measured above the crest and trough of the representative bed form 

(Fig. 3a). A horizontal velocity profile was measured at a location just above the ripple crests (Fig. 3b), with the 

x-axis origin at the left border of the image and its direction to the right. The analysis of the vertical velocity 

distributions has been carried out for two cases: under the free-surface water wave crest, or under the water 

wave trough; that is, for two extreme cases of the water velocity magnitudes near the bed. 



 

Fig. 3. Vertical (a) and horizontal (b) profiles above the rippled bed. 

 

Figure 4 present the horizontal (u) component of the particle velocity. Fig 4a shows the vertical profile located 

in the ripple crest, and Fig 4b the vertical profile located in the ripple trough. The left plot in each figure shows 

the u-velocity profile measured with a surface wave crest directly overhead; the u-velocities profile on the right 

corresponds to surface wave trough directly overhead of the profile location. 

Figure 4a shows that the near-bed extremum horizontal velocities are similar in magnitude in both situations and 

their maximum values vary within the range ±0.24÷0.23 m/s. Slightly higher are the velocities occurring during 

the transition of the wave trough. Above the region of the sediment moving layer, in a region of the free stream 

velocity, the horizontal velocity component is significantly smaller and has a value of approximately 

0.16 m/s under the wave trough, and 0.12 m/s under the wave crest. Moreover, it was found that the sediment 

moving layer located in the near-bed region has a thickness 0.01 m at the time of the surface water wave trough 

transition, and 0.008 m at the time of the water wave crest transition.  
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Fig. 4. Instantaneous horizontal velocity component distributions along the vertical profiles above the ripple 

crest (a) and above the ripple trough (b). For both locations shown are the velocity profiles under the surface 

water wave trough (left plot in each figure) and under the water wave crest (right plot). 

 

Similarly, Figure 4b shows the vertical velocity profiles of the horizontal velocity component (u), but this time 

located at the ripple trough. Such a way of presenting the vertical profiles helps to determine the elevation above 



 

the ripple trough at which the sediment movement under the action of surface wave begins. It was estimated that 

the thickness of this layer was 0.01m in case of the surface wave trough transition, and was 0.005 m in case of 

the wave crest transition. This finding is consistent with the results discussed above for the profile situated at the 

ripple crest (Fig. 4a). The wave-bottom boundary layer started at 0.01 m above the ripple trough surface at the 

time of the water wave crest transition, and at about 0.014 m at the time of the water wave trough transition. 

Moreover, it is seen that the near-bed extremum horizontal velocities, for the situation under the surface water 

wave trough, reach about 0.19 m/s (the left plot in Fig. 4b), and in the situation under the wave crest (the right 

plot in Fig. 4b) they are equal to about 0.2 m/s. It may seem a little surprising that the near-bed velocities are 

higher than those in the free flow field. This phenomenon, though, was already observed earlier by van der Werf 

et al. (2007), and results from the mechanism of the vortex generation and shedding off the sand ripple slopes, 

which considerably influences the flow within a region of about 1.5 ripple heights over the line of ripple crests.  

 

The next step was to determine the vertical profiles of the vertical component (v) of the near-bed velocity. For 

this purpose, the same vertical profiles (Fig. 3a) as those described above were used. Figure 5 presents the 

vertical velocity distribution along a vertical profile located above the ripple crest. What is most characteristic 

for the two situations considered (the water wave crest and the wave trough transition) is the distinctive increase 

of the vertical velocity component in a near-bed region compared to the velocities occurring at higher locations 

in the free stream flow region. Under the water wave trough (Fig. 5a), the maximum vertical velocities in the 

near-bed layer of the moving sediment are 0.045 m/s, whereas under the wave crest (Fig. 5b) these velocities 

reach 0.05 m/s. The thickness of this wave-bottom layer was estimated as 0.008 m in the situation in the Fig. 5a, 

and 0.01 m in the situation in the Fig. 5b.  
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Fig. 5. Instantaneous vertical velocity component distributions along the vertical profile above the sand ripple 

crest: (a) under the water wave trough, (b) under the water wave crest. 

 

From the vertical profiles located at the sand ripple trough (Fig. 6) some additional information about the 

vertical velocities of sand particles in the sediment moving layer was inferred. The thickness of the wave-bottom 

boundary layer under the surface wave trough (Fig. 6a) is about 0.03 m, and under the wave crest (Fig. 6b) it is 

about 0.02 m. The magnitudes of the vertical velocities in the moving sediment layer in both situations (under 

the surface wave trough and the wave crest) were similar and equal to about 0.05 m/s, which is compatible with 

the results  plotted in Fig 5.  

  



 

-0.08 -0.04 0 0.04 0.08
Vertical velocity component v [m/s]

0

0.04

0.08

0.12

0.16
z
 [

m
]

-0.08 -0.04 0 0.04 0.08
Vertical velocity component v [m/s]

0

0.04

0.08

0.12

0.16

z
 [

m
]

a) b)

 
Fig. 6. Instantaneous vertical velocity component distributions along the vertical profile above the sand ripple 

trough: (a) under the water wave trough, (b) under the water wave crest. 

 

Fig. 7 presents the vertical distributions of both sediment velocity components. Fig. 7a shows the distributions 

of the horizontal components (u), and Fig. 7b of the vertical components (v), at four different phases of a single 

free-surface water wave period T (t = 0 corresponds to the beginning of the flow period).   
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Fig. 7. Vertical profiles of instantaneous velocity distributions: (a) horizontal component (u), (b) vertical 

component (v), at four characteristic phases of a single free-surface water wave period. 

 

The next stage of the PIV results analysis concerns the horizontal profile, which was located directly over the 

ripple crests (see Fig. 3b). The distribution of the horizontal velocity component (u) along that profile is 

presented in Fig. 8. It can be noted that the velocities u are clearly larger above the sand ripple crests than those 

over the ripple troughs. For instance, the mean values of u are 0.23 m/s over the ripple crests, compared to 

0.08 m/s over the troughs. Moreover, both at the wave trough transition (Fig. 8a) and the crest transition 

(Fig. 8b), the values of the velocity components are comparable in magnitude along the horizontal profile. 
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Fig. 8. Horizontal velocity component distributions along the horizontal profile: (a) under the water wave 

trough, (b) under the water wave crest. 

 

Finally, the horizontal profiles of the vertical (v) velocity components are presented in Fig. 9. Also in this case, 

both during the free-surface water wave trough and the water wave crest transitions, the extremal measured 

values are quite similar in magnitude. Above the ripple troughs the vertical velocities are positive and vary from 

about 0.04 m/s to about 0.08 m/s. For comparison, over the ripple crests, the corresponding values are negative 

and change from 0.04 m/s to almost 0.08 m/s. 
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Fig. 9. Vertical velocity component distributions along the horizontal profile: (a) under the water wave trough, 

(b) under the water wave crest. 

4. THICKNESS OF THE WAVE-BOTTOM BOUNDARY LAYER 

The important part of the flow is the bottom boundary layer. The latter is meant as the layer inside which the 

flow is significantly influenced by the bed. The thinner the bottom boundary layer is, the larger shear stress is at 

a given flow velocity (Nielsen 1992). In this study, laboratory observations of the near-bed velocity are used to 

evaluate the thickness of the wave-bottom boundary layer (Fig. 10). As already noted, in a layer immediately 

above a rippled bed, the sand dynamics is dominated by the mechanism of vortex formation and shedding above 

the ripple slopes (van der Werf et al. 2007).  



 

 

 
 

Fig. 10. Near-bed region with wave-bottom boundary layer. 

 

In order to determine the thickness of the wave-bottom boundary layer, a formula proposed by Nielsen (1992) is 

used, which is exact for the case of simple time-harmonic flows:  

 

𝛿 =
1

2

𝑢

𝜔
𝑓𝑤           (1) 

where δ denotes the layer thickness, u is the horizontal velocity amplitude of the fluid occurring just above the 

boundary layer, ω is a wave angular frequency, and fw is a so-called wave friction factor. The latter can be 

estimated by a method described in detail by Doering and Baryla (2002), based on formulae proposed by 

Nielsen (1992).  

 

The first step to calculate the thickness of the wave-bottom boundary layer is to evaluate a grain roughness 

friction factor. This can be calculated by employing a formula by Swart (1974), which is expressed as: 

 

    𝑓2.5 = exp⁡[5.213 (
2.5𝑑50

𝑢
)
0.194

− 5.977]                    (2) 

where d50 is the median grain diameter of the sediment. 

  

To measure the force exerted by fluid on a sediment particle during the surface wave transition, a dimensionless 

quantity is used, known as the mobility number, Ψ. The total disturbing force acting on a sand particle at the bed 

is approximately proportional to the square of the horizontal velocity amplitude u and the ratio between this 

disturbing force and the stabilising force due to gravity (Nielsen 1992). Hence, the number Ψ is defined by the 

equation:  

    =
(𝑢)2

(𝑠−1)𝑔𝑑50
                          (3) 

 

where s is the density of the sediment, and g is the acceleration due to gravity. 

 

The sediment mobility number and the grain roughness friction factor define the grain roughness Shields 

parameter 2.5 (Nielsen, 1992), expressed by the formula:  

 

    5.25,2
2

1
f                      (4) 



 

The parameter 2.5 is a dimensionless measure of the bottom shear stress, occurring in the flow over a sandy bed.  

When a bottom is covered by ripples, then θ2,5 < 0.25, and it should be assumed that the hydraulic roughness of 

the bed is a function of the ripple height, its length and the grain roughness. To take into account the effect of 

the roughness due to the mechanisms of sand particles moving over ripples, a formula for the hydraulic 

roughness can be used:  

𝑟 =
8𝜂2

𝜆
+ 170𝑑50√𝜃2.5 − 0.05 

(5) 

in which  and λ are the ripple height and length, respectively.  

 

The water under the surface wave interacts with the sandy bottom mainly due to shearing, which is measured by 

a shear stress . For this reason, the determination of the shear stress is an essential element in the calculation of 

the sediment transport. Generally, the friction factor of the wave is a function of the Reynolds number and the 

hydraulic roughness (r) of the bottom. Under certain conditions, the wave friction factor can be expressed in a 

simple way. For instance, if the bed is hydraulically smooth, than the friction factor fw is a function of only the 

Reynolds number. If, in turn, the bottom is hydraulically rough, then fw is a function of the bed roughness. It is 

assumed here that the bottom is hydraulically rough, which means that the boundary layer conditions are 

turbulent. In this case, the wave friction parameter is defined by:  

 

  𝑓𝑤 = exp [5.5 (
𝑟𝜔

𝑢
)
0.2

− 6.3]     (6) 

 

where r denotes the hydraulic roughness of the bed,  is the angular frequency. The wave friction factor, 

obtained from Eq. (6), can then be used to calculate the thickness of the boundary layer, as described by Eq. (1). 

 

For the experiments described in this work, the ripple geometry was found to remain fairly constant, and could 

be described by the parameters  = 1.7 cm and  = 7 cm. The median grain diameter d50, as mentioned earlier, 

was 0.257 mm. For this case, the near-bed velocities in wave-bottom boundary layer were measured by the PIV 

technique, and the value adopted in the calculations was u = 0.24 m/s. With this information, the grain 

roughness Shields parameter (2.5), hydraulic roughness of the bed (r), and the friction factor (fw) were found to 

be 0.16, 0.047, and 0.36, respectively. With these latter values, the thickness of the wave-bottom boundary 

layer, assuming rough turbulent conditions, was calculated to be equal to 1.04 cm. This result is consistent with 

that determined from the PIV measurements, wherein the thickness of the moving sediment layer in a wave-

bottom boundary region, r, was approximately 1 cm, see the previous section.  

5. CONCLUSIONS 

The following conclusions can be drawn from the experimental observations presented in this paper:  

 

(i) In the wave-bottom boundary layer, the maximum velocities near the ripple crest can be up to two 

times higher than the maximum free stream velocity. This is the result of the flow acceleration 

over the crest and the jet flow associated with the ejection of vortices on the slopes of the sand 

ripples (the mean velocity value in the near-bed region is 0.24 m/s, compared to 0.14 m/s in free 

stream flow). 

(ii) The vertical velocities in the near-bed region vary from about 0.04 to about 0.06 m/s, and are 

strongly influenced by the presence of underlying sand ripples. 

(iii)  Bed forms significantly affect the near-bed sediment vertical velocities, leading to strong 

downward and upward local flows, depending on the local morphology of the ripples.  

(iv) The thickness of the wave-bottom boundary layer (the sand active layer) was measured with a 

good accuracy, and its value was in accordance with the results of theoretical calculations. 
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