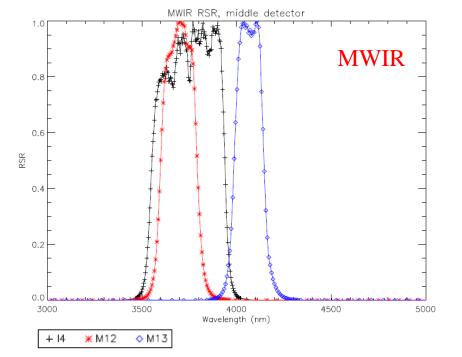
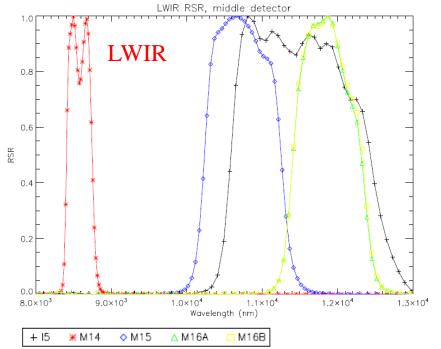


1


S – NPP VIIRS On-orbit Uncertainty Estimate for Emissive Bands

Jeff McIntire¹, Boryana Efremova¹, and Xiaoxiong (Jack) Xiong²


¹VCST / Sigma Space Corporation ²NASA GSFC

> CALCON Conference Logan UT August 21, 2013

S-NPP VIIRS Thermal Bands Overview

Band	Center wavelength (nm)	Bandwidth (nm)	Resolution (m)	# of Detectors	
I4	3743	386	375	32	U
15	11508	1882	375	32	
M12	3695	192	750	16	т
M13	4066	158	750	16	T
M14	8578	341	750	16	
M15	10744	1014	750	16	
M16A	11861	919	750	16	TDI
M16B	11869	923	750	16	· IDI

On-board blackbody

Normally controlled at ~292 K Can be cycled from ~267 K to ~315 K Thermal bands are important in EDRs

Used by science teams (Ocean, Land, and Aerosol) for SST, LST, fire detection, cloud properties, etc.

Thermal Band Uncertainty

Important to characterize thermal band uncertainty on-orbit at the SDR level for propagation into EDRs

Propagated uncertainty to retrieved radiance using standard NIST formulation (k=1)

Propagated uncertainty into blackbody radiance estimate Generated the radiometric coefficient uncertainties Used data from blackbody WUCD (12/2012) Estimated the uncertainty in the retrieved EV radiance

Performed analysis on a series of signal (dn) levels for all bands:

Designed to cover the dynamic range for each band (dn = 5, 20, 100, 250, 500, 750, 1000, 1500, 2000, 2500, 3000, and 3500)

Evaluated results for an individual, unaggregated EV pixel

In terms of radiance uncertainty [%] and temperature uncertainty [K] Evaluated results at different RVS angles / aggregation zones

Thermal Band Uncertainty Requirements

Uncertainty requirements are listed in % of radiance at specific scene temperatures

I bands specified at 267 K only

M bands specified at 4 or 5 scene temperatures

Band	190 K	230 K	267 K	270 K	310 K	340 K
I4			5.0			
15			2.5			
M12		7.0		0.7	0.7	0.7
M13		5.7		0.7	0.7	0.7
M14	12.3	2.4		0.6	0.4	0.5
M15	2.1	0.6		0.4	0.4	0.4
M16	1.6	0.6		0.4	0.4	0.4

Specified radiance uncertainty limits in %

Uncertainty in BB Radiance

The at-detector BB radiance is described by the following model

$$\begin{split} L_{BB-scene} &= rvs_{BB}\varepsilon_{BB}L_{BB} + rvs_{BB}\left(1 - \varepsilon_{BB}\right)\left(F_{SH}L_{SH} + F_{CAV}L_{CAV} + F_{RTA}L_{RTA}\right) \\ &+ \frac{\left(rvs_{SV} - rvs_{BB}\right)}{\rho_{RTA}}\left[L_{HAM} - \left(1 - \rho_{RTA}\right)L_{RTA}\right] \end{split}$$

Detector response to input radiance model

At-detector BB radiance is modeled as a quadratic polynomial in signal (dn) Derived coefficients from BB WUCD performed 12/2012

$$L_{BB-scene} = c_0 + c_1 dn_{BB} + c_2 dn_{BB}^2$$

Individual uncertainties in ΔL_{BB}

Uncertainty in RVS

combination of measurement and fitting uncertainties

Uncertainty in L_{BB} , L_{HAM} , L_{RTA} , L_{SH} , and L_{CAV}

combination of temperature, spectral, statistical, and interpolation uncertainties Uncertainty in F_{SH} , F_{CAV} , and F_{RTA} – uncertainty of 100 % Uncertainty in ϵ_{BB} – uncertainty of 0.0007 %

Uncertainty in ρ_{RTA} – uncertainty of 0.5 %

See backup slides for more details (and references)

EV retrieval equation is listed below with the scan-by-scan F factor correction included

$$L_{EV} = \frac{L_{BB-scene}}{rvs_{EV}} \frac{c_0 + c_1 dn_{EV} + c_2 dn_{EV}^2}{c_0 + c_1 dn_{BB} + c_2 dn_{BN}^2} - \frac{(rvs_{SV} - rvs_{EV})}{\rho_{RTA} rvs_{EV}} [L_{HAM} - (1 - \rho_{RTA})L_{RTA}]$$

Propagate the uncertainties to the retrieved radiance

```
Individual uncertainties in L_{EV}

Uncertainty in c_0, c_1, and c_2

determined from the least squares fitting algorithm (using 12/2012 WUCD)

Uncertainty in RVS

combination of measurement and fitting uncertainties

Uncertainty in dn<sub>EV</sub> and dn<sub>BB</sub>

random measurement uncertainty

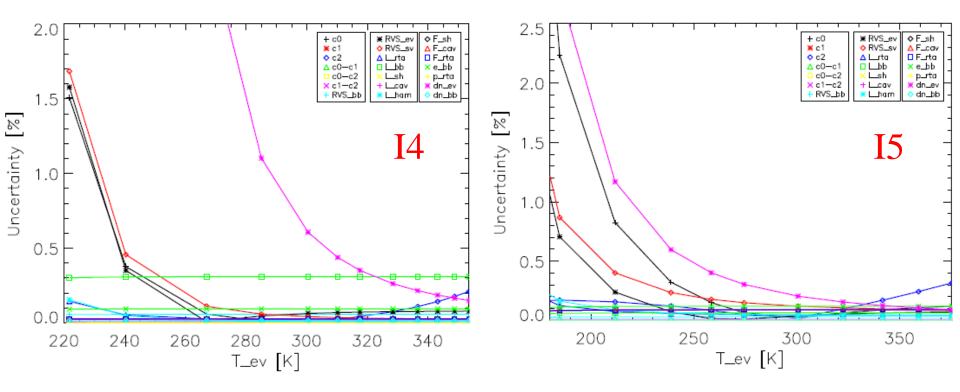
Uncertainty in L<sub>BB</sub>, L<sub>HAM</sub>, L<sub>RTA</sub>, L<sub>SH</sub>, and L<sub>CAV</sub>

combination of temperature, spectral, statistical, and interpolation uncertainties

Uncertainty in F<sub>SH</sub>, F<sub>CAV</sub>, and F<sub>RTA</sub> – uncertainty of 100 %

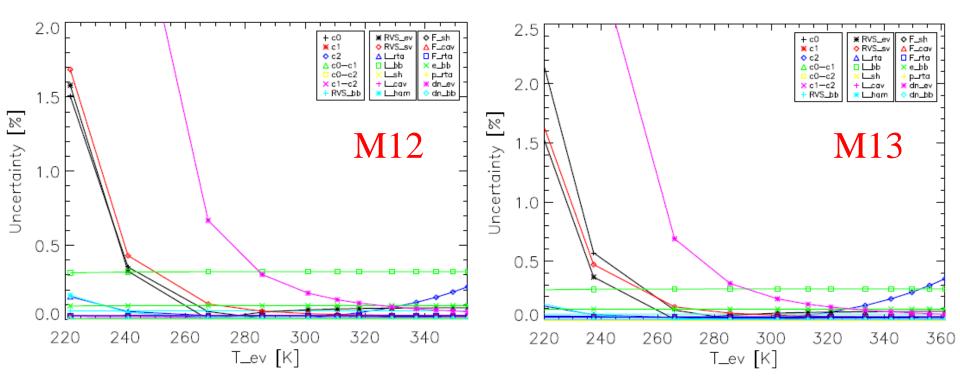
Uncertainty in \epsilon_{BB} – uncertainty of 0.5 %

See backup slides for more details (and references)
```

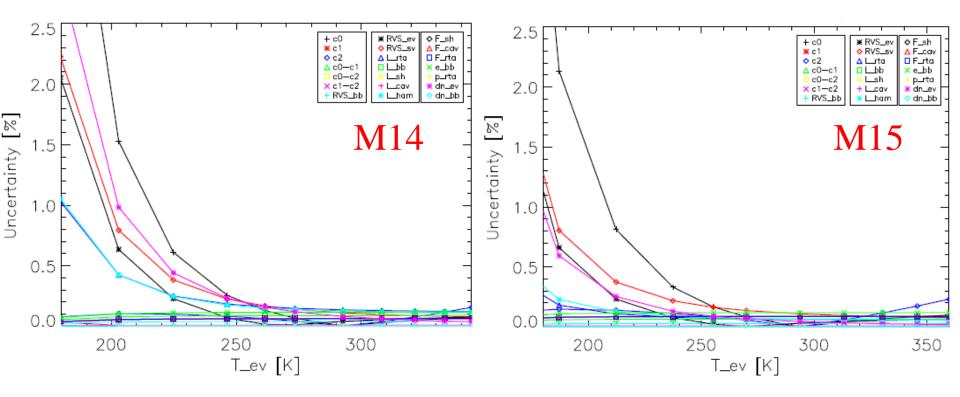


Individual Contributors (I bands)

Individual uncertainty contributors in the I bands

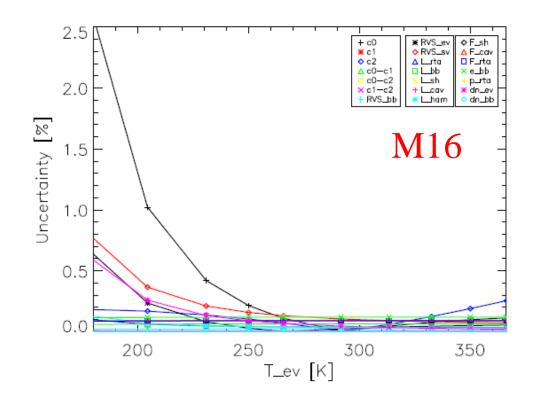

I4 (left) – the dominant terms are the BB L and EV dn uncertainties I5 (right) – the most important terms are c2 and EV dn uncertainties

Individual uncertainty contributors in the M12 and M13


M12 (left) – the dominant terms are the BB L and EV dn uncertainties M13 (right) – the dominant terms are BB L and EV dn uncertainties; c2 uncertainty also important at high scene temperatures

Individual uncertainty contributors in the M14 and M15

M14 (left) – the most important terms are the HAM and RTA L uncertainties M15 (right) – no terms clearly dominate except the c0 uncertainties at low scene temperatures and the c2 uncertainties at high scene temperatures

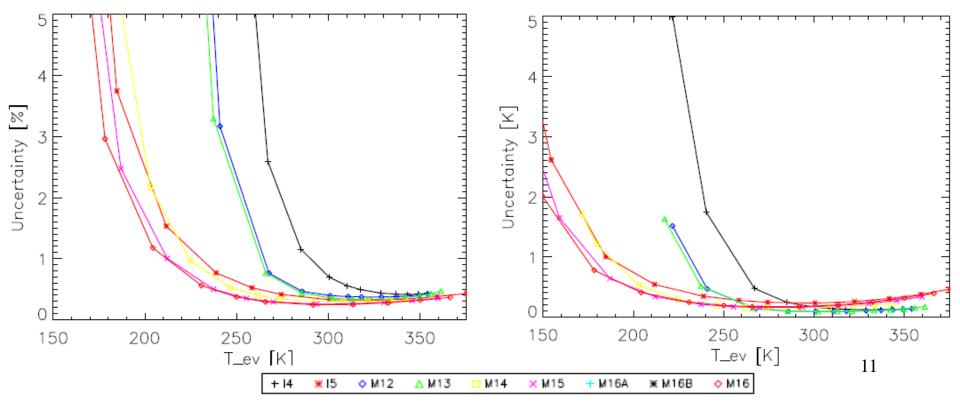


Individual Contributors M16

Individual uncertainty contributors in the M16

M16 – no terms clearly dominate except the c0 uncertainties at low scene temperatures and the c2 uncertainties at high scene temperatures

Total Uncertainty


Total uncertainty (single, unaggregated EV pixel, beginning of scan) Left plot – uncertainty in radiance [%]

Uncertainties increase at low scene temperatures, and are roughly constant elsewhere MWIR band uncertainties increase earlier than LWIR bands, particularly I4

Right plot – uncertainty in temperature [K]

Uncertainties are below 1 K above ~190 K for the LWIR bands

Uncertainties are below 1 K above ~230 K for M12 and M13, and above ~250 K for I4

Comparison to Requirement [%]

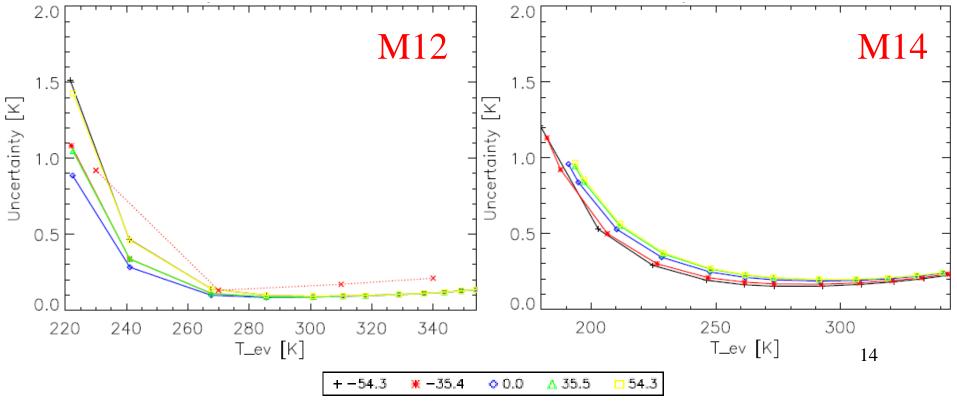
Uncertainty specifications	Band	267 K
Defined in terms of % of radiance, at particular uniform	I4 spec	5.0
scene temperatures	I4 estimate	2.59
Estimates exceed the specification at lower scene	I5 spec	2.5
temperatures for bands M12, M13, M15, and M16	I5 estimate	0.464

Band	190 K	230 K	270 K	310 K	340 K
M12 spec		7.0	0.7	0.7	0.7
M12 estimate		8.52	0.721	0.380	0.384
M13 spec		5.7	0.7	0.7	0.7
M13 estimate		6.82	0.694	0.340	0.356
M14 spec	12.3	2.4	0.6	0.4	0.5
M14 estimate	4.56	0.860	0.357	0.292	0.318
M15 spec	2.1	0.6	0.4	0.4	0.4
M15 estimate	2.30	0.647	0.291	0.259	0.301
M16 spec	1.6	0.6	0.4	0.4	0.4
M16 estimate	2.16	0.578	0.286	0.250	0.296

12

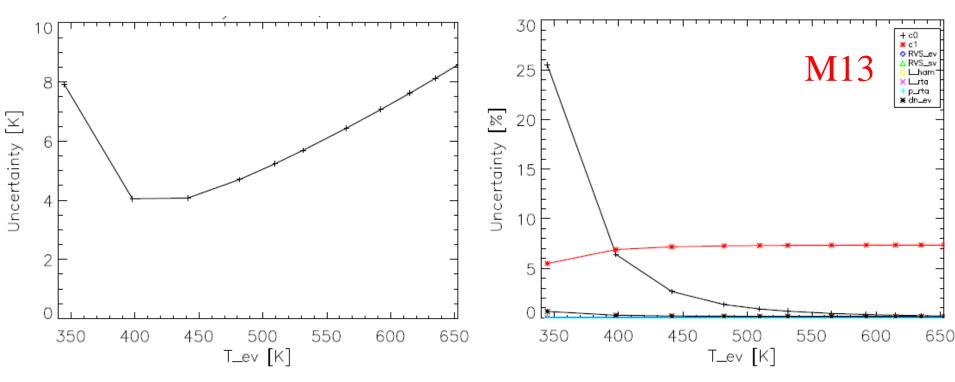
Comparison to Requirement [K]

Uncertainty specifications	Band	267 K
Defined in terms of %, at particular uniform scene	I4 spec	0.91
temperatures; converted to K	I4 estimate	0.475
Estimates exceed the specification at lower scene	I5 spec	1.4
temperatures for bands M12, M13, M15, and M16	I5 estimate	0.259


Band	190 K	230 K	270 K	310 K	340 K
M12 spec		0.92	0.13	0.17	0.21
M12 estimate		1.06	0.134	0.094	0.114
M13 spec		0.85	0.14	0.19	0.23
M13 estimate		0.923	0.141	0.092	0.116
M14 spec	2.6	0.75	0.26	0.23	0.34
M14 estimate	0.907	0.265	0.154	0.166	0.217
M15 spec	0.56	0.24	0.22	0.28	0.34
M15 estimate	0.604	0.247	0.157	0.184	0.256
M16 spec	0.48	0.26	0.24	0.31	0.37
M16 estimate	0.610	0.252	0.171	0.197	0.278

Dependence of uncertainty on RVS angle / aggregation zone (uniform scene)

- Examples -- uncertainties shown at the five scan angles (-54.3, -35.4, 0.0, 35.5, and 54.3); specification also shown with a dashed red line
- M12 (left) increasing differences at lower scene temperatures (mainly due to reduced EV dn uncertainty)
- M14 (right) differences of up to 0.1 K observed at lower scene temperatures (mainly due to RVS)
- Other bands I4, I5, and M13 show similar behavior to M12; M15 and M16 show only minor differences



Left plot – total uncertainty in temperature [K]

Uncertainties increase at low scene temperatures, and increase gradually at high temperatures

Right plot – individual uncertainty contributors in [%]

Uncertainty dominated by offset coefficient at lower temperature Uncertainty dominated by linear coefficient at high temperature

Thermal Band Uncertainty

Important to characterize thermal band uncertainty on-orbit at the SDR level for propagation into EDRs

Propagated uncertainty to retrieved radiance using standard NIST formulation (k=1)

Performed analysis on a series of signal (dn) levels for all bands

Evaluated results for an individual, unaggregated EV pixel In terms of radiance uncertainty [%] and temperature uncertainty [K] Evaluated results at different RVS angles / aggregation zones

Compared uncertainty estimates to requirements Thermal bands meet requirements for most scene temperatures M12, M13, M15, and M16 had slightly larger than specified uncertainties at low scene temperatures Larger uncertainties in M13 low gain (above 350 K)

Backup Slides

Individual Uncertainty Contributors

Radiance uncertainties

RSS of the spectral, temperature, statistical, and interpolation uncertainties

- * Raytheon PVR temperature
- * Presentation by J. Young spectral

$$u(L_{\lambda}) = \max(|L(T,\lambda) - L(T,\lambda \pm \Delta \lambda)|)$$
$$u(L_{T}) = \max(|L(T,\lambda) - L(T \pm \Delta T,\lambda)|)$$

Source	Temperature Uncertainty
	(K)
OBC	0.04
HAM	1.0
RTA	9.0
SH	3.0
CAV	6.0

Band	Spectral Uncertainty
	(nm)
I4	1.2
15	4.0
M12	1.2
M13	1.2
M14	4.0
M15	4.0
M16A	4.0
M16B	4.0

RVS uncertainties

RSS of the fitting and measurement uncertainties One uncertainty for all RVS angles * NICST analysis

Band	RVS uncertainty
I4	0.000811
I5	0.000986
M12	0.000818
M13	0.000798
M14	0.001003
M15	0.000875
M16A	0.000804
M16B	0.000759

ρ_{RTA} uncertainty

Measured uncertainty at 270 K is 0.05 % Error used for all scene temperatures * Raytheon PVR

ϵ_{BB} uncertainty

Measured uncertainty at 3.39 µm is 0.0007 * Raytheon PVR

F_{SH}, **F**_{CAV}, and **F**_{RTA} uncertainty Uncertainties taken to be the 100%

Individual Uncertainty Contributors

Radiance uncertainties

The uncertainty in the BB path difference radiance was determined via the uncertainty propagation

Coefficient uncertainties

The coefficient uncertainties were output from the least squares fitting algorithm (both uncertainties and covariances)

These uncertainties were determined from inputting the radiance uncertainties into the least squares algorithm

For this work, coefficients were derived from 12/2012 BB WUCD

M13 low gain coefficient uncertainties derived from comparisons to lunar observations and pre-launch Government team analysis

dn uncertainty

The dn uncertainty was determined by the standard deviation of the mean for all scans and samples used (known bias between EV and SV has been removed in the processing)

This uncertainty calculation was performed separately for both $dn_{\rm EV}$ and $dn_{\rm BB}$

The dn_{EV} uncertainty was estimated by fitting the 12/2012 WUCD data

Statistics were used to lower the dn_{BB} uncertainty

A factor of the square root of 2 or 3 was used to decrease the dn_{EV} uncertainty of the inner aggregation zones

Some known biases have not been included (M16 TDI, Aggregation, M13 A vs F)

Assumed not applicable to uniform scenes

Uncertainty Propagation Use NIST standard approach

For a function $y=f(x_1,...,x_N)$ $u(x_i)$ is the uncertainty in the parameter x_i $u(x_i,x_j)$ is the covariance of parameters x_i and x_j N is the number of parameters

Uncertainties may include both random errors and biases

$$u^{2}(y) = \sum_{i=1}^{N} \left(\frac{\partial y}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \left(\frac{\partial y}{\partial x_{i}}\right) \left(\frac{\partial y}{\partial x_{j}}\right) u(x_{i}, x_{j})$$

