
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

8-2011

A Merging System for Integrated Person-Centric Information A Merging System for Integrated Person-Centric Information

Systems Systems

Swati Jain
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Jain, Swati, "A Merging System for Integrated Person-Centric Information Systems" (2011). All Graduate
Plan B and other Reports. 39.
https://digitalcommons.usu.edu/gradreports/39

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fgradreports%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/39?utm_source=digitalcommons.usu.edu%2Fgradreports%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

A MERGING SYSTEM FOR INTEGRATED PERSON-CENTRIC

INFORMATION SYSTEMS

by

Swati Jain

A report submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Stephen W. Clyde

Major Professor

Curtis Dyreson

Committee Member

Nicholas Flann

Committee Member

UTAH STATE UNIVERSITY

Logan, Utah

2011

ii

Copyright © Swati Jain 2011

All Rights Reserved

iii

ABSTRACT

A Merging System for Integrated Person-Centric

Information Systems

by

Swati Jain, Master of Science

Utah State University, 2011

Major Professor: Dr. Stephen W. Clyde

Department: Computer Science

Large-scale integrated information systems correlate equivalent or related

information from multiple data sources to provide a unified view of data. This report

describes the design and implementation of a tool called xMerger that provides a unified

view from multiple matching records, which could be multi-source duplicates and

overlapping records. To achieve this xMerger provides a merging process that generates a

complete and accurate merged record from conflicting and incomplete records. This

report also discusses the challenges present in the process of merging and xMerger’s

solutions. xMerger’s design and implementation was validated by adapting it to

CHARM, a real world integrated system currently in use at the Utah Department of

Health.

(65 pages)

iv

ACKNOWLEDGMENTS

I am deeply indebted to my major advisor, Professor Stephen Clyde, for his

invaluable advice, guidance, and patience. I would also like to thank the members of my

committee, Professor Curtis Dyreson and Professor Nicholas Flann. Their suggestions,

support, and hard work were invaluable and are deeply appreciated.

Many thanks to Myra Cook; her great work and help were indispensable for

completing this report.

I would also like to thank my colleague, Lan Hu. Thanks for guiding me to

become familiar with the project, as well as resolving many problems along the way.

Finally, I appreciate the continuous support and encouragement of my beloved

family through the duration of my academic pursuits.

Swati Jain

v

CONTENTS

 Page

ABSTRACT ... iii

ACKNOWLEDGMENT.. iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

1 INTRODUCTION ...1

2 DUPLICATION PROBLEMS AND DEUPLICATION PROCESS 5

 2.1 Integrated Information System and their Architecture5

 2.1.1 Central Index ...6

 2.1.2 Peer-to-Peer...7

 2.1.3 Arm’s Length Information Broker ..7

 2.1.4 Central Database ...7

 2.1.5 Partitioned Central Database ...7

 2.1.6 Summary of Architectures ..8

 2.2 Source of Multiple Matches: The Duplication Problem8

 2.3 General Deduplication Process ..11

 2.4 Merging ..12

 2.4.1 Challenges in Merging ..13

 2.4.2 Preparing for effective Merging..15

 2.4.3 Unmerging ..16

3 WHAT DOES xMerger DO? ...18

 3.1 Supports for Multiple Types of Integration Architecture18

 3.2 Dealing with Heterogeneity of Integrate Systems at Different Level19

 3.3 Support for Merging/Un-merging ..19

 3.4 Major Advantages of xMerger and Relevant Work20

vi

4 ARCHITECTURE DESIGN ...22

 4.1 Design Consideration ..22

 4.2 Overall Structural Design ..23

 4.2.1 xMerger as a Client Server Application..23

 4.2.2 xMerger Overall Structure and Its Components24

 4.2.3 Information flow in xMerger ...38

 4.2.4 xMerger at Package Level ...38

5 IMPLEMENTATION DETAILS ..41

 5.1 Introduction ..41

 5.2 Technology ..41

 5.3 Introduction to Virtual-database ..41

 5.4 Logging ..42

 5.5 Implementation Details ..42

 5.6 Discussion and Future Improvement ...43

 5.6.1 Design Quality ..43

 5.6.2 Adaptation for Various Integrated Systems44

 5.6.3 Future Enhancement ..44

6 SOFTWARE TESTING ..46

 6.1 Introduction ..46

 6.2 Unit Testing ...46

 6.3 Integration Testing ...46

 6.4 User Acceptance Testing ...47

7 SUMMARY ...49

REFERENCES ..51

APPENDICES ..54

 Appendix ..55

vii

LIST OF TABLES

Table Page

2.2.1. An Example of Overlapping Records ... 10

2.2.2. An Example of Overlaying Records ... 10

2.3.2. Common data problems ... 14

4.2.2. The 3 Types of the LinkedMergeRequest Class ... 26

viii

LIST OF FIGURES

Figure Page

2.3. Overall Deduplication process ... 11

4.1. Communication between Merger and its client ... 24

4.2. Request hierarchy... 25

4.3. Example of merge request in CHARM .. 26

4.4. MergeRequest class diagram ... 28

4.5 UnMergeRequest class diagram ... 30

4.6. Merger class diagram ... 31

4.7. RecordStrategy Hierarchy .. 33

4.8 FieldMergeStrategy Hierarchy.. 34

4.9. DBAction classes ... 36

4.10. Overall information flow while merging .. 38

4.11. Overall information flow in record strategies .. 39

4.12. Package level diagram for Merger and its dependencies ... 40

A-1 Actors involved in the system.. 57

A-2 Goals associated with DB users and information systems .. 58

1

CHAPTER 1

INTRODUCTION

 An integrated information system connects multiple, isolated information sources through

an integration infrastructure [1] that provides end-users or external systems with a unified view

of persons, places, or things represented in two or more of the data sources. For example,

consider an integrated system of customer databases managed by three different subsidiaries of

an insurance enterprise. One subsidiary sells home insurance, another handles car insurance, and

the third deals with recreational-vehicle insurance. A customer, who we will call Mary, could

have purchased insurance policies from each of the subsidiaries. An integrated system involving

the three subsidiaries’ systems could provide corporate users with a complete view of Mary’s

policies, including the “best version of truth”
1
 for her demographics and contact information. In

general, such integration can improve the amount and quality of data sharing among various

sources and, thus, ultimately help users and organizations become more productive.

 However, integrated systems suffer from three common problems that lower the quality

of the integrated information and could eventually negate all of the system’s potential benefits.

First, the integrated system could fail to correlate records from two or more sources that

represent the same person, place, or thing. Such errors result in multi-source duplication, which

can dramatically reduce the system’s potential value because end users will not see a correct and

complete unified view of related data [3]. For example, if the integrated insurance system did

1
 The “best version of truth” is phrase that is sometimes used when referring to data records computed from

multiple original records from disparate sources, such that the compute record contains the most accurate and

consistent information possible [1].

2

not correlate Mary’s car insurance with her motor-home insurance, it may mislead end users

about Mary’s complete profile. This multi-source duplication is primarily a record-matching

problem that can be addressed by a variety of matching technologies [1].

 A second problem stems from incorrectly correlating two more records that are actually

not for the same person, place, or things. This problem, known as overlaying duplication, is also

primarily a matching issue [1]. Overlaying duplication can cause serious confusion. Just imagine

what might happen if Mary’s information in the homeowner’s insurance database was

mistakenly correlated with some other person’s information in the vehicle insurance database

and that person had a history of missing premium payments and filing lots of claims. Section 2.2

provides additional background on multi-source and overlaying duplication, as well as other

relevant challenges for integrated information systems.

 Even if an integrated system minimizes the number of multi-source and overlaying

duplicates, it can still suffer from a third problem that comes from incorrectly combining the data

from matched records to form a unified view. In general, the unified view should represent the

“best version of truth” based on all the original data. However, there can be various syntactic

and semantic heterogeneities across the participating data sources that can make the process of

formulating a unified view a huge challenge [15]. This process is called merging, data

integration, or resolution [1, 32, and 34]. The main objective of this process is to provide a

unified view that contains reliable, accurate and usable information, which requires awareness of

and attention to the quality of the original data, variations in meaning of individual data fields

over time and across the sources, the type and frequency of inaccurate or incomplete data [1].

Section 2.3 provides more detail on these issues.

3

 A successful and effective merge process includes data analysis, data extraction, conflict

resolution, data merging and its execution. This report introduces a general purpose customizable

merging tool called xMerger that provides effective merging to create a unified view of data in

an information system. xMerger generates a single merged record by combining multiple

matching records in a person-centric information system, as well as eliminating original records

if required. xMerger also provides un-merging of erroneously merged records to restore the

original view of data. Section 2.3.4 discusses un-merging techniques in detail.

 Chapter 3 discusses xMerger’s goals and its applicability to different architectures for

integration systems. It also discusses xMerger’s relationship to issues of merging and unmerging.

Comparisons between xMerger and other similar existing tools are also conducted and discussed.

 xMerger supports data-source configuration, experimentation, and incremental

refinement, which makes it adaptable and tunable to many different kinds of integrated

information systems. To this end, xMerger’s design includes a customizable structure that allows

users to configure specific information associated with a system. This customized structure can

then be adapted by other person-centric integrated information systems. xMerger’s object-

oriented architectural design is discussed in detail in Chapter 4. There, each xMerger component

is shown not only to possess a strong encapsulation boundary, but also to provide meaningful

and extensible abstractions through a well-formed interface. These design characteristics help the

implementation to be readable, reusable and maintainable.

 In sum, xMerger’s strengths not only include its effective un/merging processes, but also

its architectural design, which makes it adaptable and configurable to discrete and novel

integrated system implementations.

 The validation and evaluation of xMerger requires adapting it to a specific integrated

4

system. For this purpose, we selected the Child Health Advanced Records Management

(CHARM) [4] system, a child-centric integrated system, to be the testing environment. CHARM

allows independent public health-care programs to exchange data about children who have

received, are receiving, or need public health services. To fulfill its services, CHARM maintains

a core relational database that contains a complete set of child-centric person profile records

gathered from multiple data sources. This core database is both accessible and modifiable by

xMerger.

Chapter 5 describes the implementation details of xMerger as well as its performance in

the CHARM environment. Chapter 6 focuses on the testing of xMerger. Finally, Chapter 7

summarizes the contributions of the presented work and offers ideas for future work. Additional

details about xMerger software and other work-products of this project are included in the

Appendix. Specifically, the Appendix lists xMerger’s user-level goals and its functional

requirements.

5

CHAPTER 2

DUPLICATION PROBLEMS AND

THE DEDUPLICATION PROCESS

To understand the full ramifications of merging data from multiple data sources, it is

important to understand integrated information systems and their various architectures,

duplication problems like multi-source duplication and overlapping duplication problem, and

finally general deduplication process. Sections 2.1 – 2.3 provide this background. Section 2.4

then discusses general merging concepts and its challenge.

2.1 Integrated Information System and Their Architecture

An integrated information system connects multiple heterogeneous information sources

through an integration infrastructure, and provides users and software applications with a unified

view of a subject created from participating data sources [1]. Many business firms and public

services already realize the benefit of the easy sharing of information an integrated system

provides. Consider the following example published in July 2004 Connecting for Health [9]. Dr.

J.T. Finnell was able to avert a dangerous medical error common to emergency departments

across the country due to a connected information environment at the Wishard Memorial

Hospital. A patient was complaining of crushing chest pain and admitted to the emergency room,

but was not able to recount his medical history. Typically, a patient with symptoms suggesting a

heart attack would have been given a blood thinner. Fortunately, attending physicians were able

to access the patient’s health records electronically from another institution, learning

6

instantaneously that he had recently been treated for a head injury. Giving the patient a blood

thinner would have put him at risk for bleeding in his brain and may well have caused serious

injury. With the right information, doctors were able to prescribe the appropriate treatment. The

patient’s chest pain was relieved and turned out not to be a heart attack. Time, money, and

possibly a patient’s life were saved.

Through integration infrastructures, integrated systems realize information sharing

among related yet independently operating participating systems. Depending on the system’s

requirements, there are almost as many possible architectural designs as individual integrated

systems. This section briefly summarizes five prototypical architectures that represent many

solutions in creating a person-centric integrated system. For more information on these and other

architectures, see Chapter 2 of The Unique Records Portfolio [1].

2.1.1 Central Index

This architecture has a master person index system that acts as a central index and that

contains demographic person information for persons known to the integrated system. A

component called record locator services (RLS) helps participating programs find a specific

person’s record within the whole of the system. When finding person-specific information, an

RLS can work in the following ways:

• The RLS tells the requesting program the location of the person record, and the

requesting program goes there to find the person;

• The RLS initiates the communication between the requesting program and the source

program, and the source program sends the person’s record directly back to the

requesting program;

7

• The RLS finds the person record from source programs and returns it to the

requesting program.

2.1.2 Peer-to-Peer

 This architecture does not require a central database. However, it either needs all the

participating programs to know all the other participating programs or an intermediate

communication component to know all the participating programs. In this architecture, a

participating program locates information for a person by calling all the source programs with

some partial demographic information, and the source programs reply directly to the requesting

program.

2.1.3 Arm‘s Length Information Broker

This architecture maintains a central data repository with demographic person

information for the persons known to the system. Different from a central index, and instead of

an RLS, each participating program runs an agent to communicate with other participating

programs and the central data repository.

2.1.4 Central Database

In this architecture, a central authority operates a central database for all the sharable

information of a person from all the participating programs, including demographic information,

service related information, and program data. This architecture requires periodic bi-directional

synchronization on sharable information between participating programs and the central

database.

2.1.5 Partitioned Central Database

Similar to the central database architecture, a partitioned central database also contains all

8

the sharable information of a person. However, instead of having one central database, it

maintains a collection of data vaults (data repositories). It allows one participating program to be

associated with one data vault. In this case, the information synchronization only occurs between

the participating program and its corresponding data vault.

2.1.6 Summary of the Architectures

 No matter which architecture an integrated information system is built upon, its essential

goal is to allow data sharing among multiple data sources. However, each of these participating

data sources can be inherently different from each other in structure and semantics. This

introduces potential problems to data integration in delivering a unified view of data.

Additionally, non-technical factors also impact integrated information systems and their data

integration process, including political issues, security and confidentiality concerns, organization

boundaries, data management procedures and public perceptions, etc. From time to time, the

changes in these areas may affect data sharing agreements, data confidential concerns, data

management procedures, and even data structures, and data presentation (syntax and semantics).

In turn, these factors may require changes to the integrated systems’ design and operations, and

thus further complicating the data integration process. Regardless of the architecture, all include

components(s) that will merge records; as well, this component must be designed in such a way

as to withstand these designs changes. Section 3.2 discusses how xMerger supports these

architectures, and the following section discusses the duplication problems that are result of

having heterogeneous data sources.

2.2 Source of Multiple Matches: The Duplication Problem

Merging is a process designed for integrated systems to unify multiple matching records,

9

and is used once multiple matches have been identified in the system. These multiple matches

are the result of duplication problems present in the integrated system. In general, duplication

refers to having two or more records actually representing a single person, place, or thing in an

integrated system. Duplication may be of the following types [1] (considering a person-centric

integrated information system which provides a unified view of a person):

• Same Source Duplication

This refers to two or more records for the same person from the same database. This

happens when data comes into the same source through different methods. For

example, if a database obtained a person’s records through a user’s self-registration as

well as through a telephone interview, it is possible that even though the information

came from the same person, since it is was given in two different settings, it is

recorded twice in the database.

• Multi-source Duplication

This refers to two or more records for the same person from different sources with

similar types of data. This happens in an integrated information system when different

organizations combine their data together. These organizations maintain their own

databases but with the same structure and a well-unified data format. In such a

scenario, a person can be a customer of more than one participating system, resulting

in multiple entries in the integrated system.

• Overlapping Duplication

This refers to two or more records for the same person from different sources with

different types of data. For example, as shown in Table 2.2.1(a), person1 comes from

10

source1, person2 comes from source2, and the source1 format does not have a middle

name and gender. Further, source1 stores the birth date in a month/day/year format;

source2 provides all person information, but it only stores the month/year for the birth

date. Although these two records have different types of data, they are actually

records for the same person.

The first type of duplication is called multiple matches in a single data source. The second

and third types of duplication are considered as multi-source multiple matches. Merging these

multiple matches is really necessary to provide a unified view of data; this is discussed in Section

2.4.

 Overlaying records refers to cases wherein two or more records appear to be for the same

person but are actually for different individuals. Table 2.2.2 shows an example of overlaying

records. Here, person1 and person2 have similar data except that the SSN value of person1 is

missing. However, they are not the same person as one might infer from the second record; they

Table 2.2.1. An Example of Overlapping Records.

 Source
First

name

Last

name

Middle

name
Gender Birth date SSN

Person1 1 Anna Joe 05/09/1988 123456789

Person2 2 Anna Joe M. F 09/1988 123456789

Table 2.2.2. An Example of Overlaying Records.

First

name

Last

name

Middle

name
Gender Birth date SSN

Person1 Anna Joe M. F 05/09/1988

Person2 Anna Joe M. F 05/09/1988 123456789

11

coincidently were born on the same day and happen to have the same name.

The records will be incorrectly matched as belonging to the same person, place, or thing, and

so will be incorrectly merged. We note that overlaying records are not actually a duplication

problem but a consequence of merged record false matches. However, xMerger provides a

solution for this type of problem as well (see Section 2.5).

2.3. General Deduplication Process

 Deduplication is the process of detecting and coalescing duplicate records in an

integrated system. The deduplication process consists of matching, linking, and/or merging

techniques [1]. Figure 1 depicts a general deduplication process that models what takes place in

most integration systems. A Matcher is the component that performs matching, i.e., it tries to

determine possible matches / multiple matches in an integrated system. A Linker is a mechanism

that relates duplicate or overlapping records together without changing the original data.

 Figure2.3. Overall deduplication process.

M a tc h e r

P o s s ib le
m a tc h e s

L in k e r M e rg e r

D a ta S o u rc e s

L in k e d R e c o rd s M e rg e d R e c o rd

12

Unlike a linker, A Merger combines multiple matched records into a single record through

necessary modifications and eliminates originals if required. Thus, a merger is able to eliminate

the duplication problems previously described. The next section focuses on the merging process

and its challenges.

2.4. Merging

 Merging consolidates two or more matching records into a single view to expose the most

accurate or reliable data, i.e., the “best version of truth.” To achieve this, it has to remove single-

source or multi-source duplicates (data cleaning). However, single source and multi-source

duplicate removal approaches differ from each other. These approaches are discussed below.

 For single-source duplicates, the participating program can handle merging internally,

without involving the integrated system. The integrated system, however, can assist if the

participating program does not have the necessary tools. Also, while merging single-source

duplicates, the database of this participating program can readily store the resulting records, and

choose to delete or archive the original records [1] as required.

For multi-source duplicates, the integrated system needs to play a significant role in the

merging process. It may be necessary for users to interactively direct the consolidation of data.

Also, since the original records come from multiple sources, the integrated system cannot simply

replace them with the merged records. Some options include [1]:

• Storing the merged record in an intermediate with links back to the original records.

• Sending the merged record back to its sources so they can integrate any new or changed

data back into the original records.

• Not storing the merged records, but simply re-merging on-the-fly as needed.

13

 Thus, merging is potentially a complicated process. Merging becomes still more

complicated by the nature of data and the degree of heterogeneity among the data sources, which

we discuss in the following subsection.

2.4.1. Challenges in Merging

Anomalies in the data, which are brought about by the “messiness” of real world data

collection processes, create human concerns and technical problems during the merging process.

Importantly, poor data quality results in loss of trust among users. Considering all these issues,

effective merging requires awareness of as well as attention to data quality, data variability, data

inconsistency, and potential to create duplicate records for an individual.

Dissimilarities in database schemes create yet another major concern. Even when

merging two identically structured databases with controlled schemas and vocabularies,

problems have been found that can lead to misinterpretations.

 Another great challenge is controlling the effect of cumulative errors and inconsistencies.

Over time, repetitive merging of the same records can lead to the loss of certain data, and the

whole becomes less than the sum of its parts. The more data sources involved, the worse these

effects become and the more difficult it is to anticipate the problems.

 Table 2.3.2 lists and explains some of the common data problems that need to be

considered when planning or implementing merging. The purpose of this table is to stimulate

thoughts about the kinds of inconsistencies and variability that might exist in a data source,

which makes merging inherently complex.

14

Table 2.3.2. Common Data Problems (Adapted from [1]).

Problem Explanation and Considerations for Merging

Semantic

heterogeneity

Seemingly similar but actually varied fields from different data sources may

have slightly different connotations which, if unrecognized, could cause data

inconsistencies or loss of credibility. For example, two data sources may both

include a field for an address. For one source, these might be intended to hold a

physical address that could be used to locate an individual or check residency.

The other source might use its address field only for mailings and verifying

identity. If values from these fields were merged, the resulting merge record

could be slightly incorrect and of less use to both data sources. A merging

process needs to be aware of these subtle semantic differences between

seemingly similar fields.

Field-meaning

shift

The meaning of a given field might drift over time, either intentionally or

unintentionally. For example, the date field that originally meant the date of a

point of service might gradually become the date of data entry for a point of

service. A merging process needs to be aware of such shifts when they occur

so it can properly interpret the semantics of a field value.

Incompatible

code domain

Multi-source duplicates may have code fields representing the same

information but have different domains (i.e., sets of possible codes). For

example, consider two data sources of person records that include ethnicity

codes. Not only are the codes likely to be different, but the two data sources

might use a slightly different set and incompatible ethnicity categories. If code

domains are truly incompatible, then a merging process may need to preserve

the code value from all the records being merged, along with their sources so

their meaning can be properly interpreted later on. Otherwise, if code domains

are compatible, but different, a merge process simply needs to select a standard

domain and map all others to it.

Impossible

values

Over time, as programs and data structures change, some data fields may end

up with values that are impossible or illogical (i.e., 99/99/99 for dates, -1 for

birth weights, and numbers for names). Impossible and illogical values can

find their way into the system through weak user interfaces, changes in

database structures, programming errors, and field-meaning shift. A merging

process needs to check for and know what to do about illogical or impossible

values.

15

Meaningless

values

Sometimes, a program requires information for a field, but the user does not

know the information, or the information does not exist. To work around the

requirement, the user enters a bogus or temporary value. For example, if a

program requires a first and last name for child and a child does not have a first

name yet, the user might simply enter “boy” or “girl.” Such values are

essentially meaningless with respect to the fields they are in.

A merging process should try to recognize and properly handle meaningless

values. Often, this means giving less precedence to meaningless values, so real

values, if they exist, override them.

Extra

information

Fields often include extra information that does not belong, changing the

intended meaning of the field. For example, a name first may include a

message about the person, such as “John Smith (deceased).” The “(deceased)”

entry is extra information. A merging process should try to recognize common

or expected forms for extra information and attempt to handle them. For

example, “John Smith (deceased)” could result in the “John Smith” name

being merged with other name data, and the “(deceased)” being merged with

other possible death information.

Finally, an effective merging requires a process owner who is accountable for the quality

of the results. Without a clear process owner, merging can lead to inconsistencies that, if

unmanaged and unresolved, will decrease the accuracy in the data within the integrated system.

The next subsection describes preparation activities for effective merging that address these

challenges.

2.4.2. Preparing for Effective Merging

Preparation is the key in effectively overcoming the challenges of record merging and

making sure that merging is correct and effective. Preparation activities can be rather involved

and should include the following [1].

16

First, the data models for all participating programs are reviewed and analyzed in the

areas of:

� Data syntax (structure, format, data types, hidden languages, etc.)

� Data semantics (meaning)

� Temporal effects, drift in meaning (content) of data fields

� The importance and relevance of the data fields that exist in the database

 Next, a thorough analysis must be made of the potential problems with data from all of

the participating data sources. An automated script containing a series of queries, computations,

or other actions may be used to check for impossible, illogical, or meaningless values. For

example, a script could check an individual’s record to make sure that his death date, if there is

one, is not earlier than his birth date. Another script could check to see if there are any names

with meaningless values, such as “boy,” “girl,” or “unknown.”

 Finally, it is always important to understand the ramifications of both correctly merged as

well as incorrectly merged data. For correctly merged data, the ramifications could involve

increased concerns about confidentiality and more complex data stewardship relationships. For

incorrectly merged data, the ramifications can be much further reaching, such as affecting the

care and services to individuals that need them, and incorrect aggregated information resulting

from simple calculations. The incorrectly merged data problem is discussed in the subsection

below.

2.4.3. Unmerging

Because records can be merged due to erroneous matching, we need to consider the

unmerging of records. Erroneous matching can happen because of weaknesses of the matching

algorithms that thus provide mismatched records as matching records for merging. If the original

17

records have simply been archived or deactivated in some way, unmerging can be relatively

straightforward. As long as no changes have been made to the merged record, the system simply

deletes the merged record and re-activates the old records. However, if changes have been made

to the merged record, the system may have to allow a user to interactively undo the merging so

that the desired changes can be made to the original record. For example, if person record A and

person record B were merged into a new person record C, and then some additional person

records were added to C, the unmerging process would have to allow someone to specify

whether the subsequent person records belong to A or B.

If the merging process does not preserve the original records, there are the following

options for unmerging:

• Keep track of the origin(s) of each piece of data so the original records can be

reconstructed.

• Keep an audit trail of changes, including those caused by the merging process, so that the

unmerging process can roll back those changes.

• Provide an interactive tool for users to manually direct the unmerging process.

• Keep all of the information as part of the merged record.

18

CHAPTER 3

WHAT DOES xMERGER DO?

 This chapter explains the work of xMerger and its capabilities in an integrated

environment in relation to the topics introduced in the previous chapter. Sections 3.1 – 3.3

describe the functionality of xMerger (also see the Appendix for xMerger’s high level goals and

functional requirements definition document). Section 3.1 discusses xMerger’s support for

multiple types of integration system architectures. Section 3.2 describes how xMerger resolves

the different levels of integrated system heterogeneities. Section 3.3 explains features of

xMerger’s merging and un-merging operations. Finally, in Section 3.4, we discuss relevant work

and major advantages of xMerger.

3.1. Supports for Multiple Types of Integration Architecture

xMerger can be adapted to any person-oriented integrated system utilizing one of the

architectures mentioned in Section 2.1. xMerger must have the proper understanding of the

structure and semantics of data sources to provide an effective record merging in the mentioned

architectures. One exception is for peer-to-peer architecture because this does not support record

merging across participating programs because record merging can take place within in a single

data source and is therefore independent of the data integration [1]. In arms-length information

broker architecture, xMerger can provide record merging at the server level for its own

repository without immediately impacting the participating programs. Merges of the multiple

matching records from a single data source can be propagated back to said data sources. All

19

communications with other databases and the xMerger are through agents that have access to

corresponding databases. In the case of a central database, xMerger can be configured on this

main database which can have its own merged records yet can link back to the original data

sources; in the case of multiple central databases, xMerger can be configured at any one of them,

but synchronization among all databases will be difficult and need special concerns.

3.2. Dealing with Heterogeneities of Integrated Systems at Different Levels

Given the types of heterogeneities of integrated systems, one goal of xMerger’s design is

to tolerate and resolve such heterogeneities as much as possible. At the system level and

application level, the Sync Engine allows heterogeneities by using cross-platform techniques like

J2SE and JDBC frameworks. This means as long as a database has a driver that conforms to the

JDBC interface, it can be integrated with xMerger no matter on which kind of system it is

running.

Schematic and semantic heterogeneities are far more difficult to tackle. We utilize the

standard and widely used SQL to resolve most of the common heterogeneities in these areas. As

xMerger provides merging at record level, so our concern is to resolve semantic heterogeneities.

Specially, to handle this issue we implemented a supportive utility named “Virtual-database” to

get metadata information of any database until it supports J2SE and JDBC frameworks. This is

combined with the power of SQL which supports almost all types of databases. However, a good

understanding and knowledge of the participating database’s structure and data is needed to

realize the complicated issues of semantic heterogeneity.

3.3. Support for Merging/Un-merging

One of the major features of xMerger is that it supports data merging to an individual

20

record level, including field level merging, according to user choice. During the merging process,

all records are first examined for reliability and accuracy and then merged, updated, deleted or

inserted. Section 2.4.2 describes the mechanism to achieve an effective merging process by

xMerger. Conflict-resolution policies in xMerger are left to the choice of the end user. To

maintain accuracy and consistency among databases xMerger achieves merging synchronously,

which is critical for most person-centric data sources in real world.

Similarly, xMerger also provides un-merging support for cases wherein previous merges

were ordered and completed, but the merge data were found to contain errors. For example,

matching algorithms provides mismatches as matching records and xMerger merged them to

provide a single merged record. To resolve this situation, xMerger provides un-merge service to

get original data back to maintain correctness. For this purpose, it maintains a history of every

merging process in a persistent storage, which helps in the un-merging process to make decisions

about what to un-merge to get the original data back. Section 2.4.3 provides background on the

un-merge process.

3.4. Major Advantages of xMerger and Relevant Work

As we can see from the above sections, the power of xMerger comes from its design

which makes it customizable to any intergrated environment, together with its effective merging/

unmerging mechanisms. Moreover, its design not only gives xMerger great flexibility but also

enhances its compatibility with a wide range of database managers.

Currently, several data merging tools and products are available. Most of them give

relatively good support for high-level schematic and some semantic heterogeneity. However,

they tend to couple with one or another type of databases and application tightly, which means

their work focuses on only few types of databases and sticks to only that application. FamilyTree

21

is a merging tool that is basically applicable to an SQL-Server, and its automated merging

eliminates multi-matched records at a very high level because there is no human interaction to

avoid conflicts [23]. A lot of popular database vendors also provide database merging support for

their own products. These include IBM’s DB2, MS-SQL Server, Oracle and MySQL, etc. Most

of these tools tend to work well when databases are all running on the same type of DBMS, but

they are able to resolve conflicts while merging only at a high level.

The design of xMerger takes all semantic and syntactic heterogeneities into consideration

and provides a customization interface that can be applicable to any databases that are running

on different platforms.

22

CHAPTER 4

ARCHITECTURE DESIGN

xMerger’s design considers all common data problems that need to be considered for

records merging, such understanding of the data structure, data quality, data variability, data

inconsistency and other issues related with data like semantic heterogeneity, incompatible code

domain, impossible values. This chapter describes architectural design of xMerger, and reveals

its flexibility for being adapted by integrated person-centric information system. Specifically,

Section 4.1 describes the design considerations for the xMerger and Section 4.2 discusses the

overall architecture of the xMerger.

4.1. Design Considerations

 To meet the requirements of general and flexible data merging in person-centric

integrated information systems, xMerger must provide numerous design features. It should be

able to: access and obtain participating database’s data across network boundaries and run as a

standalone application to provide its services. It also provides a platform that allows this tool to

communicate with other databases to share information when required. Thus, each specific part

of data contained in one portion of the system should be able to be shared in a manner

independent from other parts of the system. Moreover, it should be able to access an integrated

set of demographic data from database and refer it to a physical or virtual record of an individual

within the integrated system.

To allow users to invoke its services with initial required information, it should provide a

23

flexible interface that allows users to define how they want to process each type of request within

their own local database.

4.2. Overall Structural Design

Based on considerations described in Section 4.1, we designed a new general purpose

merging component, xMerger, for an integrated person-centric information system. Different

from other general purpose deduplication components, the xMerger implements the effective

merging mechanism. With a flexible and customizable structure, xMerger leaves the merging

logic like database action (insert, update or delete) performed on a record to the domain experts

of the integrated system that adapts xMerger.

4.2.1. xMerger as a Client Server Application

xMerger composed of a server and client, where the server is responsible for receiving

requests from the client and for communication with other components across network

boundaries. Figure 4.1 describes a high level communication between xMerger and its client,

considering CHARM scenario.

To perform the merge of some number of health profiles, the Deferred Match Resolver

(DMR) and Backend Matcher are considered as potential clients in CHARM. A DMR GUI

retrieves the possible match information and builds all internal objects of MergeRequest, in other

words, a request containing necessary information for merging, to capture the specifics of this

user-defined merge, in case of merging. Finally, the DMR GUI sends this MergeRequest object

to the merger, where the merge is actually performed. Backend Matcher is also responsible for

the same process as mentioned above. Section 4.2.2 provides detail description of Request

classes: MergeRequest and UnMergeRequest.

24

 Figure 4.1.Communication between xMerger and its clients.

4.2.2. xMerger Overall Structure and It’s Components

An initial challenge is to design a generalized request class for both client and server and

behaves as a holder for key information for merging. We acknowledge this fact in our system by

defining a Request class. The Request class represents the object(s) responsible for providing the

necessary information to achieve merge/un-merge tasks.

To achieve these two separate tasks, the Request class is sub-classified into the

MergeRequest and UnMergeRequest classes, as each requires different information to fulfill their

goals. MergeRequest class objects participate in a merge request process; UnMergeRequest class

objects participate in an unmerge request process. These two Request subclasses cover the

required information needed to fulfill Merger’s primary purpose – that merge/unmerge requests

can be performed efficiently. The UML class diagram in Figure 4.2 represents xMerger’s Request

class hierarchy.

25

Figure 4.2. Request hierarchy.

After much analysis, we reached the conclusion that Request can exist either as the

composite or independent type, depending on a database’s structure and the relationships present

among its entities. We noted that it would be easier to treat each and every request as an

independent request. This finding was the motivation to introduce a variation of the Composite

pattern inside the MergeRequest class design. The intent of this pattern is to “compose” merge

requests into tree structures to represent part-whole hierarchies and still treat these requests in the

same way as an individual instance of the MergeRequest class. For Merger, the heart of this

pattern is the ability of a client to perform a merge operation using a MergeRequest class object

without needing to know that there are many requests within it.

To keep this concern in mind we have created a specialized class of the MergeRequest

class, called LinkedMergeRequest. This class object comes into existence when a client wants to

create a composite request and so provides the attributes involved in one-to-many or many-to-

many relationships present between two databases entities. Table 4.2.2 explains the requirements

for these three different types of LinkedMergeRequest.

26

Table 4.2.2. The Three Types of the LinkedMergeRequest Class.

S.No. Condition Request Type

1. One to many relationship between entities

(From Parent to child)

ParentToChildLinkedMergeRequest

2. One to many relationship between entities

(From child to Parent)

ChildToParentLinkedMergeRequest

3. Many to many relationship between two

entities or with the same entity

ManyToManyLinkedMergeRequest

In the case of CHARM, we can create a representative composite MergeRequest class

object that itself contains instances of other MergeRequest classes, as shown in Figure 4.3.

 Figure 4.3. Example of MergeRequest in CHARM.

27

According to the MergeRequest class design, a client is able to create a MergerRequest

object, as depicted in Figure 4.3. The top-level MergeRequest class instance named

PersonMergeRequest is a composite request, and all other requests are part of this composite

object. Note that xMerger treats this composite merge request the same as the other individual

merge requests present inside it. Figures 4.4 show the detailed design of the MergeRequest class.

The MergeRequest class contains a list for the SourceRecordID class, a destination

RecordID instance data member, and a list for the FieldAction class. Each instance of the

FieldAction class within this list container is associated with the aforementioned destination

RecordID data member. Each RecordID class object contains a unique record id and a

timestamp. For this unique record id, the RecordID object also has its associated field name.

Using this field and ID, the Merger extracts the record’s profile information from the appropriate

database. Accordingly, the Merger can extract source and destination record information through

this RecordID object.

xMerger uses the timestamp details present in a MergeRequest class object’s source and

destination RecordID class objects for optimistic concurrency control. The timestamp denotes

the last time the record whose id is held by this object was modified. By comparing timestamp

values, we verify whether or not a record has actually been changed. xMerger aborts the merge

process if any one of these timestamps for any RecordID differs in the value held by the

matching database record. False positives are an unmatched timestamp for any RecordID object

in a MergeRequest class object and its matching database record. These are not acceptable in

Merger. The xMerger’s process aborts without generating any warnings, but clearly indicates

failure.

28

Figure 4.4. MergeRequest class diagram.

29

MergerRequest also provides strategy details at the record and field levels for its

destination RecordID instance data member. MergeRequest’s data member recordStrategyName

represents a simple action to be performed on the core database (e.g., insert an entity or edit an

entity) for a destination record. SourceRecordIDs can be left as they are or be removed from the

database after the merging process, depending on the isRemove attribute’s value as set by the

client.

The FieldAction class specifies the simple action to be performed on a specific field of

the destination record and should contain the data needed to perform that action. On the client

side, any specifics regarding how an action/command is performed should be hidden; on the

server side, the execution of an action should be simple and straightforward. To meet these

requirements, we have created a strategy pattern design variation. The strategy pattern is used to

maintain separation of functionality at the client end vs. the server end.

Figure 4.5 represents the design of the UnMergeRequest class which participates in the

un-merge process of xMerger and corresponds in explanation to the MergeRequest class.

 Unlike merge, in the case of un-merge xMerger generates multiple destination records

from a single source record. This requirement of the UnMergeRequest class design differs from

the MergeRequest design, specifically the UnMergeRequest class is composed of one

SourceRecordID and multiple destination records represented by DestinationRecordInfo class

objects. In the MergeRequest design description we have already discussed the design decisions

of classes SourceRecordID and RecordID. Here, our focus is on the remaining classes that are

part of UnMergeRequest.

Our requirement here is to create from a single source record a destination record that is a

logical record composed of multiple fields. So, while creating a new destination record, either it

30

can overwrite one of the source’s fields value for its specific field or the user can specify its

value in case of conflicts.

 Figure 4.5. UnMergeRequest class diagram.

These conflicts can only occur when many merge operations have been been performed on a

destination record already. In such a case, the user is responsible to mention its value explicitly

to avoid conflicts. Considering this requirement, we designed DestRecordInfo, represented by a

data member id (unique id) and recordStrategyName, which describes the action need to perform

on this DestinationRecordInfo object. This recordStrategyName could be an insert or update

action on a core database for this destination. Each field of a destination record is represented by

a FieldDataMap object, specifically identified by the dbFieldName attribute of this object.

FieldDataMap class data member fromSrcID state this field value status. If it is true, which

31

means copy its value from given source record’s field represented by srcIdDBFieldName,

otherwise user will have to provide its value by populating fieldValue attribute.

Figure. 4.6. Merger class diagrams.

32

Figure 4.6 shows a complete view of xMerger, including its components and their

dependencies among each other. MergerImpl is a class that implements xMerger’s interface and

provides actual an implementation of merger and un-merge services of xMerger.

 Once xMerger gets a request to process, RequestHandler becomes responsible to process

this request and return the final result back to MergerImpl. Through Request classes design

decisions, we are well aware that incoming requests contain strategy information at two separate

levels, i.e., record and field. To keep these functionalities and responsibilities separate, we

designed two separate handlers, namely:

• RecordStrategyHandler is responsible for handling record level strategies and depends

on RecordStrategy classes to achieve its objective by invoking required by the

RecordStrategy class, i.e., UpdateRecordStrategy or InsertRecordStrategy as per

information present in the Request class. Figure 4.7 provides a detailed description of

RecordStrategy classes.

• FieldStrategyHandler is responsible for handling field level strategies and depends on

FieldMergeStrategy classes to achieve its objective by invoking a required method of

FieldMergeStatetgy subclasses according to the strategy suggested in the Request class

object sent by the client. Figure 4.8 provides a detailed description of

FieldMergeStrategy classes and its design decisions.

All three mentioned handler classes are also responsible for holding intermediate objects

generated while processing requests, and at the end, RequestHandler gathers intermediate objects

all together and creates a MergeExecution object for final processing. The MergeExecution class

object is composed of DBAction objects, which are responsible to generate SQL queries to

execute them later at the end of request processing. Figure 4.9 illustrates DBAction.

33

RequestHandler also communicates with Executor once it prepares the complete

MergerExecution object to execute. Executor executes this intermediate MergeExecution object

on the database for final processing. If execution is successful, Executor returns a successful

result; otherwise, it aborts the merge process and returns un-successful result.

Figure 4.7. RecordStrategy hierarchy.

Figure 4.7 presents a closer look at the record strategy classes involved in xMerger and its

hierarchy. A record can be updated, inserted, and deleted in a database while performing un-

merge/merge operations via xMerger. The RecordStrategy class is designed as an abstract class

with two overloaded abstract execute methods in it. This design decision allows us to keep

update and insert record strategies separate while still sharing common functionality. There are

two subclasses of Recordstrategy:

• UpdateRecordStrategy is responsible to generate UpdateDBAction and DeleteDBAction

objects for source and destination records if required. Further, to achieve this objective,

34

this class also communicates with FieldStrategyHandler to generate intermediate

multiple new field objects that help in creating mentioned DBAction objects.

• InsertRecordStrategy is responsible to generate InsertDBAction and DeleteDBAction

objects for source and destination records if needed. Like UpdateRecordStrategy, this

class communicates with FieldStrategyHandler to achieve its objective.

Figure 4.8. FieldMergeStrategy hierarchy.

Figure 4.8 presents a closer look at field strategy classes involved in xMerger.

FieldStrategyHandler is responsible for invoking the required FieldMergeStrategy for a specific

field of a source or destination record. Similar to the RecordStrategy class, the

FieldMergeStrategy class is also designed as an abstract class, which forces its subclasses to

35

override a computeNewValue method, whose objective is to create a new value for a specific

field as per a given field level strategy, present in FieldAction objects of a Request class. Each

subclass of FieldMergerStrategy class has its own responsibility, and these subclasses are

described below:

• StringFieldMergeStrategy is responsible to compute new values for fields having string

data types. This class is again sub-classed in below the above mentioned classes, in order

to share common functionality among string-type merge strategies and also provide

flexible structure for future enhancement.

� SubStringFieldMergeStrategy is responsible to compute a new string object by

performing a sub-string operation on a source field value.

� ConactenateStringFIeldMergeStrategy is responsible to compute a new string

object by concatenating all source field values provided to its compute method.

Currently, this class concatenates field values with a space and returns a single

concatenated string.

• OverwriteFieldMergeStrategy is responsible to copy the source field value for a

destination field value and return it. This strategy applies for any data type. This is the

simplest strategy to deal with.

• NumericFieldMergeStrategy is responsible to compute a new value for a destination field

whose sources field’s data type is numeric. This design allows us to add new numeric

strategies under this class in future. Currently, we only have one strategy under this class

which is described below:

� AverageFieldMergeStartegy is responsible to compute average value of all

sources field’s value, which will be a new value for a destination field.

36

Figure 4.9 DBAction Classes.

Figure 4.9 presents a closer look at DBAction classes and their hierarchy. These classes

are object form of SQL statements and responsible to perform appropriate actions on core the

database, such as insert, update and delete. Similar to the above discussion, the DBAction class is

also designed as an abstract class that provides its subclasses to have additional functionality

apart from its own functionalities. The execute() method of each subclass is responsible to

execute that action at the database level by creating an SQL statement from its own object. As

shown in Figure 4.9, subclasses of DBAction class are as follows:

37

• InsertDBAction represents an object form of an insert SQL statement and on execute

insert a record into a database. The createMergerHistory() method of this class generates

a helper object whose action type is to delete.

• DeleteDBAction represents an object form of delete SQL statement and on execute delete

a record from a database. The createMergerHistory() method of this class generates a

helper object whose action type is to insert.

• UpdateDBAction represents an object form of an update SQL statement and on execute

update a record in a database. The createMergerHistory() method of this class generates a

helper object whose action type is to update.

4.2.3 Information Flow of xMerger (In the Case of Merging)

This section provides a detailed view of information flow among xMerger’s classes and

how intermediate objects are created during processing a request for merging. Figure 4.10

provides a complete view of xMerger process through sequence diagrams.

 Figure 4.11, detailed view of ref frame of Figure 4.10, illustrates the information flow

among record strategy classes and creation of intermediate generated DBAction objects

responsible for final execution; collectively create a list of action objects handle by Executor.

Executor is responsible for final execution of DBAction objects generated intermediately.

Successful execution of these objects decides success of merge process and return unique merge

id as a result, to identify this merging process. Any unsuccessful execution of these DBAction

objects will generate the exception and halt the merging process.

38

Figure 4.10. Overall information flow while merging.

39

Figure 4.11. Overall information flow in record strategies.

40

4.2.4 xMerger at Package Level

Now considering internal details, xMerger is composed of several packages that organize

the elements of xMerger into related groups to minimize dependencies among them. Figure 4.12

describes the overall package structure in this system:

Figure 4.12.Package level diagram of xMerger and its dependencies.

41

CHAPTER 5

IMPLEMENTATION DETAILS

5.1 Introduction

xMerger as a client- server application that can run on different platforms with different

databases to provide un/merging services. xMerger needs database-metadata information to

support different databases. To achieve this, we designed and implemented an independent utility

named Virtual-database that provides the complete metadata information of a database. This

chapter focuses on the technology used and implementation issues faced while implementing

xMerger.

5.2 Technology

 xMerger resorts to Java’s platform independent feature and its wide support for various

relational databases with JDBC to provide platform independency together with support to

different databases, as discussed in Section 3.2. This means any database that has a JDBC driver

and runs on a system that has a JVM can be integrated with xMerger. Currently, xMerger only

runs on SQL embedded databases. All the queries in the system are executed through Java JDBC.

So, for different database servers, users can apply a different JDBC driver to use xMerger

without changing the code for queries, except for the configuration constants.

5.3 Virtual-Database

Virtual-database provides an object that represents an object-relational mapping. This

technique converts data between incompatible type systems in relational databases and object-

42

oriented programming languages. This creates, in effect, a “virtual object database” that can be

used form within the programming languages.

 Virtual-database is able to represent the relational model into an object model. This is

done through the mapping among attributes of the relational model with the attributes of the

object model. A table maps to the class and all columns, where each column again maps to

another class, which in turn maps to one of the properties in the class corresponding to table. It

also provides the facility to hold the value of each and every column of a table as an object of

another class.

Virtual-database can be imported as a jar into any system and provides the entire database

tables’ details, such as, all tables present in database, all columns present in each table, and

relationships among tables in the form of imported and exported keys list. It is intelligent enough

to distinguish between one-to-one and one-to-many relationships.

This utility is also implemented in Java to maintain its independency among platforms

and to support xMerger.

5.4 Logging

For debugging and maintenance purposes, xMerger allows flexible logging mechanisms

by using log4j framework. The advanced features of log4j allow the user to freely choose what to

log, how to log, and where to log.

 Our designed debug log logs all the details of a merging/ unmerging process. Users can

turn this log on or off through the starting server scripts.

5.5 Implementation Details and Challenges

As mentioned before, xMerger runs as a stand-alone server for easy adaptation. To hide

the network handling from the users, we implemented a general purpose merger client that builds

43

up the network connection and serializes the request.

A JDBC connection and RMI are used by distributed components to communicate with

each other. A client sends messages to the server through RMI. RMI ensures delivery of

messages and has a built-in buffering mechanism to handle concurrent calls.

For an easy start xMerger server, we created a command file (.cmd) for starting the

service in Windows, also a batch file (.sh) for starting the server in Unix. The command file or

batch file allows users to configure the JDBC driver, configuration files, and log files.

 The design of xMerger involves dozens of classes and configuration artifacts. To verify

successful implementation of these classes, we have done extensive testing from the bottom to

top. Unit testing is indispensable for each of the basic classes to make sure they function

properly. A system test is conducted with dummy data and databases. A regression test is

conducted from time to time when a new component is integrated into the system.

As a final overall test, we needed an integrated system to test the adaptation of xMerger

and evaluate it. Chapter 6 presents the details of this testing.

5.6 Discussion and Future Improvements

5.6.1 Design Quality

The strength of xMerger mainly comes from it flexible design. The following sections

discuss the design decisions that contribute to xMerger’s great flexibility and how the flexible

design can be applied to various systems.

xMerger’s design provides enough flexibility to handle its own responsibility, such as

changing the logic of handlers and adding new record, field strategies and database actions, etc.

The composite pattern present in the Request design lets client treat individual objects and

compositions uniformly. The key concept is that we can manipulate a single instance of the

44

object just as we manipulate a group of them, and this makes the code less complex and

therefore, less error prone. The variation of strategy patterns included provide different strategies

at both the record level and the field level encapsulate each one as object and make them

interchangeable. This makes design more flexible in terms of adding and removing strategies.

 xMerger interacts with users at run time, so it requires finishing the merging process as

fast as possible. The composite design for the requests fits this requirement by executing the

leave level requests first, and then composite requests one by one. With these features, we expect

the merging request in xMerger to finish in less than one second in a database. However, the

speed of handling one merging also depends on the speed of the SQL queries, the network

connection, and communication with other database to update id mapping.

5.6.2 Adaptation for Various Integrated Systems

xMerger is a general purpose merging system for integrated information systems. It is

applicable for systems in fields like medical care, business, customer service, etc. The following

are some basic requirement for adapting the system:

• The system supports Java 1.4.

• The system uses a relational database system.

• The system has a database that has an appropriate JDBC driver.

5.6.3 Future Enhancement

• The current version of xMerger relies on the RMI internal multi-threading functionality

to handle multiple requests. Moreover, connection pool size may create a long wait for

requests to get a free connection object for its execution, hence, cause a later request to

45

time out because of wait. To eliminate this dependency and fix this problem, xMerger

could have its own multithreading system to handle requests.

• The configuration file provides flexibility for an initial setup process like database url,

username, password, and number of connections and other database information like

sequence ids associated with tables. In future versions, we could have a configuration

tool that visualizes the XML configuration file and allows users to modify the

configuration file through a simple GUI interface. This tool will simplify maintenance of

a system that changes frequently.

• The merging process generates merger history records to correct erroneous merged

records in future. The user himself is responsible to get a detailed view of merge history

data, but in future versions we could have a tool that can provide the flat detailed view of

merge history objects present in persistent storage through a simple GUI interface. This

would help users to create unmerge requests in a simple way.

46

CHAPTER 6

SOFTWARE TESTING

6.1 Introduction

Software testing is essential for ensuring the quality and usability of a product. To test

performance and proper functioning of xMerger, unit testing integration testing and user

acceptance testing is used. The next section discusses software testing in the context of the

xMerger.

6.2 Unit Testing

Unit testing is a testing technique by which individual units of source code are tested to

determine if they are fit for use. A unit is the smallest testable part of an application.

In procedural programming, a unit may be an individual function or procedure. This method

ensures that the code meets its design objectives and behaves as intended [21].

 In xMerger, unit testing was done on almost all classes present in the system, that are

responsible any processing. These classes include handlers, record strategies, field strategies, and

database action classes as discussed in Chapter 4. Unit testing was done using logic-based testing

and input validation, for which real data and random data were used. These test cases were

designed such that they met functional requirement specifications of xMerger. This is discussed

in more detail in the Appendix.

6.3 Integration Testing

 Integration testing is the phase in software testing in which individual software modules

47

are combined and tested as a group. It occurs after unit testing and before system testing.

Integration testing takes as its input modules that have been unit tested, groups them into larger

aggregates, applies tests defined in an integration test plan to those aggregates, and delivers as its

output the integrated system ready for system testing [22].

 In the integration testing of xMerger, test cases focused on the flow of

data/information/control from one component to the other. This testing followed a bottom testing

approach in the following order:

1) Testing of connection pool and other dbutil package classes.

2) Testing of DbAction classes like UpdateDBAction, InsertDBAction and DeleteDBAction.

3) Testing of field strategies and database actions.

4) Testing of record strategies, field strategies, and db actions.

5) Testing of handlers like record strategy and field strategy handler.

6) Testing of handlers, record strategies, field strategies and db actions.

7) Testing of request handle and executor with all strategies and actions.

8) Testing of merge history classes with step 7 to verify results.

9) Testing of merger implementer which include step 8, too.

Test data consist of different type of merge and unmerge requests like composite and

independent requests. We covered all data-types such as float, date, and string.

6.4 User Acceptance Testing

 User acceptance testing (UAT) is generally done before the delivery of a product. This

project performed UAT with real data to check whether the end goals were achieved or not.

48

xMerger is integrated as a independent module into Child Health Advanced Records

Management (CHARM), an integrated child-centric information system to achieve this testing.

Moreover, CHARM is a perfect environment for system integration and adaptation testing of

xMerger because it represents a variety of integrated information systems that can adapt

xMerger. CHARM manages a central database, core data that stores demographic person

information loaded from several participating programs, and xMerger accessed this central

database for its testing.

49

CHAPTER 7

SUMMARY

As a general-purpose merger, xMerger is adaptable to any integrated person-centric

information system that can be accessed by Java code and support an SQL query. xMerger works

as a standalone server waiting for merging requests, processes these requests once it gets them,

and generate a unified view of an individual.

 xMerger relies on Java and its JDBC technology to resolve system level heterogeneities.

Schematic and semantic heterogeneities and other data quality problems are resolved by allowing

the client to provide strategies and specific details.

For verification of the effectiveness of the xMerger design, we adapted it and applied it to

the CHARM systems. With domain knowledge of CHARM’s participating programs together

with an understanding of CHARM’s central core database, we were able to configure xMerger

efficiently.

In the application of xMerge to CHARM, we noted xMerger could be improved in the

following ways:

• A GUI may be designed to facilitate the user to access and modify all the server side

configuration files. Going through configuration files can be painful for some of the less

technical users. A built in GUI would be a great help to this category of user. However,

portability of the program may be limited because of limited GUI support on some client

systems.

• Also from the design’s perspective, we could add some new record and field strategies to

50

provide more flexibility to the system, although xMerger’s current design provides some

facility to add new strategies without any modifications.

• There is a possibility to add new configuration details associated with different databases

to generalize this system for all databases. This enhancement would make xMerger easier

to be adapted by various types of integrated information systems with different databases.

• A GUI may be designed to provide users with a detailed view of the persistent merge

history objects generated in a merging process.

• Another possible improvement for xMerger would be to make the integration of third

party components easier and pluggable. This would require some adaptation and

refactoring of the existing component.

Finally, xMerger provides an effective merging process to provide a unified view of data

in an integrated information system. Adopting or developing xMerger requires awareness of the

underlying issues, the key design choices, and the consequences of those choices. This report

provides a starting point to achieve awareness and a foundation upon which to enhance these

features in the future.

51

REFERENCES

[1] Clyde, S.W. The Unique Records Portfolio. Public Health Information Institute, 2006

[2] Clyde, S.W. Overview for Public Health Leaders. Public Health Information Institute,

2006

[3] Markle Foundation Working Group on Accurately Linking Information for Health Care

Quality and Safety. Linking Health Care Information: Proposed Methods for Improving

Care and Protecting Privacy. Markle Foundation, 2005.

[4] Clyde, S. Executive Summary: Child-Health Advanced Record Management Integration

Infrastructure, CHARM Project. Utah Department of Health, Jan 2002.

[5] Wang, R.Y. and Strong, D.M. Beyond accuracy: What data quality means to data

consumers. J. Management Information Systems, 12, 4 (1996), 5-33

[6] Levitin, A.V. and Redman, T.C. Data as a resource: properties, implications and

prescriptions. Sloan Management Review, 40, 1 (1998) 89-101.

[7] Leitheiser, R.L. Data quality in health care data warehouse environments. In Proceedings

of the 34th Hawaii International Conference on System Sciences, IEEE, 2001.

[8] Strong, D.M., Lee, Y.W., and Wang, R.Y. Data quality in context. Comms. ACM, 40, 5

(May 1997), 103-110.

[9] Van den Broeck, J., Argeseanu Cunningham, S., Eeckels, R., and Herbst, K. Data

cleaning: Detecting, diagnosing, and editing data abnormalities. PLoS Med 2, 10 (2005):

e267. doi:10.1371/journal.pmed.0020267.

[10] Gibbs, M.R., Shanks, G., and Lederman, R. Data quality, database fragmentation and

information privacy. Surveillance and Society 3 1 (2002), 45-58

[11] http://www.connectingforhealth.org/commonframework/docs/T5_Background_Issues_Da

ta.pdf Page 6. (July 2010)

[12] P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal of

Data Semantics 4 (2005),146-171.

[13] Rahm, E. and Do, H. H. Data cleaning: Problems and current approaches. IEEE Bulletin

of the Technical Committee on Data Engineering 23, 4 (2000), 3-13.

52

[14] Sheth, A. P. Changing focus on interoperability in information systems: From system,

syntax, structure to semantics. In Interoperating Geographic Information Systems, M. F.

Goodchild, M. J. Egenhofer, R. Fegeas, and C. A. Kottman Eds., Kluwer, Academic

Publishers. 1999, 1-27.

[15] Dixon, M., Kohoutková, J., and Cook, S.,Jeffery, K., and Read, B. Managing

heterogeneity in inter-operating medical information systems. In 10th ERCIM Database

Research Group Workshop on Heterogeneous Information Management, 1996.

[16] Kim, W. and Seo, J. Classifying schematic and data heterogeneity in multidatabase

systems. Computer 24 (1991), 12-18.

[17] Sheth, A. P. and Kashyap, V. So far (schematically) yet so near (semantically). In

Proceedings of the IFIP WG 2.6 Database Semantics Conference on Interoperable

Database Systems, 1993.

[18] Sheth, A.P. and Larson, J.A. Federated database systems for managing distributed,

heterogeneous, and autonomous databases. ACM Computing Surveys 22 , 3 (1990),183-

236.

[19] George, D. Understanding structural and semantic heterogeneity in the context of

database schema integration. Journal of the Dept. of Computing, UCLan, (May 2005),

29-44.

[20] http://en.wikipedia.org/wiki/Composite_pattern

[21] http://en.wikipedia.org/wiki/Strategy_pattern

[22] http://en.wikipedia.org/wiki/Use_case. (July 2010 Month year)

[23] http://www.bredemeyer.com/pdf_files/functreq.pdf. (July 2010)

[24] http://en.wikipedia.org/wiki/Object-oriented_analysis_and_design. (July 2010)

[25] Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in Practice, 2nd

Ed. Addison-Wesley.

[26] http://www.python.org/~jeremy/pubs/thesis/node7.html

[27] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2232154/pdf/procamiasymp00005-

1067.pdf

[28] http://www.cs.washington.edu/education/courses/cse590q/04au/papers/Hernandez95.pdf

[29] http://en.wikipedia.org/wiki/Object-relational_mapping. (June 2010)

53

[30] http://en.wikipedia.org/wiki/Unit_testing. (July 2010)

[31] http://en.wikipedia.org/wiki/Integration_testing. (July 2010)

[32] Lenzerini, M. Data integration: A theoretical perspective. In Symposium on Principles of

Database Systems, 2002.

[33] Sattler, K.-U., Conrad, S., and Saake,G. Adding conflict resolution features to a query

language for database federations. In Proceedings of 3rd International Workshop on

Engineering Federated Information Systems, 2000.

[34] http://www.legacyfamilytree.com/tipsNGSMayJun99.asp

54

APPENDIX

55

Appendix

FUNCTIONAL REQUIREMENTS AND USER GOALS

High-level Goals of xMerger

 Below are the primary goals for xMerger:

• To create a unified view of data from multiple matching records, which could be single

source duplicates, multi-source duplicates and overlapping records;

• To create complete and accurate merged record from conflicting and incomplete source

records.

• To keep a record of every merge process for further verification and evaluation.

• To allow un-merging of erroneous merged records using merge history records.

• To enhance future matching by adding value to the merged records.

Functional Requirements

1. Specify merging criteria and required parameters

Its purpose is to provide user-specified criteria like:

1.1 Data sources information to extract data from it.

1.2 Records- and fields-level merging strategies.

1.3 Other configuration parameters using properties file.

2. It should provide merging and un-merging.

3. It should provide support for various types of integrated system architecture.

4. It should provide support to multiple platforms in an integrated system.

56

User Goals

 A use case defines the interactions between external actors and the system under

consideration to accomplish a goal. An actor specifies a role played by a person or system while

interacting with the system [22]. There is one primary actor for xMerger, namely the Database

Owner.

 The Database owner (DB owner) is a person or other electronic system, sub-classified as

DB User and Interactive System, respectively. A DB User is a person responsible for a particular

database. Therefore, a DB User wants to maintain data quality by executing various cleaning

activities on their owned database(s) and hence responsible to invoke xMerger’s services.

An Interactive System has the same role, but instead of a human, it is another electronic

system that needs to periodically execute cleaning activities on database(s) for which it has rights

and responsibilities. In the case of CHARM, Deferred Match Resolver is responsible for

communicating with Merger to initiate merging activities.

Figure A-1. Actors involved in the system.

57

Figure A-2 describes the goals of a DB User or an Information System. The user defines

the merging requests once he finds any duplicate record in the system, that is needed to invoke

the merge service provided by xMerger and to provide all the necessary information to merge

two or more records into a single record. DB Owner can then create independent as well as

composite merge requests if the records are interrelated. Similarly, DB Owner can define

independent and composite unmerge requests for any erroneous merged records present in the

system to provide required information to initiate un-merge service provided by xMerger.

Figure A-2. Goals associated with DB users and information systems.

	A Merging System for Integrated Person-Centric Information Systems
	Recommended Citation

	Microsoft Word - Merger_Report_Swati_Jain.docx

